WO2021217762A1 - 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法 - Google Patents

一种不饱和聚醚单体、聚羧酸减水剂及其制备方法 Download PDF

Info

Publication number
WO2021217762A1
WO2021217762A1 PCT/CN2020/091901 CN2020091901W WO2021217762A1 WO 2021217762 A1 WO2021217762 A1 WO 2021217762A1 CN 2020091901 W CN2020091901 W CN 2020091901W WO 2021217762 A1 WO2021217762 A1 WO 2021217762A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
unsaturated polyether
unsaturated
polyether monomer
monomer
Prior art date
Application number
PCT/CN2020/091901
Other languages
English (en)
French (fr)
Inventor
朱建民
刘兆滨
董振鹏
杨雪
Original Assignee
辽宁奥克化学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辽宁奥克化学股份有限公司 filed Critical 辽宁奥克化学股份有限公司
Publication of WO2021217762A1 publication Critical patent/WO2021217762A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2605Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers

Definitions

  • the present invention relates to the field of cement or gypsum-based building materials, in particular to a macromonomer as a key component of an anti-sludge and water-reducing agent, and a polycarboxylic acid water-reducing agent obtained therefrom and a preparation method thereof.
  • the common mud (clay) in sand and gravel is montmorillonite, kaolinite, muscovite and illite, and its chemical characteristics are silicon tetrahedron and alumina octahedron structure.
  • the influence of clay on the performance of concrete is related to the quantity and type of clay, among which the type of clay mineral plays a decisive role.
  • Polycarboxylic acid series superplasticizers are widely used in high-speed railways, water conservancy and hydropower, nuclear power, highways, ports and docks and other fields. It has been widely used in the field of high-speed railways. Compared with polycarboxylate water-reducing agents, water-reducing agents in the high-speed railway sector are more sensitive to the collapse of sand.
  • Clay minerals have significant expansion properties and water absorption properties, which have an important influence on the working performance and mechanical properties of concrete.
  • the adsorption capacity of clay reduces the effective adsorption of PCE on the surface of cement particles. Therefore, PCE containing EO is very sensitive to the amount of sand and gravel clay in concrete. Reduce the initial flow of concrete and accelerate the flow loss.
  • CN 104891853 A discloses a composition that reduces the viscosity of pumped concrete and increases mud resistance, and a preparation method of a polycarboxylic acid type pumping aid.
  • the anti-slurry pumping agent of the present invention is a liquid polycarboxylate water-reducing agent, the solid content of the water-reducing agent is 40%, the retarder is a conventional retarder, and the air-entraining group is a synthetic anionic surfactant.
  • a combination of viscosity reducers based on a mixture of calcium nitrate, polyethylene glycol, dextrin and dimethyl diallyl ammonium chloride is introduced.
  • CN 104479084 A discloses a novel environment-friendly polycarboxylate-based shearing agent and a preparation method thereof, which belong to the field of building material concrete.
  • Polycarboxylate antisludge agent is made of unsaturated oxygen-containing polyoxyethylene ether, unsaturated ester and its derivatives as monomers, unsaturated carboxylic acid and its derivatives, and redox initiators through free radical polymerization.
  • the polycarboxylate anti-sludge water-reducing agent blocks the adsorption of the polycarboxylate water-reducing agent by the concrete in the soil, thereby reducing the amount of water-reducing agent, saving costs, and improving the performance of concrete .
  • CN 102276181 A discloses a concrete slurry inhibitor, the monomer composition and the mass percentage of the polymer mother liquor are 50-75% olefin-based amine ether, 5-15% (meth)acrylate, DA 0.1-1 %, olefin sulfonate 0.5 to 5%, EA 0.1 to 1%, vinyl ester 5 to 15%.
  • the anti-mud agent is introduced into the polymer monomer lipid monomer, so that the adsorbent and the surface of the mud particles will reduce the water absorption rate of the mud particles, so that the water demand of the concrete reaches an appropriate amount.
  • CN106810099 A states that a single conventional polycarboxylate water reducing agent cannot solve the clay problem.
  • the present invention by constructing a highly adaptable anti-mud system with nested and sealed hydrophobic synergistic effects, it is difficult to design a multi-component matching design of the anti-mud agent. Therefore, how to design the multi-component matching design of the anti-mud agent is The essential.
  • CN108250429A discloses a preparation method of a relatively low molecular weight, anti-sticking, phosphate type high-efficiency water reducer.
  • Polyamine is used as a starter, the ring is opened and the intermediate product is purified, and then phosphatized to obtain an anti-sticking phosphate superplasticizer with a molecular weight of 5000-14000.
  • the method adopts the alkyl oxide ring-opening reaction, the production conditions and equipment requirements are high, the preparation process requires two-step purification operation, and the industrialization is difficult; the macrocyclic polyamine used in the method has high cost and is easy to cause environmental pollution.
  • Patent number CN107312507A discloses a preparation method of clay stabilizer.
  • a cationic clay stabilizer with a molecular weight of 250-5000 was prepared by the ring-opening polymerization method of monoaliphatic amine, polyamine and epichlorohydrin.
  • the clay stabilizer has good performance, but the amines used in the process are flammable and volatile, which poses greater safety hazards and environmental problems.
  • CN108047396A discloses a cationic polycarboxylate anti-sludge water-reducing agent and a preparation method thereof.
  • Cationic monomer A, unsaturated carboxylic acid/unsaturated acid anhydride B, and unsaturated monomer C are used for polymerization to prepare cationic side chain anti-sludge polycarboxylic acid water reducer.
  • the cationic side chain is a kind of amine hydrochloride, and there is a big problem in the stability of concrete under alkaline conditions.
  • the compatibility with anionic polycarboxylic acid water-reducing agent also needs further attention.
  • the invention provides a special functional polymer monomer based on ethylene glycol monovinyl ether, which is a key component of an anti-sludge (clay) dispersant in an inorganic solid suspension and a high-efficiency water reducer for concrete.
  • the present invention provides an unsaturated polyether monomer, which has the following formula I:
  • R A wherein the same or different and represent a hydrogen atom, a linear or branched C 1 -C 12 alkyl, C 5 -C 8 cycloalkyl, phenyl, C 7 -C 12 aralkyl;
  • b is the same or different, and represents an integer between 6 and 450.
  • R A represents a hydrogen atom
  • One or two kinds of propylene ethylene, CH, and in one embodiment, A represents CH 2 CH 2 represented by 2 CH 2 CH 2 represented.
  • the present invention also provides a method for preparing unsaturated polyether monomer, including:
  • the vinyl glycol ether is reacted with the epoxy compound in the presence of a catalyst to obtain the unsaturated polyether monomer.
  • the catalyst is one or more of sodium alkoxide, potassium alkoxide, sodium hydroxide, potassium hydroxide, sodium cyanide, and potassium cyanide, and the amount used is the vinyl glycol 0.5%-2.0% of the ether mass.
  • the present invention also provides a polycarboxylic acid water-reducing agent, which is a copolymer of unsaturated polyether monomer and unsaturated carboxylic acid of the present invention, comprising monomer units derived from the unsaturated polyether monomer and monomer units derived from the unsaturated polyether monomer.
  • the monomer unit of the unsaturated carboxylic acid is a copolymer of unsaturated polyether monomer and unsaturated carboxylic acid of the present invention, comprising monomer units derived from the unsaturated polyether monomer and monomer units derived from the unsaturated polyether monomer.
  • the weight average molecular weight of the copolymer is 40,000-70,000, and the molecular weight distribution is 1-5.
  • the molar ratio of the monomer unit derived from the unsaturated polyether monomer to the monomer unit derived from the unsaturated carboxylic acid is 1:3.0-5.0 .
  • the unsaturated carboxylic acid is selected from one or more of acrylic acid, methacrylic acid and maleic anhydride.
  • the present invention also provides a method for preparing polycarboxylic acid water reducing agent, which includes:
  • the unsaturated polyether monomer according to any one of claims 1 to 3 is reacted with an unsaturated carboxylic acid in the presence of a chain transfer agent to obtain the polycarboxylic acid water reducing agent.
  • the method includes:
  • the reaction mixture is kept and reacted at a temperature of 15-25° C. to obtain the polycarboxylic acid water reducing agent.
  • the unsaturated carboxylic acid is one or more of acrylic acid, methacrylic acid and maleic anhydride, and the molar ratio of the unsaturated polyether monomer to the unsaturated carboxylic acid is 1:3.0-5.0.
  • the chain transfer agent is one or more of mercaptopropionic acid, thioglycolic acid, and mercaptoethanol, and its addition amount is 0.5%-1% of the mass of the unsaturated polyether monomer.
  • the oxidant is hydrogen peroxide, and its addition amount is 0.1%-0.5% of the mass of the unsaturated polyether monomer.
  • the reducing agent is one or more selected from the group consisting of white block, vitamin C, E51, FF6M, and sodium bisulfite, and the mass ratio of the oxidizing agent to the reducing agent is 1.5-2.5 :1.
  • the present invention also provides the polycarboxylic acid water-reducing agent of the present invention or the polycarboxylic acid water-reducing agent obtained according to any one of claims 10-15 in concrete with a sand content of 5wt%-10wt%. In the use as a water reducer.
  • the polycarboxylic acid water-reducing agent obtained by the unsaturated polyether monomer of the present invention can well solve the soil problem in concrete, which means that the clay will not change the corresponding PCE's ability to adsorb cement, and can be used for sand and gravel. Concrete field with high mud content (5%-10%) and gypsum dispersant field. This may be due to the special structure obtained from the vinyl macromonomer of the polycarboxylic acid water-reducing agent of the present invention can reduce or even stop the adsorption of PCE on the clay interlayer.
  • the present invention provides an unsaturated polyether monomer having the following formula I:
  • R A wherein the same or different and represent a hydrogen atom, a linear or branched C 1 -C 12 alkyl, C 5 -C 8 cycloalkyl, phenyl, C 7 -C 12 aralkyl;
  • b is the same or different, and represents an integer between 6 and 450.
  • R A may represent a hydrogen atom.
  • A may represent one or two of ethylene, propylene and a CH 2 CH 2 CH 2 represented by CH 2 CH 2 representation.
  • the unsaturated polyether monomer has a double bond and can be copolymerized with other comonomers to be incorporated into the polymer chain. Further, the unsaturated polyether monomers further having -O-CH 2 CH 2 -O- ( AO) b -R A chain which may be present in the form of a side chain in the polymer chain, since the side chains The direct connection between the O atom and the double bond has a strong electron donating effect, and the softness of the side chain is better, and it has better workability in the application of concrete.
  • the present invention provides a method for preparing the unsaturated polyether monomer, which includes:
  • the vinyl glycol ether is reacted with the epoxy compound in the presence of a catalyst to obtain the unsaturated polyether monomer.
  • the AO unit in the unsaturated polyether monomer can vary according to the epoxy compound used.
  • the AO unit can be -CH 2 CH 2 O (EO) unit;
  • the AO unit can be -CH 2 CH 2 CH 2 O (PO) unit; use
  • the AO unit may be a combination of an EO unit and a PO unit.
  • the addition number b of the AO unit in the unsaturated polyether monomer can be controlled by reaction conditions such as reaction time and reaction temperature.
  • B can be an integer of 6-450, preferably an integer of 8-120.
  • the catalyst is one or more of sodium alkoxide (such as sodium methoxide, etc.), potassium alkoxide, sodium hydroxide, potassium hydroxide, sodium cyanide, and potassium cyanide, and the amount used is the ethylene 0.5%-2.0% of the mass of the base glycol ether.
  • the present invention provides a polycarboxylic acid water reducing agent, which is a copolymer of an unsaturated polyether monomer and an unsaturated carboxylic acid of the present invention, and includes monomer units derived from the unsaturated polyether monomer With monomer units derived from the unsaturated carboxylic acid.
  • the monomer unit derived from the unsaturated polyether monomer and the monomer unit derived from the unsaturated carboxylic acid may exist in a random manner.
  • the molar ratio of the monomer unit derived from the unsaturated polyether monomer to the monomer unit derived from the unsaturated carboxylic acid is 1:3.0-5.0 .
  • the weight average molecular weight of the copolymer is 40,000-70,000, and the molecular weight distribution is 1-5.
  • the unsaturated carboxylic acid is selected from one or more of acrylic acid, methacrylic acid and maleic anhydride.
  • the present invention provides a method for preparing a polycarboxylic acid water reducing agent, which includes:
  • the unsaturated polyether monomer of the present invention and the unsaturated carboxylic acid are reacted in the presence of a chain transfer agent to obtain the polycarboxylic acid water reducing agent.
  • the method includes:
  • the reaction mixture is kept and reacted at a temperature of 15-25° C. to obtain the polycarboxylic acid water reducing agent.
  • the unsaturated carboxylic acid is one or more of acrylic acid, methacrylic acid and maleic anhydride, and the molar ratio of the unsaturated polyether monomer to the unsaturated carboxylic acid is 1:3.0-5.0.
  • the chain transfer agent is one or more of mercaptopropionic acid, thioglycolic acid, and mercaptoethanol, and its addition amount is 0.5%-1% of the mass of the unsaturated polyether monomer.
  • the oxidant is hydrogen peroxide, and its addition amount is 0.1%-0.5% of the mass of the unsaturated polyether monomer.
  • the reducing agent is one or more selected from the group consisting of white block, vitamin C, E51, FF6M, and sodium bisulfite, and the mass ratio of the oxidizing agent to the reducing agent is 1.5-2.5 :1.
  • the polycarboxylic acid water-reducing agent of the present invention has a special comonomer unit distribution in the polymer chain, which makes PCE beneficial to cement adsorption and prevents it from being adsorbed on clay. It can be applied to sand and gravel with high mud content (5 %-10%) in the concrete field and gypsum dispersant field.
  • the main components of clay in my country are feldspar, mica and kaolin.
  • Montmorillonite as a mineral with strong interlayer adsorption capacity, mostly exists in the north. Montmorillonite has the most serious impact on polycarboxylic acid water reducing agent (PCE). When the content of sand and gravel reaches 2%, or even less than 2%, it will have a significant impact on workability.
  • Feldspar, kaolinite and muscovite When the content is 4 to 5%, the sericite content will have a more obvious effect on the workability when the content of sericite is 5 to 6%.
  • the clay content in the application field of the present invention is between 1-25% based on the weight of the mineral binder (such as cement or gypsum).
  • the amount of the polycarboxylic acid water-reducing agent containing functional macromonomers of the present invention may be 2.5 ⁇ solids of cement quality.
  • the fixed water-binder ratio is 0.40
  • the polycarboxylic acid solid content is 0.17%
  • the test temperature is 25°C
  • the humidity is 80%
  • the concrete mix ratio is cement 267, mineral powder 53, fly ash 60, sand 767, large stone 800, small stone 260.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明涉及一种不饱和聚醚单体、聚羧酸减水剂及其制备方法。本发明的不饱和聚醚单体具有下式I。本发明一种聚羧酸减水剂为该不饱和聚醚单体与不饱和羧酸的共聚物,包括源自所述不饱和聚醚单体的单体单元与源自所述不饱和羧酸的单体单元。本发明通过不饱和聚醚单体得到的聚羧酸减水剂可以很好地解决混凝土中的泥土问题,这意味着粘土不会改变相应的PCE对水泥的吸附能力,能够很好地砂石含泥量高(5%-10%)的混凝土领域以及石膏分散剂领域。(I)

Description

一种不饱和聚醚单体、聚羧酸减水剂及其制备方法 技术领域
本发明涉及基于水泥或石膏的建筑材料领域,尤其涉及作为抗泥减水剂关键组分的大单体,以及由此得到的聚羧酸减水剂以及它们的制备方法。
背景技术
用于混凝土生产的砂砾、粗骨料和砂子中的泥(粘土)杂质越来越成为混凝土生产厂家和施工人员的难题。混凝土性能的恶化是由于环氧乙烷基减水剂在粘土夹层中的不理想吸附造成的。泥似乎与微粒大小小于2μm。泥浆不仅会破坏新拌混凝土的性能,还会破坏混凝土的强度(由于减水量较少)、收缩、抗渗性、抗冻性和耐磨性。国家砂石标准要求在使用前采用水洗工艺。虽然这可以提高骨料的质量,但也会产生经济和环境问题等等。如果能阻止减水剂对粘土内表面的吸附,将对新拌混凝土的性能、硬化混凝土的工程性能以及经济和环境问题产生显著的效益。
砂砾中常见的泥浆(粘土)为蒙脱石、高岭石、白云母和伊利石,化学特征为硅四面体和氧化铝八面体结构。根据粘土的组成,可以形成不同类型的粘土。粘土对混凝土工作性能的影响与粘土的数量和种类有关,其中粘土矿物的种类起着决定性的作用。聚羧酸系高效减水剂广泛应用于高速铁路、水利水电、核电、高速公路、港口码头等领域。它已广泛应用于高速铁路领域,高速铁路部门的减水剂与聚羧酸盐减水剂相比,对砂土的塌陷更为敏感。
粘土矿物具有显著的膨胀性能和吸水性能,对混凝土的工作性能和力学性能有着重要的影响。粘土的吸附能力降低了PCE对水泥颗粒表面的有效吸附。因此,含EO的PCE对混凝土中含砂、碎石的粘土量非常敏感。降低了混凝土的初始流动,加快了流动损失。
CN 104891853 A公开了一种降低泵送混凝土粘度、增加泥浆阻力的组合物以及一种聚羧酸型泵送助剂的制备方法。本发明的抗泥浆泵送剂为一种液体聚羧酸盐减水剂,减水剂的固含量为40%,缓凝剂为常规缓凝剂,引气基 团为合成阴离子表面活性剂。此外,还介绍了一种以硝酸钙、聚乙二醇、糊精和二甲基二烯丙基氯化铵的混合物为基础的降粘剂组合。
CN 104479084 A公开了一种新型环保型聚羧酸盐基抗剪剂及其制备方法,属于建筑材料混凝土领域。聚羧酸酯类抗污泥剂是由不饱和含氧聚氧乙烯醚、不饱和酯及其衍生物为单体、不饱和羧酸及其衍生物、氧化还原引发剂通过自由基等聚合而成,聚羧酸盐抗泥减水剂在使用过程中阻挡了混凝土在土壤中对聚羧酸盐减水剂的吸附,从而减少了减水剂的用量,节约了成本,提高了混凝土的性能。
CN 102276181 A公开了一种混凝土泥浆抑制剂,其单体组成和聚合物母液的质量百分比为50~75%的烯烃基胺醚、5~15%的(甲基)丙烯酸酯、DA 0.1~1%、烯烃基磺酸盐0.5~5%、EA 0.1~1%、乙烯基酯5~15%。将抗泥剂引入聚合物单体脂质单体中,使吸附剂与泥浆颗粒表面会降低泥浆颗粒的吸水率,使混凝土需水量达到合适的量。
CN106810099 A声明单一常规聚羧酸盐减水剂无法解决粘土问题。根据本发明,通过构建具有嵌套和密封疏水协同效应的高适应性抗泥体系,设计抗泥剂的多组分匹配设计是一项难点,因此如何设计抗泥剂的多组分匹配设计为关键。
CN108250429A公开了一种相对低分子量、抗粘、磷酸盐类的高效减水剂的制备方法。以多胺为发酵剂,开环并对中间产物进行纯化,然后磷化得到分子量为5000~14000的抗粘剂型磷酸盐类高效减水剂。该方法采用烷基氧化物开环反应,生产条件和设备要求高,制备过程中需要两步净化操作,工业化难度大;该方法所用的大环多胺成本高,易造成环境污染。专利号CN107312507A公开了一种粘土稳定剂的制备方法。采用一元脂族胺、多元胺、环氧氯丙烷开环聚合法制备了分子量为250-5000的阳离子粘土稳定剂。该粘土稳定剂性能良好,但工艺中使用的胺类物质易燃、易挥发,存在较大的安全隐患和环境问题。CN108047396A公开了一种阳离子聚羧酸盐抗泥减水剂及其制备方法。以阳离子单体A、不饱和羧酸/不饱和酸酐B、不饱和单体C溶液进行聚合,制备阳离子侧链抗泥聚羧酸减水剂。阳离子侧链是一种胺盐盐酸盐,在混凝土碱性条件下稳定性存在较大问题,与阴离子聚羧酸类减水剂的配伍性也需要进一步关注。
发明内容
本发明提供一种以乙二醇单乙烯醚为基础的特殊功能高分子单体,是无机固体悬浮液中抗泥(粘土)分散剂的关键组分,是混凝土的高效减水剂。
本发明提供一种不饱和聚醚单体,其具有下式I:
Figure PCTCN2020091901-appb-000001
其中R A相同或不同,且代表氢原子、直链或支链C 1-C 12烷基、C 5-C 8环烷基、苯基、C 7-C 12芳烷基;
A相同或不同,且代表由C XH 2X表示的亚烷基,其中x=2、3、6或7;
b相同或不同,且代表6至450之间的整数。
在一种实施方式中,R A代表氢原子。
在一种实施方式中,A代表CH 2CH 2表示的亚乙基,和CH 2CH 2CH 2表示的亚丙基中的一种或者两种。
本发明还提供制备不饱和聚醚单体的方法,包括:
在催化剂存在下使乙烯基乙二醇醚与环氧化合物反应,得到所述不饱和聚醚单体。
在一种实施方式中,所述催化剂为醇钠、醇钾、氢氧化钠、氢氧化钾、氰化钠、氰化钾中的一种或多种,其用量为所述乙烯基乙二醇醚质量的0.5%-2.0%。
本发明还提供一种聚羧酸减水剂,其为本发明不饱和聚醚单体与不饱和羧酸的共聚物,包括源自所述不饱和聚醚单体的单体单元与源自所述不饱和羧酸的单体单元。
在一种实施方式中,所述共聚物的重均分子量为4万-7万,分子量分布为1-5。
在一种实施方式中,在所述共聚物中,源自所述不饱和聚醚单体的单体单元与源自所述不饱和羧酸的单体单元的摩尔比为1:3.0-5.0。
在一种实施方式中,所述不饱和羧酸选自丙烯酸、甲基丙烯酸和马来酸酐中的一种或多种。
本发明还提供一种制备聚羧酸减水剂的方法,包括:
使权利要求1-3中任一项所述的不饱和聚醚单体与不饱和羧酸在链转移剂存在下反应,得到所述聚羧酸减水剂。
在一种实施方式中,所述方法包括:
将所述不饱和聚醚单体溶解于去离子水中,得到反应底液;
将所述不饱和羧酸、还原剂、链转移剂依次加入去离子水中溶解,得到滴加液;
控制所述反应底液的温度为15-25℃,向所述反应底液中加入氧化剂,再将所述滴加液滴入到反应底液中;
使反应混合物在15-25℃的温度保温反应,得到所述聚羧酸减水剂。
在一种实施方式中,所述不饱和羧酸为丙烯酸、甲基丙烯酸和马来酸酐中的一种或多种,所述不饱和聚醚单体与所述不饱和羧酸的摩尔比为1:3.0-5.0。
在一种实施方式中,所述链转移剂为巯基丙酸、巯基乙酸、巯基乙醇中的一种或多种,其添加量为所述不饱和聚醚单体质量的0.5%-1%。
在一种实施方式中,所述氧化剂为双氧水,其添加量为所述不饱和聚醚单体质量的0.1%-0.5%。
在一种实施方式中,所述还原剂为吊白块、维生素C、E51、FF6M、亚硫酸氢钠中的一种或多种,所述氧化剂与所述还原剂的质量比为1.5-2.5:1。
另一方面,本发明还提供本发明聚羧酸减水剂或者根据权利要求10-15中任一项方法得到的聚羧酸减水剂在砂石含泥量为5wt%-10wt%的混凝土中作为减水剂的用途。
本发明通过不饱和聚醚单体得到的聚羧酸减水剂可以很好地解决混凝土中的泥土问题,这意味着粘土不会改变相应的PCE对水泥的吸附能力,能够很好地砂石含泥量高(5%-10%)的混凝土领域以及石膏分散剂领域。这可能是由于本发明的聚羧酸减水剂从乙烯基大单体中获得的特殊结构可以减少甚至停止PCE对粘土夹层的吸附。
具体实施方式
下面根据具体实施例对本发明的技术方案做进一步说明。本发明的保护范围不限于以下实施例,列举这些实例仅出于示例性目的而不以任何方式限 制本发明。
一方面,本发明提供一种不饱和聚醚单体,其具有下式I:
Figure PCTCN2020091901-appb-000002
其中R A相同或不同,且代表氢原子、直链或支链C 1-C 12烷基、C 5-C 8环烷基、苯基、C 7-C 12芳烷基;
A相同或不同,且代表由C XH 2X表示的亚烷基,其中x=2、3、6或7;
b相同或不同,且代表6至450之间的整数。
在一种实施方式中,R A可以代表氢原子。在一种实施方式中,A可以代表CH 2CH 2表示的亚乙基,和CH 2CH 2CH 2表示的亚丙基中的一种或者两种。
该不饱和聚醚单体具有双键,能够与其他共聚单体进行共聚,从而引入到聚合物链中。并且,该不饱和聚醚单体还具有-O-CH 2CH 2-O-(AO) b-R A链,该链在聚合物链中可以以侧链形式存在,由于该侧链中的O原子与双键直接相连供电子效应较强,该侧链的软性较好在混凝土的应用中具有较好的和易性。
另一方面,本发明提供制备该不饱和聚醚单体的方法,包括:
在催化剂存在下使乙烯基乙二醇醚与环氧化合物反应,得到所述不饱和聚醚单体。
具体地,可以如下进行:向封闭的高压釜中注入乙烯基乙二醇醚与催化剂的混合溶液,搅拌并加热反应釜至100-135℃,持续通入环氧化合物,反应时间6-9小时,冷却后即得不饱和聚醚单体。
该不饱和聚醚单体中的AO单元可以根据所用的环氧化合物而变化。当使用环氧乙烷时,该AO单元可以为-CH 2CH 2O(EO)单元;当使用环氧丙烷时,该AO单元可以为-CH 2CH 2CH 2O(PO)单元;使用环氧乙烷和环氧丙烷时,该AO单元可以为EO单元和PO单元的组合。
该不饱和聚醚单体中的AO单元的加成数b可以通过反应时间、反应温度等反应条件来控制。B可以为6-450的整数,优选8-120的整数。
在一种实施方式中,催化剂为醇钠(例如甲醇钠等)、醇钾、氢氧化钠、氢氧化钾、氰化钠、氰化钾中的一种或多种,其用量为所述乙烯基乙二醇醚 质量的0.5%-2.0%。
另一方面,本发明提供一种聚羧酸减水剂,其为本发明不饱和聚醚单体与不饱和羧酸的共聚物,包括源自所述不饱和聚醚单体的单体单元与源自所述不饱和羧酸的单体单元。在该共聚物中,源自所述不饱和聚醚单体的单体单元与源自所述不饱和羧酸的单体单元可以以无规方式存在。
在一种实施方式中,在所述共聚物中,源自所述不饱和聚醚单体的单体单元与源自所述不饱和羧酸的单体单元的摩尔比为1:3.0-5.0。
在一种实施方式中,所述共聚物的重均分子量为4万-7万,分子量分布为1-5。
在一种实施方式中,所述不饱和羧酸选自丙烯酸、甲基丙烯酸和马来酸酐中的一种或多种。
本发明提供制备聚羧酸减水剂的方法,包括:
使本发明不饱和聚醚单体与不饱和羧酸在链转移剂存在下反应,得到所述聚羧酸减水剂。
具体地,该方法包括:
将所述不饱和聚醚单体溶解于去离子水中,得到反应底液;
将所述不饱和羧酸、还原剂、链转移剂依次加入去离子水中溶解,得到滴加液;
控制所述反应底液的温度为15-25℃,向所述反应底液中加入氧化剂,再将所述滴加液滴入到反应底液中;
使反应混合物在15-25℃的温度保温反应,得到所述聚羧酸减水剂。
在一种实施方式中,所述不饱和羧酸为丙烯酸、甲基丙烯酸和马来酸酐中的一种或多种,所述不饱和聚醚单体与所述不饱和羧酸的摩尔比为1:3.0-5.0。
在一种实施方式中,所述链转移剂为巯基丙酸、巯基乙酸、巯基乙醇中的一种或多种,其添加量为所述不饱和聚醚单体质量的0.5%-1%。
在一种实施方式中,所述氧化剂为双氧水,其添加量为所述不饱和聚醚单体质量的0.1%-0.5%。
在一种实施方式中,所述还原剂为吊白块、维生素C、E51、FF6M、亚硫酸氢钠中的一种或多种,所述氧化剂与所述还原剂的质量比为1.5-2.5:1。
本发明的聚羧酸减水剂在聚合物链中具有特殊的共聚单体单元分布,这使得PCE有利于水泥吸附,并防止其吸附在粘土上,可以应用于砂石含泥量高(5%-10%)的混凝土领域以及石膏分散剂领域。
我国粘土中以长石、云母和高岭土等为主要成分,蒙脱土作为层间吸附能力强的矿物多存在于北方。蒙脱石对聚羧酸减水剂(PCE)的影响最严重,砂石料中含量达到2%,甚至不足2%时就会对和易性带来重大影响,长石、高岭石和白云母含量在4~5%时,绢云母含量在5~6%时才会对和易性产生较为明显的影响。本发明应用领域的粘土含量按矿物粘结剂(如水泥或石膏)的重量计在1~25%之间。在一种实施方式中,本发明的含功能大分子单体的聚羧酸减水剂的用量可以为水泥质量的2.5‰固体。
本发明的技术解决方案将结合以下示例进行进一步说明。
实施例1
(1)大单体合成
在烧杯中加入220g乙烯基乙二醇醚与3g甲醇钠,搅拌均匀。向封闭的1.8L高压反应釜中注入乙烯基乙二醇醚与甲醇钠的混合溶液。密闭反应釜,升温至100℃,开始通入环氧乙烷气体。控制反应釜温度不高于135℃,持续反应9h,累计通入环氧乙烷气体约7.5Kg,然后停止通入环氧乙烷气体,并降低反应釜温度。降温后放出产品,冷却后为白色蜡状固体,即为数均分子量为3000的EPEG大单体。
(2)PCE合成
在装有搅拌器、冷凝管的1L四口烧瓶中,将EPEG-3000大单体364g加入238g去离子水中,适当加热充分溶解制成反应底液;将维生素C 1.7g、丙烯酸30.79g、巯基乙酸1.98g一次加入到78g去离子水中,混合搅拌均匀,配制成滴加液;控制反应温度20-25℃,在反应底液中加入2.97g的H 2O 2,然后匀速滴入滴加液,2h滴加完毕;继续保温反应1h后,加入30.80gNaOH与246g水配成的溶液,搅拌均匀,即制得聚羧酸减水剂,其重均分子量为40000,分子量分布为2.5。
实施例2
(1)大单体合成
在烧杯中加入220g乙烯基乙二醇醚与5g甲醇钠,搅拌均匀。向封闭的1.8L高压反应釜中注入乙烯基乙二醇醚与甲醇钠的混合溶液。密闭反应釜,升温至100℃,开始通入环氧乙烷气体。控制反应釜温度不高于135℃,持续反应9h,累计通入环氧乙烷气体约10Kg,然后停止通入环氧乙烷气体,并降低反应釜温度。降温后放出产品,冷却后为白色蜡状固体,即为数均分子量为4000的EPEG大单体。
(2)PCE合成
在装有搅拌器、冷凝管的1L四口烧瓶中,将EPEG-4000大单体364g加入238g去离子水中,适当加热充分溶解制成反应底液;将维C 1.7g、丙烯酸30.79g、巯基乙酸1.98g一次加入到78g去离子水中,混合搅拌均匀,配制成滴加液;控制反应温度10-15℃,在反应底液中加入2.97g的H 2O 2,然后匀速滴入滴加液,2h滴加完毕;继续保温反应1h后,加入30.80gNaOH与246g水配成的溶液,搅拌均匀,即制得聚羧酸减水剂,其平均重均分子量为45000,分子量分布为3.1。
实施例3
(1)大单体合成
在烧杯中加入220g乙烯基乙二醇醚与6g甲醇钠,搅拌均匀。向封闭的1.8L高压反应釜中注入乙烯基乙二醇醚与甲醇钠的混合溶液。密闭反应釜,升温至100℃,开始通入环氧乙烷气体。控制反应釜温度不高于135℃,持续反应9h,累计通入环氧乙烷气体约12.5Kg,然后停止通入环氧乙烷气体,并降低反应釜温度。降温后放出产品,冷却后为白色蜡状固体,即为数均分子量为5000的EPEG大单体。
(2)PCE合成
在装有搅拌器、冷凝管的1L四口烧瓶中,将EPEG-5000大单体384g加入238g去离子水中,适当加热充分溶解制成反应底液;将吊白块1.7g、丙烯酸30.79g、巯基乙酸1.98g一次加入到78g去离子水中,混合搅拌均匀,配制成滴加液;控制反应温度10-15℃,在反应底液中加入2.97g的H 2O 2,然后匀速滴入滴加液,2h滴加完毕;继续保温反应1h后,加入30.80gNaOH与 246g水配成的溶液,搅拌均匀,即制得聚羧酸减水剂,其重均分子量为50000,分子量分布为3.5。
对比例1
(1)大单体合成
在烧杯中加入220g异戊烯醇与3g甲醇钠,搅拌均匀。向封闭的1.8L高压反应釜中注入异戊烯醇与甲醇钠的混合溶液。密闭反应釜,升温至100℃,开始通入环氧乙烷气体。控制反应釜温度不高于135℃,持续反应9h,累计通入环氧乙烷气体约1500g,然后停止通入环氧乙烷气体,并降低反应釜温度。降温后放出产品,冷却后为白色蜡状固体,即为数均分子量为3000的TPEG大单体。
(2)PCE合成
在装有搅拌器、冷凝管的1L四口烧瓶中,将TPEG-3000大单体364g加入238g去离子水中,适当加热充分溶解制成反应底液;将维C 1.7g、丙烯酸30.79g、巯基乙酸1.98g一次加入到78g去离子水中,混合搅拌均匀,配制成滴加液;控制反应温度35-40℃,在反应底液中加入2.97g的H 2O 2,然后匀速滴入滴加液,3h滴加完毕;继续保温反应1h后,加入30.80gNaOH与246g水配成的溶液,搅拌均匀,即制得聚羧酸减水剂,其重均分子量为36000,分子量分布为3.6。
应用例
依照GB8076-2008规定的方法来检测本发明的抗泥型聚羧酸减水剂对新拌混凝土的影响。固定水胶比0.40,聚羧酸折固掺量0.17%,试验温度25℃,湿度80%,混凝土配合比为水泥267,矿粉53,粉煤灰60,砂767,大石800,小石260,混凝土实验结果见表1。
表1
Figure PCTCN2020091901-appb-000003
Figure PCTCN2020091901-appb-000004
从上述表格的数据可以看出,对比例中如果含泥量超过2%,混凝土没有流动性能,而实施例中含泥量达到8%的混凝土仍然具有较好的流动性,说明本发明聚羧酸减水剂可以很好地解决混凝土中的泥土问题,这意味着粘土不会改变相应的PCE对水泥的吸附能力。这可能是由于本发明的聚羧酸减水剂从乙烯基大单体中获得的特殊结构可以减少甚至停止PCE对粘土夹层的吸附。
本领域技术人员应当注意的是,本发明所描述的实施方式仅仅是示范性的,可在本发明的范围内作出各种其他替换、改变和改进。因而,本发明不限于上述实施方式,而仅由权利要求限定。

Claims (16)

  1. 一种不饱和聚醚单体,其具有下式I:
    Figure PCTCN2020091901-appb-100001
    其中,R A相同或不同,且代表氢原子、直链或支链C 1-C 12烷基、C 5-C 8环烷基、苯基、C 7-C 12芳烷基;
    A相同或不同,且代表由C XH 2X表示的亚烷基,其中x=2、3、6或7;
    b相同或不同,且代表6至450之间的整数。
  2. 根据权利要求1所述的不饱和聚醚单体,其中,R A代表氢原子。
  3. 根据权利要求1或2所述的不饱和聚醚单体,其中,A代表CH 2CH 2表示的亚乙基,和CH 2CH 2CH 2表示的亚丙基中的一种或者两种。
  4. 制备权利要求1-3中任一项所述的不饱和聚醚单体的方法,包括:
    在催化剂存在下使乙烯基乙二醇醚与环氧化合物反应,得到所述不饱和聚醚单体。
  5. 根据权利要求4所述的方法,其中,所述催化剂为醇钠、醇钾、氢氧化钠、氢氧化钾、氰化钠、氰化钾中的一种或多种,其用量为所述乙烯基乙二醇醚质量的0.5%-2.0%。
  6. 一种聚羧酸减水剂,其为权利要求1-3中任一项所述的不饱和聚醚单体与不饱和羧酸的共聚物,包括源自所述不饱和聚醚单体的单体单元与源自所述不饱和羧酸的单体单元。
  7. 根据权利要求6所述的聚羧酸减水剂,其中,所述共聚物的重均分子量为4万-7万,分子量分布为1-5。
  8. 根据权利要求6或7所述的聚羧酸减水剂,其中,在所述共聚物中,源自所述不饱和聚醚单体的单体单元与源自所述不饱和羧酸的单体单元的摩尔比为1:3.0-5.0。
  9. 根据权利要求6或7所述的聚羧酸减水剂,其中,所述不饱和羧酸选自丙烯酸、甲基丙烯酸和马来酸酐中的一种或多种。
  10. 一种制备聚羧酸减水剂的方法,包括:
    使权利要求1-3中任一项所述的不饱和聚醚单体与不饱和羧酸在链转移剂存在下反应,得到所述聚羧酸减水剂。
  11. 根据权利要求10所述的方法,其中,所述方法包括:
    将所述不饱和聚醚单体溶解于去离子水中,得到反应底液;
    将所述不饱和羧酸、还原剂、链转移剂依次加入去离子水中溶解,得到滴加液;
    控制所述反应底液的温度为15-25℃,向所述反应底液中加入氧化剂,再将所述滴加液滴入到反应底液中;
    使反应混合物在15-25℃的温度保温反应,得到所述聚羧酸减水剂。
  12. 根据权利要求10或11所述的方法,其中,所述不饱和羧酸为丙烯酸、甲基丙烯酸和马来酸酐中的一种或多种,所述不饱和聚醚单体与所述不饱和羧酸的摩尔比为1:3.0-5.0。
  13. 根据权利要求10或11所述的方法,其中,所述链转移剂为巯基丙酸、巯基乙酸、巯基乙醇中的一种或多种,其添加量为所述不饱和聚醚单体质量的0.5%-1%。
  14. 根据权利要求11所述的方法,其中,所述氧化剂为双氧水,其添加量为所述不饱和聚醚单体质量的0.1%-0.5%。
  15. 根据权利要求11所述的方法,其中,所述还原剂为吊白块、维生素C、E51、FF6M、亚硫酸氢钠中的一种或多种,所述氧化剂与所述还原剂的质量比为1.5-2.5:1。
  16. 根据权利要求6-9中任一项的聚羧酸减水剂或者根据权利要求10-15中任一项方法得到的聚羧酸减水剂在砂石含泥量为5wt%-10wt%的混凝土中作为减水剂的用途。
PCT/CN2020/091901 2020-04-26 2020-05-22 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法 WO2021217762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010339503.7 2020-04-26
CN202010339503.7A CN111333829A (zh) 2020-04-26 2020-04-26 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2021217762A1 true WO2021217762A1 (zh) 2021-11-04

Family

ID=71179236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091901 WO2021217762A1 (zh) 2020-04-26 2020-05-22 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法

Country Status (2)

Country Link
CN (1) CN111333829A (zh)
WO (1) WO2021217762A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929895A (zh) * 2021-12-08 2022-01-14 江苏奥克化学有限公司 一种减水剂聚醚合成用的醇钠催化剂的制备方法与应用
CN113980203A (zh) * 2021-11-22 2022-01-28 山东交通学院 一种基于epeg聚醚大单体结构可控的聚羧酸减水剂及其制备方法
CN114015035A (zh) * 2021-12-22 2022-02-08 上海东大化学有限公司 多官减水剂聚醚、其制备方法、源自其的抗泥型聚羧酸减水剂及其制备方法和应用
CN114184736A (zh) * 2021-11-29 2022-03-15 孙世兵 一种聚羧酸减水剂大单体不饱和度的测定方法
CN114315211A (zh) * 2021-12-29 2022-04-12 江苏金海宁新型建材科技有限公司 一种机制砂混凝土及其制备方法
CN114805829A (zh) * 2022-03-30 2022-07-29 佳化化学科技发展(上海)有限公司 一种模板剂及其制备方法和应用
CN114835864A (zh) * 2022-04-21 2022-08-02 德州润德混凝土有限公司 一种阳离子聚羧酸减水剂及合成方法、复配产品及应用
CN114891163A (zh) * 2022-04-26 2022-08-12 湖南中岩建材科技有限公司 一种早强型减水剂及其制备方法和应用
CN116375385A (zh) * 2023-04-20 2023-07-04 辽宁威尔得科技有限公司 一种绿色抗粉混凝土外加剂、其制备方法及用途
CN116396009A (zh) * 2023-04-03 2023-07-07 山西大学 一种环形混凝土电杆专用的聚羧酸减水剂及其制备方法
CN116535121A (zh) * 2023-03-30 2023-08-04 浙江交工金筑交通建设有限公司 一种干法制砂用矿石生产改良剂
WO2024140255A1 (zh) * 2022-12-29 2024-07-04 科之杰新材料集团有限公司 一种乙烯基聚醚改性结构聚羧酸减水剂及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333829A (zh) * 2020-04-26 2020-06-26 辽宁奥克化学股份有限公司 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法
CN112812288B (zh) * 2021-02-03 2023-03-28 湖北工业大学 一种纳米氧化铝分散剂的制备方法以及纳米氧化铝分散剂
CN116284603B (zh) * 2023-03-24 2024-01-26 辽宁奥克化学股份有限公司 适用于粉煤灰、矿渣型混凝土的减水剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762325B2 (en) * 2001-05-16 2004-07-13 Nippon Shokubai Co., Ltd. Method for production of alkoxylated compound
WO2011034142A1 (ja) * 2009-09-18 2011-03-24 株式会社日本触媒 セメント混和剤、セメント組成物及びセメント混和剤用ポリカルボン酸系共重合体
CN106277899A (zh) * 2016-08-22 2017-01-04 山西大学 一种聚羧酸减水剂及其制备方法
CN108102085A (zh) * 2017-12-22 2018-06-01 上海东大化学有限公司 聚醚单体、源自其的聚羧酸减水剂及其制备和应用方法
CN111333829A (zh) * 2020-04-26 2020-06-26 辽宁奥克化学股份有限公司 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762325B2 (en) * 2001-05-16 2004-07-13 Nippon Shokubai Co., Ltd. Method for production of alkoxylated compound
WO2011034142A1 (ja) * 2009-09-18 2011-03-24 株式会社日本触媒 セメント混和剤、セメント組成物及びセメント混和剤用ポリカルボン酸系共重合体
CN106277899A (zh) * 2016-08-22 2017-01-04 山西大学 一种聚羧酸减水剂及其制备方法
CN108102085A (zh) * 2017-12-22 2018-06-01 上海东大化学有限公司 聚醚单体、源自其的聚羧酸减水剂及其制备和应用方法
CN111333829A (zh) * 2020-04-26 2020-06-26 辽宁奥克化学股份有限公司 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980203A (zh) * 2021-11-22 2022-01-28 山东交通学院 一种基于epeg聚醚大单体结构可控的聚羧酸减水剂及其制备方法
CN114184736A (zh) * 2021-11-29 2022-03-15 孙世兵 一种聚羧酸减水剂大单体不饱和度的测定方法
CN113929895A (zh) * 2021-12-08 2022-01-14 江苏奥克化学有限公司 一种减水剂聚醚合成用的醇钠催化剂的制备方法与应用
CN114015035A (zh) * 2021-12-22 2022-02-08 上海东大化学有限公司 多官减水剂聚醚、其制备方法、源自其的抗泥型聚羧酸减水剂及其制备方法和应用
CN114015035B (zh) * 2021-12-22 2024-01-30 上海东大化学有限公司 多官减水剂聚醚、其制备方法、源自其的抗泥型聚羧酸减水剂及其制备方法和应用
CN114315211A (zh) * 2021-12-29 2022-04-12 江苏金海宁新型建材科技有限公司 一种机制砂混凝土及其制备方法
CN114805829B (zh) * 2022-03-30 2023-02-10 佳化化学科技发展(上海)有限公司 一种模板剂及其制备方法和应用
CN114805829A (zh) * 2022-03-30 2022-07-29 佳化化学科技发展(上海)有限公司 一种模板剂及其制备方法和应用
CN114835864A (zh) * 2022-04-21 2022-08-02 德州润德混凝土有限公司 一种阳离子聚羧酸减水剂及合成方法、复配产品及应用
CN114891163B (zh) * 2022-04-26 2023-12-26 湖南中岩建材科技有限公司 一种早强型减水剂及其制备方法和应用
CN114891163A (zh) * 2022-04-26 2022-08-12 湖南中岩建材科技有限公司 一种早强型减水剂及其制备方法和应用
WO2024140255A1 (zh) * 2022-12-29 2024-07-04 科之杰新材料集团有限公司 一种乙烯基聚醚改性结构聚羧酸减水剂及制备方法
CN116535121A (zh) * 2023-03-30 2023-08-04 浙江交工金筑交通建设有限公司 一种干法制砂用矿石生产改良剂
CN116396009A (zh) * 2023-04-03 2023-07-07 山西大学 一种环形混凝土电杆专用的聚羧酸减水剂及其制备方法
CN116375385A (zh) * 2023-04-20 2023-07-04 辽宁威尔得科技有限公司 一种绿色抗粉混凝土外加剂、其制备方法及用途

Also Published As

Publication number Publication date
CN111333829A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021217762A1 (zh) 一种不饱和聚醚单体、聚羧酸减水剂及其制备方法
CA2427897C (en) Rheology stabilizer for cementitious compositions
CN107337766B (zh) 一种高适应性聚羧酸减水剂及其制备方法
CA2399746C (en) High early-strength cementitious composition
KR101288145B1 (ko) 초급속 경화 시멘트 조성물 및 초급속 경화 시멘트조성물용 분산제
US20110166261A1 (en) Dynamic Copolymers For Workability Retention of Cementitious Composition
CN105924592B (zh) 一种降粘型聚羧酸系减水剂及其制备方法
JP2004519406A (ja) セメント混和剤及びセメント組成物
WO2019233215A1 (zh) 一种高减水低敏感聚羧酸减水剂及其制备方法
KR20020013783A (ko) 시멘트분산제 및 이것을 사용한 시멘트조성물
JP2011240224A (ja) 分散剤
CN111592272A (zh) 一种机制砂混凝土预应力构件用聚羧酸减水剂及其制备方法
CN107652405A (zh) 一种酰胺/酰亚胺结构的聚羧酸减水剂及其制备方法
CN110759663A (zh) 一种抗泥型聚羧酸减水剂的制备方法及应用
JP5051990B2 (ja) 超速硬性セメント組成物及び超速硬性セメント組成物用分散剤
CN109535340B (zh) 一种粉末状早强型聚羧酸减水剂及其制备方法
JP2003221266A (ja) セメント混和剤
CN108218284B (zh) 混凝土减水剂组合物
CN111349199B (zh) 一种具有核壳结构的稳态聚羧酸超塑化剂及其制备方法
JP2012166978A (ja) セメント混和剤及びセメント組成物
CN109111146B (zh) 一种多功能酯类聚羧酸减水剂及其制备方法
JP4877691B2 (ja) セメント混和剤及びセメント組成物の施工方法
RU2531083C2 (ru) Диспергирующее средство, содержащее смесь сополимеров
CN112608423B (zh) 一种降粘抗泥型聚羧酸减水剂的制备方法
JP2003073158A (ja) セメント硬化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934095

Country of ref document: EP

Kind code of ref document: A1