WO2021117721A1 - 電解コンデンサ用液状成分および電解コンデンサ - Google Patents

電解コンデンサ用液状成分および電解コンデンサ Download PDF

Info

Publication number
WO2021117721A1
WO2021117721A1 PCT/JP2020/045670 JP2020045670W WO2021117721A1 WO 2021117721 A1 WO2021117721 A1 WO 2021117721A1 JP 2020045670 W JP2020045670 W JP 2020045670W WO 2021117721 A1 WO2021117721 A1 WO 2021117721A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrolytic capacitor
liquid component
capacitor according
atom
Prior art date
Application number
PCT/JP2020/045670
Other languages
English (en)
French (fr)
Inventor
椿 雄一郎
青山 達治
佳津代 齊藤
礼翼 陳
賢吾 内橋
Original Assignee
パナソニックIpマネジメント株式会社
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社, 三洋化成工業株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021563970A priority Critical patent/JPWO2021117721A1/ja
Priority to CN202080084806.7A priority patent/CN114830274A/zh
Priority to US17/783,125 priority patent/US11978597B2/en
Publication of WO2021117721A1 publication Critical patent/WO2021117721A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present disclosure relates to a liquid component for an electrolytic capacitor and an electrolytic capacitor including the liquid component.
  • the liquid component can function as a de facto cathode material.
  • Various studies have been conducted on the composition of liquid components.
  • Patent Document 1 describes that an electrolytic solution containing a salt of phthalic acid or borodisalicylic acid and an amine compound is used for an electrolytic capacitor.
  • Patent Document 2 teaches an electrolytic capacitor containing a conductive polymer and a conductive auxiliary liquid.
  • the conductive auxiliary liquid contains an organic solvent having a boiling point of 150 ° C. or higher and an aromatic compound having at least one hydroxy group.
  • one aspect of the present disclosure includes at least one central atom selected from the group consisting of boron, aluminum and silicon, and a ligand having a plurality of coordination atoms bonded to the central atom.
  • the coordination atom relates to a liquid component for an electrolytic capacitor, which is at least one selected from the group consisting of oxygen and nitrogen and is bonded to a carbon atom having no oxo group.
  • Another aspect of the present disclosure is an anode having a dielectric layer formed on its surface, a cathode body, a conductive polymer disposed between the anode body and the cathode body, and the above-mentioned liquid component.
  • electrolytic capacitors With respect to electrolytic capacitors.
  • Yet another aspect of the present disclosure is electrolysis comprising an anode having a dielectric layer formed on its surface, a cathode body, and the liquid component disposed between the anode body and the cathode body.
  • anode having a dielectric layer formed on its surface
  • a cathode body having a dielectric layer formed on its surface
  • the liquid component disposed between the anode body and the cathode body.
  • an electrolytic capacitor having excellent heat resistance and a liquid component for an electrolytic capacitor.
  • the electrolytic capacitor according to the present disclosure includes an anode body having a dielectric layer formed on its surface, a cathode body, and a liquid component arranged between the anode body and the cathode body.
  • the liquid component contains at least one central atom selected from the group consisting of boron, aluminum and silicon, and a ligand having a plurality of coordination atoms bonded to the central atom.
  • the ligand has a plurality of coordination atoms bonded to the central atom.
  • the coordination atom is an oxygen atom
  • the oxygen atom is an oxygen atom that does not form a carboxy group or a carboxy anion.
  • the oxygen atom which is a coordinating atom, can be an alcoholic or phenolic hydroxyl group, an alkoxy oxygen, or an oxy group.
  • the bond with the central atom is stable, it is preferable that alcoholic or phenolic alkoxy oxygen is bonded to the central atom.
  • the coordinating atom is a nitrogen atom
  • the nitrogen atom is a nitrogen atom forming an amino group, an amide group, an imide group, an imide anion, or the like.
  • a coordination compound is composed of a central metal and a ligand.
  • Coordinating compounds include complexes, complex salts and the like.
  • the ligand is not particularly limited, but may form a complex anion together with the central atom. That is, the coordination compound may be a complex anion.
  • a coordinating compound (first coordinating compound) is formed by coordinating an organic molecule having a plurality of coordinating atoms (in other words, a coordinating organic compound) to the central metal. That is, the first coordinating compound has a ligand derived from such an organic molecule (coordinating organic compound).
  • the ligand may have a structure in which a hydrogen atom, a hydroxyl group, an amino group or an imino group bonded to a coordinating atom is eliminated from an organic molecule.
  • the ligand contains a substituent having an electron-attracting property. Since such a substituent tends to stabilize the electrons of the coordination atom of the ligand, the product during hydrolysis is unlikely to corrode the electrode of the capacitor.
  • the electron-attracting substituent include a nitro group, a carboxy group, an ester group, a halogen atom (fluorine atom, chlorine atom, etc.), an acyl group, a tosyl group, a keto group, a cyano group, a methylsulfonyl group and the like. Be done.
  • the ligand may contain a substituent having an electron donating property.
  • a substituent contributes to the stability of the liquid component especially at the time of water addition or in a high humidity environment because electrons easily flow into the empty orbital on the central atom and stabilize it.
  • the electron-donating substituent include an amino group, an alkyl group, an aryl group (phenyl group and the like), an alkoxy group and the like.
  • the ligand may be derived from, for example, a polyol having an aromatic ring and a group containing at least a first hydroxy group and a second hydroxy group. That is, the organic molecule (coordinating organic compound) may be a polyol.
  • the ligand derived from a polyol means a residue obtained by removing a hydrogen atom and / or a hydroxyl group from the polyol, and / or the polyol.
  • the first hydroxy group may be attached to the aromatic ring.
  • the group containing the second hydroxy group may be bonded to the first hydroxy group of the aromatic ring at the ortho position.
  • the group containing a second hydroxy group may be a second hydroxy group or an alkyl group having a second hydroxy group.
  • Examples of the alkyl group having a second hydroxy group include an alkyl group having 1 to 4 carbon atoms.
  • Examples of the alkyl group having a second hydroxy group include a methylol group, an ethylol group, a propyrrole group, and a butyrol group.
  • a methylol group is preferable from the viewpoint of stability of the complex anion.
  • the organic molecule may be a compound represented by the following general formulas (1), (2), (3), (4), (5) or (6).
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 each independently have a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group having 1 to 10 carbon atoms, a carboxy group, and an ester bond.
  • 2 to 10 groups saturated aliphatic hydrocarbon groups having 1 to 24 carbon atoms which may have substituents, unsaturated aliphatic hydrocarbon groups having 2 to 24 carbon atoms which may have substituents.
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • Alkoxy groups having 1 to 10 carbon atoms include methoxy group, ethoxy group, n- or iso-propoxy group, n-, sec-, iso- or tert-butoxy group, n-pentoxy group, n-hexoxy group and octoxy.
  • Groups, decoxy groups, phenoxy groups and the like can be mentioned.
  • Examples of the group having 2 to 10 carbon atoms having an ester bond include an alkoxycarbonyl group having 2 to 10 carbon atoms.
  • Examples of the alkoxycarbonyl group include a group in which the hydrogen atom of the carboxy group is replaced with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a pentyl group, an octyl group or a nonyl group.
  • Examples of the saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms which may have a substituent include an alkyl group having 1 to 24 carbon atoms and a cycloalkyl group having 3 to 24 carbon atoms.
  • the alkyl group includes methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group and 2-methylbutyl group.
  • the number of carbon atoms of the alkyl group may be 1 to 20, 1 to 16, or 1 to 12.
  • Examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cyclooctyl group and the like.
  • the cycloalkyl group may have 5 to 10 or 5 to 8 carbon atoms.
  • Examples of the unsaturated aliphatic hydrocarbon group having 2 to 24 carbon atoms which may have a substituent include an alkenyl group.
  • Examples of the alkenyl group include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, an octenyl group, a decenyl group, an isopropenyl group and the like.
  • the unsaturated aliphatic hydrocarbon group may have 2 to 18 carbon atoms.
  • Examples of the substituent that the saturated aliphatic hydrocarbon group having 1 to 24 carbon atoms or the unsaturated aliphatic hydrocarbon group having 2 to 24 carbon atoms may have include a hydroxy group and an alkoxy group (1 to 24 carbon atoms). (4, such as an alkoxy group), a carboxy group, a nitro group, a halogen atom, a cyano group, an amino group and the like.
  • Examples of the aromatic hydrocarbon group having 6 to 14 carbon atoms which may have a substituent include an aryl group and an arylalkyl group (or an aralkyl group).
  • Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • the aryl group may have an aromatic hydrocarbon ring having 6 to 10 carbon atoms.
  • Examples of the arylalkyl group include an alkyl group having 1 to 4 carbon atoms having an aryl group having 6 to 10 carbon atoms.
  • Examples of the arylalkyl group include a benzyl group and a phenethyl group.
  • substituents examples include an alkyl group (such as an alkyl group having 1 to 6 carbon atoms), a hydroxy group, an alkoxy group (such as an alkoxy group having 1 to 4 carbon atoms), a carboxy group, a nitro group, a halogen atom, and a cyano group. Amino groups and the like can be mentioned.
  • examples of the polyol having a second hydroxy group bonded to an aromatic ring include catechol, pyrogallol, gallic acid, gallic acid ester (alkyl gallate (ester with alkyl having 1 to 4 carbon atoms, etc.)). , Hexahydroxybenzene, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 4,4'-(2,3-dimethyltetramethylene) dipyrrocatechol, 2,3,4,4'-tetrahydroxydiphenylmethane, etc. Can be mentioned. Substituents may be attached to the aromatic rings of these polyols.
  • Typical polyols having an alkyl group having a first hydroxy group and a second hydroxy group are salicyl alcohol, 2,5-dihydroxybenzyl alcohol, and 2,6-bis (hydroxymethyl). -P-cresol and the like can be mentioned. Substituents may be attached to the aromatic rings of these polyols.
  • Examples of the substituent that the aromatic ring of the polyol may have include the groups or atoms described for R 1 to R 6 (excluding hydrogen atoms).
  • the number of molecules of the polyol coordinated per central atom may be one molecule or two or more molecules. From the viewpoint of the stability of the complex anion, a polyol may be selected so that two or more molecules (for example, two or three molecules) of the polyol are coordinated per two central atoms. The number of these molecules corresponds to the number of ligands coordinated per central atom.
  • a tetra-coordinated complex anion can be formed.
  • a complex anion typically, such as borodicatechol
  • two molecules of a diol are dehydrated and coordinated with a boron atom or an aluminum atom
  • a pentacoordinated or hexacoordinated complex anion can be formed.
  • a complex anion in which three molecules of diol are dehydrated and coordinated to a silicon atom can be mentioned.
  • the electrolytic capacitor preferably has a conductive polymer arranged between the anode body and the cathode body from the viewpoint of further reducing the ESR of the electrolytic capacitor.
  • the conductive polymer is, for example, a ⁇ -conjugated conductive polymer, and is usually doped with a dopant in order to improve conductivity. It is considered that the liquid component contains the first coordinating compound (complex anion or the like) to suppress the dedoping of the dopant, so that the deterioration of the conductive polymer or the deterioration of the conductivity is suppressed.
  • the pH of the liquid component is preferably 6 or less, more preferably 4 or less, and even more preferably 3.8 or less or 3.6 or less. By setting the pH of the liquid component to 4 or less, the deterioration of the conductive polymer is further remarkably suppressed.
  • the first coordination compound (complex anion, etc.) exhibits acidity, it can contribute to controlling the pH within the above range.
  • the liquid component may further contain an acid component.
  • the concentration of complex anions contained in the liquid component may exceed, for example, 0.1% by mass, or 1.0% by mass or more.
  • the content of the complex anion contained in the liquid component may be, for example, 30% by mass or less, or 20% by mass or less.
  • the concentration of complex anions is defined as the maximum amount of complex anions that can be formed by the central atom contained in the liquid component and the ligand having a plurality of coordination atoms having the above structure.
  • the maximum amount is calculated on the assumption that the central atom and the ligand all form a complex ion regardless of whether or not a complex anion is actually formed.
  • the equivalent of the central atom and the equivalent of the ligand are different, the maximum amount may be calculated by the smaller equivalent as a matter of course.
  • Quantitative and qualitative analysis of complex anions can be performed, for example, by the following methods.
  • ⁇ Qualitative analysis> First, 30 mL of the liquid component is weighed in a glass container having a closed lid, and the infrared absorption spectrum (IR) of the liquid component in the container is measured with a predetermined measuring device (IRSprit [manufactured by Shimadzu Corporation]). Next, the container containing the liquid component is sealed and held in a high temperature environment for a certain period of time. Then, after allowing the liquid component in the container to cool, the IR is measured again.
  • the stability of the complex anion can be evaluated by the change in the expansion and contraction vibration spectrum of the bond between the central atom and the coordination atom. It can be said that the smaller the spectral change, the higher the stability of the complex anion.
  • ⁇ Quantitative analysis> First, 30 mL of the liquid component is weighed in a glass container having a closed lid, and the nuclear magnetic resonance spectrum (NMR) of the liquid component in the container is measured with a predetermined measuring device (AVANCE III HD [made by BRUKER]) and peaked. The initial complex anion formation ratio (G0) is obtained from the strength. Next, the container containing the liquid component is sealed and held in a high temperature environment for a certain period of time. Then, after allowing the liquid component in the container to cool, NMR is measured again to determine the production ratio (G1) of the complex anion and the unreacted organic molecule.
  • the decomposition rate of complex anions can be determined using the following formula, and the stability of complex anions can be evaluated. It can be said that the smaller the decomposition rate, the higher the stability of the complex anion.
  • the liquid component may further contain at least one selected from the group consisting of cations containing a nitrogen atom and cations containing a phosphorus atom. These cations are considered to have a role of increasing the stability of the complex anion, increasing the dissociation degree of the acid component, and increasing the conductivity of the liquid component, for example.
  • the cation containing a nitrogen atom may be an ammonium ion having various structures, and the cation containing a phosphorus atom may be a phosphonium ion. That is, at least one selected from the group consisting of a cation containing a nitrogen atom and a cation containing a phosphorus atom may be an onium cation.
  • the content of the onium cation contained in the liquid component may be, for example, 0.1% by mass or more, and may be 30% by mass or less.
  • Examples of the cation containing a nitrogen atom include at least one selected from the group consisting of a secondary ammonium ion, a tertiary ammonium ion and a quaternary ammonium ion.
  • a secondary ammonium ion a tertiary ammonium ion
  • a quaternary ammonium ion a quaternary ammonium ion.
  • the amine that produces ammonium ions an aliphatic amine, an aromatic amine, a heterocyclic amine and the like can be used. Of these, aliphatic amines having a molecular weight of 72 to 102 are preferable because they have a high degree of dissociation.
  • amines that generate ammonium ions include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, N, N-diisopropylethylamine, tetramethylethylenediamine, hexamethylenediamine, spermidine, spermin, amantazine, and aniline.
  • amines that generate ammonium ions include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, N, N-diisopropylethylamine, tetramethylethylenediamine, hexamethylenediamine, spermidine, spermin, amantazine, and aniline.
  • examples thereof include phenethylamine, toluidine, pyrrolidine, piperidine, piperazine, morpholine, imidazole, pyridine,
  • the quaternary ammonium ion may be an amidine ion.
  • Examples of the amidine that produces ammonium ions include acetamidine, 1-amidinepyrazole, benzamidine, and pyridine-3-carboxymidamide.
  • Amidine may have a substituent (such as the electron-attracting or electron-donating substituents exemplified above).
  • Amidine ions also include imidazolium (that is, imidazolium ions).
  • the imidazolium may be a cation having a 1,3-diazole ring.
  • the imidazolium may have a substituent (such as an electron-attracting or electron-donating substituent exemplified above).
  • Examples of the imidazolium include imidazolium and imidazolium having a substituent (alkyl group, aryl group, etc.) at at least one of the 1-position and the 3-position.
  • Examples of the imidazolium having a substituent at at least one of the 1-position and the 3-position include 1,3-dimethylimidazolium, 1,3-diisopropylimidazolium, 1,3-dibutylimidazolium, 1,2,3.
  • 4-Tetramethylimidazolium, 1-methyl-3-propylimidazolium, 1-ethyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-butyl-3-methylimidazolium, 1 -Benzyl-3-methylimidazolium can be mentioned.
  • an electrolytic capacitor that does not contain a conductive polymer for example, an aluminum electrolytic capacitor
  • amidine ions in the liquid component from the viewpoint of suppressing an increase in ESR.
  • the increase in pH can be suppressed to 3 or less. That is, when the pH before holding the liquid component at the temperature of 145 ° C. for 1000 hours is X and the pH after holding the liquid component at the temperature of 145 ° C. for 1000 hours is Y, the difference (YX) between Y and X is 3. It can be suppressed as follows. This means that the liquid component is highly stable and the pH is unlikely to rise even at high temperatures (that is, it is difficult to change from acidic to alkaline). It is considered that the above-mentioned ligand is difficult to decompose and does not easily increase the acid component such as carboxylic acid. Therefore, corrosion of the electrodes of the electrolytic capacitor is unlikely to occur. In addition, the above-mentioned ligand is also considered to have an action of stabilizing the carboxylic acid coexisting in the liquid component.
  • the change in pH can be measured by the following method. First, 30 mL of the liquid component is weighed in a glass container having a closed lid, and the pH (X) of the liquid component in the container at 25 ° C. is measured with a predetermined measuring device (HM-41X manufactured by Toa DKK). Next, the container containing the liquid component is sealed and held in an oven at 145 ° C. for 1000 hours. Then, the temperature of the liquid component in the container is returned to 25 ° C., and then the pH (Y) is measured again. The change in pH can be evaluated by obtaining the difference between the measured values Y and X.
  • HM-41X manufactured by Toa DKK
  • the liquid component may contain an appropriate amount of the first coordination compound (complex anion, etc.). Further, when the liquid component contains an acid component, it is preferable to suppress the amount of the carboxylic acid used. Carboxylic acids are prone to side reactions (eg, esterification reactions) with solvents contained in liquid components and moisture invading from the outside at high temperatures. When the acid component decreases as a side reaction, the pH tends to rise. From the above, the content of the carboxylic acid contained in the liquid component is preferably, for example, 5% by mass or less, and more preferably 1% by mass or less.
  • aromatic carboxylic acids are relatively stable.
  • an aromatic carboxylic acid having at least two carboxy groups and containing at least one aromatic ring is relatively stable to the esterification reaction.
  • the aromatic carboxylic acid preferably has one or two aromatic rings (such as a benzene ring of C6 and / or a naphthalene ring of C10) from the viewpoint of suppressing an increase in the viscosity of the liquid component.
  • aromatic carboxylic acid a more stable divalent to tetravalent carboxylic acid is preferable, and it is desirable that two or more carboxy groups are directly bonded to each other at the ortho position of the aromatic ring.
  • aromatic carboxylic acid phthalic acid, pyromellitic acid and the like can be used. Of these, phthalic acid is preferable, and o-phthalic acid is particularly preferable.
  • a second coordination compound (or condensate (complex anion, etc.)) of a carboxylic acid and an inorganic acid for example, boric acid, phosphoric acid, etc.
  • a coordination compound of carboxylic acid and boric acid is preferable.
  • borodisalicylic acid, borodiglycolic acid, borodishuic acid and the like can be used.
  • Such a second coordination compound has higher thermal stability than a carboxylic acid, but is easily decomposed at a high temperature of, for example, 150 ° C. or higher.
  • the amount of complex anions and cations (electrolyte salts) contained in the liquid component is preferably 0.1% by mass or more and 50% by mass or less, the stability of the liquid component at high temperature is greatly enhanced, and the heat resistance of the electrolytic capacitor is also remarkable. To improve.
  • the content of the electrolyte salt contained in the liquid component may be, for example, greater than 1% by mass and 30% by mass or less, and greater than 10% by mass 25. It may be mass% or less.
  • the molar ratio of the complex anion to the cation is, for example, 0.5 or more and 2 or less, 0.8 or more and 1.2 or less, and preferably 0.9 or more and 1.1 or less.
  • the stability of the liquid component at a high temperature is further enhanced, the stability of the complex anion and the dissociation degree of the acid component are further enhanced, and the conductivity of the liquid component can be further enhanced.
  • the ratio of complex anions to the electrolyte salt is preferably 15% by mass or more or 30% by mass or more, and more preferably 50% by mass or more or 60% by mass or more. In this case, the stability of the liquid component at high temperature can be further improved.
  • the ratio of the complex anion to the electrolyte salt is 90% by mass or less, preferably 85% by mass or less or 80% by mass or less, and more preferably 75% by mass or less or 70% by mass or less. In this case, the stability of the complex anion and the degree of dissociation of the acid component are further increased, and the conductivity of the liquid component can be further increased.
  • the amount of water contained in the liquid component may be 0.1% by mass or more and 30% by mass or less, or 0.5% by mass or more and 30% by mass or less.
  • the first coordination compound complex anion or the like
  • acid components such as carboxylic acid are unlikely to increase, and corrosion of the electrodes of the electrolytic capacitor is unlikely to occur.
  • the liquid component may further contain a solvent.
  • the type of solvent is not particularly limited, but it is desirable to use at least a polymer polyether solvent because it can improve the heat resistance of the electrolytic capacitor.
  • the weight average molecular weight (Mw) of the high molecular weight polyether solvent is, for example, 150 or more.
  • High molecular weight polyether solvents have high thermal stability and are unlikely to cause side reactions with ligands.
  • the polymer polyether solvent include polyalkylene glycols such as polyethylene glycol and polypropylene glycol, polyglycerin, and polyethers (for example, ethers obtained by alkylating the ends of polyalkylene glycol and polyglycerin).
  • the weight average molecular weight (Mw) of polyethylene glycol may be, for example, 190 to 400, or 200 to 300.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent value measured by gel permeation chromatography (GPC). GPC is usually measured using a polystyrene gel column and water / methanol (volume ratio 8/2) as a mobile phase.
  • the content of the polymer polyether solvent contained in the liquid component may be, for example, 0.5% by mass or more, 1% by mass or more, and preferably 20% by mass or more.
  • the content of the high molecular weight polyether solvent may be 90% by mass or less.
  • Solvents other than the high molecular weight polyether solvent may contain low molecular weight glycol compounds such as ethylene glycol, diethylene glycol, triethylene glycol and propylene glycol, and glycerin and the like. It is considered that the low molecular weight glycol compound or glycerin can enhance the orientation of the conductive polymer, improve the conductivity, and reduce the ESR. Among them, ethylene glycol is preferable because it has a relatively low viscosity, high thermal conductivity, and excellent heat dissipation.
  • the content of ethylene glycol contained in the liquid component may be, for example, 3.0% by mass or more, preferably 10% by mass or more.
  • the content of ethylene glycol may be 90% by mass or less.
  • the liquid component may further contain, for example, a sulfone compound, a lactone compound, a carbonate compound, etc. as a solvent.
  • a sulfone compound sulfolane, dimethyl sulfoxide, diethyl sulfoxide and the like can be used.
  • lactone compound ⁇ -butyrolactone, ⁇ -valerolactone and the like can be used.
  • carbonate compound dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), fluoroethylene carbonate (FEC) and the like can be used.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • FEC fluoroethylene carbonate
  • the solvent one type may be used alone, or two or more types may be used in combination
  • the conductive polymer arranged between the anode and the cathode is synthesized by applying a solution containing a monomer, a dopant, an oxidizing agent, etc. to the dielectric layer and chemically polymerizing or electrolytically polymerizing it on the spot. You may. Further, a conductive polymer synthesized in advance may be applied to the dielectric layer. In this case, for example, the dielectric layer may be impregnated with a liquid polymer dispersion containing a conductive polymer and a polymer dopant to form a film of the conductive polymer covering at least a part of the dielectric layer. ..
  • polypyrrole, polythiophene, polyaniline and the like are preferable. These may be used alone, in combination of two or more, or in a copolymer of two or more monomers.
  • polypyrrole, polythiophene, polyaniline and the like mean a polymer having polypyrrole, polythiophene, polyaniline and the like as a basic skeleton, respectively. Therefore, polypyrrole, polythiophene, polyaniline and the like may also contain their respective derivatives.
  • polythiophene includes poly (3,4-ethylenedioxythiophene) (PEDOT) and the like.
  • the weight average molecular weight of the conductive polymer is not particularly limited, but is, for example, 1000 to 100,000.
  • the liquid component contains the first coordination compound (complex anion or the like) to suppress the dedoping of the polymer dopant, so that the deterioration of the conductive polymer or the deterioration of the conductivity is suppressed.
  • polymer dopant examples include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly (2-acrylamide-2-methylpropanesulfonic acid), and poly.
  • Anions such as isoprene sulfonic acid and polyacrylic acid can be mentioned. These may be used alone or in combination of two or more. Further, these may be homopolymers or copolymers of two or more kinds of monomers. Of these, polystyrene sulfonic acid (PSS) is preferable.
  • the weight average molecular weight of the polymer dopant is not particularly limited, but is preferably 1000 to 1000000 in that a homogeneous solid electrolyte layer can be easily formed.
  • FIG. 1 is a schematic cross-sectional view of the electrolytic capacitor according to the present embodiment
  • FIG. 2 is a schematic view of a part of the capacitor element related to the electrolytic capacitor.
  • the electrolytic capacitor shown in FIG. 1 includes a capacitor element 10, a bottomed case 11 that houses the capacitor element 10, a sealing member 12 that closes the opening of the bottomed case 11, and a seat plate 13 that covers the sealing member 12. It includes lead wires 14A and 14B derived from the sealing member 12 and penetrating the seat plate 13, lead tabs 15A and 15B connecting the lead wire and the electrode of the capacitor element 10, and a liquid component (not shown).
  • the open end of the bottomed case 11 is curled so as to be crimped to the sealing member 12.
  • the capacitor element 10 is manufactured from a wound body as shown in FIG.
  • the wound body is a semi-finished product of the capacitor element 10, and means that a conductive polymer is not arranged between the anode body 21 having a dielectric layer on the surface and the cathode body 22.
  • the winding body is formed by winding an anode body 21 connected to the lead tab 15A and a cathode body 22 connected to the lead tab 15B via a separator 23.
  • the outermost circumference of the winding body is fixed by the winding stop tape 24. Note that FIG. 2 shows a partially unfolded state before fixing the outermost circumference of the wound body.
  • the anode body 21 includes a metal foil whose surface is roughened, and a dielectric layer is formed on the roughened surface.
  • the capacitor element 10 is formed by adhering a conductive polymer to at least a part of the surface of the dielectric layer.
  • the capacitor element 10 is housed in an outer case together with a liquid component (not shown).
  • Step of preparing an anode body 21 and a cathode body 22 having a dielectric layer A metal foil formed of a valve acting metal is used as a raw material for the anode body 21 and the cathode body 22.
  • the surface of the metal foil is roughened by etching or the like, and a plurality of irregularities are formed on the surface of the metal foil.
  • a dielectric layer is formed on the surface of the roughened metal foil by chemical conversion treatment or the like. If necessary, the surface of the cathode body 22 may be roughened.
  • the anode body 21 and the cathode body 22 are wound around the separator 23 to prepare a wound body.
  • a non-woven fabric containing synthetic cellulose or the like as a main component can be used as the separator 23 .
  • the winding stop tape 24 is arranged on the outer surface of the cathode body 22 located on the outermost layer of the winding body, and the end portion of the cathode body 22 is fixed. If necessary, the wound body is further subjected to chemical conversion treatment.
  • Step of Forming Capacitor Element 10 the dielectric layer is impregnated with a liquid polymer dispersion to form a conductive polymer film covering at least a part of the dielectric layer.
  • the capacitor element 10 in which the conductive polymer is arranged between the anode body 21 and the cathode body 22 is obtained.
  • the step of applying the polymer dispersion to the surface of the dielectric layer may be repeated twice or more.
  • the capacitor element 10 may be impregnated with a liquid component.
  • an electrolytic capacitor having a conductive polymer and a liquid component can be obtained.
  • the winding type electrolytic capacitor has been described, but the scope of application of the present invention is not limited to the above, and other electrolytic capacitors, for example, chip type electrolysis using a metal sintered body as an anode body. It can also be applied to capacitors and laminated electrolytic capacitors that use a metal plate as an anode.
  • Example The present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to Examples.
  • Liquid components LA1 to LA11 (Examples) and LB1 to LB4 (Comparative Examples) were prepared by mixing the components shown in Table 1.
  • An aluminum foil having a thickness of 100 ⁇ m was etched to roughen the surface of the aluminum foil. Then, a dielectric layer was formed on the surface of the aluminum foil by chemical conversion treatment. The chemical conversion treatment was carried out by immersing an aluminum foil in an ammonium adipate solution and applying a voltage of 180 V to the aluminum foil. Then, the aluminum foil was cut to prepare an anode body.
  • the anode lead tab and the cathode lead tab were connected to the anode body and the cathode body, and the anode body and the cathode body were wound through the separator while involving the lead tab.
  • An anode lead wire and a cathode lead wire were connected to the end of each lead tab protruding from the winding body.
  • the produced wound body was subjected to chemical conversion treatment again to form a dielectric layer at the cut end of the anode body.
  • the end of the outer surface of the winding body was fixed with a winding stop tape to prepare a winding body.
  • Liquid components LA1, LA2, LA12 to LA15 (Examples) and LB1 to LB4 (Comparative Examples) were prepared by mixing the components shown in Table 3.
  • Electrolytic capacitors CA7 to CA10 and CB5 to CB8 Electrolytic capacitors were prepared and subjected to aging treatment in the same manner as the electrolytic capacitors CA1 to CA4 and CB1 to CB4, except that the polymer dispersion was not prepared and the solid electrolyte was not formed. Evaluation 2 was performed using the obtained electrolytic capacitor. The evaluation results are shown in Table 5. Table 5 also shows the change in pH (YX) of each liquid component.
  • the liquid component of the present disclosure is useful in an aluminum electrolytic capacitor and an electrolytic capacitor having a conductive polymer and a liquid component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

電解コンデンサ用液状成分は、ホウ素、アルミニウムおよびケイ素からなる群より選択される少なくとも一種の中心原子と、中心原子に結合する複数の配位原子を有する配位子と、を含む。前記配位原子は、酸素および窒素からなる群より選択される少なくとも一種であり、かつオキソ基を有さない炭素原子に結合している。

Description

電解コンデンサ用液状成分および電解コンデンサ
 本開示は、電解コンデンサ用液状成分およびそれを備える電解コンデンサに関する。
 電解液などの液状成分を備える電解コンデンサにおいて、液状成分は、事実上の陰極材料として機能し得る。液状成分の組成について様々な検討が行われている。
 例えば、特許文献1には、フタル酸やボロジサリチル酸とアミン化合物との塩を含む電解液を電解コンデンサに用いることが記載されている。また、特許文献2は、導電性高分子と導電性補助液とを含む電解コンデンサを教示している。導電性補助液には沸点150℃以上の有機溶媒と、ヒドロキシ基を少なくとも1つ有する芳香族化合物とが含まれている。
特開平11-67604号公報 国際公開第2013/94462号パンフレット
 近年、電解コンデンサの許容リプル電流を高めることが望まれている。リプル電流が大きくなると、電解コンデンサの発熱が大きくなり、電解コンデンサの温度が上昇する傾向がある。特許文献1に記載のフタル酸やボロジサリチル酸の塩は、熱安定性が低いため、このような塩を含む電解液を用いると、電解コンデンサの性能が低下することがある。また、特許文献2の導電性補助液は、電解コンデンサの温度が上昇すると、pHが上昇する傾向がある。pHが上昇すると、導電性高分子が劣化し、電解コンデンサの性能が低下する。
 上記に鑑み、本開示の一側面は、ホウ素、アルミニウムおよびケイ素からなる群より選択される少なくとも一種の中心原子と、前記中心原子に結合する複数の配位原子を有する配位子と、を含み、前記配位原子は、酸素および窒素からなる群より選択される少なくとも一種であり、かつオキソ基を有さない炭素原子に結合している、電解コンデンサ用液状成分に関する。
 本開示の別の側面は、表面に誘電体層が形成された陽極体と、陰極体と、前記陽極体と前記陰極体との間に配された導電性高分子および上記の液状成分と、を備える、電解コンデンサに関する。
 本開示のさらに別の側面は、表面に誘電体層が形成された陽極体と、陰極体と、前記陽極体と前記陰極体との間に配された上記の液状成分と、を備える、電解コンデンサに関する。
 本開示の上記側面によれば、耐熱性に優れた電解コンデンサおよび電解コンデンサ用液状成分を提供することができる。
本開示の一実施形態に係る電解コンデンサの断面模式図である。 同実施形態に係るコンデンサ素子の構成を説明するための概略図である。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 本開示に係る電解コンデンサは、表面に誘電体層が形成された陽極体と、陰極体と、陽極体と陰極体との間に配された液状成分とを備える。
 液状成分は、ホウ素、アルミニウムおよびケイ素からなる群より選択される少なくとも一種の中心原子と、中心原子に結合する複数の配位原子を有する配位子とを含む。言い換えれば配位子は、中心原子に結合する複数の配位原子を有する。
 配位原子は、酸素原子および窒素原子からなる群より選択される少なくとも一種であり、かつオキソ基(=O)を有さない炭素原子に結合している。配位原子が酸素原子である場合、その酸素原子はカルボキシ基もしくはカルボキシアニオンを形成しない酸素原子である。
 より具体的には、配位原子である酸素原子は、アルコール性もしくはフェノール性の水酸基もしくはアルコキシ酸素や、オキシ基であり得る。中でも、中心原子との結合が安定であることから、アルコール性もしくはフェノール性のアルコキシ酸素が中心原子に結合していることが好ましい。
 一方、配位原子が窒素原子である場合、その窒素原子は、アミノ基、アミド基、イミド基、イミドアニオンなどを形成する窒素原子である。
 中心金属と配位子とで配位化合物が構成される。配位化合物には、錯体および錯塩などが含まれる。配位子は、特に限定されないが、中心原子とともに錯アニオンを形成していてもよい。つまり、配位化合物は、錯アニオンであってもよい。配位化合物は、複数の配位原子を有する有機分子(換言すると、配位性の有機化合物)が中心金属に配位することで配位化合物(第1配位化合物)が形成される。つまり、第1配位化合物は、このような有機分子(配位性の有機化合物)に由来する配位子を有する。配位子は、配位原子に結合していた水素原子、水酸基、アミノ基またはイミノ基が有機分子から脱離した構造を取り得る。
 配位子は、電子求引性を有する置換基を含むことが望ましい。このような置換基は、配位子の配位原子の電子を安定化させやすいため、加水分解時の生成物がコンデンサの電極を腐食させにくい。ここで、電子求引性の置換基として、ニトロ基、カルボキシ基、エステル基、ハロゲン原子(フッ素原子、塩素原子等)、アシル基、トシル基、ケト基、シアノ基、メチルスルホニル基などが挙げられる。
 一方、配位子は、電子供与性を有する置換基を含んでもよい。このような置換基は、中心原子上の空軌道に電子が流れ込み安定化させやすいため、特に加水時や高湿環境における液状成分の安定性に寄与する。ここで、電子供与性の置換基として、アミノ基、アルキル基、アリール基(フェニル基など)、アルコキシ基などが挙げられる。
 配位子は、例えば、芳香環と、少なくとも第1ヒドロキシ基および第2ヒドロキシ基を含む基とを有するポリオールに由来してもよい。つまり、上記の有機分子(配位性の有機化合物)がポリオールであってもよい。ポリオールに由来する配位子とは、前記ポリオールから水素原子及び/若しくは水酸基を除いた残基、並びに/又は、前記ポリオールを意味する。第1ヒドロキシ基は、芳香環に結合していてもよい。第2ヒドロキシ基を含む基は、芳香環の第1ヒドロキシ基に対してオルト位に結合していてもよい。第2ヒドロキシ基を含む基は、第2ヒドロキシ基であってもよく、第2ヒドロキシ基を有するアルキル基であってもよい。第2ヒドロキシ基を有するアルキル基としては、例えば、炭素数1~4のアルキル基が挙げられる。第2ヒドロキシ基を有するアルキル基としては、例えば、メチロール基、エチロール基、プロピロール基、またはブチロール基が挙げられる。錯アニオンの安定性の観点でメチロール基が好ましい。
 更に好ましくは、有機分子は、下記一般式(1)、(2)、(3)、(4)、(5)又は(6)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
[R、R、R、R、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、炭素数1~10のアルコキシ基、カルボキシ基、エステル結合を有する炭素数2~10の基、置換基を有していてもよい炭素数1~24の飽和脂肪族炭化水素基、置換基を有していてもよい炭素数2~24の不飽和脂肪族炭化水素基、又は置換基を有していてもよい炭素数6~14の芳香族炭化水素基を示す。]
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子などが挙げられる。
 炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、n-又はiso-プロポキシ基、n-、sec-、iso-又はtert-ブトキシ基、n-ペントキシ基、n-ヘキソキシ基、オクトキシ基、デコキシ基及びフェノキシ基などが挙げられる。
 エステル結合を有する炭素数2~10の基としては、炭素数2~10のアルコキシカルボニル基が挙げられる。アルコキシカルボニル基としては、カルボキシ基の水素原子をメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ペンチル基、オクチル基若しくはノニル基に置換した基などが挙げられる。
 置換基を有していてもよい炭素数1~24の飽和脂肪族炭化水素基としては、例えば、炭素数1~24のアルキル基、炭素数3~24のシクロアルキル基が挙げられる。アルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチルブチル基、3-メチルブチル基、2-エチルプロピル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1-エチルブチル基、2-エチルブチル基、1-プロピルプロピル基、2-プロピルプロピル基、1-iso-プロピルプロピル基、2-iso-プロピルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、2,2-ジメチルプロピル基、1-プロピルブチル基、2-プロピルブチル基、1-iso-プロピルブチル基、2-iso-プロピルブチル基、n-オクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、6-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、1-iso-プロピルペンチル基、2-iso-プロピルペンチル基、3-プロピルペンチル基、3-iso-プロピルペンチル基、1-ブチルブチル基、2-ブチルブチル基、1-iso-ブチルブチル基、2-iso-ブチルブチル基、1-tert-ブチルブチル基、2-tert-ブチルブチル基、1,1,3,3-テトラメチルブチル基、ノニル基及びデシル基などが挙げられる。アルキル基の炭素数は、1~20、1~16、または1~12などであってもよい。シクロアルキル基としては、シクロペンチル基、シクロヘキシル基、シクロペンチル基、シクロオクチル基などが挙げられる。シクロアルキル基の炭素数は、5~10、または5~8であってもよい。
 置換基を有していてもよい炭素数2~24の不飽和脂肪族炭化水素基としては、例えば、アルケニル基が挙げられる。アルケニル基としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基、デセニル基、イソプロペニル基などが挙げられる。不飽和脂肪族炭化水素基の炭素数は、2~18であってもよい。
 炭素数1~24の飽和脂肪族炭化水素基または炭素数2~24の不飽和脂肪族炭化水素基が有していてもよい置換基としては、例えば、ヒドロキシ基、アルコキシ基(炭素数1~4のアルコキシ基など)、カルボキシ基、ニトロ基、ハロゲン原子、シアノ基、アミノ基などが挙げられる。
 置換基を有していてもよい炭素数6~14の芳香族炭化水素基としては、アリール基、アリールアルキル基(またはアラルキル基)などが挙げられる。アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基などが挙げられる。アリール基は、炭素数6~10の芳香族炭化水素環を有するものであってもよい。アリールアルキル基としては、例えば、炭素数6~10のアリール基を有する炭素数1~4のアルキル基が挙げられる。アリールアルキル基としては、例えば、ベンジル基、フェネチル基が挙げられる。置換基としては、例えば、アルキル基(炭素数1~6のアルキル基など)、ヒドロキシ基、アルコキシ基(炭素数1~4のアルコキシ基など)、カルボキシ基、ニトロ基、ハロゲン原子、シアノ基、アミノ基などが挙げられる。
 より具体的には、芳香環に結合した第2ヒドロキシ基を有するポリオールとしては、カテコール、ピロガロール、没食子酸、没食子酸エステル(没食子酸アルキル(炭素数1~4のアルキルとのエステルなど)など)、ヘキサヒドロキシベンゼン、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、4,4’-(2,3-ジメチルテトラメチレン)ジピロカテコール,2,3,4,4’-テトラヒドロキシジフェニルメタンなどが挙げられる。これらのポリオールの芳香環には、置換基が結合していてもよい。
 第1ヒドロキシ基と第2ヒドロキシ基を有するアルキル基(メチロール基など)とを有するポリオールとしては、典型的には、サリチルアルコール、2,5-ジヒドロキシベンジルアルコール、2,6-ビス(ヒドロキシメチル)-p-クレゾールなどが挙げられる。これらのポリオールの芳香環には、置換基が結合していてもよい。
 ポリオールの芳香環が有していてもよい置換基としては、例えば、R~Rについて記載した基または原子(ただし、水素原子は除く)が挙げられる。
 1つの中心原子あたりに配位するポリオールの分子数は、1分子であってもよく、2分子以上であってもよい。錯アニオンの安定性の観点から、2つの中心原子あたり2分子以上(例えば、2分子または3分子)のポリオールが配位するようなポリオールを選択してもよい。なお、これらの分子数は、1つの中心原子あたりに配位する配位子の数に相当する。
 中心原子がホウ素またはアルミニウムである場合、例えば、四配位の錯アニオンが形成され得る。典型的には、ホウ素原子またはアルミニウム原子に2分子のジオールが脱水して配位した錯アニオン(典型的には、ボロジカテコールなど)が挙げられる。また、中心原子がケイ素である場合、例えば、五配位または六配位の錯アニオンが形成され得る。典型的には、ケイ素原子に3分子のジオールが脱水して配位した錯アニオンが挙げられる。
 電解コンデンサは、更に、電解コンデンサのESRを低減する観点で、陽極体と陰極体との間に配された導電性高分子を有することが好ましい。導電性高分子は、例えばπ共役系の導電性高分子であり、通常は導電性を向上させるためにドーパントがドープされている。液状成分が、第1配位化合物(錯アニオンなど)を含むことで、ドーパントの脱ドープが抑制されるため、導電性高分子の劣化もしくは導電性の低下が抑制されると考えられる。
 液状成分のpHは6以下であることが好ましく、4以下であることがより好ましく、3.8以下もしくは3.6以下であることが更に好ましい。液状成分のpHを4以下とすることで導電性高分子の劣化が更に顕著に抑制される。
 第1配位化合物(錯アニオンなど)は、酸性を呈するため、pHを上記範囲に制御するのに寄与し得る。ただし、液状成分は、さらに、酸成分を含んでもよい。
 液状成分中に含まれる錯アニオンの濃度は、例えば、0.1質量%を超えてもよく、1.0質量%以上であってもよい。このように錯アニオンを含むことで、液状成分の高温での安定性が大きく高められ、電解コンデンサの耐熱性も顕著に向上する。ただし、液状成分の粘度を好適に維持する観点から、液状成分中に含まれる錯アニオンの含有量は、例えば、30質量%以下であってもよく、20質量%以下であってもよい。
 ここで、錯アニオンの濃度とは、液状成分に含まれる中心原子と上記構造を有する複数の配位原子を有する配位子とが形成し得る錯アニオンの最大量と定義する。ここでは、実際に錯アニオンを形成しているか否かに関わらず、中心原子と配位子とが全て錯イオンを形成していると仮定して最大量を算出する。ただし、中心原子の当量と配位子の当量とが異なる場合には、上記最大量は、当然に、少ない方の当量で算出すればよい。
 錯アニオンの定量および定性分析は、例えば、以下の方法で行うことができる。
<定性分析>
 まず、液状成分30mLを、密閉蓋を有するガラス製容器に秤量し、容器内の液状成分の赤外線吸収スペクトル(IR)を所定の測定装置(IRSprit[島津製作所(株)製])で測定する。次に、液状成分を収容した容器を密閉して、高温環境下で一定時間保持する。その後、容器内の液状成分を放冷したあと再度IRを測定する。中心原子-配位原子間の結合の伸縮振動スペクトルの変化で錯アニオンの安定性を評価できる。スペクトル変化が小さい方が錯アニオンの安定性が高いと言える。
<定量分析>
 まず、液状成分30mLを、密閉蓋を有するガラス製容器に秤量し、容器内の液状成分の核磁気共鳴スペクトル(NMR)を所定の測定装置(AVANCE III HD[BRUKER 製])で測定し、ピーク強度から初期の錯アニオンの生成比(G0)を求める。次に、液状成分を収容した容器を密閉して、高温環境下で一定時間保持する。その後、容器内の液状成分を放冷したあと再度NMRを測定し、錯アニオンと未反応の有機分子との生成比(G1)を求める。以下の式を用いて錯アニオンの分解率を求め、錯アニオンの安定性を評価できる。分解率が小さい方が錯アニオンの安定性が高いと言える。
錯アニオンの生成比G1(%)=(錯アニオンのピーク強度)/(錯アニオンのピーク強度+未反応の有機分子のピーク強度)×100
錯アニオンの分解率(%)=初期の錯アニオンの生成比G0(%)-錯アニオンの生成比G1(%)
 液状成分は、さらに、窒素原子を含むカチオンおよびリン原子を含むカチオンからなる群より選択される少なくとも一種を含んでもよい。これらのカチオンは、例えば、錯アニオンの安定性を高めるとともに、酸成分の解離度を高め、液状成分の導電率を高める役割を有すると考えられる。窒素原子を含むカチオンは、様々な構造のアンモニウムイオンであってもよく、リン原子を含むカチオンはホスホニウムイオンであってもよい。すなわち、窒素原子を含むカチオンおよびリン原子を含むカチオンからなる群より選択される少なくとも一種は、オニウムカチオンであればよい。液状成分に含まれるオニウムカチオンの含有量は、例えば、0.1質量%以上であればよく、30質量%以下であってもよい。
 窒素原子を含むカチオンとしては、第2級アンモニウムイオン、第3級アンモニウムイオンおよび第4級アンモニウムイオンからなる群より選択される少なくとも一種が挙げられる。アンモニウムイオンを生成するアミンとしては、脂肪族アミン、芳香族アミン、複素環式アミンなどを用いることができる。中でも分子量72~102の脂肪族アミンは、解離度が高い点で好ましい。
 アンモニウムイオンを生成するアミンとしては、例えば、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、N,N-ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、ヘキサメチレンジアミン、スペルミジン、スペルミン、アマンタジン、アニリン、フェネチルアミン、トルイジン、ピロリジン、ピペリジン、ピペラジン、モルホリン、イミダゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、4-ジメチルアミノピリジンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 第4級アンモニウムイオンは、アミジンのイオンであってもよい。アンモニウムイオンを生成するアミジンとしては、例えば、アセトアミジン、1-アミジノピラゾール、ベンズアミジン、ピリジン-3-カルボキシミドアミドが挙げられる。アミジンは、置換基(上記で例示した電子求引性または電子供与性の置換基など)を有していてもよい。
 アミジンのイオンには、イミダゾリウム(つまり、イミダゾリウムイオン)も含まれる。イミダゾリウムとしては、1,3-ジアゾール環を有するカチオンであればよい。イミダゾリウムは、置換基(上記で例示した電子求引性または電子供与性の置換基など)を有していてもよい。イミダゾリウムとしては、イミダゾリウム、1位および3位の少なくとも一方に置換基(アルキル基、アリール基など)を有するイミダゾリウムなどが挙げられる。1位および3位の少なくとも一方に置換基を有するイミダゾリウムとしては、例えば、1,3-ジメチルイミダゾリウム、1,3-ジイソプロピルイミダゾリウム、1,3-ジブチルイミダゾリウム、1,2,3,4-テトラメチルイミダゾリウム、1-メチル-3-プロピルイミダゾリウム、1-エチル-3-メチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ベンジル-3-メチルイミダゾリウムが挙げられる。
 導電性高分子を含まない電解コンデンサ(例えばアルミニウム電解コンデンサ)においては、液状成分にアミジンのイオンを含ませることが、ESRの増加抑制の点で好ましい。
 上記液状成分を145℃の温度に1000時間保持したとき、pHの増加は3以下に抑制し得る。すなわち、液状成分を145℃の温度に1000時間保持する前のpHをX、145℃の温度に1000時間保持後のpHをYとするとき、YとXとの差(Y-X)は3以下に抑制され得る。これは、液状成分の安定性が高く、高温下でもpHの上昇が生じにくい(つまり酸性からアルカリ性に変化しにくい)ことを意味する。上記の配位子は、分解しにくく、カルボン酸のような酸成分を増加させにくいものと考えられる。よって、電解コンデンサの電極の腐食なども生じにくい。また、上記の配位子は、液状成分中に共存するカルボン酸を安定化させる作用も有すると考えられる。
 pHの変化は、具体的には、以下の方法で測定することができる。
 まず、液状成分30mLを、密閉蓋を有するガラス製容器に秤量し、容器内の液状成分の25℃におけるpH(X)を所定の測定装置(東亜ディーケーケー製のHM-41X)で測定する。次に、液状成分を収容した容器を密閉して、145℃のオーブンで1000時間保持する。その後、容器内の液状成分の温度を25℃に戻してから再度pH(Y)を測定する。測定値YとXとの差を求めることでpHの変化を評価できる。
 pHの変化(Y-X)を3以下に抑制するためには、液状成分に、第1配位化合物(錯アニオンなど)を適量含ませればよい。また、液状成分に酸成分を含ませる場合、カルボン酸の使用量を抑制することが好ましい。カルボン酸は、高温下では、液状成分に含まれる溶媒や、外部から侵入する水分と副反応(例えばエステル化反応)しやすい。副反応で酸成分が減少すると、pHが上昇する傾向がある。以上より、液状成分に含まれるカルボン酸の含有量は、例えば5質量%以下とすることが望ましく、1質量%以下とすることがより好ましい。
 カルボン酸の中では、芳香族カルボン酸が比較的安定である。中でもカルボキシ基を少なくとも2つ有し、かつ少なくとも1つの芳香環を含む芳香族カルボン酸は、エステル化反応に対して比較的安定である。芳香族カルボン酸は、液状成分の粘度上昇を抑制する観点から、芳香環(C6のベンゼン環および/またはC10のナフタレン環など)を1個または2個有することが望ましい。
 芳香族カルボン酸としては、より安定性の高い2価~4価のカルボン酸が好ましく、2以上のカルボキシ基は互いに芳香環のオルト位に直接結合していることが望ましい。具体的には、芳香族カルボン酸として、フタル酸、ピロメリット酸などを用い得る。中でもフタル酸が好ましく、o-フタル酸が特に好ましい。
 カルボン酸と無機酸(例えばホウ酸、リン酸等)との第2配位化合物(または縮合物(錯アニオンなど))を用いてもよい。第2配位化合物としては、例えばカルボン酸とホウ酸との配位化合物が好ましい。第2配位化合物としては、具体的には、ボロジサリチル酸、ボロジグリコール酸、ボロジシュウ酸などを用い得る。このような第2配位化合物は、カルボン酸よりも高い熱安定性を有するが、例えば150℃以上の高温では分解しやすい。
 液状成分に含まれる、錯アニオンおよびカチオン(電解質塩)の量は、0.1質量%以上50質量%以下が好ましく、液状成分の高温における安定性が大きく高められ、電解コンデンサの耐熱性も顕著に向上する。ただし、液状成分の粘度を好適に維持する観点から、液状成分中に含まれる電解質塩の含有量は、例えば、1質量%より大きく30質量%以下であってもよく、10質量%より大きく25質量%以下であってもよい。
 錯アニオンのカチオンに対するモル比(=錯アニオン/カチオン)は、例えば、0.5以上2以下または0.8以上1.2以下であり、0.9以上1.1以下であることが好ましい。この場合、液状成分の高温での安定性がさらに高まるとともに、錯アニオンの安定性および酸成分の解離度がさらに高まり、液状成分の導電率をさらに高めることができる。
 電解質塩に占める錯アニオンの比率は、15質量%以上または30質量%以上が好ましく、50質量%以上または60質量%以上がより好ましい。この場合、液状成分の高温での安定性をさらに高めることができる。電解質塩に占める錯アニオンの比率は、90質量%以下であり、85質量%以下または80質量%以下であることが好ましく、75質量%以下または70質量%以下であることがより好ましい。この場合、錯アニオンの安定性および酸成分の解離度がさらに高まり、液状成分の導電率をさらに高めることができる。これらの下限値と上限値とは任意に組み合わせることができる。
 液状成分中に含まれる水分の量は、0.1質量%以上30質量%以下であってもよく、0.5質量%以上30質量%以下であってもよい。このように、比較的多くの水分が含まれる場合でも、第1配位化合物(錯アニオンなど)は加水分解しにくいため、液状成分のpHは安定に維持され得る。また、カルボン酸のような酸成分も増加しにくく、電解コンデンサの電極の腐食なども生じにくい。
 液状成分は、さらに溶媒を含んでもよい。溶媒の種類は特に限定されないが、電解コンデンサの耐熱性を向上させ得る点で、少なくとも高分子ポリエーテル系溶媒を用いることが望ましい。ここで、高分子ポリエーテル系溶媒の重量平均分子量(Mw)は、例えば、150以上である。高分子ポリエーテル系溶媒は、熱安定性が高く、配位子との副反応を生じにくい。高分子ポリエーテル系溶媒としては、ポリエチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール、ポリグリセリン、ポリエーテル(例えば、ポリアルキレングリコールやポリグリセリンの末端をアルキル化したエーテル)などが挙げられる。高分子ポリエーテル系溶媒は、粘度ができるだけ低いことが望ましいため、剛直な構造を有する芳香環を含まないことが望ましい。ポリエチレングリコールの重量平均分子量(Mw)は、例えば190~400であってもよく、200~300であってもよい。
 なお、本明細書中、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算の値である。なお、GPCは、通常は、ポリスチレンゲルカラムと、移動相としての水/メタノール(体積比8/2)とを用いて測定される。
 液状成分に含まれる高分子ポリエーテル系溶媒の含有量は、例えば0.5質量%以上でもよく、1質量%以上でもよく、20質量%以上が好ましい。高分子ポリエーテル系溶媒の含有量は、90質量%以下であってもよい。
 高分子ポリエーテル系溶媒以外の溶媒としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコールなどの低分子グリコール化合物や、グリセリンなどを含んでもよい。低分子グリコール化合物もしくはグリセリンには、導電性高分子の配向性を高め、導電性を向上させ、ESRを低減し得ると考えられる。中でもエチレングリコールは、比較的低粘度であり、熱伝導性が高く、放熱性にも優れている点で好ましい。
 液状成分に含まれるエチレングリコールの含有量は、例えば3.0質量%以上であればよく、10質量%以上が好ましい。エチレングリコールの含有量は、90質量%以下であってもよい。
 液状成分は、溶媒として、さらに、例えば、スルホン化合物、ラクトン化合物、カーボネート化合物などを含み得る。スルホン化合物としては、スルホラン、ジメチルスルホキシド、ジエチルスルホキシドなどを用い得る。ラクトン化合物としては、γ-ブチロラクトン、γ-バレロラクトンなどを用い得る。カーボネート化合物としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、フルオロエチレンカーボネート(FEC)などを用い得る。溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。錯アニオンの合成上の観点からラクトン化合物が用いることが好ましい。
 陽極体と陰極体との間に配される導電性高分子は、モノマー、ドーパントおよび酸化剤などを含有する溶液を誘電体層に付与し、その場で化学重合もしくは電解重合させる方法で合成してもよい。また、予め合成された導電性高分子を誘電体層に付与してもよい。この場合、例えば、導電性高分子と高分子ドーパントとを含む液状の高分子分散体を誘電体層に含浸させ、誘電体層の少なくとも一部を覆う導電性高分子の膜を形成すればよい。
 導電性高分子としては、ポリピロール、ポリチオフェン、ポリアニリンなどが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよく、2種以上のモノマーの共重合体でもよい。なお、本明細書では、ポリピロール、ポリチオフェン、ポリアニリンなどは、それぞれ、ポリピロール、ポリチオフェン、ポリアニリンなどを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリアニリンなどには、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)などが含まれる。導電性高分子の重量平均分子量は、特に限定されないが、例えば1000~100000である。
 導電性高分子からの脱ドープを抑制する観点から、高分子ドーパント(高分子アニオンなど)を用いることが望ましい。液状成分が、第1配位化合物(錯アニオンなど)を含むことで、高分子ドーパントの脱ドープが抑制されるため、導電性高分子の劣化もしくは導電性の低下が抑制されると考えられる。高分子ドーパント(高分子アニオンなど)としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などのアニオンが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、これらは単独重合体であってもよく、2種以上のモノマーの共重合体であってもよい。中でもポリスチレンスルホン酸(PSS)が好ましい。高分子ドーパントの重量平均分子量は、特に限定されないが、均質な固体電解質層を形成しやすい点で、例えば1000~1000000であることが好ましい。
 以下、本発明を実施形態に基づいて、より具体的に説明する。ただし、以下の実施形態は本発明を限定するものではない。
 図1は、本実施形態に係る電解コンデンサの断面模式図であり、図2は、同電解コンデンサに係るコンデンサ素子の一部を展開した概略図である。
 図1に示す電解コンデンサは、コンデンサ素子10と、コンデンサ素子10を収容する有底ケース11と、有底ケース11の開口を塞ぐ封止部材12と、封止部材12を覆う座板13と、封止部材12から導出され、座板13を貫通するリード線14A、14Bと、リード線とコンデンサ素子10の電極とを接続するリードタブ15A、15Bと、液状成分(図示せず)とを備える。有底ケース11の開口端は封止部材12にかしめるようにカール加工されている。
 コンデンサ素子10は、図2に示すような巻回体から作製される。巻回体とは、コンデンサ素子10の半製品であり、表面に誘電体層を有する陽極体21と陰極体22との間に導電性高分子が配置されていないものをいう。巻回体は、リードタブ15Aと接続された陽極体21と、リードタブ15Bと接続された陰極体22とを、セパレータ23を介して巻回したものである。巻回体の最外周は巻止めテープ24により固定される。なお、図2は、巻回体の最外周を固定する前の一部が展開された状態を示している。
 陽極体21は表面が粗面化された金属箔を具備し、粗面化された表面には誘電体層が形成されている。誘電体層の表面の少なくとも一部に導電性高分子を付着させることにより、コンデンサ素子10が形成される。コンデンサ素子10は、図示しない液状成分とともに外装ケースに収容されている。
 以下、電解コンデンサの製造方法の一例について説明する。
(i)誘電体層を有する陽極体21および陰極体22を準備する工程
 陽極体21および陰極体22の原料には、弁作用金属で形成された金属箔が用いられる。陽極体21の場合、エッチング処理等により、金属箔の表面が粗面化され、金属箔の表面に複数の凹凸が形成される。次に、化成処理等により、粗面化された金属箔の表面に誘電体層が形成される。必要に応じて、陰極体22の表面を粗面化してもよい。
(ii)巻回体の作製
 陽極体21と陰極体22とをセパレータ23を介して巻回し、巻回体を作製する。セパレータ23には、合成セルロースなどを主成分とする不織布を用い得る。巻回体の最外層に位置する陰極体22の外側表面に巻止めテープ24を配置し、陰極体22の端部を固定する。必要に応じて、巻回体に対し、更に化成処理が行われる。
(iii)コンデンサ素子10を形成する工程
 例えば液状の高分子分散体を誘電体層に含浸させ、誘電体層の少なくとも一部を覆う導電性高分子の膜を形成する。これにより、陽極体21と陰極体22との間に導電性高分子が配置されたコンデンサ素子10が得られる。高分子分散体を誘電体層の表面に付与する工程は2回以上繰り返してもよい。その後、コンデンサ素子10に液状成分を含浸させればよい。これにより、導電性高分子と液状成分とを具備する電解コンデンサが得られる。
(iv)コンデンサ素子を封止する工程
 リード線14A、14Bが有底ケース11の開口側に位置するようにコンデンサ素子10を液状成分とともに有底ケース11に収納する。次に、各リード線が貫通する封止部材12で有底ケース11の開口を塞ぎ、開口端を封止部材12にかしめてカール加工し、カール部分に座板13を配置すれば、図1に示すような電解コンデンサが完成する。
 上記の実施形態では、巻回型の電解コンデンサについて説明したが、本発明の適用範囲は上記に限定されず、他の電解コンデンサ、例えば、陽極体として金属の焼結体を用いるチップ型の電解コンデンサや、金属板を陽極体として用いる積層型の電解コンデンサにも適用することができる。
[実施例]
 実施例および比較例に基づいて本発明をより詳細に説明するが、本発明は実施例に限定されない。
《液状成分の調製》
 表1に示す成分を混合することにより液状成分LA1~LA11(実施例)およびLB1~LB4(比較例)を調製した。
[評価1]
 表1の液状成分LA1~LA11およびLB1~LB4のそれぞれを用いて、加熱によるpH変化を測定した。より具体的には、液状成分30mL、密閉蓋を有するガラス製容器に秤量し、容器内の液状成分の25℃におけるpH(X)を東亜ディーケーケー製のHM-41Xで測定した。次に、液状成分を収容した容器を密閉して145℃のオーブンで1000時間保持し、その後、容器内の液状成分の温度を25℃に戻してから再度pH(Y)を測定した。測定値YとXとの差を求め、pHの変化を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
《電解コンデンサCA1~CA6およびCB1~CB6の作製》
 定格電圧100V、定格静電容量15μFの巻回型の電解コンデンサ(直径8.0mm×L(長さ)12.0mm)を作製した。以下に、電解コンデンサの具体的な製造方法について説明する。
(陽極体の準備)
 厚さ100μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔の表面に化成処理により誘電体層を形成した。化成処理は、アジピン酸アンモニウム溶液にアルミニウム箔を浸漬し、これに180Vの電圧を印加することにより行った。その後、アルミニウム箔を裁断して、陽極体を準備した。
(陰極体の準備)
 厚さ50μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔を裁断して、陰極体を準備した。
(巻回体の作製)
 陽極体および陰極体に陽極リードタブおよび陰極リードタブを接続し、陽極体と陰極体とをリードタブを巻き込みながらセパレータを介して巻回した。巻回体から突出する各リードタブの端部には、陽極リード線および陰極リード線をそれぞれ接続した。作製された巻回体に対して、再度化成処理を行い、陽極体の切断された端部に誘電体層を形成した。次に、巻回体の外側表面の端部を巻止めテープで固定して巻回体を作製した。
(高分子分散体の調製)
 3,4-エチレンジオキシチオフェンと、高分子ドーパントであるポリスチレンスルホン酸(PSS、重量平均分子量10万)とを、イオン交換水に溶かし、混合溶液を調製した。混合溶液を撹拌しながらイオン交換水に溶かした硫酸鉄(III)(酸化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析し、未反応モノマーおよび過剰な酸化剤を除去し、約5質量%のPSSがドープされたポリエチレンジオキシチオフェン(PEDOT/PSS)を含む高分子分散体を得た。
(固体電解質層の形成)
 減圧雰囲気(40kPa)中で、所定容器に収容された高分子分散体に巻回体を5分間浸漬し、その後、高分子分散体から巻回体を引き上げた。次に、高分子分散体を含浸した巻回体を、150℃の乾燥炉内で20分間乾燥させ、誘電体層の少なくとも一部を被覆する導電性高分子層からなる固体電解質層を形成した。
(液状成分の調製)
 表3に示す成分を混合することにより液状成分LA1、LA2、LA12~LA15(実施例)およびLB1~LB4(比較例)を調製した。
(電解コンデンサの組み立て)
 表3に示す液状成分中に、減圧雰囲気(40kPa)中で、固体電解質を形成した上記の巻回体を5分間浸漬した。これにより、液状成分を含浸させたコンデンサ素子を得た。得られたコンデンサ素子を、封止して、図1に示すような電解コンデンサを完成させた。その後、定格電圧を印加しながら、130℃で2時間エージング処理を行った。
[評価2]
(静電容量およびESRの測定)
 得られた電解コンデンサについて、静電容量および初期ESRを測定した。また、長期信頼性を評価するために、定格電圧を印加しながら145℃で2000時間保持し、ESRの増加率(ΔESR)を確認した。ΔESRは、初期値(Z)に対する145℃保持後のESR(Z)の比(Z/Z)で示した。
 評価結果を表4に示す。なお、表4には、各液状成分について、評価1と同様にして求めたpHの変化(Y-X)も合わせて示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
《電解コンデンサCA7~CA10およびCB5~CB8》
 高分子分散体の調製および固体電解質の形成を行わなかったこと以外は、電解コンデンサCA1~CA4およびCB1~CB4と同様にして電解コンデンサを作製し、エージング処理を行った。得られた電解コンデンサを用いて、評価2を行った。
 評価結果を表5に示す。なお、表5には、各液状成分のpHの変化(Y-X)も合わせて示す。
Figure JPOXMLDOC01-appb-T000007
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本開示の液状成分は、アルミニウム電解コンデンサや、導電性高分子と液状成分とを有する電解コンデンサにおいて有用である。
 10:コンデンサ素子、11:有底ケース、12:封止部材、13:座板、14A,14B:リード線、15A,15B:リードタブ、21:陽極体、22:陰極体、23:セパレータ、24:巻止めテープ
 

Claims (19)

  1.  ホウ素、アルミニウムおよびケイ素からなる群より選択される少なくとも一種の中心原子と、前記中心原子に結合する複数の配位原子を有する配位子とを含み、
     前記配位原子は、酸素および窒素からなる群より選択される少なくとも一種であり、かつオキソ基を有さない炭素原子に結合している、電解コンデンサ用液状成分。
  2.  145℃の温度に1000時間保持したときのpHの増加が3以下である、請求項1に記載の電解コンデンサ用液状成分。
  3.  前記中心原子と前記配位子とが、錯アニオンを形成している、請求項1または2に記載の電解コンデンサ用液状成分。
  4.  前記液状成分は、さらに、窒素原子を含むカチオンおよびリン原子を含むカチオンからなる群より選択される少なくとも一種を含む、請求項3に記載の電解コンデンサ用液状成分。
  5.  前記錯アニオンの前記カチオンに対するモル比(=錯アニオン/カチオン)は、0.9以上1.1以下である、請求項4に記載の電解コンデンサ用液状成分。
  6.  前記錯アニオンおよび前記カチオンを含む電解質塩に占める前記錯アニオンの比率は、15質量%以上90質量%以下である請求項4または5に記載の電解コンデンサ用液状成分。
  7.  前記カチオンは、第2級アンモニウムイオン、第3級アンモニウムイオンおよび第4級アンモニウムイオンからなる群より選択される少なくとも一種を含む、請求項4~6のいずれか1項に記載の電解コンデンサ用液状成分。
  8.  前記カチオンは、第4級アンモニウムイオンを含む、請求項4~7のいずれか1項に記載の電解コンデンサ用液状成分。
  9.  前記錯アニオンの含有量は、0.1質量%以上30質量%以下である、請求項3~8のいずれか1項に記載の電解コンデンサ用液状成分。
  10.  前記液状成分中に含まれる水分の量は、0.1~30質量%以下である、請求項1~9のいずれか1項に記載の電解コンデンサ用液状成分。
  11.  前記配位子は、芳香環と、少なくとも第1ヒドロキシ基および第2ヒドロキシ基とを有するポリオールに由来し、
     前記第1ヒドロキシ基は、前記芳香環に結合し、
     前記第2ヒドロキシ基を含む基は、前記第1ヒドロキシ基に対してオルト位に結合し、
     前記第2ヒドロキシ基を含む基は、前記第2ヒドロキシ基、または前記第2ヒドロキシ基を有する炭素数1~4のアルキル基である、請求項1~10のいずれか1項に記載の電解コンデンサ用液状成分。
  12.  1つの前記中心原子あたり2つまたは3つの前記配位子が配位している、請求項11に記載の電解コンデンサ用液状成分。
  13.  さらに高分子ポリエーテル系溶媒を含む、請求項1~12のいずれか1項に記載の電解コンデンサ用液状成分。
  14.  前記配位子は、電子求引性を有する置換基を含む、請求項1~13のいずれか1項に記載の電解コンデンサ用液状成分。
  15.  表面に誘電体層が形成された陽極体と、
     陰極体と、
     前記陽極体と前記陰極体との間に配された導電性高分子および請求項1~14のいずれか1項に記載の液状成分と、を備える、電解コンデンサ。
  16.  前記導電性高分子には、ドーパントがドープされている、請求項15に記載の電解コンデンサ。
  17.  前記ドーパントは、高分子アニオンを含む、請求項16に記載の電解コンデンサ。
  18.  表面に誘電体層が形成された陽極体と、
     陰極体と、
     前記陽極体と前記陰極体との間に配された請求項1~14のいずれか1項に記載の液状成分と、を備える、電解コンデンサ。
  19.  前記液状成分は、6以下のpHを有する、請求項15~18のいずれか1項に記載の電解コンデンサ。
PCT/JP2020/045670 2019-12-09 2020-12-08 電解コンデンサ用液状成分および電解コンデンサ WO2021117721A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021563970A JPWO2021117721A1 (ja) 2019-12-09 2020-12-08
CN202080084806.7A CN114830274A (zh) 2019-12-09 2020-12-08 电解电容器用液状成分及电解电容器
US17/783,125 US11978597B2 (en) 2019-12-09 2020-12-08 Liquid component for electrolytic capacitor and electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019222529 2019-12-09
JP2019-222529 2019-12-09

Publications (1)

Publication Number Publication Date
WO2021117721A1 true WO2021117721A1 (ja) 2021-06-17

Family

ID=76329850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045670 WO2021117721A1 (ja) 2019-12-09 2020-12-08 電解コンデンサ用液状成分および電解コンデンサ

Country Status (4)

Country Link
US (1) US11978597B2 (ja)
JP (1) JPWO2021117721A1 (ja)
CN (1) CN114830274A (ja)
WO (1) WO2021117721A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021117721A1 (ja) * 2019-12-09 2021-06-17

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213238A (ja) * 1986-03-14 1987-09-19 松下電器産業株式会社 電解コンデンサ駆動用電解液
JPS62213239A (ja) * 1986-03-14 1987-09-19 松下電器産業株式会社 電解コンデンサ駆動用電解液
JPH01114018A (ja) * 1987-10-28 1989-05-02 Matsushita Electric Ind Co Ltd 電解コンデンサ駆動用電解液
JPH0391225A (ja) * 1989-09-04 1991-04-16 Japan Carlit Co Ltd:The 電解コンデンサ駆動用電解液
JPH03129717A (ja) * 1989-01-11 1991-06-03 Matsushita Electric Ind Co Ltd 電解コンデンサ駆動用電解液及びそれを用いた電解コンデンサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0381936B1 (en) * 1989-01-11 1995-11-29 Matsushita Electric Industrial Co., Ltd. An electrolyte for use in electrolytic capacitors
JPH1167604A (ja) 1997-08-08 1999-03-09 Toyama Yakuhin Kogyo Kk 電解コンデンサの駆動用電解液
DE10108592C1 (de) * 2001-02-22 2002-08-14 Chemetall Gmbh Borchelatkomplexe, Verfahren zu deren Herstellung sowie deren Verwendung
CN105551801B (zh) * 2011-12-19 2018-12-21 帝化株式会社 电解电容器及其制造方法
JP6064724B2 (ja) * 2012-05-30 2017-01-25 セントラル硝子株式会社 シュウ酸を配位子とする金属錯体精製物及び該金属錯体の非水溶媒精製溶液の製造方法
JP7357238B2 (ja) * 2019-06-28 2023-10-06 パナソニックIpマネジメント株式会社 電解コンデンサおよび電解コンデンサの製造方法
JPWO2021117721A1 (ja) * 2019-12-09 2021-06-17

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213238A (ja) * 1986-03-14 1987-09-19 松下電器産業株式会社 電解コンデンサ駆動用電解液
JPS62213239A (ja) * 1986-03-14 1987-09-19 松下電器産業株式会社 電解コンデンサ駆動用電解液
JPH01114018A (ja) * 1987-10-28 1989-05-02 Matsushita Electric Ind Co Ltd 電解コンデンサ駆動用電解液
JPH03129717A (ja) * 1989-01-11 1991-06-03 Matsushita Electric Ind Co Ltd 電解コンデンサ駆動用電解液及びそれを用いた電解コンデンサ
JPH0391225A (ja) * 1989-09-04 1991-04-16 Japan Carlit Co Ltd:The 電解コンデンサ駆動用電解液

Also Published As

Publication number Publication date
CN114830274A (zh) 2022-07-29
US11978597B2 (en) 2024-05-07
US20230050288A1 (en) 2023-02-16
JPWO2021117721A1 (ja) 2021-06-17

Similar Documents

Publication Publication Date Title
JP7462177B2 (ja) 電解コンデンサ
KR101786157B1 (ko) Pedot/pss 및 안정제를 포함하는 개선된 전기적 파라미터를 갖는 층 조성물
JP4802243B2 (ja) 電解液用添加剤及び電解液
US20140266075A1 (en) Methods Of Enhancing Electrochemical Double Layer Capacitor (EDLC) Performance And EDLC Devices Formed Therefrom
CN111383845B (zh) 电解电容器
JP6941765B2 (ja) 電解コンデンサ
WO2021117721A1 (ja) 電解コンデンサ用液状成分および電解コンデンサ
WO2022044636A1 (ja) 電解コンデンサ
JP2021150452A (ja) ハイブリッド型電解コンデンサ用液状成分及びハイブリッド電解コンデンサ
JP2021009901A (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP2012191085A (ja) 電解質組成物およびイオン液体
WO2021172199A1 (ja) 電解コンデンサおよびその製造方法
CN100495602C (zh) 固体电解电容器及其制造方法
JP2019029498A (ja) 電解コンデンサおよび電解コンデンサ用電解液
JP5327842B2 (ja) 導電性高分子製造用酸化剤、それを用いた固体電解コンデンサ及びその製造方法
JP5336141B2 (ja) 水を添加したイオン液体を用いる弁金属の陽極酸化皮膜形成方法
JP5430464B2 (ja) 電気二重層キャパシタ用電解液および電気二重層キャパシタ
JP2004253537A (ja) 固体電解コンデンサ
EP4383294A1 (en) Solid electrolyte, solid electrolytic capacitor, electroconductive polymer dispersion, method for producing solid electrolyte, and method for producing electroconductive polymer dispersion
JPH11283880A (ja) 電解コンデンサ用電解液及びそれを用いた電解コンデンサ
JP5063172B2 (ja) 電気二重層キャパシタ用電解液
JP2014187222A (ja) 固体電解コンデンサの製造方法
JP2011219852A (ja) イオン液体水溶液によるタンタルの陽極酸化皮膜形成方法
JP2010098104A (ja) 水で希釈したイオン性液体を用いて修復化成を行った導電性高分子電解コンデンサ、および導電性高分子電解コンデンサの製造方法
WO2023276589A1 (ja) 電解コンデンサ用電解液、前記電解液を用いた電解コンデンサ及びハイブリッド型電解コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899734

Country of ref document: EP

Kind code of ref document: A1