WO2021114581A1 - 一种聚羧酸系和易性调节剂的制备方法 - Google Patents

一种聚羧酸系和易性调节剂的制备方法 Download PDF

Info

Publication number
WO2021114581A1
WO2021114581A1 PCT/CN2020/094399 CN2020094399W WO2021114581A1 WO 2021114581 A1 WO2021114581 A1 WO 2021114581A1 CN 2020094399 W CN2020094399 W CN 2020094399W WO 2021114581 A1 WO2021114581 A1 WO 2021114581A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reducing agent
reaction
branched
linear
Prior art date
Application number
PCT/CN2020/094399
Other languages
English (en)
French (fr)
Inventor
钟丽娜
郭元强
黄艳婷
陈国荣
方云辉
柯余良
Original Assignee
科之杰新材料集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科之杰新材料集团有限公司 filed Critical 科之杰新材料集团有限公司
Priority to RU2020123975A priority Critical patent/RU2751769C1/ru
Publication of WO2021114581A1 publication Critical patent/WO2021114581A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2605Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • C04B24/2694Copolymers containing at least three different monomers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of building material admixtures, and particularly relates to a preparation method of polycarboxylic acid series and workability regulators.
  • the most widely used viscosity modifiers in China are cellulose modifiers and propylene modifiers.
  • the cellulose modifier is powder, which is generally introduced into concrete by compounding with water reducing agent.
  • a good concrete viscosity modification effect can be achieved when the amount is 0.02-0.04% of the finished product per ton of water reducing agent.
  • the cellulose-based viscosity modifier has solubility problems.
  • the dissolution time in the water-reducing agent solution is long, and there are also compatibility problems with the water-reducing agent. It is easy to delaminate after being placed, which affects The effect of water reducing agent.
  • the propylene viscosity modifier has good compatibility with the water reducing agent, after reaching a certain dosage, there will be compatibility problems with the water reducing agent.
  • the present invention provides a preparation method of a polycarboxylic acid series and workability regulator, which is characterized in that the method includes the following steps:
  • Copolymerization reaction add polymerizable reducing agent, polyether macromonomer and water into the reaction vessel and mix, and then add the mixed solution of unsaturated acid and unsaturated ester, the oxidizing agent aqueous solution and the chain transfer agent aqueous solution dropwise respectively. React at a temperature of ⁇ 50°C for 0.5 ⁇ 6h;
  • the polymerizable reducing agent has a tertiary amino group and a cellulose ether structure.
  • the dropping time is 0.5 to 3 hours, and the reaction is continued for 0.5 to 3 hours after the dropping is completed. It is also preferred that the reaction temperature is room temperature.
  • the lye used is any lye commonly used in the art, such as liquid caustic soda, NaOH aqueous solution, KOH aqueous solution, etc., and its concentration is preferably 10%-40%, more preferably 20%-40% %.
  • the polymerizable reducing agent is prepared by the following method:
  • the compound A and compound B are subjected to transesterification reaction in an organic solvent at a temperature of 80 to 120°C for 5 to 24 hours to obtain the polymerizable reducing agent,
  • the compound A has the structural formula shown in the following formula (I):
  • R 1 is a linear or branched C 1 -C 5 alkyl group, such as methyl or ethyl;
  • R 2 is -(CH 2 ) n -, phenylene or ethoxyphenylene, where n is an integer from 1 to 10;
  • R 3 is a linear or branched C 1 -C 5 alkyl group, such as methyl or ethyl,
  • Compound B has the structural formula shown in the following formula (II):
  • R is H, CH 2 CH 2 OH, Or linear or branched C 1 -C 5 alkyl such as CH 3 .
  • the preparation of the polymerizable reducing agent it is preferable to first dissolve compound B in an organic solvent, and then add compound A. After the transesterification reaction is completed, the reaction mixture is post-treated, for example, the solvent can be removed by distillation under reduced pressure. To obtain a polymerizable reducing agent.
  • the organic solvent used is preferably a mixed solvent of a polar organic solvent and a non-polar organic solvent, such as a mixed solvent of toluene and isopropanol, and a non-polar organic solvent and a polar organic solvent.
  • the mass ratio of the organic solvent is 1:1-10:1, preferably 1:1-5:1, for example 3:1.
  • the transesterification reaction time is 5-15h.
  • the compound A is ethyl 2-diethylaminoacetate, ethyl 2-dimethylaminoacetate, ethyl 3-dimethylaminopropionate, ethyl 4-(dimethylamino)butyrate, 4 -(2-(Dimethylamino)ethoxy)ethyl benzoate, 2-dimethylaminoethyl benzoate, p-N,N-dimethylaminoethyl benzoate or 4-diethylamino Methyl benzoate, more preferably the compound A is ethyl 2-diethylaminoacetate, ethyl 2-dimethylaminoacetate or ethyl 3-dimethylaminopropionate.
  • the compound B is hydroxyethyl methyl cellulose ether, hydroxypropyl methyl cellulose ether, or hydroxypropyl methyl cellulose, and its viscosity is usually at least 5000 mPa ⁇ s, preferably its viscosity is 50,000 mPa ⁇ s s to 500,000 mPa ⁇ s, and more preferably its viscosity is 100,000 mPa ⁇ s to 300,000 mPa ⁇ s.
  • the molar ratio of the anhydroglucose unit of the compound A to the compound B is usually 0.02-3:1, the amount of the catalyst is 0.5-30% of the mass of the compound B, and the amount of the polymerization inhibitor is 0.01-0.2% of the mass of the compound B.
  • the catalyst is concentrated sulfuric acid, p-toluenesulfonic acid or 4-dimethylaminopyridine, and the polymerization inhibitor is hydroquinone, phenothiazine or diphenylamine.
  • the unsaturated acid has a structural formula as shown in formula (III):
  • R 4 is H, linear or branched C 1 -C 5 alkyl or -COOH;
  • R 5 is H or a linear or branched C 1 -C 5 alkyl group.
  • the unsaturated acid is acrylic acid or methacrylic acid.
  • the unsaturated ester has a structural formula as shown in formula (IV):
  • R 6 is H or a linear or branched C 1 -C 5 alkyl group
  • R 7 is H or a linear or branched C 1 -C 5 alkyl group
  • R 8 is -C n H 2n OH or -C n H 2n PO 4 , and n is an integer of 1-20.
  • the unsaturated ester is selected from hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, hydroxypropyl acrylate, 2-methacryloxypropyl phosphate or 2-methyl Acryloyloxyethyl phosphate and combinations thereof.
  • the polyether macromonomer is an unsaturated polyether, and is selected from the group consisting of allyl polyoxyethylene ether, methallyl polyoxyethylene ether, and methallyl polyether.
  • the oxidizing agent is hydrogen peroxide or benzoyl peroxide.
  • the chain transfer agent is a mercapto group-containing chain transfer agent, preferably thioglycolic acid, mercaptopropionic acid or mercaptoethanol.
  • the mass ratio of the polyether macromonomer, unsaturated acid, unsaturated ester, polymerizable reducing agent, oxidizing agent, and chain transfer agent is 30 ⁇ 150:5-10:1 ⁇ 2:0.05 ⁇ 4:0.5 ⁇ 3:0.1 ⁇ 1.5.
  • the present invention also provides a polycarboxylic acid series and workability modifier prepared by the preparation method of the polycarboxylic acid series and workability modifier of the present invention, which is characterized in that the polycarboxylic acid series and workability modifier are incorporated
  • the normal pressure bleeding rate of concrete is below 1%.
  • a tertiary amino group is introduced into the cellulose ether structure through the transesterification reaction of compound A and compound B.
  • the tertiary amino group can interact with the oxidizing agent to form active free radical points, thereby continuing to trigger unsaturated polyether, unsaturated acid and
  • the polymerization of saturated esters introduces hydrophilic polymer molecular chains into the structure of cellulose ethers to improve the water solubility of cellulose ethers.
  • the prepared polycarboxylic acid series and workability regulator containing a cellulose ether structure can improve the encapsulation and fluidity of the concrete, reduce the bleeding segregation phenomenon, and thereby improve the working performance of the concrete.
  • the prepared polycarboxylic acid series and workability regulator have a hyperbranched structure, have greater steric hindrance, and provide better dispersibility for concrete.
  • the molecular chain of the copolymer of unsaturated polyether, unsaturated acid and unsaturated ester is connected to the structure of cellulose ether through the ester group. As the hydration progresses, the ester group is continuously hydrolyzed to release the copolymer molecular chain, which is constantly supplemented. Consumption of water reducing agent to improve the dispersion and retention of concrete.
  • the polycarboxylic acid and workability regulators prepared in Examples 5-10 and the polycarboxylic acid water-reducing agents prepared in Comparative Example 1 and Comparative Example 2 were tested for concrete.
  • Concrete Additives Its concrete slump and slump with time, expansion and expansion with time, bleeding distance, normal pressure bleeding rate. Adjust the mixing amount so that the expansion of concrete is 550 ⁇ 10mm for comparison.
  • the concrete mix ratio is: cement 360kg/m 3 , sand 790kg/m 3 , stone 1050kg/m 3 , water 170kg/m 3 , and the results are shown in Table 1.
  • test results in Table 1 show that, compared with the comparative examples, the polycarboxylic acid series and workability regulators Examples 5-10 prepared by the present invention can not only effectively improve the workability of concrete, but also improve the slump retention performance of concrete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种聚羧酸系和易性调节剂的制备方法,其通过单体混合物的水溶液自由基聚合而获得所述和易性调节剂,所述单体混合物包括可聚合还原剂、不饱和酸、不饱和酯,所述可聚合还原剂具有叔氨基团和纤维素醚结构。制备的聚羧酸系和易性调节剂能明显改善混凝土的包裹性、流动性,降低泌水离析现象,还能够提高混凝土的分散性和分散保持性。

Description

一种聚羧酸系和易性调节剂的制备方法 技术领域
本发明属于建筑材料外加剂技术领域,特别涉及一种聚羧酸系和易性调节剂的制备方法。
背景技术
在天然砂石资源匮乏及国家对矿石资源和环境保护不断强化的形势下,机制砂石、海砂、再生骨料等已成为我国建筑、道路、桥梁等基础设施用砂石骨料的主要产品。机制砂石、海砂、再生骨料等及其他劣质砂石的使用通常会导致混凝土和易性变差,主要体现在:中、低强度混凝土粘聚性较差,出现离析、泌水现象;高强混凝土粘度太大,不利于泵送施工等。工程上,一般通过掺加粘度改性剂,来改善混凝土的和易性,达到良好的可施工性能。
目前,国内使用最多的粘度改性剂为纤维素系改性剂和丙烯系改性剂,其中纤维素系改性剂为粉末,一般通过与减水剂复配的方式引入到混凝土中,掺量为单吨减水剂成品的0.02~0.04%时就可以达到很好的混凝土粘度改性效果。但是,纤维素系粘度改性剂存在溶解性的问题,在减水剂溶液中的溶解时间较长,且与减水剂之间也存在相容性问题,放置后容易出现分层,从而影响减水剂的使用效果。丙烯系的粘度改性剂虽然与减水剂的相容性较好,但是达到一定掺量之后,也会与减水剂出现相容性的问题。
因此,制备一种能够调节混凝土和易性的减水剂是非常必要的。
发明内容
为解决现有技术中的上述问题,本发明提供了一种聚羧酸系和易性调节剂的制备方法,其特征在于,所述方法包括如下步骤:
1)共聚反应:将可聚合还原剂、聚醚大单体和水加入反应容器中混合,然后,分别滴加不饱和酸和不饱和酯的混合溶液、氧化剂水溶 液以及链转移剂水溶液,在10~50℃的温度下反应0.5~6h;
2)中和反应:反应结束后,加入碱液,调节pH至6~7,即得到所述聚羧酸系和易性调节剂,
其中所述可聚合还原剂具有叔氨基团和纤维素醚结构。
在步骤1)的共聚反应中,优选,滴加时间为0.5~3h,并且滴加结束后再继续反应0.5~3h,还优选,反应温度为室温。
在步骤2)的中和反应中,所用碱液为本领域常用的任意碱液,如液碱、NaOH水溶液、KOH水溶液等,其浓度优选为10%~40%,更优选为20%~40%。
在一个优选的实施方案中,所述可聚合还原剂通过以下方法制备:
在催化剂和阻聚剂的存在下,在80~120℃的温度下,使化合物A和化合物B在有机溶剂中,进行酯交换反应5~24h,即得到所述可聚合还原剂,
其中,所述化合物A具有如下式(I)所示的结构式:
Figure PCTCN2020094399-appb-000001
其中:
R 1为直链或支链C 1-C 5烷基,例如甲基或乙基;
R 2为-(CH 2) n-、亚苯基或乙氧基亚苯基,其中n为1~10的整数;
R 3为直链或支链C 1-C 5烷基,例如甲基或乙基,
化合物B具有如下式(II)所示的结构式:
Figure PCTCN2020094399-appb-000002
其中,R为H、CH 2CH 2OH、
Figure PCTCN2020094399-appb-000003
或直链或支链C 1-C 5烷基例如CH 3
在可聚合还原剂的制备中,优选先将化合物B溶于有机溶剂中,然后再加入化合物A,在酯交换反应结束后,对反应混合物进行后处理,例如,可通过减压蒸馏去除溶剂,以得到可聚合还原剂。
在所述可聚合还原剂的制备方法中,优选所采用的有机溶剂为极性有机溶剂和非极性有机溶剂的混合溶剂,例如甲苯与异丙醇混合溶剂,且非极性有机溶剂与极性有机溶剂的质量比为1:1~10:1,优选1:1~5:1,例如3:1。优选酯交换反应时间为5~15h。
优选,所述化合物A为2-二乙氨基乙酸乙酯、2-二甲氨基乙酸乙酯、3-二甲基氨基丙酸乙酯、4-(二甲基氨基)丁酸乙酯、4-(2-(二甲基氨基)乙氧基)苯甲酸乙酯、苯甲酸2-二甲基氨基乙酯、对-N,N-二甲氨基苯甲酸乙酯或4-二乙基氨基苯甲酸甲酯,更优选所述化合物A为2-二乙氨基乙酸乙酯、2-二甲氨基乙酸乙酯或3-二甲基氨基丙酸乙酯。
优选,所述化合物B为羟乙基甲基纤维素醚、羟丙基甲基纤维素醚、羟丙基甲基纤维素,其粘度通常为至少5000mPa·s,优选其粘度为5万mPa·s~50万mPa·s,更优选其粘度为10万mPa·s~30万mPa·s。
所述化合物A与化合物B的脱水葡萄糖单元的摩尔比通常为0.02~3:1,催化剂用量为化合物B质量的0.5~30%,阻聚剂用量为化合物B质量的0.01~0.2%。
优选,所述催化剂为浓硫酸、对甲苯磺酸或4-二甲基氨基吡啶,所述阻聚剂为对苯二酚、吩噻嗪或二苯胺。
在另一个优选的实施方案中,所述不饱和酸具有如式(III)所示的结构式:
Figure PCTCN2020094399-appb-000004
其中:
R 4为H、直链或支链C 1-C 5烷基或-COOH;
R 5为H或直链或支链C 1-C 5烷基。
优选,所述不饱和酸为丙烯酸、甲基丙烯酸。
在还另一个优选的实施方案中,所述不饱和酯具有如式(IV)所示的结构式:
Figure PCTCN2020094399-appb-000005
其中:
R 6为H或直链或支链C 1-C 5烷基;
R 7为H或直链或支链C 1-C 5烷基;
R 8为-C nH 2nOH或-C nH 2nPO 4,n为1~20的整数。
优选,所述不饱和酯选自甲基丙烯酸羟乙酯、丙烯酸羟乙酯、甲基丙烯酸羟丙酯、丙烯酸羟丙酯、2-甲基丙烯酰氧基丙基磷酸酯或2-甲基丙烯酰氧基乙基磷酸酯及其组合。
在还另一个优选的实施方案中,所述聚醚大单体为不饱和聚醚, 且选自烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯聚氧丙烯醚、异戊烯基聚氧乙烯醚或异戊烯基聚氧乙烯聚氧丙烯醚及其组合。
在还另一个优选的实施方案中,所述氧化剂为过氧化氢或过氧化苯甲酰。
在还另一个优选的实施方案中,所述链转移剂为含巯基链转移剂,优选巯基乙酸、巯基丙酸或巯基乙醇。
在还另一个优选的实施方案中,所述聚醚大单体、不饱和酸、不饱和酯、可聚合还原剂、氧化剂、链转移剂的质量比为30~150:5~10:1~2:0.05~4:0.5~3:0.1~1.5。
相应的,本发明还提供了通过本发明的聚羧酸系和易性调节剂的制备方法制备的聚羧酸系和易性调节剂,其特征在于,掺入所述和易性调节剂的混凝土的常压泌水率在1%以下。
本发明的制备方法以及采用本发明制备方法制备的聚羧酸系和易性调节剂具有以下技术原理和有益效果:
1、本发明通过化合物A和化合物B的酯交换反应在纤维素醚结构上引入叔氨基,叔氨基可以与氧化剂作用,形成活性的自由基点,从而继续引发不饱和聚醚、不饱和酸和不饱和酯的聚合,在纤维素醚的结构上引入亲水的聚合物分子链,改善纤维素醚的水溶性。制备的聚羧酸系和易性调节剂含有纤维素醚结构能够改善混凝土的包裹性、流动性、降低泌水离析现象,从而提升混凝土的工作性能。
2、制备的聚羧酸系和易性调节剂具有超支化结构,具备更大的空间位阻作用,为混凝土提供更好的分散性。并且不饱和聚醚、不饱和酸和不饱和酯的共聚物分子链通过酯基与纤维素醚结构相连接,随 着水化的进行,酯基不断水解释放出共聚物分子链,不断的补充消耗的减水剂,从而提升混凝土的分散性、保持性。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合实施例进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供如下实施例:
一、可聚合还原剂的制备
实施例1:
在装有搅拌器、分水器、温度计和氮气导管的四口烧瓶中加入3g 10万mPa·s粘度的羟丙基甲基纤维素醚、120g的甲苯及40g异丙醇,搅拌,使羟丙基甲基纤维素醚溶解,然后加入3g 2-二乙氨基乙酸乙酯、浓硫酸0.3g、对苯二酚0.001g,在搅拌条件下,使反应温度升至90℃,反应10h,反应结束后,减压蒸馏除去溶剂,即得到可聚合还原剂C1。
实施例2:
在装有搅拌器、分水器、温度计和氮气导管的四口烧瓶中加入4g 10万mPa·s粘度的羟丙基甲基纤维素醚、120g的甲苯及40g异丙醇,搅拌,使羟丙基甲基纤维素醚溶解。然后加入3g 2-二甲氨基乙酸乙酯、4-二甲基氨基吡啶0.8g、对苯二酚0.001g,在搅拌条件下,使反应温度升至90℃,反应10h,减压蒸馏除去溶剂,反应结束后, 即得到可聚合还原剂C2。
实施例3:
在装有搅拌器、分水器、温度计和氮气导管的四口烧瓶中加入4g 20万mPa·s粘度的羟丙基甲基纤维素醚、120g的甲苯及40g异丙醇,搅拌,使羟丙基甲基纤维素醚溶解。然后加入2.5g 3-二甲基氨基丙酸乙酯、浓硫酸0.25g、吩噻嗪0.001g,在搅拌条件下,使反应温度升至90℃,反应10h,反应结束后,减压蒸馏除去溶剂,即得到可聚合还原剂C3。
实施例4:
在装有搅拌器、分水器、温度计和氮气导管的四口烧瓶中加入4g 20万mPa·s粘度的羟丙基甲基纤维素醚、120g的甲苯及40g异丙醇,搅拌,使羟丙基甲基纤维素醚溶解。然后加入3.5g 3-二甲基氨基丙酸乙酯、4-二甲基氨基吡啶0.5g、对苯二酚0.001g,在搅拌条件下,使反应温度升至90℃,反应10h,反应结束后,减压蒸馏除去溶剂,即得到可聚合还原剂C4。
二、聚羧酸系和易性调节剂的制备
实施例5
将0.2g可聚合还原剂C1、200g甲基烯丙基聚氧乙烯醚和130g去离子水置于反应器中,搅拌使溶解,向反应器中滴加21g丙烯酸和4g甲基丙烯酸羟乙酯的混合溶液、2g过氧化氢水溶液及1.1g巯基乙酸的水溶液,室温条件下进行反应,滴加时间为1.5h,滴加结束后继续反应1h,反应结束后,用液碱(32wt%)调节pH至6~7,即得到聚羧酸和易性调节剂D1。
实施例6
将0.25g可聚合还原剂C2、200g异戊烯基聚氧乙烯醚和135g去 离子水置于反应器中,搅拌使溶解,向反应器中滴加20g丙烯酸和4g丙烯酸羟乙酯的混合溶液、2.5g过氧化氢水溶液及0.7g巯基丙酸的水溶液,室温条件下进行反应,滴加时间为1.5h,滴加结束后继续反应1h,反应结束后,用液碱(32wt%)调节pH至6~7,即得到聚羧酸和易性调节剂D2。
实施例7
将0.3g可聚合还原剂C3、200g甲基烯丙基聚氧乙烯醚和135g去离子水置于反应器中,搅拌使溶解,向反应器中滴加20g丙烯酸和4g甲基丙烯酸羟丙酯的混合溶液、2.1g过氧化氢水溶液及0.6g巯基乙醇的水溶液,室温条件下进行反应,滴加时间为1.5h,滴加结束后继续反应1h,反应结束后,用液碱(32wt%)调节pH至6~7,即得到聚羧酸和易性调节剂D3。
实施例8
将0.35g可聚合还原剂C4、200g异戊烯基聚氧乙烯醚和135g去离子水置于反应器中,搅拌使溶解,向反应器中滴加20g丙烯酸和3.5g丙烯酸羟丙酯的混合溶液、2g过氧化氢水溶液及0.7g巯基丙酸的水溶液,室温条件下进行反应,滴加时间为1.5h,滴加结束后继续反应1h,反应结束后,用液碱(32wt%)调节pH至6~7,即得到聚羧酸和易性调节剂D4。
实施例9
将0.2g可聚合还原剂C1、200g异戊烯基聚氧乙烯醚和135g去离子水置于反应器中,搅拌使溶解,向反应器中滴加20g丙烯酸和4g 2-甲基丙烯酰氧基丙基磷酸酯的混合溶液、2.2g过氧化氢水溶液及0.8g巯基丙酸的水溶液,室温条件下进行反应,滴加时间为1.5h,滴加结束后继续反应1h,反应结束后,用液碱(32wt%)调节pH至6~7,即得到聚羧酸和易性调节剂D5。
实施例10
将0.23g可聚合还原剂C1、200g甲基烯丙基聚氧乙烯醚和135g去离子水置于反应器中,搅拌使溶解,向反应器中滴加20g丙烯酸和3g 2-甲基丙烯酰氧基乙基磷酸酯的混合溶液、2g过氧化氢水溶液及0.8g巯基丙酸的水溶液,室温条件下进行反应,滴加时间为1.5h,滴加结束后继续反应1h,反应结束后,用液碱(32wt%)调节pH至6~7,即得到聚羧酸和易性调节剂D6。
三、对比例
对比例1
将0.7g甲醛合次硫酸钠、200g异戊烯基聚氧乙烯醚和135g去离子水置于反应器中,搅拌使溶解,向反应器中滴加20g丙烯酸和4g 2-甲基丙烯酰氧基丙基磷酸酯的混合溶液、2.2g过氧化氢水溶液及0.8g巯基丙酸的水溶液,室温条件下进行反应,滴加时间为1.5h,滴加结束后继续反应1h,反应结束后,用液碱(32wt%)调节pH至6~7,即得到聚羧酸系减水剂E1。
对比例2
将1.0g抗坏血酸、200g甲基烯丙基聚氧乙烯醚和130g去离子水置于反应器中,搅拌使溶解,向反应器中滴加21g丙烯酸和4g甲基丙烯酸羟乙酯的混合溶液、2g过氧化氢水溶液及0.8g巯基丙酸的水溶液,室温条件下进行反应,滴加时间为1.5h,滴加结束后继续反应1h,反应结束后,用液碱(32wt%)调节pH至6~7,即得到聚羧酸系减水剂E2。
将实施例5~10制备的聚羧酸系和易性调节剂与对比例1和对比例2制备的聚羧酸系减水剂进行混凝土测试,根据GB 8076-2008《混凝土外加剂》,测其混凝土坍落度和经时坍落度、扩展度和经时扩展 度、泌浆距离、常压泌水率。调整掺量使混凝土扩展度为550±10mm,进行对比。混凝土配合比为:水泥360kg/m 3、砂790kg/m 3、石头1050kg/m 3、水170kg/m 3,所得结果如表1所示。
表1混凝土试验结果
Figure PCTCN2020094399-appb-000006
表1试验结果表明,本发明制备的聚羧酸系和易性调节剂实施例5~10相较于比较例,不仅能有效改善混凝土的和易性,还能提高混凝土的保坍性能。
最后应说明的是:以上各实施例仅用以说明本发明,而非对其限制;尽管参照前述各实施方案和实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明的范围。

Claims (12)

  1. 一种聚羧酸系和易性调节剂的制备方法,其特征在于,所述方法包括如下步骤:
    1)共聚反应:将可聚合还原剂、聚醚大单体和水加入反应容器中混合,然后,分别滴加不饱和酸和不饱和酯的混合溶液、氧化剂水溶液以及链转移剂水溶液,在10~50℃的温度下反应0.5~6h;
    2)中和反应:反应结束后,加入碱液,调节pH至6~7,即得到所述聚羧酸系和易性调节剂,
    其中所述可聚合还原剂具有叔氨基团和纤维素醚结构。
  2. 根据权利要求1所述的方法,其特征在于,所述可聚合还原剂通过以下方法制备:
    在催化剂和阻聚剂的存在下,在80~120℃的温度下,使化合物A和化合物B在有机溶剂中,进行酯交换反应5~24h,即得到所述可聚合还原剂,
    其中,所述化合物A具有如下式(I)所示的结构式:
    Figure PCTCN2020094399-appb-100001
    其中:
    R 1为直链或支链C 1-C 5烷基;
    R 2为-(CH 2) n-、亚苯基或乙氧基亚苯基,其中n为1~10的整数;
    R 3为直链或支链C 1-C 5烷基,
    化合物B具有如下式(II)所示的结构式:
    Figure PCTCN2020094399-appb-100002
    其中:R为H、直链或支链C 1-C 5烷基、-CH 2CH 2OH或
    Figure PCTCN2020094399-appb-100003
    n=1~300。
  3. 根据权利要求2所述的方法,其特征在于,所述有机溶剂为极性有机溶剂和非极性有机溶剂的混合溶剂,且非极性有机溶剂与极性有机溶剂的质量比为1:1~10:1。
  4. 根据权利要求2所述的方法,其特征在于,所述化合物A与化合物B的脱水葡萄糖单元的摩尔比为0.02~3:1,所述催化剂用量为化合物B质量的0.5~30%;所述阻聚剂用量为化合物B质量的0.01~0.2%。
  5. 根据权利要求2所述的方法,其特征在于,所述催化剂为浓硫酸、对甲苯磺酸或4-二甲基氨基吡啶,且所述阻聚剂为对苯二酚、吩噻嗪或二苯胺。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述聚醚大单体选自烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯聚氧丙烯醚、异戊烯基聚氧乙烯醚、异戊烯基聚氧乙烯聚氧丙烯醚及其组合。
  7. 根据权利要求1-5中任一项所述的方法,其特征在于,所述不饱和酸具有如下式(III)所示的结构式:
    Figure PCTCN2020094399-appb-100004
    其中:
    R 4为H、直链或支链C 1-C 5烷基或-COOH;
    R 5为H或直链或支链C 1-C 5烷基。
  8. 根据权利要求1-5中任一项所述的方法,其特征在于,所述不饱和酯具有如下式(IV)所示的结构式:
    Figure PCTCN2020094399-appb-100005
    其中:
    R 6为H或直链或支链C 1-C 5烷基;
    R 7为H或直链或支链C 1-C 5烷基;
    R 8为-C nH 2nOH或-C nH 2nPO 4,n为1~20的整数。
  9. 根据权利要求1-5中任一项所述的方法,其特征在于,所述氧化剂为过氧化氢或过氧化苯甲酰。
  10. 根据权利要求1-5中任一项所述的方法,其特征在于,所述链转移剂为含巯基链转移剂。
  11. 根据权利要求1-5中任一项所述的方法,其特征在于,所述聚醚大单体、不饱和酸、不饱和酯、可聚合还原剂、氧化剂、链转移剂的质量比为30~150:5~10:1~2:0.05~4:0.5~3:0.1~1.5。
  12. 根据权利要求1-11中任一项所述的方法制备的聚羧酸系和易性调节剂,其特征在于,掺入所述和易性调节剂的混凝土的常压泌水率在1%以下。
PCT/CN2020/094399 2019-12-12 2020-06-04 一种聚羧酸系和易性调节剂的制备方法 WO2021114581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020123975A RU2751769C1 (ru) 2019-12-12 2020-06-04 Способ получения регулятора обрабатываемости на основе поликарбоновых кислот

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911274018.X 2019-12-12
CN201911274018.XA CN112608422B (zh) 2019-12-12 2019-12-12 一种聚羧酸系和易性调节剂的制备方法

Publications (1)

Publication Number Publication Date
WO2021114581A1 true WO2021114581A1 (zh) 2021-06-17

Family

ID=75224316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094399 WO2021114581A1 (zh) 2019-12-12 2020-06-04 一种聚羧酸系和易性调节剂的制备方法

Country Status (3)

Country Link
CN (1) CN112608422B (zh)
RU (1) RU2751769C1 (zh)
WO (1) WO2021114581A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553413A (zh) * 2013-09-25 2014-02-05 中国建筑材料科学研究总院 一种调粘型聚羧酸减水剂及其制备方法
CN103980433A (zh) * 2014-05-16 2014-08-13 武汉汉星盛新型建材有限公司 羧酸乙烯基共聚物混凝土增稠剂及其制备方法
CN106699984A (zh) * 2016-07-10 2017-05-24 济南大学 一种用于轻骨料混凝土的轻骨料上浮抑制剂及其制备方法
CN107778418A (zh) * 2017-11-16 2018-03-09 科之杰新材料集团有限公司 一种高效消泡型聚羧酸减水剂及其制备方法
EP3324738B1 (de) * 2015-07-22 2019-04-24 Basf Se Agroformulierung mit copolymeren enthaltend hydroxybutylvinylether als assoziativverdicker
CN109824836A (zh) * 2019-01-29 2019-05-31 广东瑞安科技实业有限公司 和易性好、适应性广的聚羧酸减水剂及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615378B1 (ko) * 2000-12-27 2006-08-25 가부시키가이샤 닛폰 쇼쿠바이 폴리카르복실산계 공중합체 및 그의 제조 방법, 및 그의용도
WO2003091180A1 (en) * 2002-04-25 2003-11-06 Nippon Shokubai Co., Ltd. Cement admixture and production method thereof
JP5282884B2 (ja) * 2006-09-13 2013-09-04 東邦化学工業株式会社 セメント分散剤
FR2911131B1 (fr) * 2007-01-09 2009-02-06 Coatex S A S Soc Par Actions S Utilisation d'un additif rheologique dans la fabrication par vibrocompaction d'une formulation a base d'eau et de liant hydraulique, formulation obtenue.
JP4984255B2 (ja) * 2007-12-28 2012-07-25 東邦化学工業株式会社 新規なセメント分散剤
JP2011084459A (ja) * 2009-09-18 2011-04-28 Nippon Shokubai Co Ltd セメント混和剤、セメント組成物及びセメント混和剤用ポリカルボン酸系共重合体
JP5848633B2 (ja) * 2011-03-15 2016-01-27 花王株式会社 水硬性組成物用分散剤
WO2014193082A1 (ko) * 2013-05-29 2014-12-04 주식회사 실크로드시앤티 시멘트 혼화제 제조용 마크로모노머, 이의 제조방법, 이 마크로모노머로부터 유도된 폴리카르복실산계 공중합체와 층상형 이중 수산화물을 포함하는 시멘트 혼화제, 및 이의 제조방법
CN104628972B (zh) * 2015-01-30 2017-08-11 江苏中铁奥莱特新材料股份有限公司 一种抗裂减缩型聚羧酸系减水剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553413A (zh) * 2013-09-25 2014-02-05 中国建筑材料科学研究总院 一种调粘型聚羧酸减水剂及其制备方法
CN103980433A (zh) * 2014-05-16 2014-08-13 武汉汉星盛新型建材有限公司 羧酸乙烯基共聚物混凝土增稠剂及其制备方法
EP3324738B1 (de) * 2015-07-22 2019-04-24 Basf Se Agroformulierung mit copolymeren enthaltend hydroxybutylvinylether als assoziativverdicker
CN106699984A (zh) * 2016-07-10 2017-05-24 济南大学 一种用于轻骨料混凝土的轻骨料上浮抑制剂及其制备方法
CN107778418A (zh) * 2017-11-16 2018-03-09 科之杰新材料集团有限公司 一种高效消泡型聚羧酸减水剂及其制备方法
CN109824836A (zh) * 2019-01-29 2019-05-31 广东瑞安科技实业有限公司 和易性好、适应性广的聚羧酸减水剂及其制备方法

Also Published As

Publication number Publication date
CN112608422B (zh) 2023-02-03
CN112608422A (zh) 2021-04-06
RU2751769C1 (ru) 2021-07-16

Similar Documents

Publication Publication Date Title
CN104261721B (zh) 一种醚类聚羧酸保坍剂及其制备方法
WO2021027174A1 (zh) 一种保水型聚羧酸减水剂及其制备方法
WO2021217762A1 (zh) 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法
CN105236800B (zh) 一种聚羧酸系减水剂母液及其制备方法和应用
CN107586366B (zh) 一种改性聚羧酸减水剂及其制备方法
CN111925487A (zh) 一种高活性聚醚合成超缓释型聚羧酸减水剂的制备方法
WO2021103473A1 (zh) 一种减缩型聚羧酸减水剂及其制备方法
CN108948288B (zh) 一种采用羧基功能单体的交联型聚羧酸减水剂制备方法
CN106800622A (zh) 一种缓释保坍型聚羧酸减水剂及其制备方法
CN105754047A (zh) 一种含磷酸酯高适应性聚羧酸减水剂及其制备方法
WO2019129307A2 (zh) 一种规整序列结构的聚羧酸减水剂的制备方法
CN110885409B (zh) 一种针对高标号混凝土起始反应慢的聚羧酸减水剂及其制备方法
CN111548459A (zh) 一种高保坍型聚羧酸减水剂的制备方法
CN109180876B (zh) 一种降粘型聚羧酸减水剂的制备方法
CN107686540A (zh) 一种早强型聚羧酸减水剂的制备方法
CN112608420B (zh) 一种引气型酯类聚羧酸减水剂的制备方法
CN115960322A (zh) 一种聚羧酸系降粘剂及其制备方法
WO2023184785A1 (zh) 一种交联型聚羧酸减水剂及其制备方法
CN108192010B (zh) 一种降粘型的聚羧酸系减水剂及其制备方法
CN114249555A (zh) 一种降粘缓释型聚羧酸减水剂及其应用
CN108586672A (zh) 一种交联型聚羧酸超塑化剂及其制备方法和应用
CN109232828B (zh) 一种酯醚共聚型降粘型聚羧酸减水剂的制备方法
WO2021114581A1 (zh) 一种聚羧酸系和易性调节剂的制备方法
CN112608432B (zh) 一种酯类聚羧酸系和易性调节剂的制备方法
WO2022127210A1 (zh) 一种多羟基引气缓凝型减水剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20900167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20900167

Country of ref document: EP

Kind code of ref document: A1