WO2023163061A1 - 配線基板、電子装置及び電子モジュール - Google Patents

配線基板、電子装置及び電子モジュール Download PDF

Info

Publication number
WO2023163061A1
WO2023163061A1 PCT/JP2023/006534 JP2023006534W WO2023163061A1 WO 2023163061 A1 WO2023163061 A1 WO 2023163061A1 JP 2023006534 W JP2023006534 W JP 2023006534W WO 2023163061 A1 WO2023163061 A1 WO 2023163061A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
particles
metal layer
wiring board
adhesion layer
Prior art date
Application number
PCT/JP2023/006534
Other languages
English (en)
French (fr)
Inventor
祐城 竹嶋
義博 細井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN202380020911.8A priority Critical patent/CN118661475A/zh
Publication of WO2023163061A1 publication Critical patent/WO2023163061A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present disclosure relates to wiring boards, electronic devices, and electronic modules.
  • a wiring board includes: A wiring board comprising a substrate having a first surface and a second surface opposite to the first surface, The substrate is first layer particles located in the surface layer on the first surface side; second layer particles adjacent to the first layer particles on the second surface side; a metal layer positioned at least between the first layer particles and the second layer particles; a first adhesion layer positioned between the first layer particles and the metal layer and in contact with the first layer particles and the metal layer; a second adhesion layer positioned between the second layer particles and the metal layer and in contact with the second layer particles and the metal layer; have
  • the electronic device of the present disclosure includes: the above wiring board; an electronic device mounted on the wiring board; Prepare.
  • the electronic module of the present disclosure includes: the electronic device described above; a module substrate on which the electronic device is mounted; Prepare.
  • FIG. 1 is a vertical cross-sectional view of a wiring board according to an embodiment of the present disclosure
  • FIG. It is the longitudinal cross-sectional view which expanded C1 part of FIG. 1A.
  • It is the longitudinal cross-sectional view which expanded the C2 part of FIG. 1A.
  • FIG. 4 is a vertical cross-sectional view of a first example showing the relationship between first layer particles and a metal layer
  • FIG. 6 is a longitudinal sectional view of a second example showing the relationship between the first layer particles and the metal layer
  • FIG. 10 is a vertical cross-sectional view of a third example showing the relationship between the first layer particles and the metal layer
  • FIG. 4 is a vertical cross-sectional view of a first example showing the relationship between first layer particles and a metal layer
  • FIG. 6 is a longitudinal sectional view of a second example showing the relationship between the first layer particles and the metal layer
  • FIG. 10 is a vertical cross-sectional view of a third example showing the relationship between the first layer particles and the metal layer
  • FIG. 10 is a vertical cross-sectional view of a fourth example showing the relationship between the first layer particles and the metal layer
  • FIG. 11 is a vertical cross-sectional view of a fifth example showing the relationship between the first layer particles and the metal layer
  • FIG. 11 is a vertical cross-sectional view of a sixth example showing the relationship between the first layer particles and the metal layer
  • FIG. 11 is a vertical cross-sectional view of a seventh example showing the relationship between the first layer particles and the metal layer
  • FIG. 11 is a vertical cross-sectional view of an eighth example showing the relationship between the first layer particles and the metal layer
  • It is a figure explaining an example of the manufacturing method of the wiring board which concerns on embodiment.
  • FIG. 11 is a vertical cross-sectional view of a fifth example showing the relationship between the first layer particles and the metal layer
  • FIG. 11 is a vertical cross-sectional view of a sixth example showing the relationship between the first layer particles and the metal layer
  • FIG. 11 is a vertical cross-sectional view of a
  • FIG. 4 is a diagram showing the surrounding state of the first layer particles and the second layer particles after the polishing step;
  • FIG. 4 is a diagram showing the surrounding state of the first layer particles and the second layer particles in the first stage of the Ti film-forming process.
  • FIG. 4 is a diagram showing the surrounding state of first layer particles and second layer particles after a Ti film-forming step;
  • FIG. 4 is a diagram showing the surrounding state of first layer particles and second layer particles after electroless plating and sintering steps;
  • FIG. 10 is a diagram showing the surrounding state of the first layer particles and the second layer particles after the resist is removed;
  • FIG. 4 is a diagram showing the surrounding state of first layer particles and second layer particles after an etching process;
  • 1 illustrates an electronic device and an electronic module according to embodiments of the present disclosure;
  • FIG. 1A is a vertical cross-sectional view of a wiring board according to an embodiment of the present disclosure.
  • FIG. 1B is a longitudinal sectional view enlarging the C1 portion of FIG. 1A.
  • FIG. 1C is a longitudinal sectional view enlarging the C2 portion of FIG. 1A.
  • a wiring board 10 according to this embodiment includes a base 11 and wiring conductors 15 .
  • the substrate 11 may have a first surface S1 and a second surface S2 located on the opposite side of the first surface S1.
  • the substrate 11 may be plate-shaped, or may be box-shaped having a concave portion, a stepped portion, and the like.
  • the substrate 11 may contain ceramic as the material of the whole or at least as the material of the first surface S1 side.
  • AlN aluminum nitride
  • the main component may be silicon nitride, silicon carbide, alumina, zirconia, and the like.
  • a main component means a component contained in an amount of 80% by mass or more.
  • the base 11 may have a mounting portion R1 for mounting an electronic element on the first surface S1.
  • the electronic element may be mounted on the mounting portion R1 (see FIG. 1A) via a plate-like submount.
  • the wiring conductor 15 may include a linear conductor 15a located on the first surface S1.
  • the linear conductor 15a extends in one direction along the first surface S1.
  • the wiring conductors 15 include a film conductor positioned on the first surface S1, a linear conductor and a film conductor positioned on the second surface S2, via conductors positioned inside the substrate 11, and linear conductors. Any one or more of a conductor and a film conductor may be included.
  • the wiring conductor 15 may function as a conductor that guides a voltage such as a power supply voltage, a ground voltage, or a detection voltage, or a conductor that guides a signal such as a high frequency signal.
  • the substrate 11 includes, on the first surface S1 side, first layer particles 21 located in the surface layer and second layer particles 22 adjacent to the first layer particles 21 on the second surface S2 side.
  • the ceramic is composed of a plurality of sintered and densified particles, and each of the first layer particles 21 and the second layer particles 22 corresponds to the individual particles constituting the ceramic.
  • FIG. 2 is a diagram for explaining the structure between the layers of the first layer particles and the second layer particles.
  • the substrate 11 may have at least the metal layer 23 located between the first layer particles 21 and the second layer particles 22 .
  • the metal layer 23 may be located on the first surface S1 side of the first layer particles 21 or may be located on the second surface S2 side of the second layer particles 22 . Furthermore, the metal layer 23 may be positioned between a pair of first layer particles 21 adjacent in the planar direction, or may be positioned between a pair of second layer particles 22 adjacent in the planar direction.
  • the metal layer 23 may contain Cu (copper) as a main component.
  • the metal layer 23 may have higher thermal conductivity than the constituent particles of the base 11 .
  • the substrate 11 includes a first adhesion layer 24 located between the metal layer 23 and the first layer particles 21 and in contact with the metal layer 23 and the first layer particles 21, the metal layer 23 and the second layer particles 22. and in contact with the metal layer 23 and the second layer particles 22 .
  • first adhesion layer 24 and the second adhesion layer 25 are indicated by thick lines.
  • the first adhesion layer 24 and the second adhesion layer 25 may contain TiO 2 (titanium oxide) as a main component.
  • the first adhesion layer 24 acts to reduce separation between the first layer particles 21 and the metal layer 23 .
  • the second adhesion layer 25 acts to reduce separation between the second layer particles 22 and the metal layer 23 .
  • the bonding strength between the first layer particles 21 and the second layer particles 22 is increased by the first adhesion layer 24, the metal layer 23, and the second adhesion layer 25, and the first layer particles 21 adhere to the substrate 11. It is possible to reduce falling off from. Furthermore, since the metal layer 23 fills the space between the first layer particles 21 and the second layer particles 22 , the thermal conductivity between the first layer particles 21 and the second layer particles 22 increases, and the substrate 11 It is possible to improve heat dissipation from the first surface S1 to the second surface S2 side.
  • 3A to 3D are vertical cross-sectional views of first to fourth examples showing the arrangement of the first layer particles and the metal layer, respectively.
  • 4A to 4D are longitudinal sectional views of fifth to eighth examples showing the arrangement of the first layer particles and the metal layer, respectively.
  • the constituent particles of the substrate 11 have a polygonal cross-sectional periphery.
  • the constituent particles include first layer particles 21 and second layer particles 22 .
  • the polygonal shape of the outer periphery of the cross section is due to the fact that each particle is densified when the substrate 11 is sintered.
  • the polygonal shape includes not only a strict polygonal shape, but also a shape that approximates a polygon, such as a shape with slightly rounded corners, a shape with a small bend or step on a side, or the like.
  • a portion of the polygonal shape that can be regarded as one straight line, except for small bends and small steps, will be referred to as "one side".
  • the direction from the first surface S1 to the second surface S2 is the downward direction
  • the average direction along the first surface S1 is the horizontal direction
  • a side is called a bottom side when it is located downward and has an inclination within ⁇ 45° in the horizontal direction, and is called a side edge when it is located laterally and has an inclination within ⁇ 45° in the vertical direction.
  • a longitudinal section means a section perpendicular to the first surface S1.
  • first layer particles 21 may be partially bonded to the second layer particles 22 without the metal layer 23 intervening.
  • the bond may be a bond that occurs when the ceramic is fired. According to this configuration, even if the metal layer 23 is later removed by etching, the first layer particles 21 are less likely to drop off from the substrate 11 .
  • the first layer particles 21 include first particles 21Aa and 21Ab surrounded entirely by the first adhesion layer 24 and the metal layer 23. You can stay. With this configuration, high bonding strength between the first particles 21Aa and 21Ab and the second layer particles 22 can be obtained, and falling off of the first particles 21Aa and 21Ab from the substrate 11 can be further reduced. Furthermore, since the metal layer 23 surrounds the first particles 21Aa and 21Ab, the thermal conductivity is improved in the vicinity of the first particles 21Aa and 21Ab, and in addition, the effect of diffusing heat in the horizontal direction is increased. . Therefore, heat dissipation from the first surface S1 to the second surface S2 through the substrate 11 can be improved.
  • the first layer particles 21 include second particles 21B adjacent to the first particles 21Ab, and the entire circumference of the first particles 21Ab and the entire circumference of the second particles 21B may be surrounded by the metal layer 23 and the first adhesion layer 24 . Since a plurality of particles are continuously surrounded by the metal layer 23 and the first adhesion layer 24 in this way, the bonding strength between the first layer particles 21 and the second layer particles 22 is further improved, and the first layer particles 21 falling off from the base 11 can be further reduced. Furthermore, the thermal conductivity is further improved in the vicinity of the first particles 21Ab and the second particles 21B, and in addition, the effect of diffusing heat in the horizontal direction is further increased. Therefore, heat dissipation from the first surface S1 to the second surface S2 through the substrate 11 can be further improved.
  • the first layer particles 21 are covered with the metal layer 23 and the first adhesion layer 24 except for the first sides e1a to e1c.
  • Third particles 21Ca to 21Cc may also be included. This configuration also provides high bonding strength of the third particles 21Ca to 21Cc, and can reduce the falling off of the third particles 21Ca to 21Cc from the substrate 11.
  • the above first side e1a may be the first side of the third particle 21Ca, as shown in FIG. 3C.
  • the lower side of the third particle 21Ca is covered with the metal layer 23 and the first adhesion layer 24, and the effect of diffusing heat in the horizontal direction increases around the third particle 21Ca. Therefore, heat dissipation from the first surface S1 to the second surface S2 through the substrate 11 can be improved.
  • the above first sides e1b and e1c may be the lower sides of the third particles 21Cb and 21Cc, as shown in FIGS. 3D and 4A.
  • both sides of the third particles 21Cb and 21Cc are covered with the metal layer 23 and the first adhesion layer 24, and the periphery of the third particles 21Cb and 21Cc extends from the first surface S1 to the second surface S2. can increase the thermal conductivity to Therefore, heat dissipation from the first surface S1 to the second surface S2 through the substrate 11 can be improved.
  • both sides of the third particles 21Cb and 21Cc may be spaced apart from each other closer to the first surface S1. According to this configuration, if there is no metal layer 23, the structure becomes difficult to ensure strength, but even in this structure, high bonding strength between the third particles 21Cb and 21Cc can be obtained.
  • the third particles 21Ca and 21Cb are adjacent to each other via the first sides e1a and e1b (for example, the fourth particles contained in the first layer particles 21). 21D or the fifth particles 22E) contained in the second layer particles 22). According to this configuration, even if the metal layer 23 is removed later by etching, the third particles 21Ca and 21Cb are less likely to come off from the base 11 .
  • the third particle 21Cc has the first side e1c partially covered with the metal layer 23 and the first adhesion layer 24, and the remaining part covered with the metal layer 23 and the first adhesion layer 24.
  • Adjacent particles for example, the first layer particles 21 or the second layer particles 22
  • the first side e1c is the lower side of the third particle 21Cc, but the first side e1c may be the side of the third particle 21Cc.
  • the range of the metal layer 23 bonded to the third particles 21Cc is increased, and the thermal conductivity around the third particles 21Cc can be increased. Therefore, heat dissipation from the first surface S1 to the second surface S2 through the substrate 11 can be improved.
  • the first layer particles 21 are continuous including the first corner p1 among the two sides e2 and e3 adjacent to each other across the first corner p1. Except for the first region r1, the sixth particles 21F surrounded by the metal layer 23 and the first adhesion layer 24 may be included. Further, the first regions r1 of the sixth particles 21F are bonded to adjacent particles (for example, one or both of the first layer particles 21 and the second layer particles 22) without interposing the metal layer 23 and the first adhesion layer 24.
  • the metal layer 23 and the first adhesion layer 24 are positioned on the side that does not contact the first corner p1, the bonding strength of the sixth particles 21F increases, and the sixth particles 21F drop off from the base 11. can be reduced.
  • the thermal conductivity around the sixth particles 21F can be increased, and the heat dissipation from the first surface S1 to the second surface S2 through the base 11 can be improved.
  • the first region r1 may include the lower side of the sixth particle 21F. Then, one side edge e4 of the sixth particle 21F may be covered with the metal layer 23 and the first adhesion layer 24 . With this configuration as well, it is possible to increase the thermal conductivity of the path from the first surface S1 to the second surface S2 around the sixth particle 21F. Therefore, heat dissipation from the first surface S1 to the second surface S2 via the substrate 11 can be improved.
  • the first layer particles 21 may include the following seventh particles 21Ga and 21Gb.
  • Each of the seventh particles 21Ga and 21Gb has an outer periphery including a lower side e6, a first side e5, and a second side e7 opposite to the first side e5.
  • the side e7 is bonded to the adjacent first layer particles 21 without interposing the metal layer 23 and the first adhesion layer 24, and the whole or part of the lower side e6 is covered with the metal layer 23 and the first adhesion layer 24. .
  • the first layer particles 21 may include the following eighth particles 21Ha and 21Hb adjacent to the seventh particles 21Ga and 21Gb.
  • the eighth particles 21Ha and 21Hb have the lower sides e8 covered with the metal layer 23 and the first adhesion layer 24, and the metal layer 23 and the first adhesion layer 24 on the lower sides e8 are formed on the lower sides e6 of the seventh particles 21Ga and 21Gb. It is continuous with the metal layer 23 and the first adhesion layer 24 covering the .
  • the continuous metal layer 23 is positioned below the seventh particles 21Ga, 21Gb and the eighth particles 21Ha, 21Hb, so that the effect of diffusing heat in the horizontal direction is enhanced in the periphery. . Therefore, heat dissipation from the first surface S1 to the second surface S2 through the substrate 11 can be further improved.
  • the first adhesive layer 24 between the first layer particles 21 and the second layer particles 22 , the metal layer 23 and the second adhesion layer 25 may not be positioned. That is, the regions R11 to R13 may include the dividing portions W of the first adhesion layer 24, the metal layer 23 and the second adhesion layer 25. FIG. With such a configuration, high isolation of each wiring conductor 15 can be ensured.
  • FIG. 5 is a diagram showing a method for manufacturing a wiring board according to the embodiment.
  • 6A to 6F are diagrams showing the peripheral states of the first layer particles and the second layer particles in the manufacturing process, FIG. 6A after the polishing process, FIG. 6B before the Ti film forming process, and FIG. 6C After the film formation process, FIG. 6D shows the state after the electroless plating and sintering process, FIG. 6E shows the state after the resist removal, and FIG. 6F shows the state after the etching process.
  • the method for manufacturing the wiring board 10 of the present embodiment includes, in chronological order, a polishing step J1, a Ti film forming step J2, an electroless plating and sintering step J3, a resist processing step J4, an electrolytic plating step J5, and resist removal and etching. including step J6.
  • the first surface S1 side of the fired ceramic substrate 70 is polished by a polishing device.
  • the operation parameters of the polishing apparatus and the parameters of the abrasive as shown in FIG. Gaps such as microcracks can be generated between the first-layer particles 21 and the second-layer particles 22 (that is, grain boundaries).
  • the above parameters may be set so that part of the grain boundaries between the first layer particles 21 and surrounding particles is maintained so that the first layer particles 21 do not fall off. .
  • the ceramic substrate 71 after polishing is immersed in the solution 72 of the organic titanium compound. Then, as shown in FIG. 6B, the solution 72 adheres to the surface of the first surface S1 and enters the gaps formed in the polishing step J1. In FIG. 6B, solution 72 is indicated by dashed lines.
  • the ceramic substrate 71 to which the solution 72 has adhered is fired in an oxidizing atmosphere. Baking may be performed, for example, under conditions of 400° C. or higher for 30 minutes or longer.
  • FIG. 6C the solution 72 that has penetrated the surface of the first surface S1 and the gaps is solidified and changed into a titanium oxide layer 73 .
  • FIG. 6C the solution 72 that has penetrated the surface of the first surface S1 and the gaps is solidified and changed into a titanium oxide layer 73 .
  • the titanium oxide layer 73 is shown in bold.
  • the titanium oxide layer 73 located between the first layer particles 21 and the second layer particles 22 corresponds to the first adhesion layer 24 and the second adhesion layer 25 .
  • the Ti film forming step J2 may be a step of forming the titanium oxide layer 73 by the sol-gel method as described above.
  • the first surface S1 side of the ceramic substrate 74 is plated with electroless Cu. Electroless Cu plating is also performed in the gaps formed in the polishing step J1. After that, a sintering process is performed to diffuse the elements on the interface.
  • the conditions for sintering may be 300° C. or higher and 30 minutes or longer in an inert gas atmosphere. As shown in FIG.
  • the electroless Cu plating and sintering step J3 by the electroless Cu plating and sintering step J3, the first surface S1 side of the first layer particles 21, the gaps between the first layer particles 21, the first layer particles 21 and the first layer particles 21, and the A metal layer 23 is formed in the gap between the two-layer particles 22, and the metal layer 23 and the first adhesion layer 24 and the second adhesion layer 25 adhere to each other due to the diffusion of elements at the interface.
  • a pattern 82 for the wiring conductor 15 is formed on the metal layer 23 of the first surface S1 by DFR (Dry Film Resist) 81, for example.
  • the metal layer 23 on the first surface S1 is electrolytically Cu-plated using the pattern 82 of the DFR 81 to form the wiring conductor 15 with a predetermined thickness.
  • the DFR 81 and at least the metal layer 23 and the titanium oxide layer around the wiring conductor 15 are etched.
  • the etching removes the metal layer 23, the first adhesion layer 24, and the second adhesion layer 25 around the wiring conductor 15, and the isolation of the wiring conductor 15 is ensured.
  • a plating step of electroplating Ni (nickel), Pd (palladium), and Au (gold) on the surface of the wiring conductor 15 may be performed.
  • the resist processing step J4 the electroplating step J5, and the resist removing and etching step J6 may be omitted.
  • the wiring board 10 according to the present embodiment can be manufactured by the manufacturing method as described above.
  • FIG. 7 is a diagram illustrating an electronic device and an electronic module according to an embodiment of the present disclosure.
  • the electronic device 40 of this embodiment is configured by mounting an electronic element 50 on the wiring board 10 . Electrodes of the electronic element 50 may be electrically connected to the wiring conductors 15 . Electronic device 40 may further include a package that accommodates wiring board 10 and electronic element 50 .
  • optical devices such as LD (Laser Diode), PD (Photo Diode), LED (Light Emitting Diode), CCD (Charge Coupled Device) type, CMOS (Complementary Metal Oxide Semiconductor) type imaging device,
  • Various electronic components such as piezoelectric vibrators such as crystal vibrators, surface acoustic wave devices, semiconductor devices such as semiconductor integrated circuit devices (IC: Integrated Circuit), electric capacitive devices, inductor devices, and resistors can be applied.
  • the electronic module 100 is configured by mounting the electronic device 40 on the module substrate 110 .
  • other electronic devices, electronic elements, electric elements, and the like may be mounted on the module substrate 110 .
  • An electrode pad 111 is provided on the module substrate 110, and the electronic device 40 may be bonded to the electrode pad 111 via a bonding material 113 such as solder.
  • the electrodes 31 may be provided on the second surface S ⁇ b>2 of the wiring board 10 and the electrodes 31 may be bonded to the electrode pads 111 via the bonding material 113 .
  • the wiring substrate 10 has a strong surface layer of the substrate 11 and high heat dissipation from the first surface S1 to the second surface S2 side.
  • An electronic device 40 and an electronic module 100 are obtained.
  • the strength of the surface layer of the substrate 11 is achieved under the wiring conductors 15 (see FIG. 1C) on the first surface S1, peeling of the wiring conductors 15 can be reduced.
  • the present disclosure can be used for wiring boards, electronic devices, and electronic modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

配線基板は、第1面と第1面の反対側に位置する第2面とを有する基体を備え、基体は、第1面側の表層に位置する第1層粒子と、第1層粒子と第2面側で隣り合う第2層粒子と、少なくとも第1層粒子と第2層粒子との間に位置する金属層と、第1層粒子と金属層との間に位置し、第1層粒子と金属層とに接する第1密着層と、第2層粒子と金属層との間に位置し、第2層粒子と金属層とに接する第2密着層とを有する。

Description

配線基板、電子装置及び電子モジュール
 本開示は、配線基板、電子装置及び電子モジュールに関する。
 国際公開2008/084867号には、半導体基板上に位置する絶縁膜と、絶縁膜上に位置する配線膜とを有する半導体装置が示されている。
 本開示に係る配線基板は、
 第1面と前記第1面の反対側に位置する第2面とを有する基体を備えた配線基板であって、
 前記基体は、
 前記第1面側の表層に位置する第1層粒子と、
 前記第1層粒子と前記第2面側で隣り合う第2層粒子と、
 少なくとも前記第1層粒子と前記第2層粒子との間に位置する金属層と、
 前記第1層粒子と前記金属層との間に位置し、前記第1層粒子と前記金属層とに接する第1密着層と、
 前記第2層粒子と前記金属層との間に位置し、前記第2層粒子と前記金属層とに接する第2密着層と、
 を有する。
 本開示の電子装置は、
 上記の配線基板と、
 前記配線基板に搭載された電子装置と、
 を備える。
 本開示の電子モジュールは、
 上記の電子装置と、
 前記電子装置が搭載されるモジュール用基板と、
 を備える。
本開示の実施形態に係る配線基板の縦断面図である。 図1AのC1部分を拡大した縦断面図である。 図1AのC2部分を拡大した縦断面図である。 第1層粒子と第2層粒子との層間の構造を説明する図である。 第1層粒子と金属層との関係を示す第1例の縦断面図である。 第1層粒子と金属層との関係を示す第2例の縦断面図である。 第1層粒子と金属層との関係を示す第3例の縦断面図である。 第1層粒子と金属層との関係を示す第4例の縦断面図である。 第1層粒子と金属層との関係を示す第5例の縦断面図である。 第1層粒子と金属層との関係を示す第6例の縦断面図である。 第1層粒子と金属層との関係を示す第7例の縦断面図である。 第1層粒子と金属層との関係を示す第8例の縦断面図である。 実施形態に係る配線基板の製造方法の一例を説明する図である。 研磨工程後における第1層粒子及び第2層粒子の周辺の状態を示す図である。 Ti成膜工程の前段における第1層粒子及び第2層粒子の周辺の状態を示す図である。 Ti成膜工程後における第1層粒子及び第2層粒子の周辺の状態を示す図である。 無電解めっき及びシンター工程後における第1層粒子及び第2層粒子の周辺の状態を示す図である。 レジスト除去後における第1層粒子及び第2層粒子の周辺の状態を示す図である。 エッチング工程後における第1層粒子及び第2層粒子の周辺の状態を示す図である。 本開示の実施形態に係る電子装置及び電子モジュールを示す図である。
 以下、本開示の実施形態について図面を参照して詳細に説明する。
 図1Aは、本開示の実施形態に係る配線基板の縦断面図である。図1Bは、図1AのC1部分を拡大した縦断面図である。図1Cは、図1AのC2部分を拡大した縦断面図である。本実施形態に係る配線基板10は、基体11と、配線導体15とを備える。
 基体11は、第1面S1と、第1面S1の反対側に位置する第2面S2とを有してもよい。基体11は、板状であってもよいし、凹部、段部等を有する箱体形状であってもよい。基体11は、全体の材料として、あるいは、少なくとも第1面S1側の材料として、セラミックを含んでもよい。上記セラミックは、AlN(窒化アルミニウム)が主成分であってもよい。主成分は、窒化ケイ素、炭化ケイ素、アルミナ、ジルコニア等であってもよい。主成分とは、80質量%以上含まれる成分を意味する。
 基体11は、電子素子を搭載する搭載部R1を第1面S1上に有してもよい。電子素子は板状のサブマウントを介して搭載部R1(図1Aを参照)に搭載されてもよい。
 配線導体15は、第1面S1上に位置する線状導体15aを含んでもよい。線状導体15aは、第1面S1に沿って一方に延在する。配線導体15は、図示を省略するが、第1面S1上に位置する膜状導体、第2面S2に位置する線状導体及び膜状導体、基体11の内部に位置するビア導体、線状導体及び膜状導体のいずれか1つ又は複数を含んでもよい。配線導体15は、電源電圧、接地電圧、検出電圧等の電圧を導く導体、あるいは、高周波信号などの信号を導く導体として機能してもよい。
 図1Bに示すように、基体11は、第1面S1側に、表層に位置する第1層粒子21と、第1層粒子21の第2面S2側に隣り合う第2層粒子22とを有する。セラミックは複数の粒子が焼結及び綿密化されて構成されており、第1層粒子21及び第2層粒子22の各々は上記のセラミックを構成する個々の粒子に相当する。
 図2は、第1層粒子と第2層粒子との層間の構造を説明する図である。
 基体11は、少なくとも第1層粒子21と第2層粒子22との間に位置する金属層23を有してもよい。金属層23は、第1層粒子21の第1面S1側にも位置してもよいし、第2層粒子22の第2面S2側に位置してもよい。さらに、金属層23は、平面方向に隣り合う一対の第1層粒子21の間に位置してもよいし、平面方向に隣り合う一対の第2層粒子22の間に位置してもよい。
 金属層23は、主成分としてCu(銅)を含んでもよい。金属層23は、基体11の構成粒子よりも高い熱伝導性を有してもよい。
 基体11は、金属層23と第1層粒子21との間に位置し、かつ、金属層23と第1層粒子21とに接する第1密着層24と、金属層23と第2層粒子22との間に位置し、かつ、金属層23と第2層粒子22とに接する第2密着層25とを有してもよい。図1B及び図1Cにおいて、第1密着層24及び第2密着層25は太線により示す。
 第1密着層24及び第2密着層25は、主成分としてTiO(酸化チタン)を含んでもよい。第1密着層24は、第1層粒子21と金属層23との剥離を低減する作用を及ぼす。第2密着層25は、第2層粒子22と金属層23との剥離を低減する作用を及ぼす。
 上記の構成によれば、第1密着層24、金属層23及び第2密着層25により、第1層粒子21と第2層粒子22との結合力が増し、第1層粒子21が基体11から脱落してしまうことを低減できる。さらに、第1層粒子21と第2層粒子22との間を金属層23が埋めるので、第1層粒子21と第2層粒子22との間の熱伝導率が高くなり、基体11において第1面S1から第2面S2側への放熱性を向上できる。
 <金属層の配置の詳細>
 図3A~図3Dは、それぞれ第1層粒子と金属層との配置を示す第1例~第4例の縦断面図である。図4A~図4Dは、それぞれ第1層粒子と金属層との配置を示す第5例~第8例の縦断面図である。
 基体11の構成粒子は、断面の外周が多角形形状を有する。当該構成粒子は第1層粒子21及び第2層粒子22を含む。断面の外周が多角形形状になるのは基体11を焼成する際に各粒子が綿密化することによる。多角形形状とは、厳密な多角形だけでなく、角に小さな丸みが含まれる形状、辺に小さな曲りや小さな段が含まれる形状など、多角形と近似する形状を含むものとする。以下では、多角形形状のうち小さな曲りや小さな段を除けば1つの直線と見なせる部位を「一つの辺」と呼ぶ。また、第1面S1から第2面S2側を下方、第1面S1に沿った平均的な方向を水平方向とする。辺は、下方に位置しかつ傾斜が水平方向±45°以内であるとき下辺と呼び、側方に位置しかつ傾斜が鉛直方向±45°以内であるとき側辺と呼ぶ。縦断面とは、第1面S1に垂直な断面を意味する。
 第1層粒子21の多くは、一部が金属層23を介さずに第2層粒子22と結合されていてもよい。当該結合は、セラミックを焼成する際に生じる結合であってもよい。当該構成によれば、後に、金属層23がエッチング処理により除去された場合でも、第1層粒子21が基体11から脱落することを低減できる。
 図3A及び図3Bに示すように、基体11の縦断面において、第1層粒子21には、全周囲が第1密着層24と金属層23とに囲まれた第1粒子21Aa、21Abを含んでいてもよい。当該構成によれば、第1粒子21Aa、21Abと第2層粒子22との高い結合強度が得られ、第1粒子21Aa、21Abが基体11から脱落することをより低減できる。さらに、金属層23が第1粒子21Aa、21Abを囲んでいることで、第1粒子21Aa、21Abの周辺において、熱の伝導率が向上し、加えて、熱を水平方向へ拡散する作用が増す。したがって、基体11を介した第1面S1から第2面S2側への放熱性を向上できる。
 図3Bに示すように、基体11の縦断面において、第1層粒子21は、第1粒子21Abに隣り合う第2粒子21Bを含み、第1粒子21Abの全周と第2粒子21Bの全周とが金属層23及び第1密着層24に囲まれていてもよい。このように複数の粒子が連続して金属層23及び第1密着層24に囲まれることで、第1層粒子21と第2層粒子22との結合強度がより向上し、第1層粒子21が基体11から脱落してしまうことをより低減できる。さらに、第1粒子21Ab及び第2粒子21Bの周辺において、熱の伝導率がより向上し、加えて、熱を水平方向へ拡散する作用がより増加する。したがって、基体11を介した第1面S1から第2面S2側への放熱性をより向上できる。
 図3C、図3D及び図4Aに示すように、基体11の縦断面において、第1層粒子21は、第1辺e1a~e1cを除いた周囲が金属層23及び第1密着層24に覆われた第3粒子21Ca~21Ccを含んでもよい。当該構成によっても、第3粒子21Ca~21Ccの高い結合強度が得られ、第3粒子21Ca~21Ccが基体11から脱落することを低減できる。
 上記の第1辺e1aは、図3Cに示すように、第3粒子21Caの第1側辺であってもよい。当該構成によれば、第3粒子21Caの下辺が金属層23及び第1密着層24に覆われ、第3粒子21Caの周辺において熱を水平方向へ拡散する作用が増す。したがって、基体11を介した第1面S1から第2面S2側への放熱性を向上できる。
 上記の第1辺e1b、e1cは、図3D及び図4Aに示すように、第3粒子21Cb、21Ccの下辺であってもよい。当該構成によれば、第3粒子21Cb、21Ccの両方の側辺が金属層23及び第1密着層24に覆われ、第3粒子21Cb、21Ccの周辺において第1面S1から第2面S2側への熱伝導率を高くすることができる。したがって、基体11を介した第1面S1から第2面S2側への放熱性を向上できる。
 図3D及び図4Aに示すように、第3粒子21Cb、21Ccの両方の側辺は、第1面S1に近いほど間隔が広くなってもよい。当該構成によれば、仮に金属層23が無い場合に強度が確保しにくい構造となるが、当該構造においても第3粒子21Cb、21Ccの高い結合強度を得ることができる。
 図3C及び図3Dに示すように、基体11の縦断面において、第3粒子21Ca、21Cbは、第1辺e1a、e1bを介して隣り合う粒子(例えば第1層粒子21に含まれる第4粒子21D、又は、第2層粒子22に含まれる第5粒子22E)と結合されていてもよい。当該構成によれば、後に、金属層23がエッチング処理により除去された場合でも、第3粒子21Ca、21Cbが基体11から脱落することを低減できる。
 図4Aに示すように、基体11の縦断面において、第3粒子21Ccは、第1辺e1cの一部が金属層23及び第1密着層24に覆われ、残りの一部が金属層23及び第1密着層24を介さずに隣り合う粒子(例えば第1層粒子21又は第2層粒子22)と結合していてもよい。図4Aの例では、第1辺e1cが第3粒子21Ccの下辺である例を示しているが、第1辺e1cが第3粒子21Ccの側辺であってもよい。当該構成によれば、第3粒子21Ccに結合される金属層23の範囲が増加し、第3粒子21Ccの周辺における熱伝導率を高くすることができる。したがって、基体11を介した第1面S1から第2面S2側への放熱性を向上できる。
 図4Bに示すように、基体11の縦断面において、第1層粒子21は、第1角部p1を挟んで隣接する2つの辺e2、e3のうちか第1角部p1を含んで連続する第1領域r1を除いて、金属層23及び第1密着層24に囲まれた第6粒子21Fを含んでもよい。さらに、第6粒子21Fの第1領域r1は、隣接する粒子(例えば第1層粒子21及び第2層粒子22の一方又は両方)に金属層23及び第1密着層24を介さずに結合されていてもよい。当該構成においても、第1角部p1と接しない辺において、金属層23及び第1密着層24が位置することで、第6粒子21Fの結合強度が増し、第6粒子21Fが基体11から脱落することを低減できる。また、第6粒子21Fの周辺の熱伝導率を高くすることができ、基体11を介した第1面S1から第2面S2側への放熱性を向上できる。
 第1領域r1には、第6粒子21Fの下辺が含まれてもよい。そして、第6粒子21Fの一方の側辺e4が金属層23及び第1密着層24に覆われていてもよい。当該構成によっても、第6粒子21Fの周辺で第1面S1から第2面S2側へ向かう経路の熱伝導率を高くすることができる。よって、基体11を介した第1面S1から第2面S2側への放熱性を向上できる。
 図4C及び図4Dに示すように、基体11の縦断面において、第1層粒子21は、次のような第7粒子21Ga、21Gbを含んでもよい。第7粒子21Ga、21Gbは、下辺e6、第1側辺e5、当該第1側辺e5の反対に位置する第2側辺e7を含んだ外周を有し、第1側辺e5及び第2側辺e7とが金属層23及び第1密着層24を介さずに両隣の第1層粒子21と結合され、下辺e6の全部又は一部が金属層23及び第1密着層24に覆われている。当該構成によれば、第7粒子21Ga、21Gbと第2層粒子22との高い結合強度が得られ、第7粒子21Ga、21Gbが基体11から脱落することをより低減できる。さらに、上記構成によれば、金属層23を介して熱を水平方向へ拡散する作用が得られる。よって、基体11を介した第1面S1から第2面S2側への放熱性を向上できる。なお、図4Dに示すように、下辺e6の全部が金属層23及び第1密着層24に覆われている方が、上記の作用がより増強される。
 さらに、図4C及び図4Dに示すように、第1層粒子21は、第7粒子21Ga、21Gbと隣り合う、次のような第8粒子21Ha、21Hbを含んでもよい。第8粒子21Ha、21Hbは、下辺e8が金属層23及び第1密着層24に覆われ、かつ、当該下辺e8の金属層23及び第1密着層24が、第7粒子21Ga、21Gbの下辺e6を覆う金属層23及び第1密着層24に連続している。当該構成によれば、第8粒子21Ha、21Hbと第2層粒子22との高い結合強度が得られ、第8粒子21Ha、21Hbが基体11から脱落することをより低減できる。さらに、上記構成によれば、第7粒子21Ga、21Gbと第8粒子21Ha、21Hbとの下方に連続する金属層23が位置するので、当該周辺において熱を水平方向へ拡散する作用が増強される。したがって、基体11を介した第1面S1から第2面S2側への放熱性をより向上できる。
 <配線導体と金属層との関係>
 次に、図1Cに示すように、基体11上に2つの配線導体15(第1導体及び第2導体に相当)が位置する場合について説明する。2つの配線導体15の下方においては、前述したように、第1層粒子21と第2層粒子22との間に第1密着層24、金属層23及び第2密着層25が位置してもよい。さらに、第1層粒子21の上方に位置する金属層23が配線導体15と結合していてもよい。
 一方、隣り合う一対の配線導体15の間の領域R11、あるいは、配線導体15の周囲の領域R12、R13においては、第1層粒子21と第2層粒子22との間の第1密着層24、金属層23及び第2密着層25が位置しなくてもよい。すなわち、領域R11~R13には第1密着層24、金属層23及び第2密着層25の分断部Wが含まれてもよい。このような構成により、各配線導体15の高いアイソレーションを確保できる。
 <製造方法>
 図5は、実施形態に係る配線基板の製造方法を示す図である。図6A~図6Fは、製造工程における第1層粒子及び第2層粒子の周辺の状態を示す図であり、図6Aは研磨工程後、図6BはTi成膜工程の前段、図6CはTi成膜工程後、図6Dは無電解めっき及びシンター工程後、図6Eはレジスト除去後、図6Fはエッチング工程後を示す。
 本実施形態の配線基板10の製造方法は、時系列順に、研磨工程J1、Ti成膜工程J2、無電解めっき及びシンター工程J3、レジスト加工工程J4、電解めっき工程J5、並びに、レジスト除去及びエッチング工程J6を含む。
 研磨工程J1では、焼成されたセラミック基板70の第1面S1側を研磨装置により研磨する。研磨装置の動作パラメータ及び研磨材のパラメータの設定により、図6Aに示すように、第1面S1を平坦にし、かつ、複数の第1層粒子21の各々の間(すなわち粒界)と、第1層粒子21と第2層粒子22との間(すなわち粒界)とに、マイクロクラック等の隙間を発生させることができる。研磨工程J1では、第1層粒子21が脱落しないように、第1層粒子21と周囲の粒子との間の粒界の一部が維持されるように、上記のパラメータが設定されてもよい。
 Ti成膜工程J2では、まず、研磨後のセラミック基板71を有機チタン化合物の溶液72に浸漬させる。すると、図6Bに示すように、上記溶液72が第1面S1の表面に付着し、かつ、研磨工程J1で形成された隙間に侵入する。図6Bにおいて、溶液72を破線で示す。次に、溶液72が付着したセラミック基板71を酸化雰囲気で焼成する。焼成は、例えば400℃以上、30分以上の条件で実行されてもよい。焼成により、図6Cに示すように、第1面S1の表面及び上記の隙間に侵入した溶液72が固化され、酸化チタン層73へ変化する。図6Cにおいて、酸化チタン層73を太線で示す。酸化チタン層73のうち、第1層粒子21と第2層粒子22との間に位置するものが、第1密着層24及び第2密着層25に相当する。Ti成膜工程J2は、上記のようにゾルゲル法により酸化チタン層73を作成する工程であってもよい。
 無電解めっき及びシンター工程J3では、セラミック基板74の第1面S1側に、無電解Cuめっきを施す。無電解Cuめっきは研磨工程J1で形成された隙間においても行われる。その後、界面の元素を拡散させるシンター処理を行う。シンター処理の条件は、不活性ガスの雰囲気中、300℃以上、30分以上としてもよい。図6Dに示すように、無電解Cuめっき及びシンター工程J3により、第1層粒子21の第1面S1側と、第1層粒子21の各々の間の隙間と、第1層粒子21と第2層粒子22との間の隙間に金属層23が形成され、かつ、金属層23と第1密着層24及び第2密着層25とが界面の元素の拡散により密着する。
 レジスト加工工程J4では、例えばDFR(Dry Film Resist)81により第1面S1の金属層23の上に配線導体15用のパターン82が形成される。
 電解Cuめっき工程J5では、DFR81のパターン82で第1面S1の金属層23の上に電解Cuめっきが施され、所定の厚みの配線導体15が形成される。
 レジスト除去及びエッチング工程J6では、DFR81、並びに、少なくとも配線導体15の周辺の金属層23と酸化チタン層(すなわち第1密着層24及び第2密着層25)とがエッチングされる。図6E及び図6Fに示すように、当該エッチングにより、配線導体15の周囲の金属層23、第1密着層24及び第2密着層25が除去され、配線導体15のアイソレーションが確保される。
 なお、エッチングの後、配線導体15の表面にNi(ニッケル)、Pd(パラジウム)、Au(金)を電解めっきするめっき工程が行われてもよい。また、配線導体15のパターンが不要な場合には、レジスト加工工程J4、電解めっき工程J5及びレジスト除去及びエッチング工程J6が省略されてもよい。
 以上のような製造方法により、本実施形態に係る配線基板10を製造することができる。
 (電子装置及び電子モジュール)
 図7は、本開示の実施形態の電子装置及び電子モジュールを示す図である。
 本実施形態の電子装置40は、配線基板10に電子素子50が実装されて構成される。電子素子50の電極が、配線導体15に電気的に接続されてもよい。電子装置40は、さらに、配線基板10と電子素子50とを収容するパッケージを有する構成であってもよい。
 電子素子50としては、LD(Laser Diode)、PD(Photo Diode)、LED(Light Emitting Diode)等の光素子、CCD(Charge Coupled Device)型、CMOS(Complementary Metal Oxide Semiconductor)型等の撮像素子、水晶振動子等の圧電振動子、弾性表面波素子、半導体集積回路素子(IC:Integrated Circuit)等の半導体素子、電気容量素子、インダクタ素子又は抵抗器等の種々の電子部品を適用できる。
 本実施形態に係る電子モジュール100は、モジュール用基板110に電子装置40を実装して構成される。モジュール用基板110には、電子装置40に加えて、他の電子装置、電子素子及び電気素子などが実装されていてもよい。モジュール用基板110には電極パッド111が設けられ、電子装置40は、電極パッド111に半田等の接合材113を介して接合されてもよい。なお、配線基板10の第2面S2には電極31が設けられ、電極31が接合材113を介して電極パッド111に接合されてもよい。
 本実施形態の電子装置40及び電子モジュール100によれば、基体11の表層が丈夫でかつ第1面S1から第2面S2側への高い放熱性が得られる配線基板10により、信頼性の高い電子装置40及び電子モジュール100が得られる。特に、基体11の表層の丈夫さは第1面S1上の配線導体15(図1Cを参照)の下において実現されることから、配線導体15が剥離してしまうことを低減できる。
 以上、本開示の実施形態について説明した。しかし、本開示の配線基板、電子装置及び電子モジュールは、上記実施形態に限られるものでなく、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
 本開示は、配線基板、電子装置及び電子モジュールに利用できる。
 10 配線基板
 11 基体
 S1 第1面
 S2 第2面
 15 配線導体
 15a 線状導体
 21 第1層粒子
 21Aa、21Ab 第1粒子
 21B 第2粒子
 21Ca、21Cb、21Cc 第3粒子
 21D 第4粒子
 21F 第6粒子
 21Ga、21Gb 第7粒子
 21Ha、21Hb 第8粒子
 22 第2層粒子
 22E 第5粒子
 23 金属層
 24 第1密着層
 25 第2密着層
 e1a、e1b、e1c 第1辺
 p1 第1角部
 e2、e3 隣接する2つの辺
 r1 第1領域
 e4 側辺
 e5 第1側辺
 e6、e8 下辺
 e7 第2側辺
 W 分断部
 40 電子装置
 50 電子素子
 100 電子モジュール
 110 モジュール用基板

Claims (15)

  1.  第1面と前記第1面の反対側に位置する第2面とを有する基体を備えた配線基板であって、
     前記基体は、
     前記第1面側の表層に位置する第1層粒子と、
     前記第1層粒子と前記第2面側において隣り合う第2層粒子と、
     少なくとも前記第1層粒子と前記第2層粒子との間に位置する金属層と、
     前記第1層粒子と前記金属層との間に位置し、前記第1層粒子と前記金属層とに接する第1密着層と、
     前記第2層粒子と前記金属層との間に位置し、前記第2層粒子と前記金属層とに接する第2密着層と、
     を有する配線基板。
  2.  前記第1層粒子は、第1粒子を含み、
     縦断面において、前記第1粒子の全周が前記第1密着層と前記金属層とに囲まれている請求項1記載の配線基板。
  3.  前記第1層粒子は、前記第1粒子と隣り合う第2粒子を更に含み、
     縦断面において、前記第1粒子の全周と前記第2粒子の全周とが前記第1密着層と前記金属層とに囲まれている請求項2記載の配線基板。
  4.  前記第1層粒子は、第3粒子を含み、
     縦断面において、前記第3粒子の外周の第1辺を除いて前記第3粒子が前記金属層と前記第1密着層とに囲まれている請求項1から請求項3のいずれか一項に記載の配線基板。
  5.  縦断面において、前記第3粒子の外周は第1側辺と下辺と前記第1側辺の反対に位置する第2側辺とを含み、
     前記第1辺は前記第1側辺であり、
     前記第1層粒子は、前記第3粒子と隣り合う第4粒子を含み、
     縦断面において、前記第1側辺が前記金属層及び前記第1密着層を介さずに前記第4粒子と結合している、
     請求項4記載の配線基板。
  6.  縦断面において、前記第3粒子の外周は第1側辺と下辺と前記第1側辺の反対に位置する第2側辺とを含み、
     前記第2層粒子は、前記第3粒子と隣り合う第5粒子を含み、
     前記第1辺は前記下辺であり、
     縦断面において、前記下辺が前記金属層及び前記第1密着層を介さずに前記第5粒子と結合している、
     請求項4記載の配線基板。
  7.  前記第1側辺と前記第2側辺との間隔は、前記第1面に近くなるほど広がる、
     請求項6記載の配線基板。
  8.  前記第1辺の一部が前記金属層及び前記第1密着層により覆われ、前記第1辺の残りの一部が前記金属層及び前記第1密着層を介さずに隣りの粒子に結合されている、
     請求項4から請求項7のいずれか一項に記載の配線基板。
  9.  前記第1層粒子は、縦断面において第1角部と複数の辺とを含んだ外周を有する第6粒子を含み、
     縦断面において、前記第6粒子は、第1角部を挟んで隣接する2つの辺のうち前記第1角部を含んで連続する第1領域を除いて前記金属層及び前記第1密着層に囲まれ、前記第1領域が前記金属層及び前記第1密着層を介さずに隣りの粒子に結合されている、
     請求項1から請求項8のいずれか一項に記載の配線基板。
  10.  縦断面において、前記第6粒子は下辺を含み、
     前記第1領域には、前記下辺が含まれる、
     請求項9記載の配線基板。
  11.  前記第1層粒子は、縦断面において第1側辺と、下辺と、前記第1側辺の反対に位置する第2側辺とを含んだ外周を有する第7粒子を含み、
     縦断面において、前記第7粒子は、前記第1側辺と前記第2側辺とが前記金属層及び前記第1密着層を介さずに両隣の粒子にそれぞれ結合され、前記下辺の全部又は一部が前記金属層及び前記第1密着層に覆われている、
     請求項1から請求項10のいずれか一項に記載の配線基板。
  12.  前記第1層粒子は、前記第7粒子と隣り合う第8粒子を含み、
     縦断面において、前記第8粒子の外周は、前記第7粒子に対向する第1側辺と下辺と前記第1側辺の反対に位置する第2側辺とを含み、
     前記第8粒子の前記第2側辺及び前記下辺が前記金属層及び前記第1密着層に覆われ、
     前記第8粒子の前記下辺を覆う前記金属層及び前記第1密着層と、前記第7粒子の前記下辺を覆う前記金属層及び前記第1密着層とが連続している、
     請求項11記載の配線基板。
  13.  前記第1面上に位置する第1導体及び第2導体を備え、
     縦断面において、前記第1導体の下方に位置する前記金属層、前記第1密着層及び前記第2密着層と、前記第2導体の下方に位置する前記金属層、前記第1密着層及び前記第2密着層との間には、前記金属層、前記第1密着層及び前記第2密着層の分断部が含まれる請求項1から請求項12のいずれか一項に記載の配線基板。
  14.  請求項1から請求項13のいずれか一項に記載の配線基板と、
     前記配線基板に搭載された電子素子と、
     を備える電子装置。
  15.  請求項14に記載の電子装置と、
     前記電子装置を搭載したモジュール用基板と、
     を備える電子モジュール。
PCT/JP2023/006534 2022-02-25 2023-02-22 配線基板、電子装置及び電子モジュール WO2023163061A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380020911.8A CN118661475A (zh) 2022-02-25 2023-02-22 布线基板、电子装置以及电子模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-027938 2022-02-25
JP2022027938 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023163061A1 true WO2023163061A1 (ja) 2023-08-31

Family

ID=87766013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006534 WO2023163061A1 (ja) 2022-02-25 2023-02-22 配線基板、電子装置及び電子モジュール

Country Status (2)

Country Link
CN (1) CN118661475A (ja)
WO (1) WO2023163061A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260388A (ja) * 1986-05-06 1987-11-12 三菱電機株式会社 セラミツク基板への無電解メツキ方法
JPH0391287A (ja) * 1989-09-01 1991-04-16 Ibiden Co Ltd 電子回路基板の製造方法
JPH05191038A (ja) * 1992-01-16 1993-07-30 Ibiden Co Ltd 金属層を備えたセラミックス基板とその製造方法
WO2005098942A1 (ja) * 2004-04-05 2005-10-20 Mitsubishi Materials Corporation Ai/ain接合体、パワーモジュール用基板及びパワーモジュール並びにai/ain接合体の製造方法
JP2010109028A (ja) * 2008-10-29 2010-05-13 Kyocera Corp 配線基板及び配線基板の製造方法
WO2021112187A1 (ja) * 2019-12-03 2021-06-10 日本碍子株式会社 接合基板及び接合基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62260388A (ja) * 1986-05-06 1987-11-12 三菱電機株式会社 セラミツク基板への無電解メツキ方法
JPH0391287A (ja) * 1989-09-01 1991-04-16 Ibiden Co Ltd 電子回路基板の製造方法
JPH05191038A (ja) * 1992-01-16 1993-07-30 Ibiden Co Ltd 金属層を備えたセラミックス基板とその製造方法
WO2005098942A1 (ja) * 2004-04-05 2005-10-20 Mitsubishi Materials Corporation Ai/ain接合体、パワーモジュール用基板及びパワーモジュール並びにai/ain接合体の製造方法
JP2010109028A (ja) * 2008-10-29 2010-05-13 Kyocera Corp 配線基板及び配線基板の製造方法
WO2021112187A1 (ja) * 2019-12-03 2021-06-10 日本碍子株式会社 接合基板及び接合基板の製造方法

Also Published As

Publication number Publication date
CN118661475A (zh) 2024-09-17

Similar Documents

Publication Publication Date Title
KR100917745B1 (ko) 반도체 장치 및 그 제조 방법
US20080079829A1 (en) Camera module and method for manufacturing same
JP5864742B2 (ja) 支持体装置、支持体装置を備えている電気的な装置、並びに、支持体装置及び電気的な装置の製造方法
US11930586B2 (en) Wiring substrate, electronic device and electronic module
JP5173758B2 (ja) 半導体パッケージの製造方法
JP6030370B2 (ja) 配線基板および電子装置
WO2023163061A1 (ja) 配線基板、電子装置及び電子モジュール
JP6626735B2 (ja) 電子部品搭載用基板、電子装置および電子モジュール
JP2004207542A (ja) 発光素子収納用パッケージおよび発光装置
CN111566806B (zh) 布线基板、电子装置以及电子模块
JP4336153B2 (ja) 発光素子収納用パッケージおよび発光装置
JP4458974B2 (ja) 多数個取り配線基板
JP2006278756A (ja) 圧電振動子収納用パッケージおよび圧電装置
JP6224473B2 (ja) 配線基板、電子装置および電子モジュール
JP7171894B2 (ja) 配線基板、電子装置及び電子モジュール
JP2004254251A (ja) 表面実装型圧電振動子及び絶縁性パッケージ
JP4383253B2 (ja) 配線基板
JP2020035898A (ja) 電子素子実装用基板、電子装置、および電子モジュール
JP6193702B2 (ja) 多数個取り配線基板
JPWO2018155434A1 (ja) 配線基板、電子装置および電子モジュール
JP7492910B2 (ja) 配線基板
WO2021060475A1 (ja) 電子部品搭載用基体および電子装置
US20220183156A1 (en) Stacked-layer board, electronic component module, and method of manufacturing stacked-layer board
JP5197407B2 (ja) 多数個取り配線基板
JP4738220B2 (ja) 複数個取り配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024503230

Country of ref document: JP

Kind code of ref document: A