WO2021129082A1 - 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法 - Google Patents

一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法 Download PDF

Info

Publication number
WO2021129082A1
WO2021129082A1 PCT/CN2020/122368 CN2020122368W WO2021129082A1 WO 2021129082 A1 WO2021129082 A1 WO 2021129082A1 CN 2020122368 W CN2020122368 W CN 2020122368W WO 2021129082 A1 WO2021129082 A1 WO 2021129082A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
carbon dioxide
bis
acrylic acid
alkynes
Prior art date
Application number
PCT/CN2020/122368
Other languages
English (en)
French (fr)
Inventor
江焕峰
熊文芳
戚朝荣
程瑞祥
汪露
伍婉卿
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021129082A1 publication Critical patent/WO2021129082A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/15Preparation of carboxylic acids or their salts, halides or anhydrides by reaction of organic compounds with carbon dioxide, e.g. Kolbe-Schmitt synthesis

Definitions

  • the invention belongs to the technical field of organic synthesis, and specifically relates to a method for synthesizing ⁇ -acrylic acid compounds by palladium catalyzed by carbon dioxide and alkynes.
  • Carbon dioxide (CO 2 ) is part of the natural "carbon cycle”. Since the industrial revolution in the mid-18th century to the beginning of the 19th century, human activities such as the burning of fossil fuels and deforestation have rapidly increased carbon dioxide emissions in the atmosphere. As the most important greenhouse gas, carbon dioxide is generally considered to be the main cause of climate change. But at the same time, CO 2 is also an inexhaustible source of green carbon in the earth’s atmosphere. Therefore, the realization of carbon dioxide conversion and utilization is of great research significance for the realization of sustainable development strategies and the replacement of fossil fuels with renewable energy. In recent years, there have been many successful reports on the synthesis of various organic chemicals (carbonate, carboxylic acid, carbamate, methanol, etc.) using CO 2 as the starting material. Nevertheless, due to the high thermodynamic and kinetic stability of CO 2 itself, the method of chemical conversion of carbon dioxide is still very limited. Therefore, there is still an urgent need to develop new strategies to achieve high-efficiency catalytic conversion of CO 2 under mild conditions.
  • carboxylic acid is a very important bulk chemical, which is widely present in various biologically active natural products and drug molecules. It is also commonly used in daily life such as cosmetics, soaps, detergents, rubber, dyes, and plastics. , An important part of agricultural chemicals.
  • carboxylic acid as a chemical intermediate can also derive chemical substances such as acid halides, acid anhydrides, esters and amides that have important applications in the chemical industry.
  • alkyne compounds have a wide range of sources, are cheap and easy to obtain, and the synthesis of carboxylic acid compounds with alkyne and carbon dioxide as raw materials has important research significance.
  • the hydrocarboxylation reaction of alkynes was reported earlier that Inoue's research group obtained two molecules of alkyne carboxylation cyclization product with a yield of 9%, but the reaction yield was lower and the required reaction temperature was higher (Chem.Lett .1977,6,855).
  • the primary purpose of the present invention is to provide a method for palladium-catalyzed carbon dioxide and alkynes to synthesize ⁇ -acrylic acid compounds.
  • the method uses simple and easy-to-obtain alkyne compounds and carbon dioxide as raw materials, palladium salt as catalyst, mild silane as reducing agent, and bisphosphine compound as ligand. Under the action of common bases and solvents, ⁇ -acrylic acid can be selectively obtained. Compound.
  • the method has the advantages of high atom economy, high step economy, single selectivity, mild conditions, wide substrate applicability, simple operation and the like.
  • a method for palladium-catalyzed carbon dioxide and alkynes to synthesize ⁇ -acrylic acid compounds comprising the following steps:
  • R 1 is selected from alkyl, aryl-substituted alkyl, cyano-substituted alkyl, halogen-substituted alkyl, phenyl, alkyl-substituted phenyl, alkoxy-substituted phenyl, halogen-substituted phenyl, fluoroalkane Group-substituted phenyl, aryl-substituted phenyl, thiophenyl, N,N-disubstituted methylamino or substituted ethoxy;
  • R 2 and R 3 are selected from the same or different hydrogen, alkyl, phenyl, Alkyl substituted phenyl, halogen substituted phenyl, or ester substituted phenyl.
  • the R 1 is selected from the group consisting of phenyl, 4-methylphenyl, 4-ethylphenyl, 4-methoxyphenyl, 4-tert-butylphenyl, 4-fluorophenyl, 4 -Chlorophenyl, 4-bromophenyl, 4-phenylphenyl, 4-trifluoromethylphenyl, 3-methoxyphenyl, 3-fluorophenyl, 2-methoxyphenyl, 2 -Fluorophenyl, 2-naphthylphenyl, n-butyl, n-pentyl, n-hexyl, cyclohexyl, cyclohexylmethyl, phenethyl, 3-cyano-propyl, 4-chloro-butyl or benzene Thio; R 2 and R 3 are selected from the same or different hydrogen, phenyl, 4-methylphenyl, 4-ethylphenyl, 4-tert-
  • the palladium salt is palladium acetate, bis(dibenzylideneacetone)palladium, tris(dibenzylideneacetone)dipalladium, palladium chloride, [1,3-bis(diphenylphosphino)propane ]Palladium dichloride, [1,2-bis(diphenylphosphino)ethane]palladium dichloride, [1,4-bis(diphenylphosphino)butane]palladium dichloride, [1 , At least one of 1'-bis(diphenylphosphino)ferrocene]palladium dichloride, bisethylpalladium dichloride, palladium trifluoroacetate, and tetrakis(triphenylphosphine)palladium.
  • the molar ratio of the added amount of the palladium salt to the alkynyl group in the alkyne compound is 0.01-0.015:1.
  • the bisphosphine ligand is 1,2-bis(diphenylphosphino)benzene, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino) Propane, 1,4-bis(diphenylphosphino)butane, 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl, bis-2-diphenylphosphinophenyl ether, At least one of 4,5-bis(diphenylphosphine)-9,9-dimethylxanthene.
  • the molar ratio of the added amount of the bisphosphine ligand to the alkynyl group in the alkyne compound is 0.015-0.06:1.
  • the silane reducing agent is at least one of phenylsilane (PhSiH 3 ), bisphenylsilane (Ph 2 SiH 2 ), and bis[trimethylsilane][(Me 3 Si) 2 ].
  • the molar ratio of the added amount of the reducing agent to the alkynyl group in the alkyne compound is 1.3-1.5:1.
  • the base is the organic base triethylamine, pyridine, tetramethylethylenediamine, 1,5,7-triazidebicyclo(4.4.0)dec-5-ene, 1,4-diazide At least one of bicyclo[2.2.2]octane and inorganic alkali potassium carbonate.
  • the molar ratio of the added amount of the base to the alkynyl group in the alkyne compound is 1 to 2:1.
  • the solvent is one or a mixture of two or more of toluene, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, dichloromethane, and tetrahydrofuran .
  • the temperature of the stirring reaction is 60-100°C, and the time is 6-20 hours.
  • the separation and purification steps include: acidifying the reaction solution with hydrochloric acid, washing with water, and extracting with ethyl acetate, combining the organic phases, drying with anhydrous magnesium sulfate, filtering, and evaporating the organic solvent under reduced pressure to obtain a crude product, and then Through column chromatography separation and purification, the target product is obtained to obtain ⁇ -acrylic acid compound.
  • the eluent purified by column chromatography is a mixed solvent of petroleum ether and ethyl acetate in a volume ratio of 1-5:1.
  • the present invention has developed a new method for synthesizing ⁇ -acrylic acid compounds.
  • the method uses palladium salt as catalyst and bisphosphine ligand as ligand, which has high yield, single selectivity, wide substrate applicability, etc.
  • the reaction uses alkyne compounds and carbon dioxide as raw materials, and has the advantages of simple and easy-to-obtain raw materials, simple operation, and high atom economy.
  • the synthetic method of the present invention has wide substrate adaptability, less catalyst amount, and mild conditions, so it is expected to be applied to actual industrial production.
  • Figure 1 and Figure 2 are respectively the hydrogen spectrum and carbon spectrum of the target product obtained in Example 1;
  • 11 and 12 are respectively the hydrogen spectrum and carbon spectrum of the target product obtained in Example 6;
  • 15 and 16 are respectively the hydrogen spectrum and carbon spectrum of the target product obtained in Example 8.
  • 17 and 18 are the hydrogen spectrum and carbon spectrum of the target product obtained in Example 9 respectively;
  • 19 and 20 are the hydrogen spectrum and carbon spectrum of the target product obtained in Example 10, respectively.
  • 21 and 22 are the hydrogen spectrum and carbon spectrum of the target product obtained in Example 11, respectively.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether:ethyl acetate with a volume ratio of 2:1, and the yield is 82%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether: ethyl acetate with a volume ratio of 2:1, and the yield is 79%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether: ethyl acetate with a volume ratio of 2:1, and the yield is 83%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether: ethyl acetate with a volume ratio of 2:1, and the yield is 68%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether: ethyl acetate with a volume ratio of 2:1, and the yield is 48%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether:ethyl acetate with a volume ratio of 2:1, and the yield is 84%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether:ethyl acetate with a volume ratio of 2:1, and the yield is 76%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether: ethyl acetate with a volume ratio of 2:1, and the yield is 83%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether:ethyl acetate with a volume ratio of 2:1, and the yield is 71%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether: ethyl acetate with a volume ratio of 2:1, and the yield is 73%.
  • the reaction solution was acidified with 3 ml of 2M hydrochloric acid, washed with water, and extracted with ethyl acetate.
  • the organic phases were combined, dried over anhydrous magnesium sulfate, filtered, and the solvent was removed by rotary evaporation under reduced pressure.
  • the target product was obtained by separation and purification by column chromatography.
  • the column chromatography eluent is a mixture solvent of petroleum ether:ethyl acetate with a volume ratio of 2:1, and the yield is 78%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明属于有机合成技术领域,公开了一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法。在高压反应釜中,加入炔烃化合物、钯盐催化剂、碱、双膦配体、硅烷还原剂和溶剂,通入二氧化碳,于60~120℃下搅拌反应,反应液经水洗萃取、分离纯化,得到α-丙烯酸化合物。本发明以钯盐为催化剂,双膦配体为配体,具有产率高、选择性单一、底物适用性广等特点。此外,该反应以炔烃类化合物和二氧化碳为原料,具有原料简单易得、操作简便、原子经济性高的优点。

Description

一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法 技术领域
本发明属于有机合成技术领域,具体涉及一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法。
背景技术
二氧化碳(CO 2)是自然界“碳循环”的一部分,自18世纪中叶至19世纪初的工业革命以来,化石燃料的燃烧、森林砍伐等人类活动,使大气中二氧化碳排放量迅速增加。二氧化碳作为最主要的温室气体,通常被认为是诱导气候变化的主要原因。但同时,CO 2也是地球大气中一种取之不尽,用之不竭的绿色碳源。因此,实现二氧化碳转化利用对实现可持续发展战略以及以可再生能源替代化石能源燃料具有重大的研究意义。近年来,以CO 2作为起始原料合成各种有机化学品(碳酸酯、羧酸、氨基甲酸酯、甲醇等)已经有很多成功报道。尽管如此,由于CO 2本身具有较高的热力学和动力学稳定性,化学转化二氧化碳方法仍然非常有限。因此,开发在温和条件下实现CO 2高效催化转化的新策略仍然是迫切需要的。
另一方面,羧酸是一类非常重要的大宗化学品,广泛存在于各种具有生物活性的天然产物和药物分子中,同时也是生活中常用的化妆品、肥皂、洗涤剂、橡胶、染料、塑料、农用化学品等的重要组成部分。此外,以羧酸为化学中间体,还可以衍生出在化学工业中具有重要应用的酰卤、酸酐、酯和酰胺等化学物质。近年来,以二氧化碳为合成子,过渡金属催化合成不同类型羧酸类化合物的方法已经有一些报道。然而,从原子经济性考虑,在所有的合成方法中,过渡金属催化炔烃与二氧化碳直接氢羧基化反应原子经济性较高。且炔烃类化 合物来源广泛、廉价易得,以炔烃和二氧化碳为原料合成羧酸化合物具有重要研究意义。炔烃的氢羧基化反应报道较早的是Inoue课题组以9%的收率得到两分子炔烃羧基化环化产物,但反应产率较低,且所需反应温度较高(Chem.Lett.1977,6,855)。随后,一系列当量镍促进的炔烃氢羧基化反应被相继报道(J.Org.Chem.1999,64,3975;Chem.AsianJ.2015,10,1170;Org.Biomol.Chem.2016,14,10080)。其中,2004年,Iwasawa课题组通过配体调控选择性得到了不同区域选择性结构的羧基化产物(Chem.Commun,2004,2568)。最近几年,通过还原剂的引入,过渡金属催化二氧化碳与炔烃的催化羧基化反应也相继报道。如,2011年,麻生明课题组以二乙基锌为还原剂,实现了催化量镍催化的炔烃加氢羧基化反应(Angew.Chem.Int.Ed.2011,50,2578)。随后,Tsuji、Martin以及Cheng课题组分别相继报道了卡宾铜或者镍催化的内炔羧基化反应(Angew.Chem.Int.Ed.2011,50,523;J.Am.Chem.Soc.2015,137,8924;J.Am.Chem.Soc.2017,139,12161;J.Am.Chem.Soc.2016,138,5547;ChemCatChem2016,8,2210)。然而,在这些炔烃的加氢羧基化反应中,通常以镍催化或铜催化为主,钯催化的炔烃与二氧化碳的氢羧基化反应尚未报道。此外,在这些反应中,反应底物比较受限制,常以内炔为主,端炔的氢羧基化反应较少。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法。该方法以简单易得的炔烃化合物和二氧化碳为原料,钯盐作为催化剂,温和的硅烷为还原剂,双膦化合物为配体,在常见的碱和溶剂作用下,选择性的得到α-丙烯酸化合物。该方法具有原子经济性高、步骤经济性高、选择性单一、条件温和、底物适用性广、操作简便等优点。
本发明目的通过以下技术方案实现:
一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,包括如下步骤:
在高压反应釜中,加入炔烃化合物、钯盐催化剂、碱、双膦配体、硅烷还原剂和溶剂,通入二氧化碳,于60~120℃下搅拌反应,产物经分离纯化,得到α-丙烯酸化合物;
上述合成方法的化学反应如下式(1)或式(2)所示:
Figure PCTCN2020122368-appb-000001
Figure PCTCN2020122368-appb-000002
式中,R 1选自烷基、芳基取代烷基、氰基取代烷基、卤素取代烷基、苯基、烷基取代苯基、烷氧基取代苯基、卤素取代苯基、氟烷基取代苯基、芳基取代苯基、苯硫基、N,N-二取代甲胺基或取代乙氧基;R 2和R 3选自相同或不相同的氢、烷基、苯基、烷基取代苯基、卤素取代苯基或酯基取代苯基。
进一步优选地,所述R 1选自苯基、4-甲基苯基、4-乙基苯基、4-甲氧基苯基、4-叔丁基苯基、4-氟苯基、4-氯苯基、4-溴苯基、4-苯基苯基、4-三氟甲基苯基、3-甲氧基苯基、3-氟苯基、2-甲氧基苯基、2-氟苯基、2-萘苯基、正丁基、正戊基、正己基、环己基,环己基甲基、苯乙基、3-氰基-丙基、4-氯-丁基或苯硫基;R 2和R 3选自相同或不相同的氢、苯基、4-甲基苯基、4-乙基苯基、4-叔丁基苯基、4-氟苯基、4-氯苯基、4-甲酯基苯基、甲基或丁基。
进一步地,所述钯盐为醋酸钯、双(二亚苄基丙酮)钯、三(二亚苄基丙酮)二钯、氯化钯、[1,3-双(二苯基膦基)丙烷]二氯化钯、[1,2-双(二苯基膦基)乙烷]二氯化钯、[1,4-双(二苯基膦基)丁烷]二氯化钯、[1,1’-双(二苯基膦基)二茂铁]二氯化钯、双乙基二氯化钯、三氟乙酸钯、四(三苯基膦)钯中的至少一种。
进一步地,所述钯盐的加入量与炔烃化合物中炔基的摩尔比为0.01-0.015:1。
进一步地,所述双膦配体为1,2-双(二苯基磷)苯、1,2-双(二苯基膦基)乙烷、 1,3-双(二苯基膦基)丙烷、1,4-双(二苯基膦基)丁烷、2,2'-双-(二苯膦基)-1,1'-联萘、双2-二苯基膦苯基醚、4,5-双(二苯基膦)-9,9-二甲基氧杂蒽中的至少一种。
进一步地,所述双膦配体的加入量与炔烃化合物中炔基的摩尔比为0.015-0.06:1。
进一步地,所述硅烷还原剂为苯基硅烷(PhSiH 3)、双苯基硅烷(Ph 2SiH 2)、双[三甲基硅烷][(Me 3Si) 2]中的至少一种。
进一步地,所述还原剂的加入量与炔烃化合物中炔基的摩尔比为1.3-1.5:1。
进一步地,所述碱为有机碱三乙胺、吡啶、四甲基乙二胺、1,5,7-三叠氮双环(4.4.0)癸-5-烯、1,4-二叠氮双环[2.2.2]辛烷和无机碱碳酸钾中的至少一种。
进一步地,所述碱的加入量与炔烃化合物中炔基的摩尔比为1~2:1。
进一步地,所述溶剂为甲苯、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二氯甲烷、四氢呋喃中的一种或两种以上的混合。
进一步地,所述搅拌反应的温度为60~100℃,时间为6~20小时。
进一步地,所述分离纯化的步骤为:将反应液用盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压蒸除有机溶剂,得粗产物,再通过柱层析分离纯化,得到目标产物得到α-丙烯酸化合物。
更进一步地,所述柱层析提纯的洗脱液为石油醚和乙酸乙酯按体积比1-5:1的混合溶剂。
本发明的合成方法具有如下优点及有益效果:
(1)本发明发展了一种新的合成α-丙烯酸化合物的方法,该方法以钯盐为催化剂,双膦配体为配体,具有产率高、选择性单一、底物适用性广等特点。此外,该反应以炔烃类化合物和二氧化碳为原料,具有原料简单易得、操作简便、原子经济性高的优点。
(2)本发明合成方法底物适应性广、催化剂量较少、条件温和,因而有望应用于实际工业生产。
附图说明
图1和图2分别是实施例1所得目标产物的氢谱图、碳谱图;
图3和图4分别是实施例2所得目标产物的氢谱图、碳谱图;
图5和图6分别是实施例3所得目标产物的氢谱图、碳谱图;
图7和图8分别是实施例4所得目标产物的氢谱图、碳谱图;
图9和图10分别是实施例5所得目标产物的氢谱图、碳谱图;
图11和图12分别是实施例6所得目标产物的氢谱图、碳谱图;
图13和图14分别是实施例7所得目标产物的氢谱图、碳谱图;
图15和图16分别是实施例8所得目标产物的氢谱图、碳谱图;
图17和图18分别是实施例9所得目标产物的氢谱图、碳谱图;
图19和图20分别是实施例10所得目标产物的氢谱图、碳谱图。
图21和图22分别是实施例11所得目标产物的氢谱图、碳谱图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
在高压反应釜中,依次加入0.6毫摩尔苯乙炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率82%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=11.45(s,1H),7.50(d,J=6.0Hz,2H),7.41(d,J=5.4Hz,3H),6.60(s,1H),6.07(s,1H);
13C NMR(100MHz,CDCl 3)δ=172.4,140.6,136.0,129.4,128.4,128.3,128.1。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000003
实施例2
在高压反应釜中,依次加入0.6毫摩尔4-甲基苯乙炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率79%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=10.78(s,1H),7.23(d,J=8.0Hz,2H),7.07(d,J=8.0Hz,2H),6.39(s,1H),5.88(s,1H),2.26(s,3H);
13C NMR(100MHz,CDCl 3)δ=172.5,140.5,138.2,133.2,128.8,128.6,128.3,21.2,21.1。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000004
实施例3
在高压反应釜中,依次加入0.6毫摩尔4-甲氧基苯乙炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率83%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=11.24(s,1H),7.38(d,J=8.0Hz,2H),6.89(d,J=8.0Hz,2H),6.45(s,1H),5.95(s,1H),3.81(s,3H);
13C NMR(100MHz,CDCl 3)δ=172.5,159.7,134.0,129.6,128.5,127.9,113.5,55.2。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000005
实施例4
在高压反应釜中,依次加入0.6毫摩尔4-氟苯乙炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率68%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=10.93(s,1H),7.41(dd,J=8.5Hz,5.4Hz,2H),7.04(t,J=8.6Hz,2H),6.54(s,1H),5.99(s,1H);
13C NMR(100MHz,CDCl 3)δ=172.1,164.0,161.6,139.6,132.1,132.0,130.3,130.2,129.6,115.2,115.0。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000006
实施例5
在高压反应釜中,依次加入0.6毫摩尔4-氯苯乙炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率48%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=10.20(s,1H),7.38–7.31(m,4H),6.55(s,1H),6.01(s,1H);
13C NMR(100MHz,CDCl 3)δ=171.8,139.5,134.4,129.9,129.8,128.3。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000007
实施例6
在高压反应釜中,依次加入0.6毫摩尔3-甲氧基苯乙炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。 反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率84%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=9.67(s,1H),7.26(t,J=7.8Hz,1H),7.00(m,2H),6.89(d,J=8.0Hz,1H),6.52(s,1H),6.00(s,1H),3.80(s,3H);
13C NMR(100MHz,CDCl 3)δ=172.0,159.2,140.5,137.4,129.4,129.1,120.9,114.2,113.8,55.2。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000008
实施例7
在高压反应釜中,依次加入0.6毫摩尔1-庚炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率76%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=11.40(s,1H),6.29(s,1H),5.64(s,1H),2.39–2.23(m,2H),1.55–1.44(m,2H),1.36–1.28(m,4H),0.89(t,J=6.9Hz,3H);
13C NMR(100MHz,CDCl 3)δ=173.2,140.4,126.8,31.4,28.1,22.4,14.0;
IR(KBr):3043,2957,2930,2860,1698,1628,1439,1272,1214,946cm -1
HRMS-ESI(m/z):calcd for C 8H 14NaO 2[M+Na] +:165.0886;found:165.0881。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000009
实施例8
在高压反应釜中,依次加入0.6毫摩尔3-环己基-1-丙炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率83%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=11.47(s,1H),6.32(d,J=1.4Hz,1H),5.59(s,1H),2.19(d,J=7.0Hz,2H),1.77–1.62(m,5H),1.54–1.41(m,1H),1.28–1.11(m,3H),0.94–0.82(m,2H);
13C NMR(100MHz,CDCl 3)δ=173.3,138.6,128.2,39.5,36.5,33.0,26.5,26.2;
IR(KBr):3036,2925,2853,1695,1626,1441,1309,1266,1218,947cm -1
HRMS-ESI(m/z):calcd for C 10H 16NaO 2[M+Na] +:191.1043;found:191.1041。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000010
实施例9
在高压反应釜中,依次加入0.6毫摩尔4-苯基-1-丁炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃ 下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率71%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=7.28(t,J=7.4Hz,2H),7.19(d,J=7.1Hz,3H),6.31(s,1H),5.61(s,1H),2.89–2.76(m,2H),2.71–2.57(m,2H);
13C NMR(100MHz,CDCl 3)δ=172.6,141.2,139.3,128.5,128.4,127.9,126.0,34.8,33.5;
IR(KBr):3070,3028,2930,2862,1696,1628,1440,1309,1273,1213,1140,949,741,697cm -1
HRMS-ESI(m/z):calcd for C 11H 12NaO 2[M+Na] +:199.0730;found:199.0731。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000011
实施例10
在高压反应釜中,依次加入0.6毫摩尔1,8-壬二炔、0.018毫摩尔四(三苯基膦钯)、0.018毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、1.2毫摩尔三乙胺、1.56毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率73%。
所得产物的结构表征数据如下所示:
1H NMR(500MHz,DMSO)δ=6.03(s,2H),5.55(s,2H),2.22(t,J=7.5Hz, 4H),1.49–1.37(m,4H),1.32–1.24(m,2H);
13C NMR(126MHz,DMSO)δ=168.6,141.6,124.5,31.7,28.7,28.2;
IR(KBr):3445,2932,2861,1703,1630,1437,1282,1191,1020,824,763cm -1
HRMS-ESI(m/z):calcd for C 11H 16NaO 4[M+Na] +:235.0941;found:235.0946。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000012
实施例11
在高压反应釜中,依次加入0.6毫摩尔二苯乙炔、0.009毫摩尔四(三苯基膦钯)、0.009毫摩尔2,2'-双-(二苯膦基)-1,1'-联萘、0.6毫摩尔三乙胺、0.78毫摩尔苯基硅烷和3毫升N,N-二甲基甲酰胺,通入2MPa二氧化碳气体,于80℃下搅拌反应12小时,停止加热和搅拌,冷却至室温,缓慢放空未反应的CO 2。反应液用3毫升2M盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压旋蒸去除溶剂,再通过柱层析分离纯化,得到目标产物,所用的柱层析洗脱液为体积比为2:1的石油醚:乙酸乙酯混合溶剂,产率78%。
所得产物的结构表征数据如下所示:
1H NMR(400MHz,CDCl 3)δ=10.64(s,1H),7.95(s,1H),7.36(d,J=4.7Hz,3H),7.26–7.18(m,3H),7.14(t,J=7.3Hz,2H),7.06(d,J=7.6Hz,2H);
13C NMR(100MHz,CDCl 3)δ=173.4,142.4,135.3,134.3,131.7,130.8,129.7,129.5,128.7,128.2,128.0。
根据以上数据推断所得产物得结构如下所示:
Figure PCTCN2020122368-appb-000013
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于包括如下步骤:
    在高压反应釜中,加入炔烃化合物、钯盐催化剂、碱、双膦配体、硅烷还原剂和溶剂,通入二氧化碳,于60~120℃下搅拌反应,产物经分离纯化,得到α-丙烯酸化合物;
    上述合成方法的化学反应如下式(1)或式(2)所示:
    Figure PCTCN2020122368-appb-100001
    式中,R 1选自烷基、芳基取代烷基、氰基取代烷基、卤素取代烷基、苯基、烷基取代苯基、烷氧基取代苯基、卤素取代苯基、氟烷基取代苯基、芳基取代苯基、苯硫基、N,N-二取代甲胺基或取代乙氧基;R 2和R 3选自相同或不相同的氢、烷基、苯基、烷基取代苯基、卤素取代苯基或酯基取代苯基。
  2. 根据权利要求1所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于:所述R 1选自苯基、4-甲基苯基、4-乙基苯基、4-甲氧基苯基、4-叔丁基苯基、4-氟苯基、4-氯苯基、4-溴苯基、4-苯基苯基、4-三氟甲基苯基、3-甲氧基苯基、3-氟苯基、2-甲氧基苯基、2-氟苯基、2-萘苯基、正丁基、正戊基、正己基、环己基,环己基甲基、苯乙基、3-氰基-丙基、4-氯-丁基或苯硫基;R 2和R 3选自相同或不相同的氢、苯基、4-甲基苯基、4-乙基苯基、4-叔丁基苯基、4-氟苯基、4-氯苯基、4-甲酯基苯基、甲基或丁基。
  3. 根据权利要求1所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物 的方法,其特征在于:所述钯盐为醋酸钯、双(二亚苄基丙酮)钯、三(二亚苄基丙酮)二钯、氯化钯、[1,3-双(二苯基膦基)丙烷]二氯化钯、[1,2-双(二苯基膦基)乙烷]二氯化钯、[1,4-双(二苯基膦基)丁烷]二氯化钯、[1,1’-双(二苯基膦基)二茂铁]二氯化钯、双乙基二氯化钯、三氟乙酸钯、四(三苯基膦)钯中的至少一种;钯盐的加入量与炔烃化合物中炔基的摩尔比为0.01-0.015:1。
  4. 根据权利要求1所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于:所述双膦配体为1,2-双(二苯基磷)苯、1,2-双(二苯基膦基)乙烷、1,3-双(二苯基膦基)丙烷、1,4-双(二苯基膦基)丁烷、2,2'-双-(二苯膦基)-1,1'-联萘、双2-二苯基膦苯基醚、4,5-双(二苯基膦)-9,9-二甲基氧杂蒽中的至少一种;双膦配体的加入量与炔烃化合物中炔基的摩尔比为0.015-0.06:1。
  5. 根据权利要求1所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于:所述硅烷还原剂为苯基硅烷、双苯基硅烷、双[三甲基硅烷]中的至少一种;硅烷还原剂的加入量与炔烃化合物中炔基的摩尔比为1.3-1.5:1。
  6. 根据权利要求1所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于:所述碱为有机碱三乙胺、吡啶、四甲基乙二胺、1,5,7-三叠氮双环(4.4.0)癸-5-烯、1,4-二叠氮双环[2.2.2]辛烷和无机碱碳酸钾中的至少一种;碱的加入量与炔烃化合物中炔基的摩尔比为1~2:1。
  7. 根据权利要求1所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于:所述溶剂为甲苯、二甲基亚砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二氯甲烷、四氢呋喃中的一种或两种以上的混合。
  8. 根据权利要求1所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于:所述搅拌反应的温度为60~100℃,时间为6~20小时。
  9. 根据权利要求1所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于所述分离纯化的步骤为:将反应液用盐酸酸化,水洗、乙酸乙酯萃取,合并有机相,使用无水硫酸镁干燥,过滤,减压蒸除有机溶剂, 得粗产物,经柱层析提纯,得到α-丙烯酸化合物。
  10. 根据权利要求9所述的一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法,其特征在于:所述柱层析提纯的洗脱液为石油醚和乙酸乙酯按体积比1-5:1的混合溶剂。
PCT/CN2020/122368 2019-12-25 2020-10-21 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法 WO2021129082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911353460.1 2019-12-25
CN201911353460.1A CN111039773B (zh) 2019-12-25 2019-12-25 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法

Publications (1)

Publication Number Publication Date
WO2021129082A1 true WO2021129082A1 (zh) 2021-07-01

Family

ID=70239419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122368 WO2021129082A1 (zh) 2019-12-25 2020-10-21 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法

Country Status (2)

Country Link
CN (1) CN111039773B (zh)
WO (1) WO2021129082A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908883A (zh) * 2021-10-13 2022-01-11 安徽美致诚药业有限公司 一种1-(4-甲氧基苯基)丙酮的合成方法
CN114315608A (zh) * 2022-01-07 2022-04-12 大连理工大学盘锦产业技术研究院 一种由三苯胺制备三(4-乙炔基苯基)胺的方法
CN114957312A (zh) * 2022-04-27 2022-08-30 南京工业大学 一种共轭烯烃的芳硅化合物及其制备方法与应用
CN115181015A (zh) * 2022-07-20 2022-10-14 温州大学 三取代全氟烷基化烯酮化合物的合成方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039773B (zh) * 2019-12-25 2021-09-21 华南理工大学 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
CN111905831B (zh) * 2020-07-14 2021-12-03 厦门大学 一种用膦配体修饰的催化剂、制备方法与应用
CN112661627A (zh) * 2020-12-31 2021-04-16 南京理工大学 由萘和二氧化碳合成1-萘甲酸的方法
CN114907258B (zh) * 2021-02-09 2023-04-11 中国科学院化学研究所 一种钯与氮杂环卡宾协同催化制备炔丙基酮类化合物的方法
CN115896821B (zh) * 2021-09-22 2024-06-11 四川大学 电促进co2参与的小环化合物开环双羧基化反应合成二酸类化合物的方法
CN114957012A (zh) * 2022-05-20 2022-08-30 湖南工程学院 一种二氧化碳和炔烃合成不饱和有机羧酸酯的制备方法
CN115403465B (zh) * 2022-05-20 2023-08-18 湖南工程学院 一种二氧化碳和烯烃合成有机羧酸酯的制备方法
CN114989031A (zh) * 2022-05-30 2022-09-02 湖南工程学院 一种二氧化碳和炔烃合成不饱和酰胺的制备方法
CN116003360B (zh) * 2022-11-28 2024-01-23 湖南工程学院 一种二氧化碳和炔烃合成橙酮类化合物制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190031591A1 (en) * 2017-07-28 2019-01-31 National Tsing Hua University Method for preparing multi-substituted acrylic acid compound
CN111039773A (zh) * 2019-12-25 2020-04-21 华南理工大学 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331502B1 (en) * 1998-12-09 2001-12-18 Council Of Scientific And Industrial Research Catalyst system containing a semilabile anionic ligand and a use of such catalyst system to produce α, β, -unsaturated carboxylic acids and their esters
CN105566021B (zh) * 2015-12-30 2018-05-29 中国科学技术大学 一种α,β-不饱和羧酸类化合物的制备方法
CN106966889B (zh) * 2017-04-25 2020-03-10 中国科学院上海有机化学研究所 一种(E)-β,γ-烯基羧酸衍生物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190031591A1 (en) * 2017-07-28 2019-01-31 National Tsing Hua University Method for preparing multi-substituted acrylic acid compound
CN111039773A (zh) * 2019-12-25 2020-04-21 华南理工大学 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOU JING, XIE JIAN-HUA, ZHOU QI-LIN: "Palladium-Catalyzed Hydrocarboxylation of Alkynes with Formic Acid", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, VERLAG CHEMIE, DE, vol. 54, no. 21, 18 May 2015 (2015-05-18), DE, pages 6302 - 6305, XP055824819, ISSN: 1433-7851, DOI: 10.1002/anie.201501054 *
TETSUAKI FUJIHARA, XU TINGHUA, SEMBA KAZUHIKO, TERAO JUN, TSUJI YASUSHI: "Copper-Catalyzed Hydrocarboxylation of Alkynes Using Carbon Dioxide and Hydrosilanes", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, �VERLAG CHEMIE, vol. 50, no. 2, 10 January 2011 (2011-01-10), pages 523 - 527, XP055152701, ISSN: 14337851, DOI: 10.1002/anie.201006292 *
XIONG WENFANG, SHI FUXING, CHENG RUIXIANG, ZHU BAIYAO, WANG LU, CHEN PENGQUAN, LOU HONGMING, WU WANQING, QI CHAORONG, LEI MING, JI: "Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide", ACS CATALYSIS, AMERICAN CHEMICAL SOCIETY, US, vol. 10, no. 14, 17 July 2020 (2020-07-17), US, pages 7968 - 7978, XP055824821, ISSN: 2155-5435, DOI: 10.1021/acscatal.0c01687 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908883A (zh) * 2021-10-13 2022-01-11 安徽美致诚药业有限公司 一种1-(4-甲氧基苯基)丙酮的合成方法
CN113908883B (zh) * 2021-10-13 2023-08-29 安徽美致诚药业有限公司 一种1-(4-甲氧基苯基)丙酮的合成方法
CN114315608A (zh) * 2022-01-07 2022-04-12 大连理工大学盘锦产业技术研究院 一种由三苯胺制备三(4-乙炔基苯基)胺的方法
CN114315608B (zh) * 2022-01-07 2024-05-28 大连理工大学盘锦产业技术研究院 一种由三苯胺制备三(4-乙炔基苯基)胺的方法
CN114957312A (zh) * 2022-04-27 2022-08-30 南京工业大学 一种共轭烯烃的芳硅化合物及其制备方法与应用
CN115181015A (zh) * 2022-07-20 2022-10-14 温州大学 三取代全氟烷基化烯酮化合物的合成方法
CN115181015B (zh) * 2022-07-20 2024-04-26 温州大学 三取代全氟烷基化烯酮化合物的合成方法

Also Published As

Publication number Publication date
CN111039773A (zh) 2020-04-21
CN111039773B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2021129082A1 (zh) 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
JP2018508511A (ja) ホルムアミド系化合物を製造する方法
CN107973778B (zh) 一种钌催化芳香酮与二苯乙炔环化反应制备多芳取代萘衍生物的方法及应用
CN110483223B (zh) 吡啶钯高效催化制备二芳基酮化合物的方法
Sharma et al. (η6-Benzene) Ru (II) half-sandwich complexes of pyrazolated chalcogenoethers for catalytic activation of aldehydes to amides transformation
Zhang et al. Efficient and environmentally friendly Glaser coupling of terminal alkynes catalyzed by multinuclear copper complexes under base-free conditions
CN109810147B (zh) 芘标记的苯并咪唑氮杂环卡宾钯金属配合物及制备和应用
CN112142617A (zh) 一种氧化羰基化合成α,β-不饱和炔酰胺类化合物的方法
Zhang et al. A switchable bistable [2] rotaxane based on phosphine oxide functional group
KR100940338B1 (ko) 설파이드 화합물 및 유기 황-인듐 착물을 이용한설파이드화합물 제조방법
Nirmala et al. Water-soluble superbulky (η 6-p-cymene) ruthenium (ii) amine: an active catalyst in the oxidative homocoupling of arylboronic acids and the hydration of organonitriles
CN114560761B (zh) 一种水相中一次性合成2,3-二取代的茚酮衍生物的方法
CN107266282B (zh) 一种1,4-二甲基萘的制备方法
CN103748065B (zh) 2-烯基胺化合物的制造方法
CN103272638B (zh) 基于酒石酸骨架的手性胍催化剂及其制备方法和应用
JP7019912B2 (ja) 二酸化炭素およびオレフィンからの不飽和カルボン酸塩およびその誘導体の生成プロセスのための触媒組成物
CN113443950A (zh) 一种光照下羰基还原为亚甲基的方法
WO2019119516A1 (zh) 基于四甲基螺二氢茚骨架的双噁唑啉配体化合物及其中间体和制备方法与用途
CN113861237B (zh) 有机磷配体及其制备方法和应用
CN113354500A (zh) 一种制备1,5-二烯衍生物的方法
CN106810508B (zh) 一种铁催化多组分反应合成苯并[1,4]-氧氮杂卓化合物的方法
CN109369514A (zh) 一种六元碳环衍生物的合成方法
JP2021502885A (ja) ホスフィン非含有コバルト系触媒ならびにその調製のための方法および使用
WO2013133386A1 (ja) 官能基含有又は非含有環状化合物及びこれらの製造方法
CN111440213B (zh) 一种过渡金属催化芳香硝基c-no2转化为c-p键方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20907124

Country of ref document: EP

Kind code of ref document: A1