WO2021111508A1 - 接合基板及び接合基板の製造方法 - Google Patents

接合基板及び接合基板の製造方法 Download PDF

Info

Publication number
WO2021111508A1
WO2021111508A1 PCT/JP2019/047117 JP2019047117W WO2021111508A1 WO 2021111508 A1 WO2021111508 A1 WO 2021111508A1 JP 2019047117 W JP2019047117 W JP 2019047117W WO 2021111508 A1 WO2021111508 A1 WO 2021111508A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
substrate
nitride ceramic
ceramic substrate
bonding
Prior art date
Application number
PCT/JP2019/047117
Other languages
English (en)
French (fr)
Inventor
隆 海老ヶ瀬
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2019/047117 priority Critical patent/WO2021111508A1/ja
Priority to EP20895410.7A priority patent/EP4071126A4/en
Priority to CN202080074183.5A priority patent/CN114600237A/zh
Priority to JP2021562722A priority patent/JP7311625B2/ja
Priority to PCT/JP2020/045073 priority patent/WO2021112187A1/ja
Publication of WO2021111508A1 publication Critical patent/WO2021111508A1/ja
Priority to US17/752,937 priority patent/US20220285238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/61Joining two substrates of which at least one is porous by infiltrating the porous substrate with a liquid, such as a molten metal, causing bonding of the two substrates, e.g. joining two porous carbon substrates by infiltrating with molten silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a bonded substrate and a method for manufacturing the bonded substrate.
  • Silicon nitride ceramics have high thermal conductivity and high insulation. Therefore, a bonded substrate in which a copper plate is bonded to a silicon nitride ceramic substrate via a bonding layer is suitably used as an insulating heat-dissipating substrate on which a power semiconductor element is mounted.
  • the bonded substrate is prepared by producing an intermediate product having a brazing material layer between the copper plate and the silicon nitride ceramic substrate, and the produced intermediate product is heat-treated to be bonded between the copper plate and the silicon nitride ceramic plate. Manufactured by forming a layer.
  • the brazing layer often contains titanium hydride powder as well as powder containing silver and copper.
  • the bonding layer often contains titanium nitride, which is a reaction product of titanium derived from titanium hydride powder and nitrogen derived from a silicon nitride ceramic substrate, as a main component.
  • a copper metal plate is bonded to a silicon nitride substrate by a brazing method (paragraph 0016).
  • a brazing material an Ag—Cu alloy containing an active metal such as Ti, Zr or Hf is used (paragraph 0016).
  • TiN particles are sufficiently precipitated at the brazing material layer / silicon nitride interface in order to obtain a strong bonding strength (paragraph 0018).
  • An object to be solved by the present invention is to improve the adhesion strength between the silicon nitride ceramic substrate and the bonding layer and obtain a bonded substrate having high thermal durability.
  • the present invention is directed to a bonded substrate.
  • the bonding substrate includes a silicon nitride ceramic substrate, a copper plate, a bonding layer, and a penetration portion.
  • the copper plate and the bonding layer are arranged on the main surface of the silicon nitride ceramic substrate.
  • a copper plate is bonded to the main surface of the silicon nitride ceramic substrate.
  • the entry portion is continuous from the bonding layer and enters the grain boundaries of the silicon nitride ceramic substrate.
  • the present invention is also directed to a method for manufacturing a bonded substrate.
  • a silicon nitride ceramic substrate is prepared. Further, a brazing material layer is formed on the main surface of the silicon nitride ceramic substrate. In addition, a copper plate is arranged on the brazing filler metal layer. As a result, an intermediate product including a silicon nitride ceramic substrate, a brazing material layer and a copper plate can be obtained. In addition, heat treatment is performed on the intermediate product. As a result, a bonding layer for joining the copper plate to the main surface of the silicon nitride ceramic substrate and an intrusion portion that continuously enters the grain boundary of the silicon nitride ceramic substrate from the bonding layer are generated.
  • the peeling of the bonding layer from the silicon nitride ceramic substrate is hindered by the intruding portion. Therefore, the adhesion strength between the silicon nitride ceramic substrate and the bonding layer is improved. As a result, a bonded substrate having high thermal durability can be obtained.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of the interface between the silicon nitride ceramic substrate and the bonding layer provided in the bonding substrate of the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view schematically showing the vicinity of each intrusion portion provided in the bonding substrate of the first embodiment.
  • It is a flowchart which illustrates the flow of manufacturing of the bonded substrate of 1st Embodiment. It is sectional drawing which shows typically the intermediate product obtained in the process of manufacturing the bonding substrate of 1st Embodiment. It is sectional drawing which shows typically the intermediate product obtained in the process of manufacturing the bonding substrate of 1st Embodiment.
  • FIG. 1 is a cross-sectional view schematically showing the bonded substrate of the first embodiment.
  • the bonding substrate 1 of the first embodiment shown in FIG. 1 includes a silicon nitride ceramic substrate 11, a copper plate 12, and a bonding layer 13.
  • the bonding substrate 1 may include elements other than these elements.
  • the copper plate 12 and the bonding layer 13 are arranged on the main surface 11s of the silicon nitride ceramic substrate 11.
  • the bonding layer 13 joins the copper plate 12 to the main surface 11s of the silicon nitride ceramic substrate 11.
  • the bonding substrate 1 may be used in any way, and is used, for example, as an insulated heat-dissipating substrate on which a power semiconductor element is mounted.
  • FIG. 2 is an enlarged cross-sectional view schematically showing the vicinity of the interface between the silicon nitride ceramic substrate and the bonding layer provided in the bonding substrate of the first embodiment.
  • the bonding substrate 1 includes a plurality of entry portions 14.
  • the plurality of intrusion portions 14 are separated from each other in a direction parallel to the main surface 11s of the silicon nitride ceramic substrate 11.
  • FIG. 3 is an enlarged cross-sectional view schematically showing the vicinity of each intrusion portion provided in the bonding substrate of the first embodiment.
  • the silicon nitride ceramic substrate 11 includes a plurality of silicon nitride particles 21 and a grain boundary phase 22.
  • the grain boundary phase 22 exists at the grain boundary 25 between the plurality of silicon nitride particles 21.
  • Each of the entry portions 14x included in the plurality of entry portions 14 exists in the vicinity of the main surface 11s of the silicon nitride ceramic substrate 11, is continuous from the bonding layer 13, and enters the grain boundaries 25 of the silicon nitride ceramic substrate 11.
  • Each entry portion 14x enters a portion where the grain boundary phase 22 does not exist.
  • the peeling of the bonding layer 13 from the silicon nitride ceramic substrate 11 is hindered by the plurality of intrusion portions 14. Therefore, the adhesion strength between the silicon nitride ceramic substrate 11 and the bonding layer 13 is improved. As a result, the bonding substrate 1 having high thermal durability can be obtained.
  • the voids existing at the grain boundaries 25 of the silicon nitride ceramic substrate 11 are filled with the plurality of intrusion portions 14. Therefore, it is possible to prevent the void from becoming a starting point for cracks and other fractures. As a result, the bonded substrate 1 having high bending strength can be obtained.
  • the plurality of penetration portions 14 penetrate into the silicon nitride ceramic substrate 11 to a depth of 3 ⁇ m or more and 30 ⁇ m or less, and more preferably into the silicon nitride ceramic substrate 11 to a depth of 3 ⁇ m or more and 20 ⁇ m or less.
  • the bonded substrate 1 having high thermal durability and high insulating property can be obtained.
  • the penetration depth of the plurality of penetration portions 14 is shallower than the lower limit of these ranges, it tends to be difficult to prevent the bonding layer 13 from peeling off from the silicon nitride ceramic substrate 11, and the thermal durability is high. There is a tendency that it becomes difficult to obtain the bonded substrate 1 having the above.
  • the penetration depth of the plurality of penetration portions 14 is deeper than the upper limit of these ranges, it is possible to obtain the bonded substrate 1 having high insulating properties due to the concentration of the electric field on the plurality of penetration portions 14. It tends to be difficult.
  • the copper plate 12 is bonded to the silicon nitride ceramic substrate 11 via the bonding layer 13.
  • the bonding layer 13 and the plurality of insertion portions 14 are generated from a brazing material layer used for bonding the copper plate 12 to the silicon nitride ceramic substrate 11.
  • the brazing metal layer contains an active metal and a metal other than the active metal.
  • the bonding layer 13 contains an active metal derived from the active metal contained in the brazing material layer.
  • the bonding layer 13 may contain a metal other than the active metal.
  • the bonding layer 13 may contain nitrogen and / or silicon supplied from the silicon nitride ceramic substrate 11. The supplied nitrogen and / or silicon may form a compound with the active metal.
  • the bonding layer 13 may include copper supplied from the copper plate 12.
  • the plurality of intrusion portions 14 include a metal other than the active metal derived from the metal other than the active metal contained in the brazing material layer.
  • the active metal is at least one active metal selected from the group consisting of titanium and zirconium.
  • the metal other than the active metal is at least one metal selected from the group consisting of silver, copper, indium and tin.
  • FIG. 4 is a flowchart illustrating the flow of manufacturing of the bonded substrate of the first embodiment.
  • 5, 6 and 7 are cross-sectional views schematically illustrating an intermediate product obtained in the process of manufacturing the bonded substrate of the first embodiment.
  • steps S101 to S105 shown in FIG. 4 are sequentially executed.
  • step S101 the silicon nitride ceramic substrate 11 is prepared.
  • the silicon nitride ceramic substrate 11 to be prepared has a main surface 11s and a grain boundary 25.
  • step S102 as shown in FIG. 5, the brazing filler metal layer 13i is formed on the main surface 11s of the silicon nitride ceramic substrate 11.
  • a paste containing an active metal brazing filler metal and a solvent is prepared.
  • the paste may further contain a binder, a dispersant, an antifoaming agent and the like.
  • the prepared paste is screen-printed on the main surface 11s of the silicon nitride ceramic substrate 11, and a screen printing film is formed on the main surface 11s of the silicon nitride ceramic substrate 11.
  • the solvent contained in the formed screen printing film is volatilized.
  • the screen printing film changes to the brazing material layer 13i.
  • the brazing filler metal layer 13i contains an active metal brazing filler metal.
  • the brazing filler metal layer 13i may be formed by a method different from this method.
  • the active metal brazing material includes hydrogenated active metal powder and metal powder.
  • the hydrogenated active metal powder contains a hydride of at least one active metal selected from the group consisting of titanium and zirconium.
  • the metal powder comprises at least one metal selected from the group consisting of silver, copper, indium and tin.
  • the melting point of the active metal brazing material is lower than the melting point of silver.
  • the active metal brazing material preferably contains 40% by weight or more and 80% by weight or less of silver.
  • the active metal brazing material preferably consists of a powder having an average particle size of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size can be obtained by measuring the particle size distribution with a commercially available laser diffraction type particle size distribution measuring device and calculating D50 (median diameter) from the measured particle size distribution. Since the active metal brazing material is composed of a powder having such a small average particle size, the brazing material layer 13i can be thinned.
  • the brazing filler metal layer 13i preferably has a thickness of 0.1 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • step S103 as shown in FIG. 6, the copper plate 12i is arranged on the formed brazing material layer 13i.
  • an intermediate product 1i including the silicon nitride ceramic substrate 11, the copper plate 12i, and the brazing material layer 13i can be obtained.
  • step S104 the obtained intermediate product 1i is heat-treated.
  • a part of the metal other than the active metal contained in the brazing material layer 13i moves to the grain boundary 25 of the silicon nitride ceramic substrate 11.
  • a plurality of intrusion portions 14 are formed. That is, the brazing material layer 13i changes into a bonding layer 13j containing an active metal shown in FIG. 7 and a plurality of intrusion portions 14 containing a metal other than the active metal.
  • an intermediate product 1j including a silicon nitride ceramic substrate 11, a copper plate 12j, and a bonding layer 13j can be obtained.
  • the bonding layer 13j joins the copper plate 12j to the main surface 11s of the silicon nitride ceramic substrate 11.
  • the plurality of penetration portions 14 are continuous from the bonding layer 13j and enter the grain boundaries 25 of the silicon nitride ceramic substrate 11.
  • the heat treatment is preferably performed by heating the intermediate product 1i according to a temperature profile having a maximum temperature of 800 ° C. or higher and 860 ° C. or lower.
  • a plurality of penetration portions 14 that penetrate into the silicon nitride ceramic substrate 11 to a depth of 3 ⁇ m or more and 20 ⁇ m or less are formed.
  • the maximum temperature is lower than 800 ° C.
  • the penetration depth of the plurality of penetration portions 14 tends to be shallower than 3 ⁇ m, and it becomes difficult to prevent the bonding layer 13 from peeling from the silicon nitride ceramic substrate 11. A tendency appears, and it becomes difficult to obtain a bonded substrate 1 having high thermal durability.
  • the penetration depth of the plurality of entry portions 14 tends to be deeper than 20 ⁇ m, and the partial discharge starting from the plurality of entry portions 14 tends to occur, resulting in high insulation. There is a tendency that it becomes difficult to obtain a bonded substrate 1 having a property.
  • the intermediate product 1i When the intermediate product 1i is heat-treated, it is desirable that the intermediate product 1i is hot-pressed.
  • the thickness of the silicon nitride ceramic substrate 11 is such that the intermediate product 1i is in vacuum or in an inert gas according to a surface pressure profile having a maximum surface pressure of 5 MPa or more and 30 MPa or less. While pressurized in the longitudinal direction, it is heated according to a temperature profile having a maximum temperature of 800 ° C. or higher and 860 ° C. or lower.
  • the brazing material layer 13i has a thin thickness of 0.1 ⁇ m or more and 10 ⁇ m or less, the copper plate 12i can be bonded to the silicon nitride ceramic substrate 11 without forming voids in the bonding layer 13j.
  • the intermediate product 1i is heat-treated, silver, copper, indium and tin contained in the brazing material layer 13i may be diffused to the silicon nitride ceramic substrate 11 and / or the copper plate 12i.
  • nitrogen and / or silicon contained in the silicon nitride ceramic substrate 11 may be diffused into the brazing filler metal layer 13i.
  • the intermediate product 1i is heat-treated, the copper contained in the copper plate 11i may be diffused into the brazing material layer 13i.
  • step S105 the copper plate 12j and the bonding layer 13j are patterned.
  • the copper plate 12j is changed to the patterned copper plate 12 shown in FIG.
  • the bonding layer 13j changes to the patterned bonding layer 13 shown in FIG.
  • the bonding substrate 1 was manufactured according to the manufacturing method of the bonding substrate 1 described above. Titanium was used as the active metal contained in the active metal brazing material. As the metal other than the active metal contained in the active metal brazing material, silver was used.
  • the maximum temperature shown in Table 1 is adjusted while pressurizing the intermediate product 1i in the thickness direction of the silicon nitride ceramic substrate 11 according to the surface pressure profile having a maximum surface pressure of 20 MPa. Intermediate product 1i was heated according to the temperature profile to be possessed.
  • the cross section of the manufactured bonding substrate 1 was observed with an electron microscope (SEM) to acquire an SEM image, and the average value of the penetration depths of the plurality of penetration portions 14 was calculated from the acquired SEM image.
  • SEM electron microscope
  • the adhesion strength and the insulating property between the silicon nitride ceramic substrate 11 and the copper plate 12 of the manufactured bonding substrate 1 were evaluated.
  • the adhesion strength was evaluated by conducting a peel test of the copper plate 12 on the bonded substrate 1 and measuring the peel strength of the copper plate 12 on the bonded substrate 1.
  • the insulation property was evaluated by performing a withstand voltage test on the bonding substrate 1 and recording the dielectric breakdown voltage at which the bonding substrate 1 was dielectrically broken.
  • the boosting speed in the pressure resistance test was 0.1 kV / s.
  • the results are shown in Table 1. Further, the SEM image of condition 2 is shown in FIG. 8 (a), the SEM image of condition 3 is shown in FIG. 8 (b), the SEM image of condition 4 is shown in FIG. 8 (c), and the SEM image of condition 5 is shown. It is shown in FIG. 8 (d) and FIG. 8 (e).
  • FIG. 8 (e) is an enlarged image of FIG. 8 (d).
  • the average value of the penetration depths of the plurality of penetration portions 14 is 1 ⁇ m
  • the peel strength of the bonding substrate 1 is 17 kN / m
  • the bonding substrate is formed.
  • the voltage at which 1 is dielectrically broken is 10 kV.
  • the average value of the penetration depths of the plurality of penetration portions 14 is 3-20 ⁇ m, and the peel strength of the bonding substrate 1 is 25-38 kN / m.
  • the voltage at which the bonding substrate 1 undergoes dielectric breakdown is 8.6-9.7 kV.
  • the average value of the penetration depths of the plurality of penetration portions 14 is 25 ⁇ m
  • the peel strength of the bonding substrate 1 is 25-38 kN / m
  • the bonding substrate 1 is dielectric breakdown.
  • the voltage was 8.6-9.7 kV.
  • the maximum temperature 800 ° C. or higher and 860 ° C. or lower, it is possible to form a plurality of penetration portions 14 that penetrate into the silicon nitride ceramic substrate 11 to a depth of 3 ⁇ m or more and 20 ⁇ m or less. It can be understood that the bonded substrate 1 having high insulation properties in a well-balanced manner can be obtained.
  • FIG. 9 (a) is an enlarged image of FIG. 8 (f). From these element mapping images, it can be understood that the intrusion portion 14x is mainly composed of silver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

窒化ケイ素セラミックス基板と接合層との密着強度を向上し、高い冷熱耐久性を有する接合基板を得る。接合基板は、窒化ケイ素セラミックス基板、銅板、接合層及び入り込み部を備える。銅板及び接合層は、窒化ケイ素セラミックス基板の主面上に配置される。接合層は、銅板を窒化ケイ素セラミックス基板の主面に接合する。入り込み部は、接合層から連続し、窒化ケイ素セラミックス基板の粒界に入り込む。

Description

接合基板及び接合基板の製造方法
 本発明は、接合基板及び接合基板の製造方法に関する。
 窒化ケイ素セラミックスは、高い熱伝導性及び高い絶縁性を有する。このため、銅板が接合層を介して窒化ケイ素セラミックス基板に接合された接合基板は、パワー半導体素子が実装される絶縁放熱基板として好適に用いられる。
 当該接合基板は、多くの場合は、ろう材層を銅板と窒化ケイ素セラミックス基板との間に有する中間品を作製し、作製した中間品を熱処理して銅板と窒化ケイ素セラミックス板との間に接合層を生成させることにより製造される。
 ろう材層は、多くの場合は、水素化チタン粉末、並びに銀及び銅を含む粉末を含む。接合層は、多くの場合は、水素化チタン粉末に由来するチタンと窒化ケイ素セラミックス基板に由来する窒素との反応生成物である窒化チタンを主成分として含む。
 例えば、特許文献1に記載された技術においては、銅の金属板がろう付け法により窒化ケイ素基板に接合される(段落0016)。ろう材としては、Ti、ZrまたはHf等の活性金属を含有するAg-Cu合金が用いられる(段落0016)。特許文献1に記載された技術においては、強固な接合強度を得るために、ろう材層/窒化ケイ素界面に、十分にTiN粒子が析出させられる(段落0018)。
特開2002-201076号公報
 従来の技術においては、窒化ケイ素セラミックス基板と接合層との密着強度を十分に向上することができない場合があり、その結果として高い冷熱耐久性を有する接合基板を得ることができない場合がある。
 本発明は、この問題に鑑みてなされた。本発明が解決しようとする課題は、窒化ケイ素セラミックス基板と接合層との密着強度を向上し、高い冷熱耐久性を有する接合基板を得ることである。
 本発明は、接合基板に向けられる。
 接合基板は、窒化ケイ素セラミックス基板、銅板、接合層及び入り込み部を備える。銅板及び接合層は、窒化ケイ素セラミックス基板の主面上に配置される。接合層は、銅板を窒化ケイ素セラミックス基板の主面に接合する。入り込み部は、接合層から連続し、窒化ケイ素セラミックス基板の粒界に入り込む。
 本発明は、接合基板の製造方法にも向けられる。
 接合基板の製造方法においては、窒化ケイ素セラミックス基板が準備される。また、ろう材層が窒化ケイ素セラミックス基板の主面上に形成される。また、銅板がろう材層上に配置される。これにより、窒化ケイ素セラミックス基板、ろう材層及び銅板を備える中間品が得られる。また、中間品に対して熱処理が行われる。これにより、銅板を窒化ケイ素セラミックス基板の主面に接合する接合層と、接合層から連続し窒化ケイ素セラミックス基板の粒界に入り込む入り込み部と、が生成する。
 本発明によれば、窒化ケイ素セラミックス基板からの接合層の剥離が入り込み部により阻害される。このため、窒化ケイ素セラミックス基板と接合層との密着強度が向上する。これにより、高い冷熱耐久性を有する接合基板を得ることができる。
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態の接合基板を模式的に図示する断面図である。 第1実施形態の接合基板に備えられる、窒化ケイ素セラミックス基板と接合層との界面の付近を模式的に図示する拡大断面図である。 第1実施形態の接合基板に備えられる各入り込み部の付近を模式的に図示する拡大断面図である。 第1実施形態の接合基板の製造の流れを図示するフローチャートである。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。 第1実施形態の接合基板の断面の電子顕微鏡(SEM)画像である。 第1実施形態の接合基板の断面のSEM画像及び元素マッピング画像である。
 1 接合基板
 図1は、第1実施形態の接合基板を模式的に図示する断面図である。
 図1に図示される第1実施形態の接合基板1は、窒化ケイ素セラミックス基板11、銅板12及び接合層13を備える。接合基板1がこれらの要素以外の要素を備えてもよい。
 銅板12及び接合層13は、窒化ケイ素セラミックス基板11の主面11s上に配置される。接合層13は、銅板12を窒化ケイ素セラミックス基板11の主面11sに接合する。
 接合基板1は、どのように用いられてもよいが、例えばパワー半導体素子が実装される絶縁放熱基板として用いられる。
 2 接合構造
 図2は、第1実施形態の接合基板に備えられる、窒化ケイ素セラミックス基板と接合層との界面の付近を模式的に図示する拡大断面図である。
 接合基板1は、図2に図示されるように、複数の入り込み部14を備える。複数の入り込み部14は、窒化ケイ素セラミックス基板11の主面11sと平行をなす方向に互いに離れている。
 図3は、第1実施形態の接合基板に備えられる各入り込み部の付近を模式的に図示する拡大断面図である。
 窒化ケイ素セラミックス基板11は、図3に図示されるように、複数の窒化ケイ素粒子21及び粒界相22を備える。粒界相22は、複数の窒化ケイ素粒子21の間の粒界25に存在する。
 複数の入り込み部14に含まれる各入り込み部14xは、窒化ケイ素セラミックス基板11の主面11sの近傍に存在し、接合層13から連続し、窒化ケイ素セラミックス基板11の粒界25に入り込んでいる。各入り込み部14xは、粒界相22が存在しない部分に入り込んでいる。
 この微構造によれば、窒化ケイ素セラミックス基板11からの接合層13の剥離が複数の入り込み部14により阻害される。このため、窒化ケイ素セラミックス基板11と接合層13との密着強度が向上する。これにより、高い冷熱耐久性を有する接合基板1を得ることができる。
 また、この微構造によれば、窒化ケイ素セラミックス基板11の粒界25に存在する空隙が複数の入り込み部14により埋められる。このため、当該空隙がクラックその他の破壊の起点となることを抑制することができる。これにより、高い曲げ強度を有する接合基板1を得ることができる。
 複数の入り込み部14は、望ましくは3μm以上30μm以下の深さまで窒化ケイ素セラミックス基板11に入り込み、さらに望ましくは3μm以上20μm以下の深さまで窒化ケイ素セラミックス基板11に入り込む。これにより、高い冷熱耐久性及び高い絶縁性を有する接合基板1を得ることができる。しかし、複数の入り込み部14の入り込み深さがこれらの範囲の下限より浅い場合は、窒化ケイ素セラミックス基板11からの接合層13の剥離を阻害することが困難になる傾向が現れ、高い冷熱耐久性を有する接合基板1を得ることが困難になる傾向が現れる。また、複数の入り込み部14の入り込み深さがこれらの範囲の上限より深い場合は、複数の入り込み部14に電界が集中することに起因して、高い絶縁性を有する接合基板1を得ることが困難になる傾向が現れる。
 銅板12は、接合層13を介して窒化ケイ素セラミックス基板11に接合される。接合層13及び複数の入り込み部14は、銅板12を窒化ケイ素セラミックス基板11に接合するために用いられるろう材層から生成する。ろう材層は、活性金属及び活性金属以外の金属を含む。接合層13は、ろう材層に含まれる活性金属に由来する活性金属を含む。接合層13が、活性金属以外の金属を含んでもよい。接合層13が、窒化ケイ素セラミックス基板11から供給された窒素及び/又はケイ素を含んでもよい。供給された窒素及び/又はケイ素が活性金属と化合物を形成していていもよい。接合層13が、銅板12から供給された銅を含んでもよい。複数の入り込み部14は、ろう材層に含まれる活性金属以外の金属に由来する活性金属以外の金属を含む。活性金属は、チタン及びジルコニウムからなる群より選択される少なくとも1種の活性金属である。活性金属以外の金属は、銀、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属である。
 3 接合基板の製造方法
 図4は、第1実施形態の接合基板の製造の流れを図示するフローチャートである。図5、図6及び図7は、第1実施形態の接合基板の製造の途上で得られる中間品を模式的に図示する断面図である。
 第1実施形態の接合基板1の製造においては、図4に示される工程S101からS105までが順次に実行される。
 工程S101においては、窒化ケイ素セラミックス基板11が準備される。準備される窒化ケイ素セラミックス基板11は、上述したように、主面11sを有し、粒界25を有する。
 工程S102においては、図5に図示されるように、窒化ケイ素セラミックス基板11の主面11s上に、ろう材層13iが形成される。
 ろう材層13iが形成される際には、活性金属ろう材及び溶剤を含むペーストが調製される。ペーストがバインダ、分散剤、消泡剤等をさらに含んでもよい。続いて、調製されたペーストが窒化ケイ素セラミックス基板11の主面11s上にスクリーン印刷され、窒化ケイ素セラミックス基板11の主面11s上にスクリーン印刷膜が形成される。続いて、形成されたスクリーン印刷膜に含まれる溶剤が揮発させられる。これにより、スクリーン印刷膜が、ろう材層13iに変化する。ろう材層13iは、活性金属ろう材を含む。ろう材層13iがこの方法とは異なる方法により形成されてもよい。
 活性金属ろう材は、水素化活性金属粉末及び金属粉末を含む。水素化活性金属粉末は、チタン及びジルコニウムからなる群より選択される少なくとも1種の活性金属の水素化物を含む。金属粉末は、銀、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属を含む。銅、インジウム及びスズからなる群より選択される少なくとも1種の金属と銀とが活性金属ろう材に含まれる場合は、活性金属ろう材の融点が銀の融点に比べて低くなる。
 活性金属ろう材は、望ましくは40重量%以上80重量%以下の銀を含む。
 活性金属ろう材は、望ましくは0.1μm以上10μm以下の平均粒子径を有する粉末からなる。平均粒子径は、市販のレーザー回折式の粒度分布測定装置により粒度分布を測定し、測定した粒度分布からD50(メジアン径)を算出することにより得ることができる。活性金属ろう材がこのように小さい平均粒子径を有する粉末からなることにより、ろう材層13iを薄くすることができる。
 ろう材層13iは、望ましくは0.1μm以上10μm以下の厚さを有し、さらに望ましくは0.1μm以上5μm以下の厚さを有する。
 工程S103においては、図6に図示されるように、形成されたろう材層13i上に銅板12iが配置される。これにより、窒化ケイ素セラミックス基板11、銅板12i及びろう材層13iを備える中間品1iが得られる。
 工程S104においては、得られた中間品1iに対して熱処理が行われる。熱処理により、ろう材層13iに含まれる活性金属以外の金属の一部が、窒化ケイ素セラミックス基板11の粒界25に移動する。これにより、複数の入り込み部14が形成される。すなわち、ろう材層13iは、図7に図示される活性金属を含む接合層13jと、活性金属以外の金属を含む複数の入り込み部14と、に変化する。これらにより、窒化ケイ素セラミックス基板11、銅板12j及び接合層13jを備える中間品1jが得られる。接合層13jは、銅板12jを窒化ケイ素セラミックス基板11の主面11sに接合する。複数の入り込み部14は、接合層13jから連続し、窒化ケイ素セラミックス基板11の粒界25に入り込む。
 熱処理は、望ましくは800℃以上860℃以下の最高温度を有する温度プロファイルにしたがって中間品1iを加熱することにより行われる。これにより、3μm以上20μm以下の深さまで窒化ケイ素セラミックス基板11に入り込む複数の入り込み部14が形成される。しかし、最高温度が800℃より低い場合は、複数の入り込み部14の入り込み深さが3μmより浅くなる傾向が現れ、窒化ケイ素セラミックス基板11からの接合層13の剥離を阻害することが困難になる傾向が現れ、高い冷熱耐久性を有する接合基板1を得ることが困難になる傾向が現れる。また、最高温度が860℃より高い場合は、複数の入り込み部14の入り込み深さが20μmより深くなる傾向が現れ、複数の入り込み部14を起点とする部分放電が発生する傾向が現れ、高い絶縁性を有する接合基板1を得ることが困難になる傾向が現れる。
 中間品1iに対して熱処理が行われる場合は、望ましくは、中間品1iに対してホットプレスが行われる。中間品1iに対してホットプレスが行われる場合は、中間品1iが、真空中又は不活性ガス中で、5MPa以上30MPa以下の最高面圧を有する面圧プロファイルにしたがって窒化ケイ素セラミックス基板11の厚さ方向に加圧されながら、800℃以上860℃以下の最高温度を有する温度プロファイルにしたがって加熱される。これにより、ろう材層13iが0.1μm以上10μm以下の薄い厚さを有する場合においても、接合層13j内にボイドを生成することなく銅板12iを窒化ケイ素セラミックス基板11に接合することができる。
 中間品1iに対して熱処理が行われる間に、ろう材層13iに含まれる銀、銅、インジウム及びスズが窒化ケイ素セラミックス基板11及び/又は銅板12iに拡散させられてもよい。中間品1iに対して熱処理が行われる間に、窒化ケイ素セラミックス基板11に含まれる窒素及び/又はケイ素がろう材層13iに拡散させられてもよい。中間品1iに対して熱処理が行われる間に、銅板11iに含まれる銅がろう材層13iに拡散させられてもよい。
 工程S105においては、銅板12j及び接合層13jがパターニングされる。これにより、銅板12jが、図1に図示されるパターニングされた銅板12に変化する。また、接合層13jが、図1に図示されるパターニングされた接合層13に変化する。
 4 熱処理の最高温度の影響
 上述した接合基板1の製造方法にしたがって接合基板1を製造した。活性金属ろう材に含まれる活性金属としては、チタンを用いた。活性金属ろう材に含まれる活性金属以外の金属としては、銀を用いた。中間品1iに対して熱処理を行う際には、最高面圧20MPaを有する面圧プロファイルにしたがって中間品1iを窒化ケイ素セラミックス基板11の厚さ方向に加圧しながら、表1に示される最高温度を有する温度プロファイルにしたがって中間品1iを加熱した。また、製造した接合基板1の断面を電子顕微鏡(SEM)で観察してSEM画像を取得し、取得したSEM画像から複数の入り込み部14の入り込み深さの平均値を計算した。また、製造した接合基板1の、窒化ケイ素セラミックス基板11と銅板12との密着強度、及び絶縁性を評価した。密着強度の評価は、接合基板1に対して銅板12のピール試験を行って接合基板1における銅板12のピール強度を測定することにより行った。絶縁性の評価は、接合基板1に対して耐圧試験を行って接合基板1が絶縁破壊した絶縁破壊電圧を記録することにより行った。耐圧試験における昇圧速度は、0.1kV/sとした。その結果を表1に示す。また、条件2のSEM画像を図8(a)に示し、条件3のSEM画像を図8(b)に示し、条件4のSEM画像を図8(c)に示し、条件5のSEM画像を図8(d)及び図8(e)に示す。図8(e)は、図8(d)の拡大画像である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、最高温度が800℃より低い条件1においては、複数の入り込み部14の入り込み深さの平均値が1μmとなり、接合基板1のピール強度が17kN/mとなり、接合基板1が絶縁破壊する電圧が10kVとなった。
 また、最高温度が800℃以上860℃以下の条件2-6においては、複数の入り込み部14の入り込み深さの平均値が3-20μmとなり、接合基板1のピール強度が25-38kN/mとなり、接合基板1が絶縁破壊する電圧が8.6-9.7kVとなった。
 また、最高温度が860℃より高い条件7においては、複数の入り込み部14の入り込み深さの平均値が25μmとなり、接合基板1のピール強度が25-38kN/mとなり、接合基板1が絶縁破壊する電圧が8.6-9.7kVとなった。
 これらの結果からは、最高温度を800℃以上860℃以下とすることにより、3μm以上20μm以下の深さまで窒化ケイ素セラミックス基板11に入り込む複数の入り込み部14を形成することができ、高い密着強度及び高い絶縁性をバランスよく有する接合基板1を得ることができることを理解することができる。
 また、条件5のSEM画像を図9(a)に示し、当該SEM画像の視野と同じ視野におけるMg,Ti,Y,Ag,B,N,Si及びCuの元素マッピング画像をそれぞれ図9(b)、図9(c)、図9(d)、図9(e)、図9(f)、図9(g)、図9(h)及び図9(i)に示す。図9(a)は、図8(f)の拡大画像である。これらの元素マッピング画像からは、入り込み部14xが主に銀からなることを理解することができる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 接合基板
 11 窒化ケイ素セラミックス基板
 12 銅板
 13 接合層
 14 複数の入り込み部
 14x 各入り込み部
 21 複数の窒化ケイ素粒子
 22 粒界相
 25 粒界

Claims (7)

  1.  主面を有し、粒界を有する窒化ケイ素セラミックス基板と、
     前記主面上に配置される銅板と、
     前記主面上に配置され前記銅板を前記主面に接合する接合層と、
     前記接合層から連続し、前記粒界に入り込む入り込み部と、
    を備える接合基板。
  2.  前記入り込み部は、3μm以上30μm以下の深さまで前記窒化ケイ素セラミックス基板に入り込む
    請求項1の接合基板。
  3.  前記接合層は、チタン及びジルコニウムからなる群より選択される少なくとも1種の活性金属を含み、
     前記入り込み部は、銀、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属を含む
    請求項1又2の接合基板。
  4.  a) 主面を有し粒界を有する窒化ケイ素セラミックス基板を準備する工程と、
     b) 前記主面上にろう材層を形成する工程と、
     c) 前記ろう材層上に銅板を配置して前記窒化ケイ素セラミックス基板、前記ろう材層及び前記銅板を備える中間品を得る工程と、
     d) 前記中間品に対して熱処理を行って、前記銅板を前記主面に接合する接合層と、前記接合層から連続し前記粒界に入り込む入り込み部と、を生成する工程と、
    を備える接合基板の製造方法。
  5.  前記熱処理は、800℃以上860℃以下の最高温度を有する温度プロファイルにしたがって前記中間品を加熱することより行われる
    請求項4の接合基板の製造方法。
  6.  前記ろう材層は、チタン及びジルコニウムからなる群より選択される少なくとも1種の活性金属の水素化物と、銀、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属と、を含み、
     前記工程d)は、前記熱処理により銀、銅、インジウム及びスズからなる群より選択される少なくとも1種の金属を前記粒界に移動させて前記入り込み部を形成する
    請求項4又は5の接合基板の製造方法。
  7.  前記熱処理は、5MPa以上30MPa以下の最高面圧を有する面圧プロファイルにしたがって前記中間品を加圧することより行われる
    請求項4から6までのいずれかの接合基板の製造方法。
PCT/JP2019/047117 2019-12-03 2019-12-03 接合基板及び接合基板の製造方法 WO2021111508A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/047117 WO2021111508A1 (ja) 2019-12-03 2019-12-03 接合基板及び接合基板の製造方法
EP20895410.7A EP4071126A4 (en) 2019-12-03 2020-12-03 BONDED SUBSTRATE AND METHOD FOR MANUFACTURING A BONDED SUBSTRATE
CN202080074183.5A CN114600237A (zh) 2019-12-03 2020-12-03 接合基板以及接合基板的制造方法
JP2021562722A JP7311625B2 (ja) 2019-12-03 2020-12-03 接合基板及び接合基板の製造方法
PCT/JP2020/045073 WO2021112187A1 (ja) 2019-12-03 2020-12-03 接合基板及び接合基板の製造方法
US17/752,937 US20220285238A1 (en) 2019-12-03 2022-05-25 Bonded substrate and bonded substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/047117 WO2021111508A1 (ja) 2019-12-03 2019-12-03 接合基板及び接合基板の製造方法

Publications (1)

Publication Number Publication Date
WO2021111508A1 true WO2021111508A1 (ja) 2021-06-10

Family

ID=76221554

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/047117 WO2021111508A1 (ja) 2019-12-03 2019-12-03 接合基板及び接合基板の製造方法
PCT/JP2020/045073 WO2021112187A1 (ja) 2019-12-03 2020-12-03 接合基板及び接合基板の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045073 WO2021112187A1 (ja) 2019-12-03 2020-12-03 接合基板及び接合基板の製造方法

Country Status (5)

Country Link
US (1) US20220285238A1 (ja)
EP (1) EP4071126A4 (ja)
JP (1) JP7311625B2 (ja)
CN (1) CN114600237A (ja)
WO (2) WO2021111508A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163061A1 (ja) * 2022-02-25 2023-08-31 京セラ株式会社 配線基板、電子装置及び電子モジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029478A1 (ja) * 2013-08-29 2015-03-05 日立金属株式会社 セラミックス回路基板の製造方法
JP2015164184A (ja) * 2014-01-30 2015-09-10 京セラ株式会社 窒化珪素質基板およびこれを備える回路基板ならびに電子装置
JP2018160706A (ja) * 2017-02-23 2018-10-11 日本碍子株式会社 絶縁放熱基板
WO2018221493A1 (ja) * 2017-05-30 2018-12-06 デンカ株式会社 セラミックス回路基板及びそれを用いたモジュール
JP2019104680A (ja) * 2015-12-28 2019-06-27 日本碍子株式会社 接合基板および接合基板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928768A (en) * 1995-03-20 1999-07-27 Kabushiki Kaisha Toshiba Silicon nitride circuit board
JP3539634B2 (ja) 2000-10-26 2004-07-07 日立金属株式会社 回路搭載用窒化ケイ素基板および回路基板
WO2013008920A1 (ja) * 2011-07-14 2013-01-17 株式会社東芝 セラミックス回路基板
EP2991105B1 (en) * 2013-04-26 2020-09-30 Kyocera Corporation Composite laminate and electronic device
US10485112B2 (en) * 2016-06-10 2019-11-19 Tanaka Kikinzoku Kogyo K.K. Ceramic circuit substrate and method for producing ceramic circuit substrate
WO2018154692A1 (ja) * 2017-02-23 2018-08-30 日本碍子株式会社 絶縁放熱基板
JP6965768B2 (ja) * 2017-02-28 2021-11-10 三菱マテリアル株式会社 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
US11452204B2 (en) * 2017-04-25 2022-09-20 Denka Company Limited Ceramic circuit board, method for manufacturing ceramic circuit board, and module using ceramic circuit board
WO2022034810A1 (ja) * 2020-08-12 2022-02-17 株式会社Fjコンポジット 回路基板用積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029478A1 (ja) * 2013-08-29 2015-03-05 日立金属株式会社 セラミックス回路基板の製造方法
JP2015164184A (ja) * 2014-01-30 2015-09-10 京セラ株式会社 窒化珪素質基板およびこれを備える回路基板ならびに電子装置
JP2019104680A (ja) * 2015-12-28 2019-06-27 日本碍子株式会社 接合基板および接合基板の製造方法
JP2018160706A (ja) * 2017-02-23 2018-10-11 日本碍子株式会社 絶縁放熱基板
WO2018221493A1 (ja) * 2017-05-30 2018-12-06 デンカ株式会社 セラミックス回路基板及びそれを用いたモジュール

Also Published As

Publication number Publication date
US20220285238A1 (en) 2022-09-08
CN114600237A (zh) 2022-06-07
JPWO2021112187A1 (ja) 2021-06-10
EP4071126A4 (en) 2024-01-03
JP7311625B2 (ja) 2023-07-19
WO2021112187A1 (ja) 2021-06-10
EP4071126A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
JP5345580B2 (ja) セラミックヒータ及びその製造方法
JP6621402B2 (ja) セラミックス部材と金属部材との接合体及びその製法
JP5397553B2 (ja) 積層セラミック電子部品およびその製造方法
JP7273374B2 (ja) 複合材料、及び複合材料の製造方法
WO2021111508A1 (ja) 接合基板及び接合基板の製造方法
TW201731801A (zh) 陶瓷結構體、其製造方法及半導體製造裝置用構件
JP6396817B2 (ja) 窒化珪素質基板およびこれを備える回路基板ならびに電子装置
WO2021015122A1 (ja) 接合基板および接合基板の製造方法
JP6829584B2 (ja) 金属−炭素粒子複合材及びその製造方法
JP2011111341A (ja) 酸化層を有する窒化アルミニウム基板、該基板の製造方法、該基板を用いた回路基板及びledモジュール
JP6748408B2 (ja) 放熱シートの製造方法
JP2017172029A (ja) Niナノ粒子を用いた接合材料及び接合構造体
JP4051141B2 (ja) タングステン,タングステン繊維強化複合材料およびモリブデン,モリブデン繊維強化複合材料およびその製造方法ならびに同材料を用いた高温部品
WO2011113414A2 (de) Verfahren zum ntv-sintern eines halbleiterbausteins
JP6606514B2 (ja) 金属粒子及び導電性材料の粒子を用いた導電性接合材料並びに導電性接合構造
JP2010227963A (ja) 金属ナノ粒子を用いた接合方法
JP7087519B2 (ja) 熱電素子、熱電変換モジュールおよび熱電素子の製造方法
WO2021112029A1 (ja) 接合基板及び接合基板の製造方法
JP3683067B2 (ja) 窒化アルミニウム焼結体
JP7431857B2 (ja) 接合基板の製造方法
JPWO2020045403A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法
JP7460656B2 (ja) 接合基板の製造方法
JP2019511992A (ja) 銅−セラミックス複合材料
JP4635936B2 (ja) 誘電体素子およびその製造方法
EP2395547A2 (en) Substrate having sintered underplate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19955234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP