WO2021115287A1 - 助焊剂及其制备方法、锡膏及其制备方法 - Google Patents

助焊剂及其制备方法、锡膏及其制备方法 Download PDF

Info

Publication number
WO2021115287A1
WO2021115287A1 PCT/CN2020/134660 CN2020134660W WO2021115287A1 WO 2021115287 A1 WO2021115287 A1 WO 2021115287A1 CN 2020134660 W CN2020134660 W CN 2020134660W WO 2021115287 A1 WO2021115287 A1 WO 2021115287A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
flux
mixed solution
solder paste
soldering flux
Prior art date
Application number
PCT/CN2020/134660
Other languages
English (en)
French (fr)
Inventor
刘鲁亭
刘玉
郭峻诚
陈建超
Original Assignee
青岛歌尔微电子研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛歌尔微电子研究院有限公司 filed Critical 青岛歌尔微电子研究院有限公司
Publication of WO2021115287A1 publication Critical patent/WO2021115287A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries

Definitions

  • This application relates to the technical field of solder paste, in particular to a soldering flux and a preparation method thereof, and a solder paste and a preparation method thereof.
  • the No. 3 and No. 4 solder pastes on the market are difficult to meet the welding requirements of delicate devices, especially when applied to fine-pitch soldering, they are prone to bridging, collapse and voids; although No. 5 solder paste can meet the welding requirements of precision devices
  • the viscosity is easy to change during storage, and the consistency of the viscosity is poor, resulting in a shorter life of the solder paste. Therefore, it is necessary to develop a solder paste with a better consistency of viscosity.
  • the flux as an important part of the solder paste, directly affects the consistency of the viscosity of the solder paste.
  • the current flux has poor thixotropic properties and viscosity consistency, which affects the viscosity consistency of the solder paste.
  • the main purpose of this application is to provide a flux and its preparation method, solder paste and its preparation method, aiming to ensure that the flux has better thixotropic properties and consistency of viscosity, so that the consistency of the viscosity of the solder paste is better .
  • the flux proposed in this application is applied to solder paste.
  • the preparation raw materials of the flux include: solvent, 25-35 parts; film-forming agent, 38-55 parts; activating agent, 8 -20 parts; thixotropic agent, 5-10 parts.
  • the solvent is selected from the group consisting of diethylene glycol butyl ether, diethylene glycol hexyl ether, 2-ethyl-1,3-hexanediol, diethylene glycol dioctyl ether and diethylene glycol At least one of octyl ether;
  • the film-forming agent is selected from at least one of hydrogenated rosin, water-white rosin, polymerized rosin, disproportionated rosin, and Malay rosin;
  • the active agent is at least one selected from the group consisting of succinic acid, adipic acid, phenylsuccinic acid, DL-malic acid, caprylic acid, and dodecanedioic acid;
  • the thixotropic agent is selected from at least one of castor oil derivatives, hydrogenated castor oil, ethylene stearic acid amide, and phthalamide.
  • the soldering flux further contains 0.5-1 parts of corrosion inhibitor based on parts by mass.
  • the corrosion inhibitor is selected from at least one of mercaptobenzothiazole, benzotriazole, and tolyltriazole.
  • the corrosion inhibitor is benzotriazole with a mass fraction of 1%.
  • the soldering flux further contains 0.1-1 parts of antioxidant.
  • the antioxidant is phenol or p-phenol.
  • This application also proposes a method for preparing a soldering flux.
  • the preparation method of the soldering flux includes the following steps:
  • the third mixed solution is adjusted to a preset temperature threshold, kept warm, and then cooled to obtain a flux.
  • the step of mixing the solvent and the film-forming agent and heating to obtain the first mixed solution includes:
  • the step of adjusting the third mixed solution to a preset temperature threshold, keeping it warm, and then cooling to obtain the flux includes:
  • the method further includes:
  • the flux is refrigerated for more than 12 hours.
  • the step of preparing the first mixed solution includes stirring the solution, and the stirring speed is 500 r/min-2000 r/min.
  • the method before the step of adding the thixotropic agent to the second mixed solution to obtain the third mixed solution, the method further includes:
  • This application also proposes a solder paste, which contains 85-92 parts of tin powder and 8-15 parts of soldering flux, and the soldering flux is the aforementioned soldering flux.
  • the particle size of the tin powder ranges from 15 ⁇ m to 25 ⁇ m.
  • This application also proposes a method for preparing solder paste, which includes the following steps:
  • soldering flux is the soldering flux according to any one of claims 1 to 6;
  • the tin powder and the flux are mixed to obtain a tin paste.
  • the step of mixing the tin powder and the soldering flux to obtain a solder paste includes:
  • the control vacuum range is 0.04MPa-0.12MPa
  • the stirring speed is 500r/min-2000r/min
  • the squeegee speed is 500r/min-2000r/min to obtain solder paste.
  • the soldering flux contains solvent, film-forming agent, activator and thixotropic agent, and by reasonably adjusting the amount of each component, a soldering flux with better soldering performance, consistency of viscosity and thixotropy can be obtained.
  • the flux When the flux is applied to solder paste, it can make the solder paste have better viscosity consistency and stability, longer storage life, at the same time, its collapse resistance and solderability are better, which can meet the surface mount requirements of electronic devices .
  • Figure 1 is a printed pattern of the solder paste prepared in Example 1;
  • Figure 2 is a printed pattern of the solder paste prepared in the second embodiment
  • Figure 3 is a printed pattern of the solder paste prepared in the third embodiment
  • Example 4 is an aging pattern of the solder paste prepared in Example 1;
  • Figure 5 is an aging pattern of the solder paste prepared in Example 2.
  • Fig. 6 is an aging pattern of the solder paste prepared in the third embodiment
  • Figure 7 is a diagram of the solder joint morphology of the solder paste prepared in Example 1.
  • Example 8 is a diagram of the solder joint morphology of the solder paste prepared in Example 2.
  • FIG. 9 is a diagram of the solder joint morphology of the solder paste prepared in Example 3.
  • FIG. 9 is a diagram of the solder joint morphology of the solder paste prepared in Example 3.
  • soldering flux which is applied to solder paste.
  • the solder paste includes soldering flux and tin powder.
  • the raw materials of the flux in this application include: solvent, 25-35 parts; film-forming agent, 38-55 parts; active agent, 8-20 parts; thixotropic agent, 5-10 parts.
  • the solvent is used as a system to dissolve the other components of the flux, and it can evenly adjust the flux during the stirring process, and the solvent has a certain effect on the viscosity and life of the flux.
  • the main function of the active agent is to remove the oxides on the surface of the soldered substrate and the surface of the tin powder, and increase the wettability of the molten tin powder on the surface of the pad to improve the solderability.
  • the film-forming agent mainly plays the role of adjusting the viscosity of the solder paste, transferring the soldering heat, and protecting the metal after the oxide film is removed from being oxidized.
  • the thixotropic agent mainly adjusts the viscosity and adhesion of the solder paste, prevents the solder paste from tailing and sticking during the printing process, and improves the printing performance of the solder paste.
  • a flux with better soldering performance consistency of viscosity and thixotropy can be obtained.
  • it can make the solder paste have better consistency and stability of viscosity , At the same time, the collapse resistance and solderability are good, which can meet the surface mount requirements of electronic devices.
  • the amount of solvent in the flux is 25, 28, 30, 32 or 35; the amount of film-forming agent is 38, 40, 45, 48, 50 or 55
  • the amount of active agent is 8, 10, 15 or 20 parts; the amount of thixotropic agent is 5, 7 or 10 parts.
  • the flux contains solvent, film-forming agent, activator and thixotropic agent, and the dosage of each component is adjusted reasonably to obtain the flux performance, consistency of viscosity and thixotropy.
  • the flux When the flux is applied to solder paste, it can make the solder paste have better viscosity consistency and stability, longer storage life, and good collapse resistance and solderability, which can meet the surface mounting requirements of electronic devices.
  • the solvent is selected from the group consisting of diethylene glycol butyl ether, diethylene glycol hexyl ether, 2-ethyl-1,3-hexanediol, diethylene glycol dioctyl ether and diethylene glycol octyl ether At least one of them.
  • diethylene glycol butyl ether, diethylene glycol hexyl ether, 2-ethyl-1,3-hexanediol, diethylene glycol dioctyl ether and diethylene glycol octyl ether all have a relatively low volatilization rate. It can be used as a solvent, and it can uniformly adjust the flux during the stirring process, and it has a certain effect on the viscosity and life of the flux. One or more mixtures of these solvents can be used.
  • the film-forming agent is selected from at least one of hydrogenated rosin, water-white rosin, polymerized rosin, disproportionated rosin, and maleic rosin.
  • the film-forming agent here is modified rosin.
  • hydrogenated rosin is a modified rosin. Used as a film-forming agent, it can make the flux of the flux better and higher welding reliability. In addition, it is non-corrosive to electronic devices and does not require cleaning operations after soldering.
  • Water white rosin is a family of partially disproportionated-hydrogenated natural tackifying resins. After adding, it can adjust the viscosity of the solder paste, and has good solubility and compatibility, so as to ensure good consistency of the viscosity of the flux.
  • polymerized rosin, disproportionated rosin and Malayan rosin can adjust the viscosity of solder paste, transfer welding heat, and protect the metal after the oxide film is removed from oxidation. It should be noted that when the film-forming agent is selected, one or more mixtures of these modified rosins can be selected.
  • the active agent is selected from at least one of succinic acid, adipic acid, phenyl succinic acid, DL-malic acid, caprylic acid, and dodecanedioic acid.
  • the organic acid selected for the active agent here is selected from succinic acid, adipic acid, phenyl succinic acid, DL-malic acid, suberic acid and dodecanedioic acid, these organic acids can remove the welded matrix
  • succinic acid adipic acid
  • phenyl succinic acid DL-malic acid
  • suberic acid suberic acid
  • dodecanedioic acid these organic acids can remove the welded matrix
  • the oxides on the surface and the surface of the tin powder increase the wettability of the molten tin powder on the surface of the pad to improve the solderability.
  • the thixotropic agent is selected from at least one of castor oil derivatives, hydrogenated castor oil, ethylene stearic acid amide, and phthalamide.
  • castor oil derivatives hydrogenated castor oil, ethylene stearic acid amide and phthalamide can adjust the viscosity and adhesion of the solder paste, prevent the solder paste from tailing and sticking during the printing process, so as to improve Printing performance of solder paste.
  • a thixotropic agent one or more of them can be used as a mixture.
  • the flux further contains 0.5-1 parts of corrosion inhibitor based on parts by mass.
  • the corrosion inhibitor can prevent the pad and the components being welded from being corroded, so as to protect the components being welded, so that there is no need to clean them after welding.
  • the amount of corrosion inhibitors should be controlled so that they can fully function without causing material waste.
  • the amount of corrosion inhibitor used is 0.5 part, 0.7 part or 1 part by mass.
  • the corrosion inhibitor is selected from at least one of mercaptobenzothiazole, benzotriazole and tolyltriazole.
  • mercaptobenzothiazole, benzotriazole and tolyltriazole are all corrosion inhibitors, which can form a protective film on the surface of the pad and the soldered components to prevent them from being corroded. No cleaning operation is required after welding. When selecting corrosion inhibitors, one or more of them can be selected.
  • Benzotriazole is preferred, and benzotriazole is used as a high-efficiency corrosion inhibitor, which can more effectively prevent the pad and the components being welded from being corroded. Benzotriazole with a mass fraction of 1% is usually used, which has a better corrosion inhibition effect.
  • the soldering flux further contains 0.1 to 1 part of antioxidant by part by mass, by part by mass.
  • the antioxidant can prevent the oxidation of tin powder to improve the oxidation resistance of the solder paste.
  • the amount of antioxidant is 0.1 part, 0.3 part, 0.6 part or 1 part by mass.
  • the antioxidant is phenol or p-phenol.
  • 2,6-di-tert-butyl-4-methylphenol with a mass fraction of 5% is used, which can more effectively prevent the oxidation of tin powder and improve the oxidation resistance of the solder paste.
  • This application also proposes a method for preparing soldering flux, which includes the following steps:
  • the third mixed solution is adjusted to a preset temperature threshold, kept warm, and then cooled to obtain a flux.
  • the solvent and the film-forming agent are poured into the reaction kettle for mixing, and heated to completely dissolve the film-forming agent, stirred to make the mixture uniform, and kept for a period of time to obtain a clear and transparent first mixed solution. Since the heating temperature is relatively high, directly adding the active agent will volatilize the active agent, and the first mixed solution needs to be cooled. Then, the active agent is added to the cooled first mixed solution, stirred to make it evenly mixed, and kept for a period of time to obtain a clear and transparent second mixed solution. After that, add a thixotropic agent to the second mixed solution, stir to make it evenly mixed, and keep it warm for a period of time to obtain a clear and transparent third mixed solution.
  • the temperature of the reactor is adjusted to a preset temperature, kept for a period of time, and the vacuum stirring mode is turned on to make it evenly mixed under vacuum. After that, the reactor is quickly cooled to normal temperature and continued for a period of time to ensure the thixotropic properties of the flux, and the flux can be obtained.
  • the flux prepared by the application has better flux performance, consistency of viscosity and thixotropy.
  • the flux When the flux is applied to solder paste, it can make the solder paste have better viscosity consistency and stability, longer storage life, and good collapse resistance and solderability, which can meet the surface mount requirements of electronic devices.
  • a three-roll mill is used to grind the solid particles to reduce the particle size of the solid particles. It is usually ground to a solid particle size range of 3 ⁇ m-6 ⁇ m or less.
  • the step of mixing the solvent and the film-forming agent and heating to obtain the first mixed solution includes:
  • the solvent is added to the reaction kettle, and the temperature of the reaction kettle is controlled to be 80° C.-100° C., and the heating time is 30 min-90 min to obtain the first mixed solution.
  • the temperature of the reactor is controlled to be 80°C to 100°C, that is, the heating temperature is controlled to fully dissolve the film-forming agent, for example, the temperature of the reactor is controlled to 80°C, 85°C, 90°C, 95°C or 100°C.
  • the stirring speed must be strictly controlled, such as controlling the stirring speed to 200r/min, 400r/min, 600r/min, 800r/min or 1000r/min. After adding the film-forming agent, increase the stirring speed to make it more fully dissolved, for example, adjust the stirring speed to 500r/min, 800r/min, 1000r/min, 1500r/min or 2000r/min. And after heating and holding for 30min, 50min, 70min or 90min, a clear and transparent first mixed solution can be obtained.
  • the step of adjusting the third mixed solution to a preset temperature threshold, keeping warm, and then cooling to obtain the flux includes:
  • the temperature of the third mixed solution is adjusted to 30°C-90°C, kept for 2h, and then cooled to 0°C-25°C, and the cooling duration is 30min-90min to obtain a flux.
  • the temperature of the third mixed solution is adjusted to 30°C, 50°C, 70°C or 90°C, kept for 2h, and stirred under vacuum, and the stirring speed is controlled to be 500r/min, 800r/min, 1000r/min, 1500r /min or 2000r/min. After cooling to the range of 0°C-25°C for a duration of 30min, 50min, 70min or 90min, the flux can be obtained.
  • the method further includes:
  • the prepared flux needs to be refrigerated to slow down its volatilization and ensure the performance of the flux during subsequent use. Generally, put the soldering flux in the refrigerator for less than 12 hours before use.
  • the method before the step of adding the thixotropic agent to the second mixed solution to obtain the third mixed solution, the method further includes:
  • the addition of corrosion inhibitor here can prevent the pad and the components being welded from being corroded, so as to protect the components being welded, and there is no need to clean them after welding. It should be noted that when adding the corrosion inhibitor, the added amount of the corrosion inhibitor should be controlled so that it can fully function without causing material waste. For example, the added amount of the corrosion inhibitor is 0.5 part, 0.7 part or 1 part in terms of parts by mass.
  • antioxidants can prevent the oxidation of tin powder to improve the oxidation resistance of the solder paste.
  • the amount of antioxidants added is 0.1 part, 0.3 part, 0.6 part, or 1 part in terms of parts by mass.
  • solder paste contains 85-92 parts of tin powder and 8-15 parts of flux by mass parts, and the flux is the aforementioned flux.
  • solder paste of the present application is added with the flux as described above.
  • the solder paste of the present application has better viscosity consistency and stability, longer storage life, and better collapse resistance and solderability. Well, it can meet the surface mount requirements of electronic devices.
  • the chemical composition of tin powder is SnAgCu alloy, in which the mass fraction of Ag is 3.0% and the mass fraction of Cu is 0.5%. It does not contain lead and halogen, which is environmentally friendly and will not cause damage to the atmosphere. Greatly reduce the heavy pollution to the environment.
  • the particle size of the tin powder ranges from 15 ⁇ m to 25 ⁇ m.
  • the tin powder selected here has a spherical structure with a fine particle size that can meet the requirements of fine pitch soldering.
  • the selected tin powder has a particle size of 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, 22 ⁇ m or 25 ⁇ m.
  • This application also proposes a method for preparing solder paste, which includes the following steps:
  • soldering flux 85-92 parts of tin powder and 8-15 parts of soldering flux are provided, and the soldering flux is the same as the aforementioned soldering flux;
  • the tin powder and the flux are mixed to obtain a tin paste.
  • the whole state is relatively viscous and easily sticks to the side wall. It needs to be stirred under vacuum and a scraper is used to make the mixing more uniform, so as to obtain stable performance and consistent viscosity.
  • a solder paste with good performance and solderability, and the solder paste has less residue after soldering, and will not corrode the substrate to be soldered, so the solder paste is a no-clean solder paste.
  • the step of mixing the tin powder and the flux to obtain a solder paste includes:
  • the control vacuum range is 0.04MPa-0.12MPa
  • the stirring speed is 500r/min-2000r/min
  • the squeegee speed is 500r/min-2000r/min to obtain solder paste.
  • the tin powder is mixed with the flux in multiple times to make the mixing more uniform, thereby making the prepared tin paste stable in performance, consistent in viscosity, and better in solderability.
  • the tin powder is divided into four parts by mass, and the mass ratio of the four parts of tin powder is 4:3:2:1.
  • mixing first mix four-tenths of tin powder and flux in a vacuum disperser, and then add three-tenths, two-tenths, and one-tenths of tin powder in sequence.
  • soldering flux and the preparation method thereof the solder paste and the preparation method thereof of the present application will be described in detail through specific embodiments.
  • the flux contains 40.25 parts of diethylene glycol butyl ether, 30 parts of hydrogenated rosin, 10 parts of maleic rosin, 2 parts of ethylene stearic acid amide, 6 parts of phthalamide, and 2 parts of phenyl succinic acid. , 2 parts of DL-malic acid, 2 parts of adipic acid, 2 parts of dodecanedioic acid, 2 parts of octanedioic acid, 1 part of benzotriazole and 0.75 parts of 2,6-di-tert-butyl-p-cresol.
  • the flux is prepared by the following steps:
  • solder paste The preparation steps of solder paste are as follows:
  • the flux contains 30.25 parts of diethylene glycol butyl ether, 10 parts of diethylene glycol hexyl ether, 10 parts of maleic rosin, 30 parts of water white rosin, 4 parts of hydrogenated castor oil derivatives, 4 parts of benzene two Amide, 4 parts of succinic acid, 2 parts of phenyl succinic acid, 2 parts of dodecanedioic acid, 2 parts of octanedioic acid, 1 part of benzotriazole and 0.75 parts of 2,6-di-tert-butyl-p-methyl phenol.
  • the flux is prepared by the following steps:
  • solder paste The preparation steps of solder paste are as follows:
  • the flux contains 40.25 parts of diethylene glycol hexyl ether, 30 parts of hydrogenated rosin, 10 parts of maleic rosin, 2 parts of hydrogenated castor oil derivatives, 6 parts of phthalamide, 4 parts of succinic acid, 4 parts Dodecanedioic acid, 2 parts of octylisodioic acid, 1 part of benzotriazole and 0.75 parts of 2,6-di-tert-butyl-p-cresol.
  • the flux is prepared by the following steps:
  • solder paste The preparation steps of solder paste are as follows:
  • solder pastes prepared in Examples 1 to 3 were tested for performance. First, the viscosity and thixotropy index of the solder paste were tested. The test results are shown in Table 1.
  • the viscosity of the solder paste prepared in Examples 1 to 3 is about 200Pa.s, and the average solder paste viscosity is within the appropriate range (160Pa.s-240Pa.s), with good viscosity consistency and its printing performance better. It should be noted that if the viscosity is low, it may cause bridging between the printed solder paste; if the viscosity of the solder paste is too high, it may cause the printed solder paste to have less tin.
  • the thixotropy index of the solder paste prepared in Examples 1 to 3 is about 0.70. If the thixotropy index is higher, the anti-collapse performance of the solder paste is better.
  • solder pastes prepared in Examples 1 to 3 were subjected to an aging test to evaluate the anti-collapse performance of the solder paste.
  • the aging patterns are shown in Figs. 4 to 6. It can be seen from FIG. 4 to FIG. 6 that the solder pastes prepared in Examples 1 to 3 have better anti-collapse properties, and there is basically no bridging between the printed solder pastes.
  • soldering tests were performed on the solder pastes prepared in Examples 1 to 3.
  • the solder joint morphology of the solder pastes in different embodiments are shown in Figures 7 to 9. It can be seen from Figures 7 to 9 that the solder pastes of Examples 1 to 3
  • the resulting solder joints are round and full, and the surface is clean and bright, indicating that the soldering performance is better and the soldering quality is better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

一种助焊剂及其制备方法、锡膏及其制备方法。其中,按质量份,所述助焊剂的制备原料包括:溶剂,25-35份;成膜剂,38-55份;活性剂,8-20份;触变剂,5-10份;锡膏,按质量份,所述锡膏含有85-92份锡粉和8-15份助焊剂,该助焊剂具有较好的触变性能和粘度一致性,从而使得锡膏的粘度一致性较好。

Description

助焊剂及其制备方法、锡膏及其制备方法
本申请要求:2019年12月09日申请的、申请号为201911254214.0、名称为“助焊剂及其制备方法、锡膏及其制备方法”的中国专利申请的优先权,在此将其引入作为参考。。
技术领域
本申请涉及锡膏技术领域,特别涉及一种助焊剂及其制备方法、锡膏及其制备方法。
背景技术
目前市面的3号和4号锡膏难以满足精美器件的焊接要求,特别是在应用于细间距焊接时,容易产生桥连、坍塌及空洞等问题;5号锡膏虽然能够满足精密器件的焊接要求,但是其粘度在存储过程中容易发生改变,粘度一致性较差,导致锡膏寿命较短,因此,需要研制一种粘度一致性较好的锡膏。其中,助焊剂作为锡膏的重要组成部分,直接影响锡膏的粘度一致性。目前助焊剂的触变性能和粘度一致性较差,从而影响锡膏的粘度一致性。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术解决方案
本申请的主要目的是提供一种助焊剂及其制备方法、锡膏及其制备方法,旨在保证助焊剂具有较好的触变性能和粘度一致性,从而使得锡膏的粘度一致性较好。
为实现上述目的,本申请提出的助焊剂,应用于锡膏,按质量份,所述助焊剂的制备原料包括:溶剂,25-35份;成膜剂,38-55份;活性剂,8-20份;触变剂,5-10份。
在一实施例中,所述溶剂选自二乙二醇丁醚、二乙二醇己醚、2-乙基-1,3-己二醇,二乙二醇二辛醚及二乙二醇辛醚中的至少一种;
和/或,所述成膜剂选自氢化松香、水白松香,聚合松香、歧化松香,马来松香中的至少一种;
和/或,所述活性剂选自丁二酸、己二酸、苯基丁二酸、DL-苹果酸、辛异二酸,十二二酸中的至少一种;
和/或,所述触变剂选自蓖麻油衍生物、氢化蓖麻油、乙撑硬脂酸酰胺、苯二酰胺中的至少一种。
在一实施例中,按质量份,所述助焊剂还含有0.5-1份缓蚀剂。
在一实施例中,所述缓蚀剂选用巯基苯并噻唑、苯并三氮唑、甲基苯并三唑中的至少一种。
在一实施例中,所述缓蚀剂选用质量分数为1%的苯并三氮唑。
在一实施例中,按质量份,按质量份,所述助焊剂还含有0.1-1份抗氧化剂。
在一实施例中,所述抗氧化剂选用苯酚或对苯酚。
本申请还提出了一种助焊剂的制备方法,所述助焊剂的制备方法包括以下步骤:
按质量份,提供25-35份溶剂,38-55份成膜剂,8-20份活性剂及5-10份触变剂;
混合所述溶剂和所述成膜剂,加热,得到第一混合溶液;
将所述第一混合溶液降温,并向降温后的第一混合溶液中加入所述活性剂,得到第二混合溶液;
向所述第二混合溶液中加入所述触变剂,得到第三混合溶液;
将第三混合溶液调节至预设温度阈值,保温,之后冷却,得到助焊剂。
在一实施例中,混合所述溶剂和所述成膜剂,加热,得到第一混合溶液的步骤中,包括:
将溶剂加入反应釜中,并控制反应釜的温度为80℃-100℃,加入成膜剂,加热时间为30min-90min,得到第一混合溶液;
和/或,将第三混合溶液调节至预设温度阈值,保温、之后冷却,得到助焊剂的步骤中,包括:
将第三混合溶液的温度调节至30℃-90℃,保温2h,之后冷却至0℃-25℃,冷却持续时间为30min-90min,得到助焊剂;
和/或,在将第三混合溶液调节至预设温度阈值,保温、之后冷却,得到助焊剂的步骤之后,还包括:
将所述助焊剂进行冷藏12小时以上。
在一实施例中,制备所述第一混合溶液的步骤中包括对溶液搅拌,所述搅拌速度为500r/min-2000r/min。
在一实施例中,在向所述第二混合溶液中加入所述触变剂,得到第三混合溶液的步骤之前,还包括:
向所述第二混合溶液中加入0.5-1份缓蚀剂和/或0.1-1份抗氧化剂。
本申请还提出了一种锡膏,所述锡膏含有85-92份锡粉和8-15份助焊剂,所述助焊剂为如前所述的助焊剂。
在一实施例中,所述锡粉的粒径范围为15μm-25μm。
本申请还提出了一种锡膏的制备方法,所述锡膏的制备方法包括以下步骤:
按质量份,提供85-92份锡粉和8-15份助焊剂,所述助焊剂为如权利要求1至6中任一项所述的助焊剂;
混合所述锡粉和所述助焊剂,得到锡膏。
在一实施例中,在混合所述锡粉和所述助焊剂,得到锡膏的步骤中,包括:
将所述锡粉分为多份,先将其中一份锡粉与助焊剂混合,之后依次加入剩余的锡粉,控制真空范围为0.04MPa-0.12MPa,搅拌速度为500r/min-2000r/min,刮刀速度为500r/min-2000r/min,得到锡膏。
本申请的技术方案,助焊剂含有溶剂、成膜剂、活性剂及触变剂,并合理调整各成分的用量,便可得到助焊性能、粘度一致性及触变性能较好的助焊剂。当该助焊剂应用于锡膏时,可以使得锡膏具有较好的粘度一致性和稳定性,存储寿命较长,同时其抗坍塌性能和焊接性较好,可以满足电子器件的表面贴装要求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为实施例一制备的锡膏的印刷图形;
图2为实施例二制备的锡膏的印刷图形;
图3为实施例三制备的锡膏的印刷图形;
图4为实施例一制备的锡膏的老化图形;
图5为实施例二制备的锡膏的老化图形;
图6为实施例三制备的锡膏的老化图形;
图7为实施例一制备的锡膏的焊点形貌图;
图8为实施例二制备的锡膏的焊点形貌图;
图9为实施例三制备的锡膏的焊点形貌图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种助焊剂,应用于锡膏,一般地,锡膏包括助焊剂和锡粉。
按质量份计,本申请助焊剂的原料包括:溶剂,25-35份;成膜剂,38-55份;活性剂,8-20份;触变剂,5-10份。
这里溶剂作为溶解助焊剂其他成分的体系,在助焊剂搅拌过程中起到均匀调节的作用,并且溶剂对助焊剂的粘度和寿命有一定的作用。活性剂作为助焊剂的重要成分,主要作用是去除被焊基体表面及锡粉表面的氧化物,增加熔融锡粉在焊盘表面的润湿性,以提高可焊性。成膜剂主要起到调节锡膏粘度、传递焊接热量、保护去除氧化膜后的金属不再被氧化的作用。触变剂主要是调节锡膏的粘度和粘附性,防止锡膏在印刷过程出现拖尾和粘连等现象,以提高锡膏的印刷性能。并且,合理调整各成分的用量,便可得到助焊性能、粘度一致性及触变性能较好的助焊剂,当应用于锡膏时,可以使得锡膏具有较好的粘度一致性和稳定性,同时抗坍塌性能和焊接性较好,可以满足电子器件的表面贴装要求。一般地,按质量份计,助焊剂中溶剂用量为25份、28份、30份、32份或35份;成膜剂用量为38份、40份、45份、48份、50份或55份;活性剂用量为8、10份、15份或20份;触变剂的用量为5份、7份或10份。
因此,可以理解的,本申请的技术方案,助焊剂含有溶剂、成膜剂、活性剂及触变剂,并合理调整各成分的用量,便可得到助焊性能、粘度一致性及触变性能较好的助焊剂。当该助焊剂应用于锡膏时,可以使得锡膏具有较好的粘度一致性和稳定性,存储寿命较长,同时抗坍塌性能和焊接性较好,可以满足电子器件的表面贴装要求。
在一实施例中,溶剂选自二乙二醇丁醚、二乙二醇己醚、2-乙基-1,3-己二醇,二乙二醇二辛醚及二乙二醇辛醚中的至少一种。
这里二乙二醇丁醚二乙二醇己醚、2-乙基-1,3-己二醇,二乙二醇二辛醚及二乙二醇辛醚均具有较低的挥发速度,均可作为溶剂使用,在助焊剂搅拌过程中均起到均匀调节的作用,并且对助焊剂的粘度和寿命有一定的作用。在使用溶剂中可以选用其中的一种或多种混合物。
在一实施例中,成膜剂选自氢化松香、水白松香,聚合松香、歧化松香,马来松香中的至少一种。
这里成膜剂选用的是改性松香,其中,氢化松香是一种改性松香,作为成膜剂使用,可使得助焊剂的助焊性能较好,且焊接可靠性较高。并且,对电子器件无腐蚀性,焊接后不需要清洗操作。水白松香是一族部分歧化-加氢的天然增粘树脂,加入后可以调节锡膏的粘度,并且溶解性和相容性较好,从而保证助焊剂的粘度一致性较好。聚合松香、歧化松香及马来松香均作为一种改性松香,均可起到调节锡膏粘度、传递焊接热量、保护去除氧化膜后的金属不再被氧化的作用。需要说明的是,在选用成膜剂时,可以选用这些改性松香中的一种或多种混合物。
在一实施例中,活性剂选自丁二酸、己二酸、苯基丁二酸、DL-苹果酸、辛异二酸及十二二酸中的至少一种。
这里活性剂选用的有机酸,有机酸选自丁二酸、己二酸、苯基丁二酸、DL-苹果酸、辛异二酸及十二二酸,这些有机酸均能去除被焊基体表面及锡粉表面的氧化物,增加熔融锡粉在焊盘表面的润湿性,以提高可焊性。
在一实施例中,触变剂选自蓖麻油衍生物、氢化蓖麻油、乙撑硬脂酸酰胺、苯二酰胺中的至少一种。
这里蓖麻油衍生物、氢化蓖麻油、乙撑硬脂酸酰胺及苯二酰胺均可以起到调节锡膏的粘度和粘附性,防止锡膏在印刷过程出现拖尾和粘连等现象,以提高锡膏的印刷性能。在选用触变剂时,可以选用其中的一种或多种混合物。
在一实施例中,按质量份,助焊剂还含有0.5-1份缓蚀剂。
这里缓蚀剂可以防止焊盘和被焊接的元器件受到腐蚀,以对被焊接元器件起到保护作用,这样焊接后不需要清洗。在使用缓蚀剂时,要控制好缓蚀剂的用量,以使其充分发挥作用,且不会造成材料浪费。例如,按质量份计,缓蚀剂的用量为0.5份、0.7份或1份。
在一实施例中,缓蚀剂选用巯基苯并噻唑、苯并三氮唑及甲基苯并三唑中的至少一种。
这里巯基苯并噻唑、苯并三氮唑及甲基苯并三唑均为缓蚀剂,可在焊盘和被焊接的元器件的表面形成一层保护膜,以防止其受到腐蚀,这样在焊接后不需要清洗操作。在选用缓蚀剂时,可选用其中的一种或多种。
优选苯并三氮唑,苯并三氮唑作为一种高效缓蚀剂,可以更有效地防止焊盘和被焊接的元器件受到腐蚀。通常选用质量分数为1%的苯并三氮唑,其缓蚀效果较好。
在一实施例中,按质量份,按质量份,助焊剂还含有0.1-1份抗氧化剂。
这里抗氧化剂可以防止锡粉氧化,以提高锡膏的抗氧化性能。在使用抗氧化剂时,要控制好抗氧化剂的用量,以使其充分发挥作用,且不会造成材料浪费。例如,按质量份计,抗氧化剂的用量为0.1份、0.3份、0.6份或1份。
在一实施例中,抗氧化剂选用苯酚或对苯酚。优选用质量分数为5%的2,6-二叔丁基-4-甲基苯酚,能够更有效地防止锡粉氧化,以提高锡膏的抗氧化性能。
本申请还提出一种助焊剂的制备方法,所述助焊剂的制备方法包括以下步骤:
按质量份,提供25-35份溶剂,38-55份成膜剂,8-20份活性剂及5-10份触变剂;
混合溶剂和成膜剂,加热,得到第一混合溶液;
将第一混合溶液降温,并向降温后的第一混合溶液中加入活性剂,得到第二混合溶液;
向第二混合溶液中加入触变剂,得到第三混合溶液;
将第三混合溶液调节至预设温度阈值,保温,之后冷却,得到助焊剂。
具体地,首先将溶剂和成膜剂倒入反应釜中进行混合,并加热使得成膜剂完全溶解,搅拌使其混合均匀,并保温一段时间,便可得到澄清透明的第一混合溶液。由于加热温度较高,直接加入活性剂会使得活性剂挥发,则需要对第一混合溶液进行降温。之后向降温后的第一混合溶液中加入活性剂,搅拌使其混合均匀,并保温一段时间,便可得到澄清透明的第二混合溶液。之后,向第二混合溶液中加入触变剂,搅拌使其混合均匀,并保温一段时间,便可澄清透明的第三混合溶液。随后将反应釜温度调节至预设温度,保温一段时间,并开启真空搅拌模式,使其在真空下混合均匀。之后将反应釜快速冷却至常温,并持续一段时间,以确保助焊剂的触变性能,便可得到助焊剂。
本申请制备的助焊剂助焊性能、粘度一致性及触变性能较好。当该助焊剂应用于锡膏时,可以使得锡膏具有较好的粘度一致性和稳定性,存储寿命较长,同时抗坍塌性能和焊接性较好,可以满足电子器件的表面贴装要求。
需要说明的是,为了得到分散均匀的助焊剂,一般地,采用三辊研磨机对其固体颗粒进行研磨,以减小固体颗粒的粒径。通常研磨至固体颗粒粒径范围为3μm-6μm以下。
在本申请的一实施例中,在混合所述溶剂和所述成膜剂,加热,得到第一混合溶液的步骤中,包括:
将溶剂加入反应釜中,并控制反应釜的温度为80℃-100℃,加热时间为30min-90min,得到第一混合溶液。
具体地,控制反应釜的温度为80℃-100℃,也即是控制其加热温度,以使得成膜剂充分溶解,比如控制反应釜的温度为80℃、85℃、90℃、95℃或100℃。并且为了使得分散更均匀,要严格控制搅拌速度,比如控制搅拌速度为200r/min、400r/min、600r/min、800r/min或1000r/min。加入成膜剂后,加大搅拌速度,以使其更充分的溶解,比如调节搅拌速度为500r/min、800r/min、1000r/min、1500r/min或2000r/min。并且加热保温30min、50min、70min或90min后,便可得到澄清透明的第一混合溶液。
在本申请的一实施例中,将第三混合溶液调节至预设温度阈值,保温、之后冷却,得到助焊剂的步骤中,包括:
将第三混合溶液的温度调节至30℃-90℃,保温2h,之后冷却至0℃-25℃,冷却持续时间为30min-90min,得到助焊剂。
具体地,将第三混合溶液的温度调节至30℃、50℃、70℃或90℃,保温2h,并在真空下搅拌,控制搅拌速度为500r/min、800r/min、1000r/min、1500r/min或2000r/min。之后冷却至0℃-25℃范围内,持续时间为30min、50min、70min或90min,便可得到助焊剂。
在一实施例中,在将第三混合溶液调节至预设温度阈值,保温、之后冷却,得到助焊剂的步骤之后,还包括:
将助焊剂进行冷藏12小时以上。
由于助焊剂中溶剂和活性剂容易挥发,则制备好的助焊剂需要冷藏处理,以减缓其挥发,保证助焊剂后续使用时的性能。一般地,将助焊剂放入冰箱中冷藏12小时以下,待用。
在一实施例中,在向所述第二混合溶液中加入所述触变剂,得到第三混合溶液的步骤之前,还包括:
向所述第二混合溶液中加入0.5-1份缓蚀剂和/或0.1-1份抗氧化剂。
这里缓蚀剂的加入可以防止焊盘和被焊接的元器件受到腐蚀,以对被焊接元器件起到保护作用,且焊接后不需要清洗。需要说明的是,在加入缓蚀剂时,要控制好缓蚀剂的加入量,以使其充分发挥作用,且不会造成材料浪费。例如,按质量份计,缓蚀剂的加入量为0.5份、0.7份或1份。
并且,抗氧化剂的加入可以防止锡粉氧化,以提高锡膏的抗氧化性能。在使用抗氧化剂时,要控制好抗氧化剂的加入量,以使其充分发挥作用,且不会造成材料浪费。例如,按质量份计,抗氧化剂的加入量为0.1份、0.3份、0.6份或1份。
本申请还提出了一种锡膏,按质量份,锡膏含有85-92份锡粉和8-15份助焊剂,所述助焊剂为如前所述的助焊剂。
可以理解的是,本申请锡膏中正是加入了如前所述的助焊剂,本申请的锡膏具有较好的粘度一致性和稳定性,存储寿命较长,同时抗坍塌性能和焊接性较好,可以满足电子器件的表面贴装要求。
需要说明的是,锡粉的化学成分为SnAgCu合金,其中Ag的质量分数为3.0%,Cu的质量分数为0.5%,不含有铅及卤素,有利于环保,并且不会对大气层造成破坏,也大大降低了对环境的重金污染。
在一实施例中,锡粉的粒径范围为15μm-25μm。这里选用的锡粉为球状结构,其粒径较细,可以满足细间距焊接的要求,比如选用的锡粉粒径为15μm、18μm、20μm、22μm或25μm。
本申请还提出了一种锡膏的制备方法,所述锡膏的制备方法包括以下步骤:
按质量份,提供85-92份锡粉和8-15份助焊剂,所述助焊剂为如前所属的助焊剂;
混合所述锡粉和所述助焊剂,得到锡膏。
这里在助焊剂与锡粉搅拌混合的过程中,整个状态比较粘稠,很容易沾到侧壁,需要在真空下搅拌,并采用刮刀就是为了使其混合更均匀,以得到性能稳定、粘度一致性及焊接性较好的锡膏,而且该锡膏焊接后残留少,不会对待焊接基体产生腐蚀,则该锡膏为免洗锡膏。
在本申请的一实施例中,在混合所述锡粉和所述助焊剂,得到锡膏的步骤中,包括:
将所述锡粉分为多份,先将其中一份锡粉与助焊剂混合,之后依次加入剩余的锡粉,控制真空范围为0.04MPa-0.12MPa,搅拌速度为500r/min-2000r/min,刮刀速度为500r/min-2000r/min,得到锡膏。
这里将锡粉分多次与助焊剂进行混合,可以使其混合的更加均匀,进而使得制备得到的锡膏性能稳定、粘度一致性及焊接性较好。比如,将锡粉按质量份分为四份,四份锡粉的质量比为4:3:2:1。在混合时,先将质量为十分之四的锡粉与助焊剂在真空分散机内混合均匀,随后依次加入质量为十分之三、十分之二及十分之一的锡粉,并控制真空在0.04MPa-0.12MPa范围内,边加入边进行搅拌,其搅拌速度控制为500r/min、800r/min、1000r/min、1500r/min或2000r/min,同时刮刀的速度控制为500r/min、800r/min、1000r/min、1500r/min或2000r/min,这样便可得到性能较为稳定、粘度一致性和焊接性能较好的锡膏。
以下通过具体实施例对本申请助焊剂及其制备方法、锡膏及其制备方法进行详细说明。
实施例一
按质量份计,助焊剂含有40.25份二乙二醇丁醚、30份氢化松香、10份马来松香、2份乙撑硬脂酸酰胺、6份苯二酰胺、2份苯基丁二酸、2份DL-苹果酸、2份己二酸、2份十二二酸、2份辛异二酸、1份苯并三氮唑及0.75份2,6-二叔丁基对甲酚。
助焊剂由以下步骤制备得到:
(1)将40.25份二乙二醇丁醚加入反应釜中,并控制反应釜的温度为95℃,搅拌速度为300r/min,搅拌5min后,加入30份氢化松香和10份马来松香,调节搅拌速度为1000r/min,保温30min,得到澄清透明的第一混合溶液。
(2)将反应釜的温度于五分钟内降至75℃,将2份苯基丁二酸、2份DL-苹果酸、2份己二酸、2份十二二酸及2份辛异二酸加入第一混合溶液中,保温时间为20min,搅拌速度为1000r/min,得到澄清透明的第二混合溶液。
(3)将1份苯并三氮唑和0.75份2,6-二叔丁基对甲酚加入第二混合溶液中,保温时间为10min,搅拌速度为500r/min。随后加入2份乙撑硬脂酸酰胺和6份苯二酰胺,保温时间为60min,搅拌速度为1000r/min,便可得到澄清透明的第三混合溶液。
(4)将反应釜温度调至60℃,保温两小时,并且开启真空搅拌模式,搅拌速度为2000r/min;之后将反应釜快速冷却至5℃,持续时间为60min,确保助焊剂的触变性,随后用三辊研磨机研磨固体颗粒至3μm,得到分散均匀的助焊剂。
(5)最后,将制备得到助焊剂在冰箱内冷藏12小时以上,待用。
锡膏的制备步骤如下:
(1)从冰箱取出助焊剂后,常温下回温半小时以上;
(2)按照一定的质量比12:88称取助焊剂和锡粉,其中锡粉的质量分为4:3:2:1。
(3)先将质量为十分之四的锡粉与助焊剂在真空分散机内混合均匀,随后依次将十分之三、十分之二和十分之一的锡粉质量加入到锡粉与助焊剂组成的混合物中,其中真空调至0.06MPa,搅拌速度为500r/min,搅拌时间为60min,刮刀速度为1000r/min,便可得到免清洗无铅锡膏。
实施例二
按质量份计,助焊剂含有30.25份二乙二醇丁醚、10份二乙二醇己醚、10份马来松香、30份水白松香、4份氢化蓖麻油衍生物、4份苯二酰胺、4份丁二酸、2份苯基丁二酸、2份十二二酸、2份辛异二酸、1份苯并三氮唑及0.75份2,6-二叔丁基对甲酚。
助焊剂由以下步骤制备得到:
(1)将30.25份二乙二醇丁醚和10份二乙二醇己醚加入反应釜中,并控制反应釜的温度为95℃,搅拌速度为300r/min,搅拌5min后,加入10份马来松香和30份水白松香,调节搅拌速度为1000r/min,保温30min,得到澄清透明的第一混合溶液。
(2)将反应釜的温度于五分钟内降至75℃,将4份丁二酸、2份苯基丁二酸、2份十二二酸及2份辛异二酸加入第一混合溶液中,保温时间为20min,搅拌速度为1000r/min,得到澄清透明的第二混合溶液。
(3)将1份苯并三氮唑和0.75份2,6-二叔丁基对甲酚加入第二混合溶液中,保温时间为10min,搅拌速度为500r/min。随后加入4份氢化蓖麻油衍生物和4份苯二酰胺,保温时间为60min,搅拌速度为1000r/min,便可得到澄清透明的第三混合溶液。
(4)将反应釜温度调至60℃,保温两小时,并且开启真空搅拌模式,搅拌速度为2000r/min;之后将反应釜快速冷却至5℃,持续时间为60min,确保助焊剂的触变性,随后用三辊研磨机研磨固体颗粒至3μm,得到分散均匀的助焊剂。
(5)最后,将制备得到助焊剂在冰箱内冷藏12小时以上,待用。
锡膏的制备步骤如下:
(1)从冰箱取出助焊剂后,常温下回温半小时以上;
(2)按照一定的质量比12:88称取助焊剂和锡粉,其中锡粉的质量分为4:3:2:1。
(3)先将质量为十分之四的锡粉与助焊剂在真空分散机内混合均匀,随后依次将十分之三、十分之二和十分之一的锡粉质量加入到锡粉与助焊剂组成的混合物中,其中真空调至0.06MPa,搅拌速度为500r/min,搅拌时间为60min,刮刀速度为1000r/min,便可得到免清洗无铅锡膏。
实施例三
按质量份计,助焊剂含有40.25份二乙二醇己醚、30份氢化松香、10份马来松香、2份氢化蓖麻油衍生物、6份苯二酰胺、4份丁二酸、4份十二二酸、2份辛异二酸、1份苯并三氮唑及0.75份2,6-二叔丁基对甲酚。
助焊剂由以下步骤制备得到:
(1)将40.25份二乙二醇己醚加入反应釜中,并控制反应釜的温度为95℃,搅拌速度为300r/min,搅拌5min后,加入30份氢化松香和10份马来松香,调节搅拌速度为1000r/min,保温30min,得到澄清透明的第一混合溶液。
(2)将反应釜的温度于五分钟内降至75℃,将4份丁二酸、4份十二二酸及2份辛异二酸加入第一混合溶液中,保温时间为20min,搅拌速度为1000r/min,得到澄清透明的第二混合溶液。
(3)将1份苯并三氮唑和0.75份2,6-二叔丁基对甲酚加入第二混合溶液中,保温时间为10min,搅拌速度为500r/min。随后加入2份氢化蓖麻油衍生物和6份苯二酰胺,保温时间为60min,搅拌速度为1000r/min,便可得到澄清透明的第三混合溶液。
(4)将反应釜温度调至60℃,保温两小时,并且开启真空搅拌模式,搅拌速度为2000r/min;之后将反应釜快速冷却至5℃,持续时间为60min,确保助焊剂的触变性,随后用三辊研磨机研磨固体颗粒至3μm,得到分散均匀的助焊剂。
(5)最后,将制备得到助焊剂在冰箱内冷藏12小时以上,待用。
锡膏的制备步骤如下:
(1)从冰箱取出助焊剂后,常温下回温半小时以上;
(2)按照一定的质量比12:88称取助焊剂和锡粉,其中锡粉的质量分为4:3:2:1。
(3)先将质量为十分之四的锡粉与助焊剂在真空分散机内混合均匀,随后依次将十分之三、十分之二和十分之一的锡粉质量加入到锡粉与助焊剂组成的混合物中,其中真空调至0.06MPa,搅拌速度为500r/min,搅拌时间为60min,刮刀速度为1000r/min,便可得到免清洗无铅锡膏。
将实施例一至三制备的锡膏进行性能测试,首先测试锡膏的粘度和触变指数,其测试结果见表1。
表1不同实施例的锡膏粘度和触变指数
性能 实施例一 实施例二 实施例三
粘度/Pa.s 198.3 208.0 203.4
触变指数 0.70 0.74 0.68
由表1可以看出,实施例一至三制备的锡膏粘度在200Pa.s左右,均锡膏粘度合适范围内(160Pa.s-240Pa.s),具有较好的粘度一致性,其印刷性能较好。需要说明的是,若粘度较低,有可能会造成印制锡膏之间的桥连;若锡膏粘度太高,有可能使印制锡膏少锡。
并且,实施例一至三制备的锡膏触变指数在0.70左右,触变指数较高,则锡膏的抗坍塌性能较好。
其次,对实施例一至三制备的锡膏进行印刷试验,用以评估锡膏的印刷性能,其印刷图形见图1至图3,由此看出,实施例一至三印刷锡膏得到的印刷图形较为清晰,印刷锡膏之间并未出现桥连现象。
之后,对实施例一至三制备的锡膏进行老化试验,用以评估锡膏的抗坍塌性能,其老化图形见图4至图6。由图4至图6可以看出,实施例一至三制备的锡膏抗坍塌性能较好,印制锡膏之间基本上未发生桥连。
最后,对实施例一至三制备的锡膏进行焊接试验,不同实施例的锡膏的焊点形貌见图7至图9,由图7至图9可以看出,实施例一至三的锡膏产生的焊点圆润且饱满,且表面洁净光亮,说明其焊接性能较好,焊接质量较好。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (15)

  1. 一种助焊剂,应用于锡膏,其中,按质量份,所述助焊剂的制备原料包括:
    溶剂,25-35份;
    成膜剂,38-55份;
    活性剂,8-20份;
    触变剂,5-10份。
  2. 如权利要求1所述的助焊剂,其中,所述溶剂选自二乙二醇丁醚、二乙二醇己醚、2-乙基-1,3-己二醇,二乙二醇二辛醚及二乙二醇辛醚中的至少一种;
    和/或,所述成膜剂选自氢化松香、水白松香,聚合松香、歧化松香,马来松香中的至少一种;
    和/或,所述活性剂选自丁二酸、己二酸、苯基丁二酸、DL-苹果酸、辛异二酸,十二二酸中的至少一种;
    和/或,所述触变剂选自蓖麻油衍生物、氢化蓖麻油、乙撑硬脂酸酰胺、苯二酰胺中的至少一种。
  3. 如权利要求1或2所述的助焊剂,其中,按质量份,所述助焊剂还含有0.5-1份缓蚀剂。
  4. 如权利要求3所述的助焊剂,其中,所述缓蚀剂选用巯基苯并噻唑、苯并三氮唑、甲基苯并三唑中的至少一种。
  5. 如权利要求4所述的助焊剂,其中,所述缓蚀剂选用质量分数为1%的苯并三氮唑。
  6. 如权利要求1或2所述的助焊剂,其中,按质量份,按质量份,所述助焊剂还含有0.1-1份抗氧化剂。
  7. 如权利要求6所述的助焊剂,其中,所述抗氧化剂选用苯酚或对苯酚。
  8. 一种助焊剂的制备方法,其中,所述助焊剂的制备方法包括以下步骤:
    按质量份,提供25-35份溶剂,38-55份成膜剂,8-20份活性剂及5-10份触变剂;
    混合所述溶剂和所述成膜剂,加热,得到第一混合溶液;
    将所述第一混合溶液降温,并向降温后的第一混合溶液中加入所述活性剂,得到第二混合溶液;
    向所述第二混合溶液中加入所述触变剂,得到第三混合溶液;
    将第三混合溶液调节至预设温度阈值,保温,之后冷却,得到助焊剂。
  9. 如权利要求8所述的助焊剂的制备方法,其中,混合所述溶剂和所述成膜剂,加热,得到第一混合溶液的步骤中,包括:
    将溶剂加入反应釜中,并控制反应釜的温度为80℃-100℃,加入成膜剂,加热时间为30min-90min,得到第一混合溶液;
    和/或,将第三混合溶液调节至预设温度阈值,保温、之后冷却,得到助焊剂的步骤中,包括:
    将第三混合溶液的温度调节至30℃-90℃,保温2h,之后冷却至0℃-25℃,冷却持续时间为30min-90min,得到助焊剂;
    和/或,在将第三混合溶液调节至预设温度阈值,保温、之后冷却,得到助焊剂的步骤之后,还包括:
    将所述助焊剂进行冷藏12小时以上。
  10. 如权利要求9所述的助焊剂的制备方法,其中,制备所述第一混合溶液的步骤中包括对溶液搅拌,所述搅拌速度为500r/min-2000r/min。
  11. 如权利要求8或9所述的助焊剂的制备方法,其中,在向所述第二混合溶液中加入所述触变剂,得到第三混合溶液的步骤之前,还包括:
    向所述第二混合溶液中加入0.5-1份缓蚀剂和/或0.1-1份抗氧化剂。
  12. 一种锡膏,其中,按质量份,所述锡膏含有85-92份锡粉和8-15份助焊剂,所述助焊剂为如权利要求1至7中任一项所述的助焊剂。
  13. 如权利要求12所述的锡膏,其中,所述锡粉的粒径范围为15μm-25μm。
  14. 一种锡膏的制备方法,其中,所述锡膏的制备方法包括以下步骤:
    按质量份,提供85-92份锡粉和8-15份助焊剂,所述助焊剂为如权利要求1至7中任一项所述的助焊剂;
    混合所述锡粉和所述助焊剂,得到锡膏。
  15. 如权利要求14所述的锡膏的制备方法,其中,在混合所述锡粉和所述助焊剂,得到锡膏的步骤中,包括:
    将所述锡粉分为多份,先将其中一份锡粉与助焊剂混合,之后依次加入剩余的锡粉,控制真空范围为0.04MPa-0.12MPa,搅拌速度为500r/min-2000r/min,刮刀速度为500r/min-2000r/min,得到锡膏。
PCT/CN2020/134660 2019-12-09 2020-12-08 助焊剂及其制备方法、锡膏及其制备方法 WO2021115287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911254214.0 2019-12-09
CN201911254214.0A CN110961829B (zh) 2019-12-09 2019-12-09 助焊剂及其制备方法、锡膏及其制备方法

Publications (1)

Publication Number Publication Date
WO2021115287A1 true WO2021115287A1 (zh) 2021-06-17

Family

ID=70033644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134660 WO2021115287A1 (zh) 2019-12-09 2020-12-08 助焊剂及其制备方法、锡膏及其制备方法

Country Status (2)

Country Link
CN (1) CN110961829B (zh)
WO (1) WO2021115287A1 (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649726A (zh) * 2021-08-27 2021-11-16 信丰正天伟电子科技有限公司 一种环保助焊剂及其制备方法
CN113714679A (zh) * 2021-09-01 2021-11-30 江苏正能电子科技有限公司 一种免洗无残留且高润湿的smt焊锡膏及其制备方法
CN113996972A (zh) * 2021-11-24 2022-02-01 云南锡业锡材有限公司 一种防发白焊锡丝用助焊剂及其制备方法
CN114101971A (zh) * 2021-12-06 2022-03-01 深圳市唯特偶新材料股份有限公司 一种活性微球、锡膏助焊剂及其制备方法
CN114248042A (zh) * 2022-01-07 2022-03-29 苏州唯特偶电子材料科技有限公司 无结晶型光伏组件串焊机专用助焊剂
CN114453578A (zh) * 2022-01-24 2022-05-10 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料
CN114453795A (zh) * 2021-12-10 2022-05-10 江苏广昇新材料有限公司 一种无铅焊锡膏用无卤助焊剂
CN114535861A (zh) * 2022-03-14 2022-05-27 深圳市同方电子新材料有限公司 一种封装用高附着力的无铅焊锡膏及其制备方法
CN114559181A (zh) * 2022-04-13 2022-05-31 邢台福润德化工有限公司 一种光伏用免清洗助焊剂及其制备方法
CN114654130A (zh) * 2022-04-25 2022-06-24 浙江亚通焊材有限公司 一种含双组份有机酸的高性能无卤助焊剂及其制备方法
CN114833493A (zh) * 2022-06-21 2022-08-02 广东哈福科技有限公司 一种弱碱性的无烟喷锡助焊剂及其制备方法
CN114986016A (zh) * 2022-06-14 2022-09-02 北京康普锡威科技有限公司 一种低残留免清洗助焊膏、焊膏及助焊膏的制备方法
CN115430946A (zh) * 2022-10-19 2022-12-06 苏州杜玛科技有限公司 一种可控残留的固晶锡膏配方
CN115781106A (zh) * 2022-12-27 2023-03-14 深圳市晨日科技股份有限公司 一种低温无卤无铅锡膏及其制备方法
CN115815883A (zh) * 2023-01-14 2023-03-21 云南锡业锡材有限公司 一种焊后残留物无色透明助焊剂及其制备方法
CN115890056A (zh) * 2022-12-15 2023-04-04 江苏太阳科技股份有限公司 一种针管挤出型高铅固晶锡膏及其制备方法
CN118002986A (zh) * 2024-04-09 2024-05-10 山西银河阳光科技有限公司 一种铝母线带电修复焊接剂的制备方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110961829B (zh) * 2019-12-09 2022-02-22 青岛歌尔微电子研究院有限公司 助焊剂及其制备方法、锡膏及其制备方法
CN111347193A (zh) * 2020-04-16 2020-06-30 深圳市博士达焊锡制品有限公司 一种高可靠性锡膏及其制备方法
CN112059467A (zh) * 2020-09-22 2020-12-11 深圳市鑫富锦新材料有限公司 一种无铅焊料合金焊锡膏
CN113210931A (zh) * 2021-05-13 2021-08-06 北京达博长城锡焊料有限公司 锡膏用助焊剂、制备其方法及无卤无铅焊锡膏

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234508A (en) * 1991-02-12 1993-08-10 Matsushita Electric Industrial Co. Ltd. Soldering paste for light beam-heating soldering
CN102513732A (zh) * 2011-12-15 2012-06-27 中南大学 一种松香型无卤素免清洗助焊剂及其制备和应用
CN103302422A (zh) * 2013-06-24 2013-09-18 无锡市彩云机械设备有限公司 无卤素低温锡焊膏
CN104308395A (zh) * 2014-10-24 2015-01-28 云南锡业锡材有限公司 适用于SnBi系列焊锡膏用无卤助焊剂及制备方法
CN104384755A (zh) * 2014-10-21 2015-03-04 西安理工大学 一种低残留高储存稳定性无铅锡膏及其制备方法
CN105728977A (zh) * 2016-04-29 2016-07-06 广东中实金属有限公司 一种高可靠性低温无铅锡膏及其制备方法
CN106001997A (zh) * 2016-06-05 2016-10-12 丘以明 一种无铅助焊膏及其制备方法
CN108465973A (zh) * 2018-06-25 2018-08-31 深圳市博士达焊锡制品有限公司 一种无铅中温焊锡膏及其制备方法
CN109483089A (zh) * 2018-11-08 2019-03-19 云南锡业锡材有限公司 高温焊锡膏用助焊剂及其制备方法
CN110961829A (zh) * 2019-12-09 2020-04-07 青岛歌尔微电子研究院有限公司 助焊剂及其制备方法、锡膏及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101073862A (zh) * 2007-06-08 2007-11-21 北京工业大学 无铅焊膏用低松香型无卤素免清洗助焊剂
CN105345316A (zh) * 2015-08-24 2016-02-24 江苏广昇新材料有限公司 新型焊锡膏生产工艺
CN107097015A (zh) * 2017-06-07 2017-08-29 廊坊邦壮电子材料有限公司 一种锡银合金焊料及其制备工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234508A (en) * 1991-02-12 1993-08-10 Matsushita Electric Industrial Co. Ltd. Soldering paste for light beam-heating soldering
CN102513732A (zh) * 2011-12-15 2012-06-27 中南大学 一种松香型无卤素免清洗助焊剂及其制备和应用
CN103302422A (zh) * 2013-06-24 2013-09-18 无锡市彩云机械设备有限公司 无卤素低温锡焊膏
CN104384755A (zh) * 2014-10-21 2015-03-04 西安理工大学 一种低残留高储存稳定性无铅锡膏及其制备方法
CN104308395A (zh) * 2014-10-24 2015-01-28 云南锡业锡材有限公司 适用于SnBi系列焊锡膏用无卤助焊剂及制备方法
CN105728977A (zh) * 2016-04-29 2016-07-06 广东中实金属有限公司 一种高可靠性低温无铅锡膏及其制备方法
CN106001997A (zh) * 2016-06-05 2016-10-12 丘以明 一种无铅助焊膏及其制备方法
CN108465973A (zh) * 2018-06-25 2018-08-31 深圳市博士达焊锡制品有限公司 一种无铅中温焊锡膏及其制备方法
CN109483089A (zh) * 2018-11-08 2019-03-19 云南锡业锡材有限公司 高温焊锡膏用助焊剂及其制备方法
CN110961829A (zh) * 2019-12-09 2020-04-07 青岛歌尔微电子研究院有限公司 助焊剂及其制备方法、锡膏及其制备方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113649726A (zh) * 2021-08-27 2021-11-16 信丰正天伟电子科技有限公司 一种环保助焊剂及其制备方法
CN113714679A (zh) * 2021-09-01 2021-11-30 江苏正能电子科技有限公司 一种免洗无残留且高润湿的smt焊锡膏及其制备方法
CN113996972B (zh) * 2021-11-24 2022-12-06 云南锡业锡材有限公司 一种防发白焊锡丝用助焊剂及其制备方法
CN113996972A (zh) * 2021-11-24 2022-02-01 云南锡业锡材有限公司 一种防发白焊锡丝用助焊剂及其制备方法
CN114101971A (zh) * 2021-12-06 2022-03-01 深圳市唯特偶新材料股份有限公司 一种活性微球、锡膏助焊剂及其制备方法
CN114101971B (zh) * 2021-12-06 2023-03-14 深圳市唯特偶新材料股份有限公司 一种活性微球、锡膏助焊剂及其制备方法
CN114453795A (zh) * 2021-12-10 2022-05-10 江苏广昇新材料有限公司 一种无铅焊锡膏用无卤助焊剂
CN114453795B (zh) * 2021-12-10 2023-09-29 江苏广昇新材料有限公司 一种无铅焊锡膏用无卤助焊剂
CN114248042A (zh) * 2022-01-07 2022-03-29 苏州唯特偶电子材料科技有限公司 无结晶型光伏组件串焊机专用助焊剂
CN114453578A (zh) * 2022-01-24 2022-05-10 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料
CN114453578B (zh) * 2022-01-24 2023-12-05 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料
CN114535861B (zh) * 2022-03-14 2024-02-09 深圳市同方电子新材料有限公司 一种封装用高附着力的无铅焊锡膏及其制备方法
CN114535861A (zh) * 2022-03-14 2022-05-27 深圳市同方电子新材料有限公司 一种封装用高附着力的无铅焊锡膏及其制备方法
CN114559181A (zh) * 2022-04-13 2022-05-31 邢台福润德化工有限公司 一种光伏用免清洗助焊剂及其制备方法
CN114654130A (zh) * 2022-04-25 2022-06-24 浙江亚通焊材有限公司 一种含双组份有机酸的高性能无卤助焊剂及其制备方法
CN114654130B (zh) * 2022-04-25 2023-02-28 浙江亚通新材料股份有限公司 一种含双组份有机酸的高性能无卤助焊剂及其制备方法
CN114986016A (zh) * 2022-06-14 2022-09-02 北京康普锡威科技有限公司 一种低残留免清洗助焊膏、焊膏及助焊膏的制备方法
CN114833493A (zh) * 2022-06-21 2022-08-02 广东哈福科技有限公司 一种弱碱性的无烟喷锡助焊剂及其制备方法
CN115430946A (zh) * 2022-10-19 2022-12-06 苏州杜玛科技有限公司 一种可控残留的固晶锡膏配方
CN115890056A (zh) * 2022-12-15 2023-04-04 江苏太阳科技股份有限公司 一种针管挤出型高铅固晶锡膏及其制备方法
CN115781106A (zh) * 2022-12-27 2023-03-14 深圳市晨日科技股份有限公司 一种低温无卤无铅锡膏及其制备方法
CN115815883A (zh) * 2023-01-14 2023-03-21 云南锡业锡材有限公司 一种焊后残留物无色透明助焊剂及其制备方法
CN118002986A (zh) * 2024-04-09 2024-05-10 山西银河阳光科技有限公司 一种铝母线带电修复焊接剂的制备方法及装置

Also Published As

Publication number Publication date
CN110961829B (zh) 2022-02-22
CN110961829A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2021115287A1 (zh) 助焊剂及其制备方法、锡膏及其制备方法
EP2147740B1 (en) Lead-free solder paste
JP4535050B2 (ja) 熱硬化性樹脂組成物及びその製造方法
WO2003002290A1 (fr) Composition de brasage
JP5667101B2 (ja) はんだ組成物およびその製造方法、並びにプリント配線基板
JP2002514973A (ja) エポキシ系voc非含有はんだ付け用フラックス
JP6635986B2 (ja) はんだ組成物および電子基板
CN113441866B (zh) 一种抗枕头效应的无铅锡膏及其制备方法
CN101966632A (zh) 一种无铅低温焊膏用免洗型助焊剂及其制备方法
JP2011121059A (ja) はんだペースト用フラックス及びはんだペースト
JP2019171467A (ja) ディスペンス塗布用はんだ組成物
JP6940565B2 (ja) はんだ組成物および電子基板
JP6259623B2 (ja) 低酸価アクリル樹脂含有はんだ付け用フラックスおよびはんだペースト組成物
JP6730833B2 (ja) はんだ合金およびはんだ組成物
WO2023179805A1 (zh) 一种免清洗金锡焊膏用助焊剂及其制备方法和应用
JP7066798B2 (ja) はんだ組成物
JP2022054100A (ja) はんだ組成物および電子基板
JP2021154332A (ja) はんだ組成物および電子基板
JP2020006402A (ja) 低残渣ソルダペースト
JPH0929480A (ja) はんだペースト
JP2020157319A (ja) はんだ組成物および電子基板の製造方法
CN115781098B (zh) 一种含有金属铟的耐高温抗氧化焊锡粉、锡膏及其制备方法
JP2024031830A (ja) フラックス組成物、はんだ組成物、および電子基板
JPH06315795A (ja) はんだ付け用フラックス及びこれを用いたクリームはんだ
JP2002120090A (ja) クリームはんだ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899109

Country of ref document: EP

Kind code of ref document: A1