WO2021115435A1 - 具有高表面压应力的超薄柔性玻璃盖板及其制备方法、平板玻璃 - Google Patents
具有高表面压应力的超薄柔性玻璃盖板及其制备方法、平板玻璃 Download PDFInfo
- Publication number
- WO2021115435A1 WO2021115435A1 PCT/CN2020/135754 CN2020135754W WO2021115435A1 WO 2021115435 A1 WO2021115435 A1 WO 2021115435A1 CN 2020135754 W CN2020135754 W CN 2020135754W WO 2021115435 A1 WO2021115435 A1 WO 2021115435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultra
- thin flexible
- flexible glass
- cover plate
- glass cover
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B27/00—Tempering or quenching glass products
- C03B27/02—Tempering or quenching glass products using liquid
- C03B27/03—Tempering or quenching glass products using liquid the liquid being a molten metal or a molten salt
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0266—Details of the structure or mounting of specific components for a display module assembly
- H04M1/0268—Details of the structure or mounting of specific components for a display module assembly including a flexible display panel
Definitions
- the invention relates to the technical field of glass, in particular to an ultra-thin flexible glass cover plate with high surface compressive stress and a preparation method thereof, and a flat glass.
- the screen protection cover of folding screen mobile phone is mostly made of organic polymer material instead of glass.
- the screen protection cover of organic polymer material has better toughness and basically meets the folding requirements, it has two very important features during use. Serious defects: 1) Organic polymer materials have low hardness and are easily scratched, resulting in increased surface haze and reduced transmittance; 2) Organic polymer materials are prone to mechanical fatigue. Folding parts will produce creases, more serious will be cracked, resulting in screen failure. Based on the above two major issues, the folding screen mobile phones of major manufacturers have only model phones so far and have not been put into mass production.
- the conventional glass cover can obtain high strength after strengthening, it is not easy to be scratched, and there is no mechanical fatigue problem.
- the technical problem to be solved by the present invention is to provide an ultra-thin flexible glass cover plate with high surface compressive stress suitable for folding screen mobile phones with large bending curvature and excellent scratch resistance.
- Another technical problem to be solved by the present invention is to provide a flat glass for preparing the above-mentioned ultra-thin flexible glass cover plate with high surface compressive stress.
- Another technical problem to be solved by the present invention is to provide a method for preparing the above-mentioned ultra-thin flexible glass cover plate with high surface compressive stress.
- the technical solution adopted by the present invention is to provide an ultra-thin flexible glass cover with high surface compressive stress.
- the thickness of the ultra-thin flexible glass cover is 30-100 ⁇ m, and the surface compressive stress is greater than Equal to 700Mpa; the ultra-thin flexible glass cover with a length greater than or equal to 50mm, the ultimate bending value measured in the ultimate bending test is less than or equal to 15mm; the Mohs hardness of the ultra-thin flexible glass cover is measured by the scratch method It is 6.0 to 6.7.
- the ultra-thin flexible glass cover has the advantages of thin thickness and low limit bending value, which fully meets the bending curvature requirements of the folding screen mobile phone; at the same time, the ultra-thin flexible glass cover also has large surface compressive stress and high Mohs hardness The advantages of it are not easy to scratch, high impact resistance, and can play a good protective effect on the display screen.
- the front and back of the ultra-thin flexible glass cover are respectively covered with a coating and a reinforced film coating, and the water drop angle of the coating is 75 ° to 125 °; the smooth transition between the two connected side surfaces of the ultra-thin flexible glass cover plate.
- the ultra-thin flexible glass cover plate with a length greater than or equal to 50 mm has a limit bending value measured in a limit bending test less than or equal to 10 mm.
- the surface compressive stress of the ultra-thin flexible glass cover is greater than or equal to 850Mpa; more preferably, greater than or equal to 1000Mpa.
- the width of the trace band on the section of the ultra-thin flexible glass cover plate immediately after breaking is less than 30% of the thickness of the glass; more preferably, the The ultra-thin flexible glass cover plate has no trace on the section after it breaks immediately.
- the surface of the ultra-thin flexible glass cover has a compressive stress layer with a depth of ⁇ 15 ⁇ m formed by potassium-sodium ion exchange.
- the present invention also provides a flat glass
- the flat glass in terms of mole percentage, contains the following components: 40-70% SiO 2 , 8-16% Al 2 O 3. 5-15% Na 2 O, 4-8% Li 2 O, 1-4% MgO, 2-10% B 2 O 3 , 0-4% P 2 O 5 , 0-4 % ZnO, 0-3% SnO 2 , 0-2% K 2 O, 0-2% ZrO 2 , 0-2% TiO 2 .
- the content of SiO 2 + Al 2 O 3 in the flat glass does not exceed 80 mol%, and the content of Na 2 O + Li 2 O is greater than 12 mol%; even more preferably, the content of Na 2 O + Li 2 O is greater than 15mol%
- the Young’s modulus of the plate glass is less than or equal to 80 Gpa
- the average transmittance in the wavelength range of 380 nm to 1000 nm is 90% or more
- the dielectric constant is 6.5 to 7.5
- the dielectric constant is 6.5 to 7.5.
- the loss is 0.001 ⁇ 0.005.
- the present invention also provides a preparation method of the above-mentioned ultra-thin flexible glass cover plate, and the preparation method includes:
- Step S1 Cut large-size flat glass with a thickness of 0.2mm or more into small-size flat glass, polish the edges of the small-size flat glass, and then etch and thin the small-size flat glass to obtain a thickness of Ultra-thin flexible glass sheet between 30-100 ⁇ m; wherein the polishing treatment includes chemical polishing, flame polishing or mechanical polishing;
- Step S2 Place the ultra-thin flexible glass sheet in a chemically strengthened salt bath for ion exchange to obtain the ultra-thin flexible glass cover plate; in the process of performing ion exchange, the ultra-thin flexible glass sheet vertically swings Place the bottom edge, left edge, and right edge only in contact with the chemically strengthened salt bath.
- step S1 the shape processing of the ultra-thin flexible glass sheet is designed before the etching and thinning process, and the edge quality of the ultra-thin flexible glass sheet thus obtained is very good, and there is basically no cracks or chipping; thus, It is ensured that in step S2, when the ultra-thin flexible glass sheet undergoes ion exchange in a high-temperature chemically strengthened salt bath to obtain high strength performance, the breaking rate of the ultra-thin flexible glass sheet is less than 20%, or even 10%.
- a high-efficiency and high-yield preparation of ultra-thin flexible glass cover with high surface compressive stress suitable for folding screen mobile phones with large bending curvature and excellent scratch resistance is realized.
- the edge of the ultra-thin flexible glass sheet has at most 5 cracks extending from the edge to the inside with a length of 2-20 ⁇ m, and there are no cracks extending from the edge to the inside with a length of 50 ⁇ m or more. More preferably, there are no cracks extending from the edge to the inside with a length of 2-20 ⁇ m on the edge of the ultra-thin flexible glass sheet. More preferably, there are no cracks extending from the edge to the inside on the edge of the ultra-thin flexible glass sheet.
- the ion exchange temperature is 360-430°C
- the ion exchange time is 0.1-5h
- the ion exchange includes potassium-sodium ion exchange and/or sodium- Lithium ion exchange; more preferably, in the process of ion exchange, the ion exchange temperature is 380-410°C, and the ion exchange time is 0.5-5h.
- step S1' is used to replace the step S1, wherein,
- the step S1' is: attaching an acid-resistant film with a contour corresponding to the target small-size flat glass on the front surface of a large-size flat glass with a thickness of 0.2mm or more, and using an etching solution to etch and reduce the back of the large-size flat glass During the thinning process, the large-size flat glass is etched and cut to obtain an ultra-thin flexible glass sheet with a shape consistent with the outline of the acid-resistant film and a thickness of 30-100 ⁇ m.
- step S1' the contour processing of the ultra-thin flexible glass sheet and the etching and thinning process are performed at the same time, so that an ultra-thin flexible glass sheet with very good edge quality can also be obtained.
- step S1" is used to replace the step S1, wherein,
- the step S1" is: attach a layer of acid-resistant film on the front and back of the large-size flat glass with a thickness of 30-100 ⁇ m, and then use violet etching or laser burning to engrave the shape and shape on the acid-resistant film.
- the target small-sized flat glass has a consistent contour line, so that the part of the large-sized flat glass corresponding to the contour line is exposed outside the acid-resistant film, and then the contour of the large-sized flat glass corresponding to the large-sized flat glass is exposed to the outside of the acid-resistant film. Part of the line is etched through to obtain an ultra-thin flexible glass sheet with a shape consistent with the contour line and a thickness between 30-100 ⁇ m.
- step S1 the part of the large-size flat glass corresponding to the contour line is etched through with an etching solution to directly obtain an ultra-thin flexible glass sheet, that is, the large-size glass is directly processed by chemical etching.
- the flat glass is divided into multiple ultra-thin flexible glass sheets, so there will be no external mechanical stress acting on the large-size flat glass, so there are basically no cracks and breakages on the edges of the ultra-thin flexible glass sheets.
- Figure 1 is a photo of the cut edge of ultra-thin glass in the prior art
- step S1 is a photo of the edge of the ultra-thin flexible glass sheet obtained in step S1 in the preparation method provided by the present invention
- Fig. 3 is a schematic diagram of an embodiment of the limit bending test provided by the present invention.
- the glass is very easy to produce cracks at the cutting edge of the glass during cutting, and the cracks at the cutting edge will greatly reduce the strength of the glass and make the glass unable to bend.
- the fatal thing is that in the process of chemical strengthening of glass with edge cracks, the cracks will rapidly propagate under the action of stress and cause cracking. Because the thickness of ultra-thin glass is too thin, it is very difficult to polish and remove edge cracks by mechanical or chemical methods.
- the preparation method includes:
- Step S1 Cut large-size flat glass with a thickness of 0.2mm or more into small-size flat glass, polish the edges of the small-size flat glass, and then etch and thin the small-size flat glass to obtain a thickness of Ultra-thin flexible glass sheet between 30-100 ⁇ m;
- Step S2 Place the ultra-thin flexible glass sheet in a chemically strengthened salt bath for ion exchange to obtain the ultra-thin flexible glass cover plate; in the process of performing ion exchange, the ultra-thin flexible glass sheet vertically swings Place the bottom edge, left edge, and right edge only in contact with the chemically strengthened salt bath.
- step S1 the shape processing of the ultra-thin flexible glass sheet is designed before the etching and thinning process.
- the edge quality of the ultra-thin flexible glass sheet thus obtained is very good, and there is basically no cracks or chipping (see Figure 2); Therefore, to ensure that in step S2, the ultra-thin flexible glass sheet undergoes ion exchange in a high-temperature chemically strengthened salt bath to obtain high-strength performance, the ultra-thin flexible glass sheet has a low breakage rate; more importantly, During the strengthening process, the bottom edge and the left and right edges of the ultra-thin flexible glass sheet are not in contact with solid objects, only the top is pulled upwards, which can prevent the ultra-thin flexible glass sheet from being subjected to gravity or due to the ion exchange process. The squeezing force causes it to deform.
- the edge of the ultra-thin flexible glass sheet has at most 5 cracks extending from the edge to the inside with a length of 2-20 ⁇ m, and there are no cracks extending from the edge to the inside with a length of 50 ⁇ m or more; more preferably, the super There are no cracks extending from the edge to the inside with a length of 2-20 ⁇ m on the edge of the thin flexible glass sheet. More preferably, the edge of the ultra-thin flexible glass sheet does not have cracks extending from the edge to the inside. It needs to be said that the cracks described here were observed under a 200X microscope. Due to few edge cracks, the breaking rate of the ultra-thin flexible glass during ion exchange is less than or equal to 20%, preferably, the breaking rate is less than or equal to 10%.
- the ion exchange temperature is 360-430°C
- the ion exchange time is 0.1-5h
- the ion exchange includes potassium-sodium ion exchange and/or sodium-lithium ion exchange; more preferably,
- the ion exchange temperature is 380-410°C
- the ion exchange time is 0.5-5h.
- step S1' or step S1" can also be used instead of step S1.
- the step S1' is: attaching an acid-resistant film with a contour corresponding to the target small-size flat glass on the front surface of a large-size flat glass with a thickness of 0.2mm or more, and using an etching solution to etch and reduce the back of the large-size flat glass During the thinning process, the large-size flat glass is etched and cut to obtain an ultra-thin flexible glass sheet with a shape consistent with the outline of the acid-resistant film and a thickness of 30-100 ⁇ m.
- the contour processing of the ultra-thin flexible glass sheet and the etching and thinning process are performed at the same time, so that an ultra-thin flexible glass sheet with very good edge quality can also be obtained.
- the step S1" is: using spraying, evaporation, etc., to attach a layer of acid-resistant film on the front and back of the large-size flat glass with a thickness of 30-100 ⁇ m, and then apply violet etching or laser burning to the anti-acid film.
- the acid film has a contour line with a shape consistent with the target small-size flat glass, so that the portion of the large-size flat glass corresponding to the contour line is exposed to the outside of the acid-resistant film, and then the large-size flat glass is exposed to the acid film with an etching solution.
- the portion of the flat glass corresponding to the contour line is etched through to obtain an ultra-thin flexible glass sheet with a shape consistent with the contour line and a thickness between 30-100 ⁇ m.
- step S1 the large size The part of the flat glass corresponding to the contour line is etched through to directly obtain the ultra-thin flexible glass sheet, that is, the large-size flat glass is directly divided into multiple ultra-thin flexible glass sheets by chemical etching. There will be external mechanical stress acting on the large-size flat glass, so there are basically no cracks and breakages on the edge of the ultra-thin flexible glass sheet.
- the ultra-thin flexible glass cover plate with high surface compressive stress provided by the present invention can be obtained by the above-mentioned preparation method.
- the thickness of the ultra-thin flexible glass cover plate is 30-100 ⁇ m, and the surface compressive stress is greater than or equal to 700Mpa (preferably greater than or equal to 850Mpa, more preferably greater than or equal to 1000Mpa); the ultra-thin flexible glass cover plate having a length greater than or equal to 50mm
- the ultra-thin flexible glass cover has the advantages of thin thickness and low limit bending value, which fully meets the bending curvature requirements of the folding screen mobile phone; at the same time, the ultra-thin flexible glass cover also has large surface compressive stress,
- the advantages of high hardness make it not easy to scratch, high impact resistance, and can play a good protective effect on the display screen.
- the ultimate bending test refers to: bending the glass and applying pressure through the upper and lower pressure plates to gradually bend the glass.
- the length of the glass during the test is at least 50mm; the upper pressure plate moves downward during the test.
- the solid glass is lowered to 25mm between the two plates at a speed of 2mm/s at one time; from this height, at a pressing speed of 0.5mm/s, it is lowered by 0.5mm each time, and kept for 2min, if not broken, then lower 0.5mm, so as to the position where the glass is broken, the distance between the upper and lower pressing plates that did not break last time is taken as the limit bending value of the glass.
- the width of the trace band on the section is less than 30% of the thickness of the glass; more preferably, the ultra-thin flexible glass cover plate has no trace band in the section after the immediate fracture.
- the marks mentioned here refer to the damage phenomenon of the internal structure of the glass caused by the release of tensile stress due to the impact of the glass immediately after it breaks. In the microscope, it is composed of countless pits and tearing areas. Obvious band-shaped area visible to the naked eye.
- the immediate fracture refers to: in the tensile stress release experiment, pneumatic transmission is used to impact the Vickers hardness indenter on the glass surface with a constant force. When the glass impact point only produces 2-4 cracks, it is an immediate fracture.
- the surface of the ultra-thin flexible glass cover plate has a compressive stress layer with a depth of ⁇ 15 ⁇ m formed by potassium-sodium ion exchange.
- the smooth transition between the two connected sides of the ultra-thin flexible glass cover plate enables the ultra-thin flexible glass cover plate to have a better tactile feeling.
- the flat glass provided by the present invention is suitable for obtaining the ultra-thin flexible glass cover provided by the present invention by the preparation method provided by the present invention.
- the flat glass based on mole percentage, contains the following components: 40-70% SiO 2 , 8-16% Al 2 O 3 , 10-15% Na 2 O, 4-8% Li 2 O , 1-4% MgO, 2-10% B 2 O 3 , 0-4% P 2 O 5 , 0-4% ZnO, 0-3% SnO 2 , 0-2% K 2 O, 0-2% ZrO 2 , 0-2% TiO 2 ; more preferably, the content of SiO 2 +Al 2 O 3 in the ultra-thin flexible glass cover plate does not exceed 80 mol%, and Na 2 O+Li The content of 2 O is greater than 12 mol%; more preferably, the content of Na 2 O+Li 2 O is greater than 15 mol%
- the content of SiO 2 does not exceed 70 mol%, and the content of SiO 2 + Al 2 O 3 does not exceed 80 mol%. Both SiO 2 and Al 2 O 3 are the main network structures of the glass. Excessive content will increase the rigidity of the glass and the Young's modulus. Increasing, resulting in the glass is not easy to obtain a low bending curvature, so control the content of both.
- the content of Na 2 O+Li 2 O is greater than 12 mol%, preferably greater than 15 mol%.
- Alkali metals can provide excess oxygen ions in the glass, which is the main network structure, silicon disconnects the network, and forms non-bridging oxygen. Reduce the elastic modulus of the glass and increase the bending curvature of the glass. And a double alkali effect is formed in the glass body, which increases the ion packing density of the glass and effectively improves the scratch resistance of the glass.
- the content of Na 2 O is at least 10 mol% to ensure ion exchange and obtain high surface compressive stress.
- the content of MgO is 2-6 mol%, and the addition of magnesium oxide is beneficial to the internal filling of the network structure, compacting the network body, and improving the scratch resistance of the glass.
- B 2 O 3 is a trihedron with a layered structure, and an appropriate amount of addition is beneficial to improve the toughness of the glass, and an appropriate amount of boron can also increase the ion exchange rate.
- the Young's modulus of the flat glass is less than or equal to 80 Gpa, the average transmittance in the wavelength range of 380 nm to 1000 nm is more than 90%, the dielectric constant is 6.5 to 7.5, and the dielectric loss is 0.001 to 0.005.
- ultra-thin flexible glass sheet 1# is cut from flat glass A
- ultra-thin flexible glass sheet 2# ultra-thin flexible glass sheet 3# and ultra-thin flexible glass sheet 4# are cut from flat glass D
- ultra-thin Flexible glass sheet 5#, ultra-thin flexible glass sheet 6# and ultra-thin flexible glass sheet 7# are cut from flat glass B
- ultra-thin flexible glass sheet 8# is cut from flat glass E.
- #, ultra-thin flexible glass sheet 7#, ultra-thin flexible glass sheet 8# are used as raw materials to prepare ultra-thin flexible glass cover 1#, ultra-thin flexible glass cover 2#, and ultra-thin flexible glass cover through step S2 above Board 3#, ultra-thin flexible glass cover 4#, ultra-thin flexible glass cover 5#, ultra-thin flexible glass cover 6#, ultra-thin flexible glass cover 7#, ultra-thin flexible glass cover 8#.
- plate glass A the composition of plate glass A, plate glass B, plate glass C, plate glass D, and plate glass E is as shown in the following table.
- the size and edge crack records of ultra-thin flexible glass sheet 7# and ultra-thin flexible glass sheet 8# are shown in the table below.
- each ultra-thin flexible glass sheet is measured by a high-precision vernier caliper; the cracks on the edge of each ultra-thin flexible glass sheet are observed under a 200-fold microscope.
- step S2 of each embodiment are shown in the following table.
- the prepared ultra-thin flexible glass cover 1#, ultra-thin flexible glass cover 2#, ultra-thin flexible glass cover 3#, ultra-thin flexible glass cover 4#, ultra-thin flexible glass cover 5#, ultra-thin The surface hardness, surface compressive stress, maximum tensile stress and ultimate bending value of flexible glass cover 6#, ultra-thin flexible glass cover 7#, and ultra-thin flexible glass cover 8# are listed in the following table.
- the surface compressive stress is measured by the FSM-6000LE surface stress meter (Japan Orihara Research Institute); the internal tensile stress is measured by the SLP-1000 stress meter; the Mohs hardness is measured by the scratch method; the limit bending value is measured by the above The stated limit bending test is obtained.
- Example 1 Comparing Example 1, Example 4, Example 6, and Example 8, it can be found that under the same conditions, the thinner the glass, the smaller the limit bending value.
- Example 2 Comparing Example 2, Example 3, and Example 4, it can be found that under the same conditions, the glass with fewer edge cracks has a smaller limit bending value.
- Example 5 Comparing Example 5, Example 6, and Example 7, it can be found that under the same conditions, the greater the surface compressive stress, the lower the limit bending value of the glass.
- Comparative Example 1 we selected the commercially available high-boron alkali-free glass A, and cut it into high-boron alkali-free glass flakes with a size of 50mm ⁇ 100mm ⁇ 0.05mm using the method in the prior art, because it is an alkali-free glass It cannot be strengthened.
- Comparative Example 2 we selected commercially available high-alumina-silicate glass and cut it into high-alumina-silicate glass slices with a size of 50mm ⁇ 100mm ⁇ 0.05mm by using the method in the prior art, and then at a temperature of 400°C and the composition Ion exchange was performed in a strengthened salt bath of 100 wt% KNO 3 for 120 minutes to obtain a high-alumina silica glass cover plate.
- Comparative Example 1 it can be seen from Comparative Example 1 that in the manufacture of ultra-thin glass, if there is no strengthening process, there is no compressive stress on the surface, the bending ability of the glass is very weak, and the surface strength is low.
- the high-alumina-silicate glass in Comparative Example 2 the surface compressive stress is not high, the edge quality is not good, and its ultimate bending ability is also poor. That is to say, the high-boron alkali-free glass flakes and high-alumina-silicate glass cover obtained by the prior art cannot meet the requirement of less than 10 mm of the foldable electronic screen.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Ceramic Engineering (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
一种具有高表面压应力的超薄柔性玻璃盖板及其制备方法、平板玻璃。超薄柔性玻璃盖板的厚度为30-100μm,其表面压应力大于等于700Mpa;长度大于等于50mm的超薄柔性玻璃盖板在极限弯曲测试中所测得的极限弯曲值小于等于15mm;用划痕法测得超薄柔性玻璃盖的板莫氏硬度为6.0~6.7。超薄柔性玻璃盖板具有厚度薄且极限弯曲值小的优点,完全满足折叠屏手机的弯曲曲率要求;同时,超薄柔性玻璃盖板还具有表面压应力大、硬度高的优点,使得其不易刮花、抗冲击强度高的,能够对显示屏起到很好的保护作用。
Description
本发明涉及玻璃技术领域,具体涉及一种具有高表面压应力的超薄柔性玻璃盖板及其制备方法,以及一种平板玻璃。
随着科技的进步,智能手机已经成为人们日常生活中必不可少的生产工具。为了提高对于视觉体验,比如在观看视频或者玩游戏等应用时,给用户带来更好的操作性和观赏性,手机生产商通过采用超窄边框技术、刘海屏技术、水滴屏技术尽可能的提高屏占比,以使同样的机身正面的面积可以容纳更大的屏幕。然而,受限于目前技术听筒、摄像头等位置摆放难点,屏占比很难做到100%,而且即使做到了100%屏占比,在手机体积受限的情况下,屏幕可显示区域做到7寸基本上达到极限了,因为手机再大就不便于人们的平时携带,会导致手机便于携带的这一根本优势的丢失。
为了突破上述限制,一些手机生产商提出了折叠屏手机。目前折叠屏手机的屏幕保护盖板多为有机高分子材质而非玻璃,虽然有机高分子材质的屏幕保护盖板拥有较好的韧性且基本符合折叠需求,但在使用过程中其具有两个很严重的缺陷:1)有机高分子材质材料硬度低,极易容易划伤,导致表面雾度增大,透过率降低;2)有机高分子材料很容易机械疲劳,多次重复的折叠后其折叠部位会产生折痕,更严重会开裂,导致屏幕失效。基于上述两大问题,各大厂商的折叠屏手机目前为止还只有模型机而并未投入量产。而常规的玻璃盖板虽然在强化后可以获得较高强度,且不易被划伤,亦无机械疲劳问题,但由于玻璃固有的脆性及材料厚度较高,无法满足折叠屏手机的弯曲曲率要求。
发明内容
本发明所要解决的技术问题是提供一种弯曲曲率大、抗划伤性能优异的适 用于折叠屏手机的具有高表面压应力的超薄柔性玻璃盖板。
本发明所要解决的另一个技术问题是提供一种用来制备上述具有高表面压应力的超薄柔性玻璃盖板的平板玻璃。
本发明所要解决的又一个技术问题是提供一种上述具有高表面压应力的超薄柔性玻璃盖板的制备方法。
为解决上述技术问题,本发明所采用的技术方案是提供一种具有高表面压应力的超薄柔性玻璃盖板,所述超薄柔性玻璃盖板的厚度为30-100μm,其表面压应力大于等于700Mpa;长度大于等于50mm的所述超薄柔性玻璃盖板在极限弯曲测试中所测得的极限弯曲值小于等于15mm;用划痕法测得所述超薄柔性玻璃盖的板莫氏硬度为6.0~6.7。所述超薄柔性玻璃盖板具有厚度薄且极限弯曲值小的优点,完全满足折叠屏手机的弯曲曲率要求;同时,所述超薄柔性玻璃盖板还具有表面压应力大、莫氏硬度高的优点,使得其不易刮花、抗冲击强度高的,能够对显示屏起到很好的保护作用。
作为本发明提供的具有高表面压应力的超薄柔性玻璃盖板的优选,所述超薄柔性玻璃盖板的正面和背面分别覆盖有镀层和增强膜涂层,所述镀层的水滴角为75°至125°之间;所述超薄柔性玻璃盖板的相连的两个侧面之间圆滑过渡。
作为本发明提供的具有高表面压应力的超薄柔性玻璃盖板的优选,长度大于等于50mm的所述超薄柔性玻璃盖板在极限弯曲测试中所测得的极限弯曲值小于等于10mm。
作为本发明提供的具有高表面压应力的超薄柔性玻璃盖板的优选,所述超薄柔性玻璃盖板的表面压应力大于等于850Mpa;更优选的,大于等于1000Mpa。
作为本发明提供的具有高表面压应力的超薄柔性玻璃盖板的优选,所述超薄柔性玻璃盖板在立即断裂后断面的痕带宽度小于玻璃厚度的30%;更优选的,所述超薄柔性玻璃盖板在立即断裂后断面无痕带。
作为本发明提供的具有高表面压应力的超薄柔性玻璃盖板的优选,所述超薄柔性玻璃盖板的表面具有由钾钠离子交换所形成的深度≤15μm的压应力层。
为解决上述的另一个技术问题,本发明还提供了一种平板玻璃,所述平板玻璃,以摩尔百分比计,包含如下组分:40-70%的SiO
2、8-16%的Al
2O
3、5-15%的Na
2O、4-8%的Li
2O、1-4%的MgO、2-10%的B
2O
3、0-4%的P
2O
5、0-4%的ZnO、0-3%的SnO
2、0-2%的K
2O、0-2%的ZrO
2、0-2%的TiO
2。更优选的,所述平板玻璃中SiO
2+Al
2O
3的含量不超过80mol%,Na
2O+Li
2O的含量大于12mol%;再优选的,Na
2O+Li
2O的含量大于15mol%
作为本发明提供的平板玻璃的优选,所述平板玻璃的杨氏模量小于等于80Gpa,380nm~1000nm的波长范围内的平均透过率为90%以上,介电常数为6.5~7.5,介电损耗为0.001~0.005。
为解决上述的又一个技术问题,本发明还提供了一种如上所述的超薄柔性玻璃盖板的制备方法,所述制备方法包括:
步骤S1:将厚度为0.2mm以上的大尺寸平板玻璃切割成小尺寸平板玻璃,并对所述小尺寸平板玻璃的边缘进行抛光处理,然后对所述小尺寸平板玻璃进行蚀刻减薄得到厚度为30-100μm之间的超薄柔性玻璃片;其中,所述抛光处理包括化学抛光、火焰抛光或机械抛光;
步骤S2:将所述超薄柔性玻璃片置于化学强化盐浴中进行离子交换,得到所述超薄柔性玻璃盖板;在进行离子交换的过程中,所述超薄柔性玻璃片竖直摆放且底边缘、左边缘、右边缘仅与所述化学强化盐浴接触。
通过上述制备方法,在步骤S1中,将超薄柔性玻璃片的外形加工设计在蚀刻减薄加工之前,如此得到的超薄柔性玻璃片的边缘质量非常好,基本无裂纹、崩边;从而,保证在步骤S2中,超薄柔性玻璃片经在高温化学强化盐浴进行离子交换以获取高强度性能的过程中,超薄柔性玻璃片的破碎率小于20%,甚至是10%。实现了高效率、高良率地制备弯曲曲率大、抗划伤性能优异的适用于折叠屏手机的具有高表面压应力的超薄柔性玻璃盖板。
作为本发明提供的制备方法的优选,所述超薄柔性玻璃片的边缘至多存在5个长度为2-20μm的自边缘向内部延伸的裂纹,且不存在长度为50μm以上的自边缘向内部延伸的裂纹;更优选的,所述超薄柔性玻璃片的边缘不存在长度为2-20μm的自边缘向内部延伸的裂纹。再优选的,所述超薄柔性玻璃片的 边缘不存在自边缘向内部延伸的裂纹。
作为本发明提供的制备方法的优选,在进行离子交换的过程中,离子交换温度为360-430℃,离子交换时间为0.1-5h,所述离子交换包含钾-钠离子交换和/或钠-锂离子交换;更优选的,在进行离子交换的过程中,离子交换温度为380-410℃,离子交换时间为0.5-5h。
作为本发明提供的制备方法的另一种方案,在所述制备方法中,采用步骤S1’取代所述步骤S1,其中,
所述步骤S1’为:在厚度为0.2mm以上的大尺寸平板玻璃的正面附轮廓与目标小尺寸平板玻璃相对应的抗酸膜,利用蚀刻液对所述大尺寸平板玻璃的背面进行蚀刻减薄处理的同时对所述大尺寸平板玻璃进行蚀刻切割,得到形状与所述抗酸膜的轮廓一致的厚度为30-100μm之间的超薄柔性玻璃片。
在步骤S1’中,将超薄柔性玻璃片的外形加工和蚀刻减薄加工同时进行,如此也可以得到边缘质量非常好的超薄柔性玻璃片。
作为本发明提供的制备方法的又一种方案,在所述制备方法中,采用步骤S1”取代所述步骤S1,其中,
所述步骤S1”为:在厚度为30-100μm的大尺寸平板玻璃的正面和背面附上一层抗酸膜,然后采用紫光蚀刻或激光烧灼的方式在所述抗酸膜上刻画出形状与目标小尺寸平板玻璃一致的轮廓线,使得所述大尺寸平板玻璃的对应所述轮廓线的部分暴露于所述抗酸膜外,然后利用蚀刻液将所述大尺寸平板玻璃的对应所述轮廓线的部分蚀穿,得到形状与所述轮廓线一致的厚度为30-100μm之间的超薄柔性玻璃片。
在步骤S1”中,利用蚀刻液将所述大尺寸平板玻璃的对应所述轮廓线的部分蚀穿而直接得到超薄柔性玻璃片,也就是说,直接通过化学腐蚀的手段将所述大尺寸平板玻璃分割成多个超薄柔性玻璃片,因而不会有外部机械应力作用在大尺寸平板玻璃上,因此在超薄柔性玻璃片的边缘基本不会有裂纹和破损。
图1为现有技术中超薄玻璃经切割后的边缘的照片;
图2为本发明提供的制备方法中的步骤S1中的到的超薄柔性玻璃片的边缘的照片;
图3为本发明提供的极限弯曲测试的实施方式示意图。
在这里首选要阐述的是,在现有技术中,小尺寸的超薄柔性玻璃片通常是由大尺寸平板玻璃经先减薄后切割的工艺获得的。而在切割过程中:如采用传统金刚石切割,由于力度过大会导致切割得到的小尺寸平板玻璃的边缘产生一定数量的圆形缺口或者崩边,严重时会导致边缘部分产生微小裂纹,如图1所示;如采用激光切割方式,激光切割所产生的温度导致的热胀冷缩亦会导致切割得到的小尺寸平板玻璃的边缘产生微小裂纹。也就是说,而无论是采用机械切割还是激光切割,在切割时玻璃极易在玻璃的切割边缘产生裂纹,而在切割边缘处的裂纹会大大降低玻璃的强度、并致使玻璃无法折弯,更致命的是,带有边缘裂纹的玻璃在进行化学强化的过程中,在应力的作用下裂纹会迅速扩展导致破裂破碎。由于超薄玻璃的厚度太薄想要通过机械或化学方法来抛光去除边缘裂纹也是非常困难的。
为此,本发明设计了如下所述的超薄柔性玻璃盖板的制备方法。所述制备方法包括:
步骤S1:将厚度为0.2mm以上的大尺寸平板玻璃切割成小尺寸平板玻璃,并对所述小尺寸平板玻璃的边缘进行抛光处理,然后对所述小尺寸平板玻璃进行蚀刻减薄得到厚度为30-100μm之间的超薄柔性玻璃片;
步骤S2:将所述超薄柔性玻璃片置于化学强化盐浴中进行离子交换,得到所述超薄柔性玻璃盖板;在进行离子交换的过程中,所述超薄柔性玻璃片竖直摆放且底边缘、左边缘、右边缘仅与所述化学强化盐浴接触。
后续,我们还可以通过在所述超薄柔性玻璃盖板的正面涂覆水滴角为75°至125°之间的镀层以提高其防指纹、灰尘、油渍的能力,同时在其背面涂覆增强膜涂层以提高其抗冲击能力。
通过上述制备方法,在步骤S1中,将超薄柔性玻璃片的外形加工设计在 蚀刻减薄加工之前,如此得到的超薄柔性玻璃片的边缘质量非常好,基本无裂纹、崩边(参见图2);从而,保证在步骤S2中,超薄柔性玻璃片经在高温化学强化盐浴进行离子交换以获取高强度性能的过程中,超薄柔性玻璃片的破碎率低;更关键的是,在强化过程中,超薄柔性玻璃片的底边缘及左、右两个边缘均无固体物接触,仅有顶部受向上的拉力,可以防止超薄柔性玻璃片在离子交换过程中因受重力或挤压力使而变形。
如此,实现了高效率、高良率地制备弯曲曲率大、抗划伤性能优异的适用于折叠屏手机的具有高表面压应力的超薄柔性玻璃盖板。
所述超薄柔性玻璃片的边缘至多存在5个长度为2-20μm的自边缘向内部延伸的裂纹,且不存在长度为50μm以上的自边缘向内部延伸的裂纹;更优选的,所述超薄柔性玻璃片的边缘不存在长度为2-20μm的自边缘向内部延伸的裂纹。再优选的,所述超薄柔性玻璃片的边缘不存自边缘向内部延伸的裂纹。需要说的是,这里所述的裂纹是在200倍显微镜下观察到的。由于边缘裂纹少,所述超薄柔性玻璃在进行离子交换的过程中其破碎率小于等于20%,优选的,破碎率小于等于10%。
在进行离子交换的过程中,离子交换温度为360-430℃,离子交换时间为0.1-5h,所述离子交换包含钾-钠离子交换和/或钠-锂离子交换;更优选的,在进行离子交换的过程中,离子交换温度为380-410℃,离子交换时间为0.5-5h。通过适当降低离子交换温度、缩短离子交换时间进一步防止超薄柔性玻璃片在离子交换过程中发生变形。
值得一提的是,在所述制备方法中,还可以采用步骤S1’或步骤S1”取代所述步骤S1。
所述步骤S1’为:在厚度为0.2mm以上的大尺寸平板玻璃的正面附轮廓与目标小尺寸平板玻璃相对应的抗酸膜,利用蚀刻液对所述大尺寸平板玻璃的背面进行蚀刻减薄处理的同时对所述大尺寸平板玻璃进行蚀刻切割,得到形状与所述抗酸膜的轮廓一致的厚度为30-100μm之间的超薄柔性玻璃片。在步骤S1’中,将超薄柔性玻璃片的外形加工和蚀刻减薄加工同时进行,如此也可以得到边缘质量非常好的超薄柔性玻璃片。
所述步骤S1”为:采用喷涂、蒸镀等方式在厚度为30-100μm的大尺寸平板玻璃的正面和背面附上一层抗酸膜,然后采用紫光蚀刻或激光烧灼的方式在所述抗酸膜上刻画出形状与目标小尺寸平板玻璃一致的轮廓线,使得所述大尺寸平板玻璃的对应所述轮廓线的部分暴露于所述抗酸膜外,然后利用蚀刻液将所述大尺寸平板玻璃的对应所述轮廓线的部分蚀穿,得到形状与所述轮廓线一致的厚度为30-100μm之间的超薄柔性玻璃片。在步骤S1”中,利用蚀刻液将所述大尺寸平板玻璃的对应所述轮廓线的部分蚀穿而直接得到超薄柔性玻璃片,也就是说,直接通过化学腐蚀的手段将所述大尺寸平板玻璃分割成多个超薄柔性玻璃片,因而不会有外部机械应力作用在大尺寸平板玻璃上,因此在超薄柔性玻璃片的边缘基本不会有裂纹和破损。
本发明提供的具有高表面压应力的超薄柔性玻璃盖板可通过上述制备方法获得。所述超薄柔性玻璃盖板的厚度为30-100μm,其表面压应力大于等于700Mpa(优选为大于等于850Mpa,更优选为大于等于1000Mpa);长度大于等于50mm的所述超薄柔性玻璃盖板在极限弯曲测试中所测得的极限弯曲值小于等于15mm(优选为小于等于10mm);用划痕法测得所述超薄柔性玻璃盖的板莫氏硬度为6.0~6.7(优选为6.5)。也就是说,所述超薄柔性玻璃盖板具有厚度薄且极限弯曲值小的优点,完全满足折叠屏手机的弯曲曲率要求;同时,所述超薄柔性玻璃盖板还具有表面压应力大、硬度高的优点,使得其不易刮花、抗冲击强度高的,能够对显示屏起到很好的保护作用。
需要解释的是,参见图3,极限弯曲测试是指:将玻璃折弯并通过上、下压板施压,使玻璃逐步弯曲,在测试中玻璃长度至少大于50mm;测试时上压板向下运动压实玻璃,以2mm/s的速度一次性下降至两板之间25mm处;从该高度开始,以0.5mm/s的下压速度,每次下降0.5mm,并保持2min,如不破碎再下降0.5mm,如此直至玻璃破碎的位置,取最近一次不破碎的上、下压板间间距为玻璃的极限弯曲值。
所述超薄柔性玻璃盖板在立即断裂后断面的痕带宽度小于玻璃厚度的30%;更优选的,所述超薄柔性玻璃盖板在立即断裂后断面无痕带。如此,保证所述超薄柔性玻璃盖板在使用过程中如若发生破碎,不会产生裂纹扩展使玻 璃飞溅,显示无法使用。需要解释的是,这里所述的痕带是指:立即断裂后,玻璃由于冲击,使得于张应力释放对玻璃内部结构产生的破坏现象,在显微镜中由无数凹坑点及撕裂区组成的肉眼可见的明显带状区域。而且其中的立即断裂是指:采用张应力释放实验中,采用气动式传动,以恒定力将维氏硬度压头冲击玻璃表面,当玻璃冲击点只产生2-4条裂纹,为立即断裂。
所述超薄柔性玻璃盖板的表面具有由钾钠离子交换所形成的深度≤15μm的压应力层。
所述超薄柔性玻璃盖板的相连的两个侧面之间圆滑过渡,以使得所述超薄柔性玻璃盖板具有更好的触感。
本发明提供的平板玻璃适用于通过本发明提供的制备方法得到本发明提供的超薄柔性玻璃盖板。所述平板玻璃,以摩尔百分比计,包含如下组分:40-70%的SiO
2、8-16%的Al
2O
3、10-15%的Na
2O、4-8%的Li
2O、1-4%的MgO、2-10%的B
2O
3、0-4%的P
2O
5、0-4%的ZnO、0-3%的SnO
2、0-2%的K
2O、0-2%的ZrO
2、0-2%的TiO
2;更优选的,所述超薄柔性玻璃盖板中SiO
2+Al
2O
3的含量不超过80mol%,Na
2O+Li
2O的含量大于12mol%;再优选的,Na
2O+Li
2O的含量大于15mol%
SiO
2的含量不超过70mol%,SiO
2+Al
2O
3的含量不超过80mol%,SiO
2和Al
2O
3两者为玻璃主要网络架构,过多含量导致玻璃刚性提高,杨氏模量增大,导致玻璃不易获得低的弯曲曲率,故控制两者含量。
Na
2O+Li
2O的含量大于12mol%,优选大于15mol%。碱金属在玻璃中可提供多余的氧离子,是主要网络结构体硅断开网络,形成非桥氧。降低玻璃的弹性模量,提高玻璃的弯曲曲率。且在玻璃体中形成双碱效应,提高玻璃的离子堆积密度,有效提高玻璃的抗划伤性能。其中Na
2O含量至少为10mol%,保证离子交换,获得高的表面压应力。
MgO含量为2-6mol%,氧化镁添加有利网络结构的内部填充,夯实网络体,提高玻璃的抗划伤性能。
B
2O
3为层状结构三面体,适量的添加有利于提高玻璃的韧性,适量的硼亦可以提高离子交换速率。
所述平板玻璃的杨氏模量小于等于80Gpa,380nm~1000nm的波长范围内的平均透过率为90%以上,介电常数为6.5~7.5,介电损耗为0.001~0.005。
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1-8
在实施例1-8中:
首先,分别以平板玻璃A、平板玻璃B、平板玻璃C、平板玻璃D、平板玻璃E为原材料通过上文中的步骤S1分割得到的超薄柔性玻璃片1#、超薄柔性玻璃片2#、超薄柔性玻璃片3#、超薄柔性玻璃片4#、超薄柔性玻璃片5#、超薄柔性玻璃片6#、超薄柔性玻璃片7#、超薄柔性玻璃片8#。其中,超薄柔性玻璃片1#是由平板玻璃A切割所得,超薄柔性玻璃片2#、超薄柔性玻璃片3#和超薄柔性玻璃片4#是由平板玻璃D切割所得,超薄柔性玻璃片5#、超薄柔性玻璃片6#和超薄柔性玻璃片7#是由平板玻璃B切割所得,超薄柔性玻璃片8#是由平板玻璃E切割所得。
然后,分别以超薄柔性玻璃片1#、超薄柔性玻璃片2#、超薄柔性玻璃片3#、超薄柔性玻璃片4#、超薄柔性玻璃片5#、超薄柔性玻璃片6#、超薄柔性玻璃片7#、超薄柔性玻璃片8#为原料通过上文中的步骤S2制备出超薄柔性玻璃盖板1#、超薄柔性玻璃盖板2#、超薄柔性玻璃盖板3#、超薄柔性玻璃盖板4#、超薄柔性玻璃盖板5#、超薄柔性玻璃盖板6#、超薄柔性玻璃盖板7#、超薄柔性玻璃盖板8#。
其中,平板玻璃A、平板玻璃B、平板玻璃C、平板玻璃D、平板玻璃E的组成如下表所示。
切割所得的超薄柔性玻璃片1#、超薄柔性玻璃片2#、超薄柔性玻璃片3#、超薄柔性玻璃片4#、超薄柔性玻璃片5#、超薄柔性玻璃片6#、超薄柔性玻璃片7#、超薄柔性玻璃片8#的尺寸及边缘裂纹情况记录下表所示。
其中,各个超薄柔性玻璃片的长宽高是通过高精度游标卡尺测得;各个超薄柔性玻璃片边缘的裂纹情况是在200倍显微镜下观察得出。
各个实施例的步骤S2中涉及的各项参数如下表所示。
制备出的超薄柔性玻璃盖板1#、超薄柔性玻璃盖板2#、超薄柔性玻璃盖板3#、超薄柔性玻璃盖板4#、超薄柔性玻璃盖板5#、超薄柔性玻璃盖板6#、超薄柔性玻璃盖板7#、超薄柔性玻璃盖板8#的表面硬度、表面压应力、张应力最大值、极限弯曲值列出如下表所示。
以上,表面压应力通过FSM-6000LE表面应力计(日本折原研究所)测量;内部的张应力由SLP-1000应力仪所测得;莫氏硬度用划痕法测得;极限弯曲值通过上文所述的极限弯曲测试得出。
对比从实施例1、实施例4、实施例6、实施例8可以发现,在同等条件下,玻璃越薄,其极限弯曲值越小。
对比实施例2、实施例3、实施例4可以发现,同等条件下,边缘裂纹越少的玻璃,其极限弯曲值越小。
对比实施例5、实施例6、实施例7可以发现,同等条件下,表面压应力越大的玻璃,其极限弯曲值越小。
对比例1-2
在对比例1中,我们选用市面高硼无碱玻璃A,采用现有技术中的方法将 其其切割成尺寸为50mm×100mm×0.05mm的高硼无碱玻璃薄片,由于其为无碱玻璃因而不能强化。
在对比例2中,我们选用市面市面高铝硅玻璃,采用现有技术中的方法将其其切割成尺寸为50mm×100mm×0.05mm的高铝硅玻璃薄片,然后在温度为400℃、成分为100wt%KNO
3的强化盐浴中进行离子交换120min得到高铝硅玻璃盖板。
对所得到的高硼无碱玻璃薄片和高铝硅玻璃薄片边缘裂纹情况进行观察,结果记录下表所示。
对所得到的高硼无碱玻璃薄片和高铝硅玻璃盖板的表面硬度、表面压应力、张应力最大值、极限弯曲值进行检测,结果如下表所述。
从对比例1中看出,在超薄玻璃制造中,如果无强化工艺,表面无压应力,玻璃的弯曲能力很弱,且表面强度低。而对于对比例2中的高铝硅玻璃,其表面压应力不高,且边缘质量不佳,其极限弯曲能力也很差。也就是说,通过现有技术得到的高硼无碱玻璃薄片和高铝硅玻璃盖板无法满足折叠式电子屏的低于10mm的要求。
上面结合实验对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。
Claims (19)
- 一种具有高表面压应力的超薄柔性玻璃盖板,其特征在于,所述超薄柔性玻璃盖板的厚度为30-100μm,其表面压应力大于等于700Mpa;长度大于等于50mm的所述超薄柔性玻璃盖板在极限弯曲测试中所测得的极限弯曲值小于等于15mm;用划痕法测得所述超薄柔性玻璃盖的板莫氏硬度为6.0~6.7。
- 根据权利要求1所述的具有高表面压应力的超薄柔性玻璃盖板,其特征在于,所述超薄柔性玻璃盖板的正面和背面分别覆盖有镀层和增强膜涂层,所述镀层的水滴角为75°至125°之间。
- 根据权利要求2所述的具有高表面压应力的超薄柔性玻璃盖板,其特征在于,长度大于等于50mm的所述超薄柔性玻璃盖板在极限弯曲测试中所测得的极限弯曲值小于等于10mm。
- 根据权利要求1所述的具有高表面压应力的超薄柔性玻璃盖板,其特征在于,所述超薄柔性玻璃盖板的表面压应力大于等于850pa。
- 根据权利要求1所述的具有高表面压应力的超薄柔性玻璃盖板,其特征在于,所述超薄柔性玻璃盖板的表面压应力大于等于1000Mpa。
- 根据权利要求1所述的具有高表面压应力的超薄柔性玻璃盖板,其特征在于,所述超薄柔性玻璃盖板在立即断裂后断面的痕带宽度小于玻璃厚度的30%。
- 根据权利要求6所述的具有高表面压应力的超薄柔性玻璃盖板,其特征在于,所述超薄柔性玻璃盖板在立即断裂后断面无痕带。
- 根据权利要求1所述的具有高表面压应力的超薄柔性玻璃盖板,其特征在于,所述超薄柔性玻璃盖板的表面具有由钾钠离子交换所形成的深度≤15μm的压应力层。
- 一种用于制备如权利要求1-8所述的超薄柔性玻璃盖板的平板玻璃,其特征在于,所述平板玻璃,以摩尔百分比计,包含如下组分:40-70%的SiO 2、8-16%的Al 2O 3、5-15%的Na 2O、4-8%的Li 2O、1-4%的MgO、2-10%的B 2O 3、0-4%的P 2O 5、0-4%的ZnO、0-3%的SnO 2、0-2%的K 2O、0-2%的ZrO 2、0-2%的TiO 2。
- 根据权利要求9所述的平板玻璃,其特征在于,所述平板玻璃的杨氏 模量小于等于80Gpa,380nm~1000nm的波长范围内的平均透过率为90%以上,介电常数为6.5~7.5,介电损耗为0.001~0.005。
- 根据权利要求9所述的平板玻璃,其特征在于,所述平板玻璃中SiO 2+Al 2O 3的含量不超过80mol%,Na 2O+Li 2O的含量大于12mol%。
- 一种如权利要求1-8所述的超薄柔性玻璃盖板的制备方法,其特征在于,所述制备方法包括:步骤S1:将厚度为0.2mm以上的大尺寸平板玻璃切割成小尺寸平板玻璃,并对所述小尺寸平板玻璃的边缘进行抛光处理,然后对所述小尺寸平板玻璃进行蚀刻减薄得到厚度为30-100μm之间的超薄柔性玻璃片;其中,所述抛光处理包括化学抛光、火焰抛光或机械抛光;步骤S2:将所述超薄柔性玻璃片置于化学强化盐浴中进行离子交换,得到所述超薄柔性玻璃盖板;在进行离子交换的过程中,所述超薄柔性玻璃片竖直摆放且底边缘、左边缘、右边缘仅与所述化学强化盐浴接触。
- 根据权利要求11所述的制备方法,其特征在于,所述超薄柔性玻璃片的边缘至多存在5个长度为2-20μm的自边缘向内部延伸的裂纹,且不存在长度为50μm以上的自边缘向内部延伸的裂纹。
- 根据权利要求12所述的制备方法,其特征在于,所述超薄柔性玻璃片的边缘不存在长度为2-20μm的自边缘向内部延伸的裂纹。
- 根据权利要求12所述的制备方法,其特征在于,所述超薄柔性玻璃片的边缘不存在自边缘向内部延伸的裂纹。
- 根据权利要求11所述的制备方法,其特征在于,在进行离子交换的过程中,离子交换温度为360-430℃,离子交换时间为0.1-5h,所述离子交换包含钾-钠离子交换和/或钠-锂离子交换。
- 根据权利要求14所述的制备方法,其特征在于,在进行离子交换的过程中,离子交换温度为380-410℃,离子交换时间为0.5-5h。
- 根据权利要求11所述的制备方法,其特征在于,在所述制备方法中,采用步骤S1’取代所述步骤S1,其中,所述步骤S1’为:在厚度为0.2mm以上的大尺寸平板玻璃的正面附轮廓与 目标小尺寸平板玻璃相对应的抗酸膜,利用蚀刻液对所述大尺寸平板玻璃的背面进行蚀刻减薄处理的同时对所述大尺寸平板玻璃进行蚀刻切割,得到形状与所述抗酸膜的轮廓一致的厚度为30-100μm之间的超薄柔性玻璃片。
- 根据权利要求11所述的制备方法,其特征在于,在所述制备方法中,采用步骤S1”取代所述步骤S1,其中,所述步骤S1”为:在厚度为30-100μm的大尺寸平板玻璃的正面和背面附上一层抗酸膜,然后采用紫光蚀刻或激光烧灼的方式在所述抗酸膜上刻画出形状与目标小尺寸平板玻璃一致的轮廓线,使得所述大尺寸平板玻璃的对应所述轮廓线的部分暴露于所述抗酸膜外,然后利用蚀刻液将所述大尺寸平板玻璃的对应所述轮廓线的部分蚀穿,得到形状与所述轮廓线一致的厚度为30-100μm之间的超薄柔性玻璃片。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911280889.2A CN112939452B (zh) | 2019-12-11 | 2019-12-11 | 具有高表面压应力的超薄柔性玻璃盖板及其制备方法、平板玻璃 |
CN201911280889.2 | 2019-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021115435A1 true WO2021115435A1 (zh) | 2021-06-17 |
Family
ID=76234382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/135754 WO2021115435A1 (zh) | 2019-12-11 | 2020-12-11 | 具有高表面压应力的超薄柔性玻璃盖板及其制备方法、平板玻璃 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112939452B (zh) |
WO (1) | WO2021115435A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113411431A (zh) * | 2021-07-21 | 2021-09-17 | 芜湖长信科技股份有限公司 | 一种超薄柔性盖板及其生产方法 |
CN113620596A (zh) * | 2021-08-31 | 2021-11-09 | 甘肃光轩高端装备产业有限公司 | 一种柔性玻璃及其制备方法和设备 |
CN114573243A (zh) * | 2022-04-21 | 2022-06-03 | 江西沃格光电股份有限公司 | 一种超薄玻璃减薄工艺 |
CN115304286A (zh) * | 2022-08-22 | 2022-11-08 | 浙江清华柔性电子技术研究院 | 超薄玻璃盖板及其制备方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116161867B (zh) * | 2023-02-27 | 2023-12-15 | 广州触沃电子有限公司 | 一种智能电容一体机 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015127583A1 (en) * | 2014-02-25 | 2015-09-03 | Schott Ag | Chemically toughened glass article with low coefficient of thermal expansion |
CN105102386A (zh) * | 2013-03-15 | 2015-11-25 | 肖特玻璃科技(苏州)有限公司 | 化学钢化的柔性超薄玻璃 |
CN105593185A (zh) * | 2014-01-29 | 2016-05-18 | 康宁股份有限公司 | 可弯折玻璃堆叠组件、制品及其制造方法 |
KR101620375B1 (ko) * | 2016-02-02 | 2016-05-23 | 지에프 주식회사 | 적층, 컷팅공정을 포함하는 초박형 유리 가공방법 |
CN106746603A (zh) * | 2017-01-24 | 2017-05-31 | 东旭科技集团有限公司 | 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 |
CN108147680A (zh) * | 2016-12-02 | 2018-06-12 | 三星显示有限公司 | 具有低弯曲曲率的柔性玻璃制品及其制造方法 |
KR20190018114A (ko) * | 2017-08-11 | 2019-02-21 | (주)유티아이 | 플렉시블 커버 윈도우의 제조방법 및 이에 의해 제조된 플렉시블 커버 윈도우 |
CN110128008A (zh) * | 2019-05-16 | 2019-08-16 | 平顶山市东丽华实业有限公司 | 低曲率半径超薄强化玻璃及其制备方法、玻璃器件和素玻璃 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI461379B (zh) * | 2012-12-20 | 2014-11-21 | Omi Optronics Corp Ltd | 玻璃加工方法 |
CN103481144A (zh) * | 2013-09-02 | 2014-01-01 | 中环高科(天津)股份有限公司 | 一种手机摄像头超薄玻璃镜片的加工工艺 |
WO2016037343A1 (en) * | 2014-09-12 | 2016-03-17 | Schott Glass Technologies (Suzhou) Co. Ltd. | Ultrathin chemically toughened glass article and method for producing such a glass article |
CN106746704B (zh) * | 2017-01-16 | 2019-03-12 | 浙江宝泰电子有限公司 | 一种内置摄像头电脑的显示屏玻璃的加工方法 |
CN107132593A (zh) * | 2017-04-27 | 2017-09-05 | 苏州市智诚光学科技有限公司 | 一种小尺寸摄像头超薄玻璃镜片的加工工艺 |
CN107244811A (zh) * | 2017-06-30 | 2017-10-13 | 安徽新创智能科技有限公司 | 一种液晶玻璃的减薄方法及装置 |
-
2019
- 2019-12-11 CN CN201911280889.2A patent/CN112939452B/zh active Active
-
2020
- 2020-12-11 WO PCT/CN2020/135754 patent/WO2021115435A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105102386A (zh) * | 2013-03-15 | 2015-11-25 | 肖特玻璃科技(苏州)有限公司 | 化学钢化的柔性超薄玻璃 |
CN105593185A (zh) * | 2014-01-29 | 2016-05-18 | 康宁股份有限公司 | 可弯折玻璃堆叠组件、制品及其制造方法 |
WO2015127583A1 (en) * | 2014-02-25 | 2015-09-03 | Schott Ag | Chemically toughened glass article with low coefficient of thermal expansion |
KR101620375B1 (ko) * | 2016-02-02 | 2016-05-23 | 지에프 주식회사 | 적층, 컷팅공정을 포함하는 초박형 유리 가공방법 |
CN108147680A (zh) * | 2016-12-02 | 2018-06-12 | 三星显示有限公司 | 具有低弯曲曲率的柔性玻璃制品及其制造方法 |
CN106746603A (zh) * | 2017-01-24 | 2017-05-31 | 东旭科技集团有限公司 | 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 |
KR20190018114A (ko) * | 2017-08-11 | 2019-02-21 | (주)유티아이 | 플렉시블 커버 윈도우의 제조방법 및 이에 의해 제조된 플렉시블 커버 윈도우 |
CN110128008A (zh) * | 2019-05-16 | 2019-08-16 | 平顶山市东丽华实业有限公司 | 低曲率半径超薄强化玻璃及其制备方法、玻璃器件和素玻璃 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113411431A (zh) * | 2021-07-21 | 2021-09-17 | 芜湖长信科技股份有限公司 | 一种超薄柔性盖板及其生产方法 |
CN113411431B (zh) * | 2021-07-21 | 2024-02-06 | 芜湖东信光电科技有限公司 | 一种超薄柔性盖板及其生产方法 |
CN113620596A (zh) * | 2021-08-31 | 2021-11-09 | 甘肃光轩高端装备产业有限公司 | 一种柔性玻璃及其制备方法和设备 |
CN114573243A (zh) * | 2022-04-21 | 2022-06-03 | 江西沃格光电股份有限公司 | 一种超薄玻璃减薄工艺 |
CN115304286A (zh) * | 2022-08-22 | 2022-11-08 | 浙江清华柔性电子技术研究院 | 超薄玻璃盖板及其制备方法 |
CN115304286B (zh) * | 2022-08-22 | 2023-07-25 | 浙江清华柔性电子技术研究院 | 超薄玻璃盖板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112939452B (zh) | 2023-02-21 |
CN112939452A (zh) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021115435A1 (zh) | 具有高表面压应力的超薄柔性玻璃盖板及其制备方法、平板玻璃 | |
JP7327533B2 (ja) | 化学強化用ガラス、化学強化ガラスおよび化学強化ガラスの製造方法 | |
JP5602270B2 (ja) | 強化ガラス基板及びその製造方法 | |
CN110316974B (zh) | 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用 | |
TWI424972B (zh) | 強化板玻璃 | |
JP6313391B2 (ja) | ガラス基板、電子機器用カバーガラス、及びガラス基板の製造方法 | |
JP5874803B2 (ja) | タッチパネル用ガラスの製造方法 | |
US20150191394A1 (en) | Cover glass and method for producing cover glass | |
CN105164075B (zh) | 用于光学质量玻璃成形的高纯度镍模具和采用所述模具成形玻璃片的方法 | |
WO2015125584A1 (ja) | 強化ガラスの製造方法及び強化ガラス | |
JP5668828B1 (ja) | 化学強化ガラス板 | |
JPWO2013027651A1 (ja) | 強化ガラス基板の製造方法および強化ガラス基板 | |
JP2010202514A (ja) | 携帯型液晶ディスプレイ用のガラス基板及びその製造方法並びにこれを用いた携帯型液晶ディスプレイ | |
JP2013542159A (ja) | ガラス板 | |
JP2014224012A (ja) | 強化ガラスの製造方法及び強化ガラス | |
WO2012153797A1 (ja) | 電子機器用カバーガラスの製造方法および電子機器用カバーガラスのガラス基板保持具 | |
JP2012229154A (ja) | ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20900545 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20900545 Country of ref document: EP Kind code of ref document: A1 |