WO2021120325A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2021120325A1
WO2021120325A1 PCT/CN2019/130233 CN2019130233W WO2021120325A1 WO 2021120325 A1 WO2021120325 A1 WO 2021120325A1 CN 2019130233 W CN2019130233 W CN 2019130233W WO 2021120325 A1 WO2021120325 A1 WO 2021120325A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
layer
shielding
base substrate
Prior art date
Application number
PCT/CN2019/130233
Other languages
English (en)
French (fr)
Inventor
陈泽升
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/638,137 priority Critical patent/US11374063B2/en
Publication of WO2021120325A1 publication Critical patent/WO2021120325A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present invention relates to the field of display technology, in particular to a display panel and a manufacturing method thereof.
  • Polarizer can effectively reduce the reflectivity of the sub-display panel under strong light, but it loses nearly 58% of the light output. For OLED, this greatly increases its life burden; on the other hand, the thickness of the polarizer is large and the material is brittle, which is not conducive to the development of dynamic bending products.
  • POL-less technology the technology that uses Color Filter to replace polarizers in the industry is classified as POL-less technology.
  • This technology is considered to be one of the key technologies for the development of dynamic bending products. It can not only change the thickness of the functional layer from 100 ⁇ m It can be reduced to less than 5 ⁇ m, and the light extraction rate can be increased from 42% to 60%.
  • the small-size display panel has a higher printing difficulty due to its smaller pixel size.
  • the printing resolution is an important factor restricting the development of small-size printing technology.
  • POL-less technology at least four yellow light manufacturing processes are currently used for preparation, which brings great challenges to the packaging characteristics of the display panel light-emitting devices.
  • the present invention provides a display panel and a manufacturing method thereof, which can solve the technical problem that the color film layer of a small-size high-resolution display panel in the prior art is relatively difficult to print.
  • An embodiment of the present invention provides a display panel, and the display panel includes:
  • the thin film transistor array layer is arranged on the base substrate;
  • An encapsulation layer disposed on the light-emitting device layer
  • the color filter layer is disposed on the encapsulation layer, and the color filter layer includes a plurality of first shading parts, a plurality of color resists, and a plurality of second shading parts;
  • a plurality of the first light-shielding parts are arranged on the encapsulation layer at intervals, the color resists are arranged in the interval between two adjacent first light-shielding parts, and the second light-shielding parts are arranged on the encapsulation layer.
  • the orthographic projection on the base substrate covers the first light-shielding portion and the orthographic projection on the base substrate on the peripheral edge of the color resist, so that an opening is formed between two adjacent second light-shielding portions, The opening is arranged corresponding to the pixel unit, and the shape of the opening is an inverted trapezoid.
  • the width of the second light shielding portion is greater than the width of the first light shielding portion.
  • the first light-shielding part and the second light-shielding part are a composite structure formed by superimposing a multilayer film layer.
  • the composite structure includes a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer stacked in sequence from bottom to top.
  • the display panel further includes an anti-reflection film layer, and the anti-reflection film layer covers the second light shielding portion and the opening.
  • each opening is the same as the shape of each corresponding pixel unit, and the opening and the corresponding orthographic projection of each pixel unit on the base substrate Coincide with each other.
  • the width of the opening is smaller than the width of the color resist.
  • the thickness of the second light shielding portion is 0.1 nm-1000 nm.
  • An embodiment of the present invention provides a display panel, and the display panel includes:
  • the thin film transistor array layer is arranged on the base substrate;
  • An encapsulation layer disposed on the light-emitting device layer
  • the color filter layer is disposed on the encapsulation layer, and the color filter layer includes a plurality of first shading parts, a plurality of color resists, and a plurality of second shading parts;
  • a plurality of the first light-shielding parts are arranged on the encapsulation layer at intervals, the color resists are arranged in the interval between two adjacent first light-shielding parts, and the second light-shielding parts are arranged on the encapsulation layer.
  • the orthographic projection on the base substrate covers the first light-shielding portion and the orthographic projection on the base substrate on the peripheral edge of the color resist, so that an opening is formed between two adjacent second light-shielding portions, The opening is arranged corresponding to the pixel unit.
  • the width of the second light shielding portion is greater than the width of the first light shielding portion.
  • the first light-shielding part and the second light-shielding part are a composite structure formed by superimposing a multilayer film layer.
  • the display panel further includes an anti-reflection film layer, and the anti-reflection film layer covers the second light shielding portion and the opening.
  • each opening is the same as the shape of each corresponding pixel unit, and the opening and the corresponding orthographic projection of each pixel unit on the base substrate Coincide with each other.
  • the embodiment of the present invention provides a manufacturing method of a display panel, which includes the following steps:
  • Step S10 providing a base substrate, and sequentially forming a thin film transistor array layer, a light emitting device layer, and an encapsulation layer on the base substrate;
  • Step S20 forming a color filter layer on the encapsulation layer, the color filter layer including a plurality of first shading parts, a plurality of color resists, and a plurality of second shading parts, the plurality of first shading parts are arranged at intervals
  • the color resist is formed in the interval between two adjacent first light-shielding parts
  • the orthographic projection of the second light-shielding part on the base substrate covers the first light-shielding part
  • an orthographic projection on the base substrate at the peripheral edge of the color resist so that an opening is formed between two adjacent second light shielding parts, and the opening is arranged corresponding to the pixel unit.
  • the step S20 includes the following steps:
  • Step S201 forming a plurality of the first light-shielding parts on the encapsulation layer through a first yellow light manufacturing process
  • Step S202 using inkjet printing technology to form the color resist in the interval between two adjacent first light shielding portions;
  • Step S203 forming the second light-shielding part on the first light-shielding part and the color resist through a second yellow light manufacturing process, and an opening is formed between two adjacent second light-shielding parts.
  • the method for manufacturing a display panel according to an embodiment of the present invention further includes step S30: forming an anti-reflection film layer on the second light-shielding portion and in the opening, and the anti-reflection film layer covers the second light-shielding portion And the opening.
  • the width of the second shading part is greater than the width of the first shading part.
  • the first light-shielding part and the second light-shielding part are a composite structure formed by superimposing multiple low-reflection film layers.
  • the composite structure includes a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer stacked in sequence from bottom to top.
  • the thickness of the second light shielding portion is 0.1 nm-1000 nm.
  • the beneficial effects of the present invention are: the display panel and the manufacturing method thereof provided by the present invention combine the first shading part and the second shading part with different widths to form a color film layer together with the color resist layer, thereby improving inkjet printing.
  • the technology is applied to the range of high-resolution small-size display panel printing, which reduces the difficulty of printing; at the same time, it reduces the reflectivity of the display panel to external ambient light, and alleviates the influence of the color film layer boundary on the optical characteristics of the light-emitting device; and compared with traditional processes It can reduce at least two yellow light manufacturing processes and improve packaging performance.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a display panel provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a partial structure of the display panel in FIG. 1;
  • FIG. 3 is a flowchart of a manufacturing method of a display panel provided by an embodiment of the present invention.
  • step S10 is a schematic diagram of step S10 of the manufacturing method of the display panel provided by the embodiment of the present invention.
  • step S20 is a flowchart of forming a color film layer in step S20 according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a cross-sectional structure of a display panel in which the first shading portion is formed in step S201 according to an embodiment of the present invention
  • FIG. 7 is a schematic top view of the structure of the display panel in which the first shading portion is formed in step S201 according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a display panel with a color resist formed in step S202 according to an embodiment of the present invention
  • FIG. 9 is a schematic top view of the structure of a display panel with color resists formed in step S202 according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a display panel in which a second light shielding portion is formed in step S203 according to an embodiment of the present invention
  • step S203 is a schematic top view of the structure of the display panel in which the second shading portion is formed in step S203 according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of step S30 of a manufacturing method of a display panel provided by an embodiment of the present invention.
  • the present invention addresses the technical problem of the difficulty in printing the color film layer on a small-sized high-resolution display panel in the prior art, and this embodiment can solve this defect.
  • the display panel provided by the embodiment of the present invention includes a base substrate 10, a thin film transistor array layer 20 disposed on the base substrate 10, and a light emitting device disposed on the thin film transistor array layer 20
  • the thin film transistor array layer 20 includes a buffer layer 21, a semiconductor layer 22, a first gate insulating layer 23, and a second gate insulating layer which are sequentially stacked on the base substrate 10.
  • the polar metal layer 26 is provided with an active drain metal layer 28 on the interlayer dielectric layer 27.
  • the light-emitting device layer 30 includes a pixel definition layer 31 and a plurality of pixel units 32 disposed on the flat layer 29.
  • the pixel units may be organic light-emitting diode devices, and the plurality of pixels
  • the unit 32 may be a red, green, or blue pixel unit, and the anode of the light emitting device layer 30 is in contact with the source and drain metal layer 28.
  • the encapsulation layer 40 may be encapsulated by a thin film, and the encapsulation layer 40 is formed by stacking an inorganic layer, an organic layer, and an inorganic layer in order to enhance the encapsulation performance of the display panel.
  • the color filter layer 50 includes a plurality of first shading parts 51, a plurality of color resists 52, and a plurality of second shading parts 53, and the plurality of first shading parts 51 are arranged at intervals
  • the color resist 52 is arranged in the space 55 between two adjacent first shading parts 51, and the orthographic projection of the second shading part 53 on the base substrate 10 Covering the first light shielding portion 51 and the orthographic projection of the peripheral edge of the color resist 52 on the base substrate 10, so that an opening 54 is formed between two adjacent second light shielding portions 53.
  • the opening 54 is arranged corresponding to the pixel unit 32.
  • the plurality of color resists 52 are red color resists, green color resists, and blue color resists, and respectively correspond to red pixel units, green pixel units, and blue pixel units. It can be understood that the opening 54 located on the red color resist Corresponding to the red pixel unit, the opening 54 located on the green color resistor corresponds to the green pixel unit, and the opening 54 located on the blue color resistor corresponds to the blue pixel unit.
  • the width of the second shading portion 53 is greater than the width of the first shading portion 51.
  • the second shading portion 53 can reduce the reflectivity of the display panel to external ambient light.
  • the second light-shielding portion 53 can cover the peripheral edges of the color resist 52, which can avoid the overlap of the color resist 52 and the first light-shielding portion 51 caused by the color resist 52 A horn-like structure appears around it, which improves the flatness of the color resist 52 at the opening 54.
  • the width of the opening 54 is smaller than the width of the color resist, and light exits through the opening 54, which can meet the printing requirements of a small-size high-resolution display panel, and improve the tolerance of printing accuracy; and each of the openings
  • the shape of 54 is the same as the shape of each of the corresponding pixel units 32, and the opening 54 and the corresponding orthographic projection of each of the pixel units 32 on the base substrate 10 coincide with each other.
  • the cross-sectional shape of the opening 54 is an inverted trapezoid.
  • the first light shielding portion 51 is equivalent to a wall forming the color resist 52, so the thickness of the first light shielding portion 51 depends on the thickness of the color resist 52; the second light shielding portion 53 is to reduce the The reflectivity of the display panel to ambient light, so the thickness of the second shading portion 53 should satisfy the optical density value (OD) greater than 3, specifically, the thickness of the second shading portion 53 is nanometer level, for example, The thickness of the second light shielding portion 53 is 0.1 nm-1000 nm.
  • the material of the first shading part 51 and the second shading part 53 may be a black matrix, but the embodiment of the present invention is not limited to this, the first shading part 51 and the second shading part 53
  • the material can also be a single-layer low-reflectivity material or a composite multilayer low-reflection film material or other anti-reflection materials.
  • the first light-shielding part 51 and the second light-shielding part 53 are made of a multilayer low-reflection film A composite structure formed by superimposing layers, the composite structure comprising a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer stacked in sequence from bottom to top. The use of the composite structure can enhance the first light shielding portion 51 And the anti-reflection performance of the second light-shielding part 53 improves the contrast.
  • the display panel further includes an anti-reflection film layer 60, and the anti-reflection film layer 60 covers the second light shielding portion 53 and the opening 54 .
  • the embodiment of the present invention also provides a manufacturing method of the display panel, which includes the following steps:
  • Step S10 Provide a base substrate 10, on which a thin film transistor array layer 20, a light emitting device layer 30, and an encapsulation layer 40 are sequentially formed on the base substrate 10.
  • a thin film transistor array layer 20 is formed on the base substrate 10
  • the light emitting device layer 30 is formed on the thin film transistor array layer 20
  • the light emitting device layer 30 is formed on the light emitting device layer 30.
  • the encapsulation layer 40 is formed on the light emitting device layer 30.
  • Step S20 forming a color filter layer 50 on the encapsulation layer 40.
  • the color filter layer 50 includes a plurality of first shading parts 51, a plurality of color resists 52, and a plurality of second shading parts 53.
  • a light-shielding part 51 is arranged on the encapsulation layer 40 at intervals, the color resist 52 is formed in the interval 55 between two adjacent first light-shielding parts 51, and the second light-shielding part 53 is arranged on the liner.
  • the orthographic projection on the base substrate 10 covers the first light-shielding portion 51 and the orthographic projection on the base substrate 10 on the peripheral edge of the color resist 52, so that one of the two adjacent second light-shielding portions 53 An opening 54 is formed therebetween, and the opening 54 is arranged corresponding to the pixel unit 32.
  • the step S20 includes the following steps:
  • Step S201 forming a plurality of the first shading parts 51 on the encapsulation layer 40 through a first yellow light manufacturing process.
  • a plurality of the first light-shielding portions 51 are formed on the encapsulation layer 40 at intervals.
  • 7 is a schematic cross-sectional structure diagram of the display panel forming the first light shielding portion 51, and the shape enclosed by the plurality of first light shielding portions 51 is in a grid shape.
  • Step S202 using inkjet printing technology, the color resist 52 is formed in the interval 55 between the two adjacent first light shielding portions 51.
  • the first shading part 51 is used as a bank for preparing the color resist 52, and inkjet printing technology is used.
  • two adjacent first shading parts 51 are formed.
  • the color film solution is injected into the gap 55 and cured to form the color resist 52.
  • the first light-shielding portion 51, the color resist 52, and the second light-shielding portion 53 together form the color film layer 50, as shown in FIG. 9 is a schematic top view of the structure of the display panel forming the first light-shielding portion 51, and the color resistance 52 includes a red color resistance, a green color resistance, and a blue color resistance.
  • the width of the first light shielding portion 51 is small, the preparation space reserved for the color resist 52 is relatively large.
  • the tolerance of printing accuracy is improved, and the small size is reduced.
  • the difficulty of printing the color film layer on the high-resolution display panel increases the range of inkjet printing technology applied to high-resolution small-size display panel printing.
  • Step S203 forming the second light-shielding part 53 on the first light-shielding part 51 and the color resist 52 through a second yellow light process, and forming the second light-shielding part 53 between two adjacent second light-shielding parts 53 Opening 54.
  • the second light shielding portion 51 and the color resist 52 are formed on the second The light-shielding part 53, the opening 54 is formed between two adjacent second light-shielding parts 53, as shown in FIG. 11 is a schematic top view of the structure of the display panel forming the second light-shielding part 53, the second light-shielding part 53
  • the width of the portion 53 is greater than the width of the first light-shielding portion 51, so that the size of the color resist 52 that is not covered by the second light-shielding portion 53 is smaller than that in step S202.
  • the surface of the color resist 52 after curing in step S202 is not a flat structure, but a flat middle with a horn-like structure around it.
  • the second shading portion 53 covers the color.
  • the peripheral edges of the resistor 52 shield the horn-shaped structure, which reduces the influence of the boundary position of the color resistor 52 on the optical characteristics of the light-emitting device, and improves the flatness of the color resistor 52 corresponding to the opening 54; at the same time,
  • the larger width of the second shading portion 53 reduces the reflectivity of the display panel to external ambient light and improves the contrast.
  • the material of the first shading part 51 and the second shading part may be black matrix (BM), but the embodiment of the present invention is not limited to this.
  • the first shading part 51 and the second shading part 53 are The material can also be a single-layer low-reflectivity material or a composite multi-layer low-reflection film material or other anti-reflection materials.
  • the first light-shielding part 51 and the second light-shielding part 53 are made of multilayer low-reflection film layers.
  • the composite structure includes a silicon oxide layer, a silicon nitride layer, and a silicon oxide layer stacked from bottom to top. The composite structure can enhance the first light shielding portion 51 and the silicon oxide layer.
  • the anti-reflection performance of the second shading portion 52 improves the contrast.
  • the manufacturing method of the display panel further includes, step S30: on the second shading portion 53 and the opening
  • the anti-reflection film layer 60 in 54 covers the second light shielding portion 53 and the opening 54.
  • the beneficial effects are: the display panel and the manufacturing method thereof provided by the embodiments of the present invention combine the first shading part and the second shading part with different widths to form a color film layer together with the color resist layer, thereby improving inkjet printing technology It is applied to the printing range of high-resolution and small-size display panels, which reduces the difficulty of printing; at the same time, it reduces the reflectivity of the display panel to external ambient light, and alleviates the influence of the color film layer boundary on the optical characteristics of the light-emitting device; and compared with traditional processes At least two yellow light manufacturing processes are reduced, and the packaging performance is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及其制作方法,显示面板包括衬底基板(10)、发光器件层(30)、封装层(40)及彩膜层(50),彩膜层(50)包括多个第一遮光部(51)、多个色阻(52)及多个第二遮光部(53),相邻两第二遮光部(53)之间形成与像素单元(32)对应设置的开口(54),提高了喷墨打印应用于高分辨小尺寸显示面板打印范围,降低了显示面板对环境光线的反射率及彩膜层(50)边界对发光器件的影响。

Description

显示面板及其制作方法
本申请要求于2019年12月20日提交中国专利局、申请号为201911321982.3、发明名称为“显示面板及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,尤其涉及一种显示面板及其制作方法。
背景技术
偏光片(Polarizer,POL)能够有效地降低强光下子显示面板的反射率,却损失了接近58%的出光。这对于OLED来说,极大地增加了其寿命负担;另一方面,偏光片厚度较大、材质脆,不利于动态弯折产品的开发。
目前行业内将使用彩膜基板(Color Filter)替代偏光片的技术被归属为POL-less技术,此技术被认为是实现动态弯折产品开发的关键技术之一,不仅能将功能层厚度从100μm降低至小于5μm,而且能够将出光率从42%提高至60%。然而,与大尺寸显示面板对比,在相同分辨率情况下,小尺寸显示面板由于具有更小的像素尺寸,因此具有很高的打印难度,打印的分辨率是限制小尺寸打印技术发展的重要因素,针对POL-less技术来说,目前是利用至少4道黄光制程进行制备,对于显示面板发光器件的封装特性带来很大挑战。
综上所述,需要提供一种新的显示面板及其制作方法,来解决上述技术问题。
技术问题
本发明提供一种显示面板及其制作方法,可解决现有技术中的小尺寸高分辨率显示面板打印彩膜层的难度较大的技术问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明实施例提供一种显示面板,所述显示面板包括:
衬底基板;
薄膜晶体管阵列层,设置于所述衬底基板上;
发光器件层,设置于所述薄膜晶体管阵列层上,所述发光器件层包括多个像素单元;
封装层,设置于所述发光器件层上;以及
彩膜层,设置于所述封装层上,所述彩膜层包括多个第一遮光部、多个色阻以及多个第二遮光部;
其中,多个所述第一遮光部间隔设置于所述封装层上,所述色阻设置于相邻两个所述第一遮光部之间的间隔内,所述第二遮光部在所述衬底基板上的正投影覆盖所述第一遮光部和位于所述色阻四周边缘在所述衬底基板上的正投影,以使相邻两个所述第二遮光部之间形成开口,所述开口与所述像素单元对应设置,所述开口的形状为倒梯形。
根据本发明实施例提供的显示面板,所述第二遮光部的宽度大于所述第一遮光部的宽度。
根据本发明实施例提供的显示面板,所述第一遮光部和所述第二遮光部为由多层膜层叠加设置的复合型结构。
根据本发明实施例提供的显示面板,所述复合型结构包括从下至上依次层叠设置的氧化硅层、氮化硅层以及氧化硅层。
根据本发明实施例提供的显示面板,所述显示面板还包括减反射膜层,所述减反射膜层覆盖所述第二遮光部以及所述开口。
根据本发明实施例提供的显示面板,各所述开口的形状与对应的各所述像素单元的形状相同,且所述开口与对应的各所述像素单元在所述衬底基板上的正投影相互重合。
根据本发明实施例提供的显示面板,所述开口的宽度小于所述色阻的宽度。
根据本发明实施例提供的显示面板,所述第二遮光部的厚度为0.1nm-1000nm。
本发明实施例提供一种显示面板,所述显示面板包括:
衬底基板;
薄膜晶体管阵列层,设置于所述衬底基板上;
发光器件层,设置于所述薄膜晶体管阵列层上,所述发光器件层包括多个像素单元;
封装层,设置于所述发光器件层上;以及
彩膜层,设置于所述封装层上,所述彩膜层包括多个第一遮光部、多个色阻以及多个第二遮光部;
其中,多个所述第一遮光部间隔设置于所述封装层上,所述色阻设置于相邻两个所述第一遮光部之间的间隔内,所述第二遮光部在所述衬底基板上的正投影覆盖所述第一遮光部和位于所述色阻四周边缘在所述衬底基板上的正投影,以使相邻两个所述第二遮光部之间形成开口,所述开口与所述像素单元对应设置。
根据本发明实施例提供的显示面板,所述第二遮光部的宽度大于所述第一遮光部的宽度。
根据本发明实施例提供的显示面板,所述第一遮光部和所述第二遮光部为由多层膜层叠加设置的复合型结构。
根据本发明实施例提供的显示面板,所述显示面板还包括减反射膜层,所述减反射膜层覆盖所述第二遮光部以及所述开口。
根据本发明实施例提供的显示面板,各所述开口的形状与对应的各所述像素单元的形状相同,且所述开口与对应的各所述像素单元在所述衬底基板上的正投影相互重合。
本发明实施例提供一种显示面板的制作方法,包括以下步骤:
步骤S10:提供衬底基板,在所述衬底基板上依次形成薄膜晶体管阵列层、发光器件层以及封装层;
步骤S20:在所述封装层上形成彩膜层,所述彩膜层包括多个第一遮光部、多个色阻以及多个第二遮光部,多个所述第一遮光部间隔设置于所述封装层,所述色阻形成于相邻两个所述第一遮光部之间的间隔内,所述第二遮光部在所述衬底基板上的正投影覆盖所述第一遮光部和位于所述色阻四周边缘在所述衬底基板上的正投影,以使相邻两个所述第二遮光部之间形成开口,所述开口与所述像素单元对应设置。
根据本发明实施例提供的显示面板的制作方法,所述步骤S20包括以下步骤:
步骤S201:在所述封装层上通过第一道黄光制程形成多个所述第一遮光部;
步骤S202:采用喷墨打印技术,在相邻两个所述第一遮光部之间的所述间隔内形成所述色阻;以及
步骤S203:在所述第一遮光部和所述色阻上通过第二道黄光制程形成所述第二遮光部,相邻两个所述第二遮光部之间形成开口。
根据本发明实施例提供的显示面板的制作方法,还包括步骤S30:在所述第二遮光部上以及所述开口内形成减反射膜层,所述减反射膜层覆盖所述第二遮光部以及所述开口。
根据本发明实施例提供的显示面板的制作方法,所述第二遮光部的宽度大于所述第一遮光部的宽度。
根据本发明实施例提供的显示面板的制作方法,所述第一遮光部和所述第二遮光部为由多层低反射膜层叠加而成的复合型结构。
根据本发明实施例提供的显示面板的制作方法,所述复合型结构包括从下至上依次层叠设置的氧化硅层、氮化硅层以及氧化硅层。
根据本发明实施例提供的显示面板的制作方法,所述第二遮光部的厚度为0.1nm-1000nm。
有益效果
本发明的有益效果为:本发明提供的显示面板及其制作方法,通过将宽度不同的第一遮光部和第二遮光部相结合,与色阻层共同构成彩膜层,提高了喷墨打印技术应用于高分辨小尺寸显示面板打印的范围,降低了打印难度;同时降低了显示面板对外界环境光线的反射率,缓解了彩膜层边界对发光器件光学特性的影响;并且相比传统工艺可减少至少两道黄光制程,提升了封装性能。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的显示面板的截面结构示意图;
图2为图1中的显示面板的局部结构示意图;
图3为本发明实施例提供的显示面板的制作方法的流程图;
图4为本发明实施例提供的显示面板的制作方法的步骤S10的示意图;
图5为本发明实施例提供的步骤S20中形成彩膜层的流程图;
图6为本发明实施例提供的步骤S201中形成第一遮光部的显示面板的截面结构示意图;
图7为本发明实施例提供的步骤S201中形成第一遮光部的显示面板的俯视结构示意图;
图8为本发明实施例提供的步骤S202中形成色阻的显示面板的截面结构示意图;
图9为本发明实施例提供的步骤S202中形成色阻的显示面板的俯视结构示意图;
图10为本发明实施例提供的步骤S203中形成第二遮光部的显示面板的截面结构示意图;
图11为本发明实施例提供的步骤S203中形成第二遮光部的显示面板的俯视结构示意图;
图12为本发明实施例提供的显示面板的制作方法的步骤S30的示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有技术的小尺寸高分辨率显示面板打印彩膜层的难度较大的技术问题,本实施例能够解决该缺陷。
如图1所示,本发明实施例提供的显示面板,包括衬底基板10、设置于所述衬底基板10上的薄膜晶体管阵列层20、设置于所述薄膜晶体管阵列层20上的发光器件层30、设置于所述发光器件层30上的封装层40以及设置于所述封装层40上的彩膜层50。
具体地,如图2所示,所述薄膜晶体管阵列层20包括依次层叠设置于所述衬底基板10上的缓冲层21、半导体层22、第一栅极绝缘层23、第二栅极绝缘层25、层间介质层27以及平坦层29,在所述第一栅极绝缘层23上设置有第一栅极金属层24,在所述第二栅极绝缘层25上设置有第二栅极金属层26,在所述层间介质层27上设置有源漏极金属层28。
在本发明实施例中,所述发光器件层30包括设置在所述平坦层29上的像素定义层31以及多个像素单元32,所述像素单元可以为有机发光二极管器件,多个所述像素单元32可为红色、绿色以及蓝色像素单元,所述发光器件层30的阳极与所述源漏极金属层28接触连接。
所述封装层40可以采用薄膜封装,所述封装层40为无机层-有机层-无机层依次层叠设置的方式,以增强所述显示面板的封装性能。
如图1、图2所示,所述彩膜层50包括多个第一遮光部51、多个色阻52以及多个第二遮光部53,多个所述第一遮光部51间隔设置于所述封装层40上,所述色阻52设置于相邻两个所述第一遮光部51之间的间隔55内,所述第二遮光部53在所述衬底基板10上的正投影覆盖所述第一遮光部51和位于所述色阻52四周边缘在所述衬底基板10上的正投影,以使相邻两个所述第二遮光部53之间形成开口54,所述开口54与所述像素单元32对应设置。
多个所述色阻52分别为红色色阻、绿色色阻以及蓝色色阻,且分别对应红色像素单元、绿色像素单元以及蓝色像素单元,可以理解的是,位于红色色阻上的开口54对应红色像素单元,位于所述绿色色阻上的开口54对应绿色像素单元,位于蓝色色阻上的开口54对应蓝色像素单元。
在本发明实施例中,所述第二遮光部53的宽度大于所述第一遮光部51的宽度,一方面,所述第二遮光部53能够降低所述显示面板对外界环境光的反射率;另一方面,所述第二遮光部53能够覆盖所述色阻52的四周边缘,可避免由于所述色阻52与所述第一遮光部51交界处发生重叠而导致所述色阻52周围出现牛角状结构,提高所述色阻52在所述开口54处的平坦度。
另外,所述开口54的宽度小于所述色阻的宽度,光线经过所述开口54出射,可以满足小尺寸高分辨率显示面板的打印要求,提高了打印精度的容忍性;且各所述开口54的形状与对应的各所述像素单元32的形状相同,且所述开口54与对应的各所述像素单元32在所述衬底基板10上的正投影相互重合,在本发明实施例中,所述开口54的截面形状为倒梯形。
所述第一遮光部51相当于形成所述色阻52的挡墙,因此所述第一遮光部51的厚度取决于所述色阻52的厚度;所述第二遮光部53为了降低所述显示面板对外界环境光线的反射率,因此所述第二遮光部53的厚度应满足其光密度值(OD)大于3,具体地,所述第二遮光部53的厚度为纳米级,例如所述第二遮光部53的厚度为0.1nm-1000nm。
具体地,所述第一遮光部51和所述第二遮光部53的材料可以采用黑色矩阵,但本发明实施例不局限于此,所述第一遮光部51和所述第二遮光部53的材料也可以采用单层低反射率材料或复合型多层低反射膜材料或其他减反射材料,例如,所述第一遮光部51和所述第二遮光部53为由多层低反射膜层叠加而成的复合型结构,所述复合型结构包括从下至上依次层叠设置的氧化硅层、氮化硅层以及氧化硅层,采用所述复合型结构能够增强所述第一遮光部51和所述第二遮光部53的减反射性能,提高对比度。
进一步地,为了进一步降低所述显示面板对外界环境光的反射率,所述显示面板还包括减反射膜层60,所述减反射膜层60覆盖所述第二遮光部53以及所述开口54。
如图3所示,本发明实施例还提供了所述显示面板的制作方法,包括以下步骤:
步骤S10:提供衬底基板10,在所述衬底基板10上依次形成薄膜晶体管阵列层20、发光器件层30以及封装层40。
具体地,如图4所示,在所述衬底基板10上形成薄膜晶体管阵列层20,在所述薄膜晶体管阵列层20上形成所述发光器件层30,在所述发光器件层30上形成所述封装层40。
步骤S20:在所述封装层40上形成彩膜层50,所述彩膜层50包括多个第一遮光部51、多个色阻52以及多个第二遮光部53,多个所述第一遮光部51间隔设置于所述封装层40上,所述色阻52形成于相邻两个所述第一遮光部51之间的间隔55内,所述第二遮光部53在所述衬底基板10上的正投影覆盖所述第一遮光部51和位于所述色阻52四周边缘在所述衬底基板10上的正投影,以使相邻两个所述第二遮光部53之间形成开口54,所述开口54与所述像素单元32对应设置。
具体地,如图5所示,所述步骤S20包括以下步骤:
步骤S201:在所述封装层40上通过第一道黄光制程形成多个所述第一遮光部51。
如图6所示,通过第一道黄光制程,包括依次进行的光阻涂布步骤、曝光步骤及显影步骤,在所述封装层40上形成间隔设置的多个所述第一遮光部51,如图7所示为形成所述第一遮光部51的显示面板的截面结构示意图,多个所述第一遮光部51围成的形状呈网格状。
步骤S202:采用喷墨打印技术,在相邻两个所述第一遮光部51之间的所述间隔55内形成所述色阻52。
如图8所示,以所述第一遮光部51作为制备所述色阻52的挡墙(bank),采用喷墨打印技术,在图7中相邻两个所述第一遮光部51形成的所述间隔55内注入彩膜溶液,并进行固化以形成所述色阻52,所述第一遮光部51、所述色阻52以及所述第二遮光部53共同构成所述彩膜层50,如图9所示为形成所述第一遮光部51的显示面板的俯视结构示意图,所述色阻52包括红色色阻、绿色色阻以及蓝色色阻。
由于所述第一遮光部51宽度较小,因此为所述色阻52的预留的制备空间相对较大,对于小尺寸显示面板来说,提高了打印精度的容忍性,降低了小尺寸高分辨率显示面板打印所述彩膜层的打印难度,提高了喷墨打印技术应用于高分辨小尺寸显示面板打印的范围。
步骤S203:在所述第一遮光部51和所述色阻52上通过第二道黄光制程形成所述第二遮光部53,相邻两个所述第二遮光部53之间形成所述开口54。
如图10所示,通过第二道黄光制程,包括依次进行的光阻涂布步骤、曝光步骤及显影步骤,在所述第一遮光部51和所述色阻52上形成所述第二遮光部53,相邻两个所述第二遮光部53之间形成所述开口54,如图11所示为形成所述第二遮光部53的显示面板的俯视结构示意图,所述第二遮光部53的宽度大于所述第一遮光部51的宽度,以使未被所述第二遮光部53覆盖的所述色阻52的尺寸相比步骤S202中减小。
通常情况下,步骤S202中固化完成后的所述色阻52的表面并非平整结构,而是中间平坦,四周具有牛角状结构,本实施例中的将所述第二遮光部53覆盖所述色阻52的四周边缘,对牛角状结构进行遮挡,降低了所述色阻52边界位置对发光器件出光光学特性的影响,提高了所述色阻52对应所述开口54处的平坦度;同时,所述第二遮光部53的宽度较大则降低了所述显示面板对外界环境光线的反射率,提高了对比度。
所述第一遮光部51和所述第二遮光部的材料可以采用黑色矩阵(BM),但本发明实施例不局限于此,所述第一遮光部51和所述第二遮光部53的材料也可以采用单层低反射率材料或复合型多层低反射膜材料或其他减反射材料,例如,所述第一遮光部51和所述第二遮光部53为由多层低反射膜层叠加而成的复合型结构,所述复合型结构包括从下至上依次层叠设置的氧化硅层、氮化硅层以及氧化硅层,采用所述复合型结构能够增强所述第一遮光部51和所述第二遮光部52的减反射性能,提高对比度。
进一步地,如图12所示,为了进一步降低所述显示面板对外界环境光的反射率,所述显示面板的制作方法还包括,步骤S30:在所述第二遮光部53上以及所述开口54内所述减反射膜层60覆盖所述第二遮光部53以及所述开口54。
采用本发明实施例提供的所述显示面板的制作方法,形成所述彩膜层50仅需要2道黄光制程,相比现有技术,节省了至少两道黄光制程,从而避免了黄光制程过多带来的封装问题。
有益效果为:本发明实施例提供的显示面板及其制作方法,通过将宽度不同的第一遮光部和第二遮光部相结合,与色阻层共同构成彩膜层,提高了喷墨打印技术应用于高分辨小尺寸显示面板打印的范围,降低了打印难度;同时降低了显示面板对外界环境光线的反射率,缓解了彩膜层边界对发光器件光学特性的影响;并且相比传统工艺可减少至少两道黄光制程,提升了封装性能。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,所述显示面板包括:
    衬底基板;
    薄膜晶体管阵列层,设置于所述衬底基板上;
    发光器件层,设置于所述薄膜晶体管阵列层上,所述发光器件层包括多个像素单元;
    封装层,设置于所述发光器件层上;以及
    彩膜层,设置于所述封装层上,所述彩膜层包括多个第一遮光部、多个色阻以及多个第二遮光部;
    其中,多个所述第一遮光部间隔设置于所述封装层上,所述色阻设置于相邻两个所述第一遮光部之间的间隔内,所述第二遮光部在所述衬底基板上的正投影覆盖所述第一遮光部和位于所述色阻四周边缘在所述衬底基板上的正投影,以使相邻两个所述第二遮光部之间形成开口,所述开口与所述像素单元对应设置,所述开口的形状为倒梯形。
  2. 根据权利要求1所述的显示面板,其中所述第二遮光部的宽度大于所述第一遮光部的宽度。
  3. 根据权利要求2所述的显示面板,其中所述第一遮光部和所述第二遮光部为由多层膜层叠加设置的复合型结构。
  4. 根据权利要求3所述的显示面板,其中所述复合型结构包括从下至上依次层叠设置的氧化硅层、氮化硅层以及氧化硅层。
  5. 根据权利要求4所述的显示面板,其中所述显示面板还包括减反射膜层,所述减反射膜层覆盖所述第二遮光部以及所述开口。
  6. 根据权利要求1所述的显示面板,其中各所述开口的形状与对应的各所述像素单元的形状相同,且所述开口与对应的各所述像素单元在所述衬底基板上的正投影相互重合。
  7. 根据权利要求1所述的显示面板,其中所述开口的宽度小于所述色阻的宽度。
  8. 根据权利要求1所述的显示面板,其中所述第二遮光部的厚度为0.1nm-1000nm。
  9. 一种显示面板,所述显示面板包括:
    衬底基板;
    薄膜晶体管阵列层,设置于所述衬底基板上;
    发光器件层,设置于所述薄膜晶体管阵列层上,所述发光器件层包括多个像素单元;
    封装层,设置于所述发光器件层上;以及
    彩膜层,设置于所述封装层上,所述彩膜层包括多个第一遮光部、多个色阻以及多个第二遮光部;
    其中,多个所述第一遮光部间隔设置于所述封装层上,所述色阻设置于相邻两个所述第一遮光部之间的间隔内,所述第二遮光部在所述衬底基板上的正投影覆盖所述第一遮光部和位于所述色阻四周边缘在所述衬底基板上的正投影,以使相邻两个所述第二遮光部之间形成开口,所述开口与所述像素单元对应设置。
  10. 根据权利要求9所述的显示面板,其中所述第二遮光部的宽度大于所述第一遮光部的宽度。
  11. 根据权利要求10所述的显示面板,其中所述第一遮光部和所述第二遮光部为由多层膜层叠加设置的复合型结构。
  12. 根据权利要求9所述的显示面板,其中所述显示面板还包括减反射膜层,所述减反射膜层覆盖所述第二遮光部以及所述开口。
  13. 根据权利要求9所述的显示面板,其中各所述开口的形状与对应的各所述像素单元的形状相同,且所述开口与对应的各所述像素单元在所述衬底基板上的正投影相互重合。
  14. 一种显示面板的制作方法,包括以下步骤:
    步骤S10:提供衬底基板,在所述衬底基板上依次形成薄膜晶体管阵列层、发光器件层以及封装层;
    步骤S20:在所述封装层上形成彩膜层,所述彩膜层包括多个第一遮光部、多个色阻以及多个第二遮光部,多个所述第一遮光部间隔设置于所述封装层,所述色阻形成于相邻两个所述第一遮光部之间的间隔内,所述第二遮光部在所述衬底基板上的正投影覆盖所述第一遮光部和位于所述色阻四周边缘在所述衬底基板上的正投影,以使相邻两个所述第二遮光部之间形成开口,所述开口与所述像素单元对应设置。
  15. 根据权利要求14所述的显示面板的制作方法,所述步骤S20包括以下步骤:
    步骤S201:在所述封装层上通过第一道黄光制程形成多个所述第一遮光部;
    步骤S202:采用喷墨打印技术,在相邻两个所述第一遮光部之间的所述间隔内形成所述色阻;以及
    步骤S203:在所述第一遮光部和所述色阻上通过第二道黄光制程形成所述第二遮光部,相邻两个所述第二遮光部之间形成开口。
  16. 根据权利要求14所述的显示面板的制作方法,还包括步骤S30:在所述第二遮光部上以及所述开口内形成减反射膜层,所述减反射膜层覆盖所述第二遮光部以及所述开口。
  17. 根据权利要求14所述的显示面板的制作方法,所述第二遮光部的宽度大于所述第一遮光部的宽度。
  18. 根据权利要求14所述的显示面板的制作方法,所述第一遮光部和所述第二遮光部为由多层低反射膜层叠加而成的复合型结构。
  19. 根据权利要求18所述的显示面板的制作方法,其中所述复合型结构包括从下至上依次层叠设置的氧化硅层、氮化硅层以及氧化硅层。
  20. 根据权利要求14所述的显示面板的制作方法,其中所述第二遮光部的厚度为0.1nm-1000nm。
PCT/CN2019/130233 2019-12-20 2019-12-31 显示面板及其制作方法 WO2021120325A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/638,137 US11374063B2 (en) 2019-12-20 2019-12-31 Display panel with color filter layer and anti-reflection film layer and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911321982.3A CN111129092A (zh) 2019-12-20 2019-12-20 显示面板及其制作方法
CN201911321982.3 2019-12-20

Publications (1)

Publication Number Publication Date
WO2021120325A1 true WO2021120325A1 (zh) 2021-06-24

Family

ID=70500432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130233 WO2021120325A1 (zh) 2019-12-20 2019-12-31 显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN111129092A (zh)
WO (1) WO2021120325A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629214A (zh) * 2021-08-06 2021-11-09 武汉天马微电子有限公司 显示面板及其制作方法、显示装置
CN113764601A (zh) * 2021-09-08 2021-12-07 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584594B (zh) * 2020-05-25 2022-12-09 京东方科技集团股份有限公司 显示面板、显示装置及其制造方法
CN111755490B (zh) * 2020-06-22 2022-07-29 武汉华星光电半导体显示技术有限公司 一种显示面板
CN111864105A (zh) * 2020-07-09 2020-10-30 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法
CN112117313B (zh) * 2020-09-10 2024-01-19 武汉华星光电半导体显示技术有限公司 显示屏及电子设备
CN112310321B (zh) * 2020-10-30 2024-04-05 京东方科技集团股份有限公司 Oled显示面板及显示设备
CN112713175B (zh) * 2020-12-14 2022-11-22 合肥维信诺科技有限公司 一种显示面板及显示装置
CN112885885A (zh) * 2021-02-01 2021-06-01 武汉华星光电半导体显示技术有限公司 显示面板、显示装置及显示面板的制作方法
CN112786764B (zh) * 2021-02-26 2022-02-22 维沃移动通信有限公司 发光器件、显示组件和发光器件的制造方法
CN113241418B (zh) * 2021-05-08 2022-04-08 武汉华星光电技术有限公司 一种彩膜基板及有机发光显示面板
CN113327970B (zh) * 2021-06-16 2022-07-29 武汉华星光电半导体显示技术有限公司 显示面板和显示装置
CN113471269B (zh) * 2021-06-30 2023-09-15 昆山国显光电有限公司 显示面板、显示面板的制备方法及显示装置
CN117596918A (zh) * 2021-12-15 2024-02-23 武汉华星光电半导体显示技术有限公司 一种显示面板
CN114512520B (zh) * 2022-02-07 2024-01-23 武汉华星光电半导体显示技术有限公司 显示面板和显示装置
WO2023230911A1 (zh) * 2022-05-31 2023-12-07 京东方科技集团股份有限公司 显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932145A (zh) * 2015-06-30 2015-09-23 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
US20160056415A1 (en) * 2014-08-19 2016-02-25 Samsung Display Co., Ltd. Display apparatus having mirror function
CN107086221A (zh) * 2017-04-25 2017-08-22 京东方科技集团股份有限公司 一种阵列基板及其制作方法以及显示装置
CN109817676A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 显示面板及触控显示器
CN110350003A (zh) * 2019-06-21 2019-10-18 武汉华星光电半导体显示技术有限公司 有机发光显示面板及其制造方法
CN110459581A (zh) * 2019-08-26 2019-11-15 昆山工研院新型平板显示技术中心有限公司 显示面板及显示装置
CN110518151A (zh) * 2019-09-10 2019-11-29 昆山工研院新型平板显示技术中心有限公司 显示面板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056415A1 (en) * 2014-08-19 2016-02-25 Samsung Display Co., Ltd. Display apparatus having mirror function
CN104932145A (zh) * 2015-06-30 2015-09-23 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN107086221A (zh) * 2017-04-25 2017-08-22 京东方科技集团股份有限公司 一种阵列基板及其制作方法以及显示装置
CN109817676A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 显示面板及触控显示器
CN110350003A (zh) * 2019-06-21 2019-10-18 武汉华星光电半导体显示技术有限公司 有机发光显示面板及其制造方法
CN110459581A (zh) * 2019-08-26 2019-11-15 昆山工研院新型平板显示技术中心有限公司 显示面板及显示装置
CN110518151A (zh) * 2019-09-10 2019-11-29 昆山工研院新型平板显示技术中心有限公司 显示面板及显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629214A (zh) * 2021-08-06 2021-11-09 武汉天马微电子有限公司 显示面板及其制作方法、显示装置
CN113629214B (zh) * 2021-08-06 2023-12-26 武汉天马微电子有限公司 显示面板及其制作方法、显示装置
CN113764601A (zh) * 2021-09-08 2021-12-07 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、显示装置

Also Published As

Publication number Publication date
CN111129092A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021120325A1 (zh) 显示面板及其制作方法
JP7294808B2 (ja) カラーフィルム基板及びその製造方法、表示パネルと表示装置
US11374063B2 (en) Display panel with color filter layer and anti-reflection film layer and manufacturing method thereof
US11217765B2 (en) Display substrate, fabricating method of display substrate, and display device
CN110034166B (zh) 有机发光二极管显示装置及其制造方法
CN108091675B (zh) 显示基板及其制作方法
CN109148489B (zh) 一种阵列基板及制作方法、显示装置
CN108807549B (zh) 薄膜晶体管及其制造方法、阵列基板及其制造方法
WO2015196613A1 (zh) 彩膜基板及其制造方法、显示面板
CN109801954B (zh) 阵列基板及其制造方法、显示面板及显示装置
WO2015192517A1 (zh) 彩膜基板及其制备方法、有机发光显示面板和显示装置
WO2020258870A1 (zh) 显示面板及其制备方法
US11502274B2 (en) Display substrate and preparation method thereof, and display apparatus
WO2021238129A1 (zh) 显示面板及显示面板制作方法
JP2012038677A (ja) 有機el装置、有機el装置の製造方法、及び電子機器
US11563064B2 (en) Array substrate, display device, and method for fabricating an array substrate
WO2020094015A1 (zh) 显示基板和显示装置
WO2021196377A1 (zh) 一种显示面板及制程方法
CN111785760B (zh) 一种显示基板及其制备方法、显示装置
WO2022033232A1 (zh) 有机发光显示面板及其制作方法、显示装置
WO2020252862A1 (zh) 有机发光显示面板及其制造方法
WO2018228109A1 (zh) 一种coa基板及其制作方法、显示面板、显示装置
US11158689B2 (en) Electroluminescent display panel, manufacturing method thereof and display device
KR20150125207A (ko) 유기 발광 표시 장치 및 이의 제조 방법
JP2020502722A (ja) Oledディスプレイ基板、oledディスプレイ装置およびoledディスプレイ基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956323

Country of ref document: EP

Kind code of ref document: A1