WO2015029478A1 - セラミックス回路基板の製造方法 - Google Patents
セラミックス回路基板の製造方法 Download PDFInfo
- Publication number
- WO2015029478A1 WO2015029478A1 PCT/JP2014/056534 JP2014056534W WO2015029478A1 WO 2015029478 A1 WO2015029478 A1 WO 2015029478A1 JP 2014056534 W JP2014056534 W JP 2014056534W WO 2015029478 A1 WO2015029478 A1 WO 2015029478A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brazing material
- circuit board
- ceramic circuit
- etching
- hydrogen peroxide
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 131
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 44
- 238000005219 brazing Methods 0.000 claims abstract description 242
- 239000000463 material Substances 0.000 claims abstract description 234
- 238000005530 etching Methods 0.000 claims abstract description 168
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 162
- 229910052751 metal Inorganic materials 0.000 claims abstract description 143
- 239000002184 metal Substances 0.000 claims abstract description 143
- 239000000758 substrate Substances 0.000 claims abstract description 65
- 239000003929 acidic solution Substances 0.000 claims abstract description 28
- 239000000243 solution Substances 0.000 claims description 90
- 239000010949 copper Substances 0.000 claims description 65
- 229910052802 copper Inorganic materials 0.000 claims description 57
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 49
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 32
- 239000007864 aqueous solution Substances 0.000 claims description 32
- -1 carboxylate salt Chemical class 0.000 claims description 32
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 30
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 26
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 21
- 150000007942 carboxylates Chemical class 0.000 claims description 16
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 13
- 239000004202 carbamide Substances 0.000 claims description 12
- 238000005304 joining Methods 0.000 claims description 9
- 150000001735 carboxylic acids Chemical class 0.000 claims 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 abstract description 40
- 150000001734 carboxylic acid salts Chemical class 0.000 abstract description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 57
- 238000011282 treatment Methods 0.000 description 37
- 229910052581 Si3N4 Inorganic materials 0.000 description 26
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 26
- 238000009413 insulation Methods 0.000 description 20
- 235000011054 acetic acid Nutrition 0.000 description 19
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- LDDQLRUQCUTJBB-UHFFFAOYSA-O azanium;hydrofluoride Chemical compound [NH4+].F LDDQLRUQCUTJBB-UHFFFAOYSA-O 0.000 description 16
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 14
- 235000019345 sodium thiosulphate Nutrition 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 230000007261 regionalization Effects 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000945 filler Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 9
- 238000005245 sintering Methods 0.000 description 9
- 229910021607 Silver chloride Inorganic materials 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000003513 alkali Substances 0.000 description 7
- 239000012670 alkaline solution Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 239000002518 antifoaming agent Substances 0.000 description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 239000003002 pH adjusting agent Substances 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910001316 Ag alloy Inorganic materials 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910017770 Cu—Ag Inorganic materials 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 229910017855 NH 4 F Inorganic materials 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 229910052987 metal hydride Inorganic materials 0.000 description 3
- 150000004681 metal hydrides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 229910017944 Ag—Cu Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000004280 Sodium formate Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- FGRVOLIFQGXPCT-UHFFFAOYSA-L dipotassium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [K+].[K+].[O-]S([O-])(=O)=S FGRVOLIFQGXPCT-UHFFFAOYSA-L 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 2
- 235000019254 sodium formate Nutrition 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- ZVYGIPWYVVJFRW-UHFFFAOYSA-N 3-methylbutyl prop-2-enoate Chemical compound CC(C)CCOC(=O)C=C ZVYGIPWYVVJFRW-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- BQERHANPSBPDFS-UHFFFAOYSA-N CCOC=C.OCCOC(=O)C=C Chemical compound CCOC=C.OCCOC(=O)C=C BQERHANPSBPDFS-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DDAQLPYLBPPPRV-UHFFFAOYSA-N [4-(hydroxymethyl)-2-oxo-1,3,2lambda5-dioxaphosphetan-2-yl] dihydrogen phosphate Chemical compound OCC1OP(=O)(OP(O)(O)=O)O1 DDAQLPYLBPPPRV-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 230000021962 pH elevation Effects 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical group C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/06—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
- H05K3/067—Etchants
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/91—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/10—Etching compositions
- C23F1/14—Aqueous compositions
- C23F1/16—Acidic compositions
- C23F1/30—Acidic compositions for etching other metallic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4846—Leads on or in insulating or insulated substrates, e.g. metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/26—Cleaning or polishing of the conductive pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/388—Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/124—Metallic interlayers based on copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/125—Metallic interlayers based on noble metals, e.g. silver
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
- C04B2237/127—The active component for bonding being a refractory metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0779—Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
- H05K2203/0786—Using an aqueous solution, e.g. for cleaning or during drilling of holes
- H05K2203/0789—Aqueous acid solution, e.g. for cleaning or etching
Definitions
- the present invention relates to a method for manufacturing a ceramic circuit board used for a power module or the like.
- a circuit board is applied by applying a brazing material containing an active metal to the surface of a ceramic substrate such as silicon nitride or aluminum nitride having a high thermal conductivity, placing a metal plate such as copper or aluminum, and heating and bonding. After that, the resist is generally printed on the metal plate in the form of a so-called circuit pattern, and an unnecessary portion of the metal plate not covered with the resist is removed by etching.
- the bonding layer between the ceramic substrate and the copper plate formed of the brazing material containing the active metal uses, for example, a brazing material containing Ag, Cu, and Ti as the active metal, as described in Japanese Patent No. 3627983.
- a brazing material containing Ag, Cu, and Ti as the active metal, as described in Japanese Patent No. 3627983.
- Unnecessary brazing material between circuit patterns is removed to some extent at the same time when the metal plate is etched, but depending on conditions, the alloy layer of the brazing material (for example, a layer containing Cu-Ag as a main component) and reaction A layer (for example, a layer containing titanium nitride as a main component) may not be completely removed and a part of the layer may remain. If a part of the brazing material remains, there arises a problem that insulation between adjacent circuit patterns is lowered or short-circuited.
- the alloy layer of the brazing material for example, a layer containing Cu-Ag as a main component
- reaction A layer for example, a layer containing titanium nitride as a main component
- Japanese Unexamined Patent Publication No. 2006-351988 discloses a ceramic circuit board in which a metal plate is bonded to both main surfaces of a ceramic plate (a nitride ceramic such as aluminum nitride and silicon nitride) via a brazing material having an active metal. It describes that a brazing material is applied to a ceramic plate, a ceramic plate and a metal plate are joined, and then an etching mask is applied to perform etching to produce a ceramic circuit board. Further, JP-A-2006-351988 discloses that the applied brazing material, its alloy layer and nitride layer remain on the ceramic circuit board from which unnecessary metal portions have been removed by the etching.
- an etching solution containing an aqueous ammonium fluoride solution for removing a brazing material has a large effect of removing a reaction layer mainly composed of titanium nitride, but is not sufficient for removing an alloy layer.
- the brazing filler metal may remain, resulting in a problem that the insulation between the circuit patterns is lowered or short-circuited.
- Japanese Patent Laid-Open No. 9-16325 includes a silicon nitride substrate in which a metal circuit or a metal circuit and a metal heat sink are formed via a bonding layer containing an active metal, and the bonding layer has a thickness of 20 ⁇ m or less and a metal circuit and Disclosed is a silicon nitride circuit board in which the oxygen content of the metal heat sink is 50 ppm or less, the silicon nitride circuit board applying a brazing material paste containing an active metal or a compound containing an active metal, A step of joining a metal plate having a sufficient width to cover the coating paste, a step of forming a circuit pattern on the metal plate of the joined body with an etching resist, a step of forming a metal circuit by etching, and a gap between the metal circuits It describes that it consists of a step of removing the existing brazing material.
- JP-A-9-16325 describes that a (warm) aqueous solution of ammonium hydrogen fluoride (NH 4 F ⁇ HF), hydrogen peroxide (H 2 O 2 ) or the like is used in the step of removing the brazing filler metal. is doing.
- an etching solution containing an aqueous ammonium fluoride solution for removing a brazing material has a large effect of removing a reaction layer mainly composed of titanium nitride, but is not sufficient for removing an alloy layer.
- the brazing filler metal may remain, resulting in a problem that the insulation between the circuit patterns is lowered or short-circuited.
- JP-A-10-154866 discloses a method comprising a first treatment with an aqueous solution containing ammonium fluoride and hydrogen peroxide and a second treatment with an aqueous solution containing alkali and hydrogen peroxide, This method describes that the unnecessary brazing material can be completely removed without reducing the dimensional accuracy of the circuit pattern.
- the brazing material removing method described in JP-A-10-154866 uses an alkaline aqueous solution, there is a problem that the etching resist that is removed with the alkaline solution is eroded.
- Japanese Patent Laid-Open No. 10-251878 removes silver chloride deposited on the surface of silver or a silver alloy by etching a copper plate by treating it with an aqueous solution of sodium thiosulfate and / or potassium thiosulfate, and further residual silver or silver
- a method of removing an alloy by treating it with an aqueous solution containing NH 4 F.HF and hydrogen peroxide is disclosed, and this method does not use an alkaline treatment solution. It states that it will not erode.
- the aqueous solution of sodium thiosulfate and / or potassium thiosulfate has a high dissolution effect on silver chloride, it does not have a reduction and dissolution effect on metallic silver and silver alloys.
- metal silver and silver alloy are not sufficiently removed, and a part of the brazing material remains, which may deteriorate the quality of the circuit board.
- Japanese Patent Laid-Open No. 2005-35874 discloses a method in which a metal member is bonded to at least one surface of a ceramic substrate via an active metal-containing brazing material, and then a resist is applied to a predetermined portion of the surface of the metal member to partially After etching and removing the resist, after etching a part of the metal layer formed of a metal other than the active metal of the active metal-containing brazing material, for example, with a chemical agent consisting of hydrogen peroxide, ammonia water and EDTA, Disclosed is a method for producing a metal / ceramic bonding substrate that is treated with a chemical that selectively etches an active metal layer.
- a carboxylic acid compound (a Acid, diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), 1,3-propanediaminetriacetic acid (1,3PDTA) (Nitrilotriacetic acid (NTA), hydroxyethylidene diphosphate (HEDT), etc.) and an agent containing an oxidizing agent and an alkali, or (b) a compound having one or more amino groups in the soot molecule (such as an ethylenediamine-based compound)
- DTPA diethylenetriaminepentaacetic acid
- EDTA ethylenediaminetetraacetic acid
- HEDTA hydroxyethylethylenediaminetriacetic acid
- 1,3PDTA 1,3-propanediaminetriacetic acid
- NTA hydroxyethylidene diphosphate
- HEDT hydroxyethylidene diphosphat
- the method for producing a metal / ceramic bonding substrate described in Japanese Patent Application Laid-Open No. 2005-35874 includes a process of removing a part of a metal layer formed of a metal other than an active metal after removing a resist, and an active metal Since the process of selectively etching the layer is performed, there is a problem that the surface of the metal member is corroded by the process after removing the resist. When the resist is removed last, an alkaline solution is used as an agent for removing a part of the metal layer formed of a metal other than the active metal. There arises a problem that the etching resist is eroded. Further, since the chemical containing the carboxylic acid compound (a) uses an alkaline solution, it has the same problem. Accordingly, development of a brazing material removal technique that can be used in an acidic state is desired.
- an object of the present invention is to provide a method for producing a ceramic circuit board having a treatment liquid that does not corrode an etching resist that is removed with an alkaline solution, has a high brazing material removal ability, and has good handleability. is there.
- an acidic solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide has a high ability to remove brazing material containing Ag and is very easy to handle.
- the present inventors have found that the present invention is good, and that the subsequent treatment with an acidic solution containing ammonium fluoride and hydrogen peroxide can reduce a trace amount of the brazing material to a level at which there is no practical problem.
- the manufacture of a ceramic circuit board includes a joining step of joining a metal plate to a ceramic substrate via a brazing material to obtain a joined body, and a pattern forming step of forming a circuit pattern by etching the joined metal plate. is doing. After the pattern formation step, a residue remains even when etching is performed with a conventional etching solution (for example, an aqueous solution containing ammonium fluoride and hydrogen peroxide described in JP-A-10-154866).
- a conventional etching solution for example, an aqueous solution containing ammonium fluoride and hydrogen peroxide described in JP-A-10-154866.
- the inventor of the present application diligently studied and eluted at least a part of the alloy layer (for example, Cu-Ag layer) derived from the metal other than the active metal of the brazing material with the first brazing material etching solution containing acetic acid and hydrogen peroxide. Then, a first brazing material etch is performed by dissolving a reaction layer (for example, a titanium nitride layer) formed by an active metal in the brazing material with a second brazing material etching solution containing ammonium fluoride and hydrogen peroxide. It has been found that the residue of the brazing material remaining after the treatment can be removed to a level where there is no practical problem.
- a reaction layer for example, a titanium nitride layer
- a metal plate is bonded to a ceramic substrate via a brazing material to obtain a bonded body, and the bonded metal plate is etched to form a circuit pattern.
- a pattern forming process The brazing material contains Ag,
- the substrate on which the circuit pattern is formed further includes a step of removing unnecessary brazing material by etching with an acidic solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide.
- the brazing material preferably contains Ag and an active metal.
- the acidic solution containing ammonium fluoride and hydrogen peroxide is an aqueous solution containing 0.7 to 2.1 mol / L ammonium fluoride and 2.9 to 8.9 mol / L hydrogen peroxide and having a pH of 5 or less. preferable.
- the acidic solution containing ammonium fluoride and hydrogen peroxide preferably further contains at least one of sulfuric acid, urea, and phosphoric acid.
- the acidic solution containing the carboxylic acid and / or carboxylate salt and hydrogen peroxide contains 0.083 to 1.7 mol / L carboxylic acid and / or carboxylate salt and 2.9 to 8.9 mol / L hydrogen peroxide.
- An aqueous solution having a pH of 6 or less is preferred.
- the acidic solution containing the carboxylic acid and / or carboxylate salt and hydrogen peroxide preferably further contains at least one of sulfuric acid, urea and phosphoric acid.
- Another method of the present invention for producing a ceramic circuit board is: A bonding step of bonding a metal plate to a ceramic substrate through a brazing material to obtain a bonded body, and a pattern forming step of forming a circuit pattern by etching the bonded metal plate,
- the brazing material contains Ag
- the substrate having the circuit pattern formed thereon is further etched with an acidic solution containing carboxylic acid and / or carboxylate salt, ammonium fluoride, and hydrogen peroxide to remove unnecessary brazing material.
- the acidic solution containing the carboxylic acid and / or carboxylate salt, ammonium fluoride, and hydrogen peroxide is 0.083 to 1.7 mol / L carboxylic acid and / or carboxylate, 0.7 to 2.1 mol / L fluoride.
- An aqueous solution containing ammonium and 2.9 to 8.9 mol / L hydrogen peroxide and having a pH of 6 or less is preferable.
- the acidic solution containing the carboxylic acid and / or carboxylate salt, ammonium fluoride, and hydrogen peroxide preferably further contains at least one of sulfuric acid, urea, and phosphoric acid.
- the brazing material preferably contains Ag and an active metal.
- the metal plate is a copper plate; It is preferable that the etching solution for etching the joined metal plates in the pattern forming step is a copper etching solution.
- the brazing material preferably contains Ag, Cu and an active metal.
- the process for removing the brazing material uses an etching solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide, and thus has a high brazing material removal effect. Since the etching solution is composed of an acidic solution, the etching resist that is removed with an alkaline solution is not eroded. Therefore, a ceramic circuit board can be manufactured with a high acceptance rate. In addition, since carboxylic acid (or a salt thereof) that is inexpensive and excellent in handleability is used, safety is high and cost merit is great.
- the first embodiment is A bonding step of bonding a metal plate to a ceramic substrate through a brazing material to obtain a bonded body, and a pattern forming step of forming a circuit pattern by etching the bonded metal plate,
- the brazing material contains Ag
- the substrate on which the circuit pattern is formed further includes a step of removing unnecessary brazing material by etching with an acidic solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide.
- a metal plate M (copper plate, aluminum plate, etc.) is pressed and adhered to a ceramic substrate coated with the brazing material containing the active metal, and the brazing material containing the active metal in a vacuum or an inert atmosphere such as argon gas. Then, the ceramic substrate S and the metal plate M are joined together via the brazing materials C1 and C2 to obtain a joined body (see FIG. 2).
- the coating thickness of the brazing material containing the active metal is preferably about 20 to 50 ⁇ m so that the thermal expansion difference between the ceramic substrate and the metal plate can be reduced.
- Resist films R1 and R2 are formed on the surface of the metal plate M of the obtained bonded body so that a desired circuit pattern is formed (see FIG. 3).
- a metal plate M3 which is a heat radiating plate, is joined to the other surface of the ceramic substrate S by a brazing material C3 containing an active metal.
- the contents of each process relating to the metal plates M1 and M2 which are circuit boards and the metal plate M3 which is a heat sink are basically the same, so only the metal plates M1 and M2 are used. This will be described in detail, and a description of the metal plate M3 will be omitted.
- the brazing material used in the present invention contains at least Ag and an active metal.
- a metal other than the active metal it is preferable to contain Cu in addition to Ag, and may further contain In. Inevitable impurities may also be contained.
- a brazing material made of Ag, Cu and an active metal is preferable.
- the active metal is at least one selected from, for example, Ti, Zr, and Hf.
- Preferred brazing materials include 55 to 81 mass% Ag, 1 to 5 mass% In, 14 to 44 mass% Cu, alloy powder containing unavoidable impurities, Ag powder, and active metal hydride powder. And a powder obtained by mixing the above.
- the ratio of Ag to the total of Ag and Cu in the alloy powder, that is, Ag / (Ag + Cu) is preferably 0.57 to 0.85.
- the brazing material preferably has an oxygen content of 0.1% by mass or less, and preferably contains 0.0001 to 0.5% by mass of Si.
- the active metal hydride powder is preferably contained in 1 to 3 parts by mass with respect to 100 parts by mass of the alloy powder.
- As the active metal hydride a hydride of at least one metal selected from Ti, Zr and Hf can be used, and a hydride of Ti is particularly preferable.
- the brazing material is kneaded by adding 1 to 10% by weight of a binder and 2 to 20% by weight of an organic solvent with respect to 100% by weight of the metal components (total of metals and active metals other than the active metal).
- a paste suitable for screen printing can be obtained.
- the resist film is preferably formed of an ultraviolet curable resist agent.
- the ultraviolet curable resist agent contains a copolymer acrylate / oligomer, an acrylate ester / monomer, a filler, a photopolymerization initiator, a dye adjusting agent, and a defoaming / leveling agent.
- the copolymer acrylate / oligomer which is the main component of the ultraviolet curable resist agent, is a highly viscous polymer that cures by condensation / polymerization reaction.
- the copolymer acrylate / oligomer as the main component is epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, or other copolymer resins.
- acrylate ester monomer examples include isoamyl acrylate, lauryl acrylate, stearyl acrylate, ethoxyethylene ethylene glycol acrylate, 2-hydroxyethyl acrylate, and phenoxyethyl acrylate.
- a solution containing iron chloride may be used as the copper etching solution.
- the copper etching solution may be sprayed onto the joined body using a shower device.
- the copper plate (unnecessary copper plate) in a portion not covered with the resist is removed, and then a part of the brazing material is removed.
- the copper etching solution is used, Cu in the brazing material is almost removed, but undissolved residue estimated to be a brazing material containing Ag is generated.
- FIG. 4 shows a ceramic circuit board in which metal plates M1 and M2 are formed on both sides of the ceramic substrate S with a gap G therebetween.
- the brazing material that protrudes from the surface of the silicon nitride substrate S when the bonded body of the silicon nitride substrate S and the copper plate M is produced is not completely removed by the copper etching process, and the circuit pattern (metal plates M1, M2) It exists so as to protrude from the end into the gap G (the portion where the copper plate has been removed by etching). This is called “a brazing material protruding portion D”.
- brazing material removal step Cu in the brazing material is almost etched by the copper etching treatment performed at the time of pattern formation, the brazing material protruding portion D is derived from a metal other than Cu in the brazing material, for example, It is considered to contain Ag (alloy layer) and TiN (reaction layer).
- the following first brazing material etching process is performed. Further, a second brazing material etching process is performed as necessary.
- first brazing material etching solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide, and the brazing material protruding portion Etching the unmelted brazing material where D is formed.
- the first brazing material etching solution is, for example, an aqueous solution having a pH of 6 or less containing 0.083 to 1.7 mol / L carboxylic acid and / or carboxylate salt and 2.9 to 8.9 mol / L hydrogen peroxide. Is preferred.
- the concentration of carboxylic acid and / or carboxylate is the total value thereof.
- the carboxylic acid and / or carboxylate added to the first brazing material etching solution may be only carboxylic acid, may be only carboxylate, or a combination of carboxylic acid and carboxylate. Mixing is also acceptable.
- the carboxylic acid and / or carboxylate is preferably a saturated or unsaturated fatty acid, a divalent or trivalent carboxylic acid, and a salt thereof.
- the fatty acid may have a substituent such as an alkyl group or a hydroxyl group, and is preferably a lower fatty acid having 2 to 4 carbon atoms.
- the counter salt is not particularly limited, but Li + , Na + , K + and the like are preferable.
- Examples of the carboxylic acid and / or carboxylate include formic acid, acetic acid, propionic acid, butyric acid, good phase acid, glycolic acid, oxalic acid, malonic acid, succinic acid, maleic acid, glutaric acid, malic acid, citric acid, and the like Of the salt.
- formic acid, acetic acid, sodium formate, and glycolic acid are preferable, and acetic acid is most preferable from the viewpoint of cost and handleability.
- the concentration of the carboxylic acid and / or carboxylate is preferably 0.1 to 1.5 mol / L in total, and more preferably 0.2 to 1.4 mol / L.
- the pH of the first brazing material etching solution is 6 or less. When the pH exceeds 6, the ability to remove the brazing material decreases.
- the pH is preferably 5 or less, more preferably 1 to 5, and most preferably 2 to 4.
- carboxylic acid is used, pH adjustment is usually unnecessary because the aqueous solution shows acidity.
- carboxylic acid salt is used, the pH is adjusted to 6 or less with an acid described later, if necessary.
- the dissolution rate of the undissolved brazing material is limited by the decomposition reaction of hydrogen peroxide, and the dissolution capacity depends on the concentration of carboxylic acid and / or carboxylate. For example, 3% by mass (0.5 mol / L) of acetic acid has the ability to dissolve 10 mg / L of Ag.
- the decomposition reaction of hydrogen peroxide varies greatly depending on the temperature, but in order to ensure the stability of the solution temperature by the chain reaction, the temperature of the solution is preferably controlled at room temperature to less than 50 ° C, preferably from room temperature to 40 ° C. More preferably.
- the hydrogen peroxide a commercially available hydrogen peroxide solution can be used.
- the concentration of hydrogen peroxide is preferably 3 to 8 mol / L.
- the water used is preferably water from which impurities have been removed using an ion exchange resin and / or a reverse osmosis membrane, and ion exchange water (also called deionized water) is preferably used.
- An antifoaming agent, a surfactant, a pH adjuster, a stabilizer and the like can be added to the first brazing material etching solution.
- the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, monoethanolamine, and triethanolamine.
- antifoaming agents include polyoxyalkylene alkyl ethers, polyoxyethylene alkylene ethers, and silicone-based agents.
- Examples of the pH adjuster include alkalis such as sodium hydroxide, potassium hydroxide and aqueous ammonia, and acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid.
- the stabilizer include sulfuric acid, urea, phosphoric acid and the like.
- the first brazing material etching solution preferably contains, for example, 0.1 to 1.0 mass% sulfuric acid, 1.0 to 5.0 mass% urea, 10 to 100 mass ppm phosphoric acid, and the like. These can also be used for second and third brazing material etching solutions described later.
- the components in the first brazing material etching solution are gradually consumed, and the ability to remove the brazing material decreases.
- all of the deteriorated solution may be replaced with a new first brazing material etching solution, or the first solution is replaced with the deteriorated solution. You may add the component of the brazing material etching liquid.
- the old first brazing material etching solution that has filled the first etching bath is disposed of, and the new first brazing material etching solution is filled into the first etching bath.
- the total concentration of carboxylic acid and / or carboxylate is preferably about 0.2 to 1.4 mol / L. Even if a solution in which only carboxylic acid and / or carboxylate is added to water is used, the undissolved residue of the brazing material is not etched.
- the lifetime of the first brazing material etchant in the first etching tank can be extended and the cost can be reduced.
- the carboxylic acid and / or carboxylic acid salt should be kept at a high concentration. It is also effective to give a sufficient dissolving ability.
- carboxylic acid and / or a carboxylate salt attack the stainless steel which comprises an apparatus and a drainage facility, a density
- concentration may be determined to the level which suppresses the influence with respect to stainless steel.
- Second brazing material etching treatment After the first brazing material etching treatment, the joined body is changed to an acidic solution containing ammonium fluoride and hydrogen peroxide (second brazing material etching solution) as necessary. It is preferable to immerse and etch the remaining brazing material that cannot be removed by the first brazing material etching process.
- This second brazing material etching solution is an aqueous solution containing ammonium fluoride and hydrogen peroxide.
- the pH containing 0.7 to 2.1 mol / L ammonium fluoride and 2.9 to 8.9 mol / L hydrogen peroxide is 5 The following aqueous solutions are preferred.
- the hydrogen salt ammonium hydrogen fluoride [chemical formula: (NH 4 ) HF 2 ] or the normal salt ammonium fluoride [chemical formula: NH 4 F] can be used.
- the former is also called acidic ammonium fluoride.
- the concentration of ammonium fluoride is preferably 1 to 2 mol / L, and more preferably 1.2 to 1.8 mol / L.
- the hydrogen peroxide a commercially available hydrogen peroxide solution can be used.
- the concentration of hydrogen peroxide is preferably 3 to 8 mol / L.
- the water used is preferably water from which impurities have been removed using an ion exchange resin and / or a reverse osmosis membrane, and ion exchange water (also called deionized water) is preferably used.
- the pH of the second brazing material etching solution is 5 or less. When the pH exceeds 5, the ability to remove the brazing material decreases.
- the pH is preferably 4.5 or less, more preferably 1 to 4.5, and most preferably 2 to 4.
- the pH of the second brazing material etching solution is adjusted to 5 or less with an acid or an alkali, which will be described later, as necessary.
- the temperature of the second brazing material etching solution is preferably controlled at room temperature to less than 50 ° C., more preferably from room temperature to 40 ° C.
- an antifoaming agent, a surfactant, a pH adjuster, a stabilizer and the like can be added to the second brazing material etching solution.
- the antifoaming agent, surfactant, pH adjuster and stabilizer the same compounds and chemicals that can be used for the first brazing material etching solution described above can be used.
- the second brazing material etching solution preferably contains 0.1 to 1.0 mass% sulfuric acid, 1.0 to 5.0 mass% urea, 10 to 100 mass ppm phosphoric acid, and the like.
- the etching process using a solution containing sodium thiosulfate can be omitted.
- the etching treatment with sodium thiosulfate is performed, for example, by immersing the joined body in an aqueous solution containing 5 to 15% by mass of sodium thiosulfate and applying ultrasonic waves for 10 to 30 minutes.
- the temperature of the solution is preferably 10 to 30 ° C., for example.
- Etching silver chloride with sodium thiosulfate can prevent the first brazing material etching step from being inhibited by silver chloride. Note that the treatment with sodium thiosulfate only etches silver chloride and cannot etch Ag.
- the resist film is removed and further subjected to chemical polishing treatment, rust prevention treatment, plating, etc.
- chemical polishing treatment for example, a solution in which an 8 to 12 mass% sodium hydroxide aqueous solution is maintained at about 50 ° C.
- an alkaline solution for example, a solution in which an 8 to 12 mass% sodium hydroxide aqueous solution is maintained at about 50 ° C.
- potassium hydroxide can also be used.
- the treatment temperature can be selected in the range of 30 to 70 ° C.
- first and second brazing material etching treatment liquids of the present invention are made of an acidic aqueous solution, the alkali peeling type resist film is not peeled off by these brazing material etching treatments, and the copper circuit pattern of the wiring becomes Damage and damage to the ceramic substrate can be avoided.
- chemical polishing is an effective treatment not only for the purpose of removing surface oxidation during the treatment but also for the purpose of adjusting the surface state.
- glossy, non-glossy, rough by selecting an etching solution and method according to the method of installing electronic components such as semiconductor chips on a copper circuit pattern on a ceramic circuit board or wiring a metal wire or the like. It is possible to meet demands such as degree.
- the circuit board W obtained by the method described above includes the ceramic substrate S, the two brazing materials C1 and C2 formed on the upper surface (front surface) of the ceramic substrate S, and the two A basic configuration comprising metal plates M1 and M2 joined via brazing materials C1 and C2, respectively, and a gap G arranged to separate the brazing materials C1 and C2 (and metal plates M1 and M2) in the plane direction.
- the metal plates M1 and M2 function as circuit boards on which semiconductor elements and the like are mounted.
- a metal plate M3 functioning as a heat radiating plate is joined to the lower surface (back surface) of the ceramic substrate S via a brazing material C3.
- a plating layer such as Ni or Au can be formed as necessary.
- an etching process, a polishing process, and a plating process using sodium thiosulfate are performed as necessary. Since steps other than the brazing material removal step are the same as those in the first embodiment, a third brazing material removal step performed in place of the first and second brazing material removal steps will be described below.
- the third brazing material removal step in the second embodiment is a third brazing material in which the components of the first and second brazing material etching solutions in the first embodiment are combined into one bath. This is performed using a brazing material etching solution.
- the third brazing material etching solution is an acidic solution containing carboxylic acid and / or carboxylate salt, ammonium fluoride, and hydrogen peroxide.
- aqueous solution containing a salt, 0.7 to 2.1 mol / L ammonium fluoride, and 2.9 to 8.9 mol / L hydrogen peroxide and having a pH of 6 or less is preferable.
- the carboxylic acid and / or carboxylate, ammonium fluoride, and hydrogen peroxide used in the third brazing material etching solution are the same as those used in the first and second brazing material etching solutions. can do.
- the total concentration of carboxylic acid and / or carboxylate is preferably 0.1 to 1.5 mol / L, and more preferably 0.2 to 1.4 mol / L.
- the concentration of ammonium fluoride is preferably 1 to 2 mol / L, and more preferably 1.2 to 1.8 mol / L.
- the concentration of hydrogen peroxide is preferably 3 to 8 mol / L.
- the pH of the third brazing material etching solution is 6 or less. When the pH exceeds 6, the ability to remove the brazing material decreases.
- the pH is preferably 5 or less, more preferably 1 to 5, and most preferably 2 to 4.
- carboxylic acid is used, pH adjustment is usually unnecessary because the aqueous solution shows acidity.
- carboxylic acid salt is used, the pH is adjusted to 6 or less with an acid as necessary.
- the acid that can be used is the same as that used in the first brazing material etching solution.
- the same defoaming agent, surfactant, pH adjuster, stabilizer and the like as in the first and second brazing material etching solutions can be added as necessary.
- the antifoaming agent, surfactant, pH adjusting agent, and stabilizer the same compounds and chemicals that can be used for the first and second brazing filler metal etching solutions described above can be used.
- the third brazing material etching solution preferably contains 0.1 to 1.0 mass% sulfuric acid, 1.0 to 5.0 mass% urea, 10 to 100 mass ppm phosphoric acid, and the like.
- the processing conditions such as the temperature of the third brazing material etching solution may be the same as those in the second brazing material removing step.
- a ceramic circuit board includes a ceramic substrate, at least two brazing material layers formed on the ceramic substrate via a gap, and at least two metal plates each joined via the at least two brazing material layers. Is a ceramic circuit board.
- the insulation resistance between the two metal plates is preferably 500 M ⁇ / mm or more.
- the number of brazing material layers and metal plates to be joined is not limited to two, and three or more metal plates can be provided. In that case, three or more metal plates to be joined can be provided.
- the insulation resistance between the two metal plates breaks down when the ceramic circuit board on which the semiconductor element is mounted on the two metal plates is formed by the insulation resistance between the two metal plates being 500 M ⁇ / mm or more. Therefore, it is possible to prevent a trouble that an excessive current flows through the semiconductor element.
- the ceramic circuit board is preferably formed by the above-described method for manufacturing a ceramic circuit board of the present invention.
- the ceramic circuit board having a high insulation resistance as described above can reduce, for example, the brazing material or residue thereof present on the surface of the ceramic substrate exposed in the gap between the two metal plates by the brazing material removal process described above. Obtained by.
- Ceramic substrate The material of the ceramic substrate used for the ceramic circuit board is not particularly limited, and can be basically composed of a sintered body made of an electrically insulating material. However, since the semiconductor element mounted on the ceramic circuit board has recently increased in calorific value and has increased its operating speed, nitride ceramics having high thermal conductivity are particularly preferred as the ceramic board. Specifically, an aluminum nitride sintered body including a main phase composed of particles mainly composed of aluminum nitride and a grain boundary phase mainly composed of a sintering aid existing between the particles, or mainly composed of silicon nitride.
- the ceramic substrate is preferably composed of a silicon nitride-based sintered body including a main phase composed of particles and a grain boundary phase mainly composed of a sintering aid existing between the particles, and in particular, a machine such as strength and fracture toughness. It is more preferable that the ceramic substrate S is composed of a silicon nitride sintered body that is excellent in terms of mechanical strength.
- the ceramic substrate is a nitride ceramic sintered body including a main phase composed of particles mainly composed of silicon nitride or aluminum nitride and a grain boundary phase mainly composed of a sintering aid existing between the particles.
- the maximum diameter of the pores existing on the surface of the ceramic substrate existing in the gap is 2 to 15 ⁇ m. If the maximum diameter of the pores is less than 2 ⁇ m, the deposits may not be sufficiently removed by the chemical in the cleaning process. On the other hand, when the maximum diameter of the pores exceeds 15 ⁇ m, the strength of the ceramic substrate is lowered, and the reliability of the ceramic circuit substrate under, for example, a cooling cycle is deteriorated.
- a ceramic substrate made of a silicon nitride-based sintered body is, for example, a raw material powder containing 90 to 97% by mass of silicon nitride and 0.5 to 10% by mass of a sintering aid (including Mg or Y and other rare earth elements).
- a sintering aid including Mg or Y and other rare earth elements.
- the sintering aid exceeds 10% by mass, the characteristics of joining the ceramic substrate and the circuit board are not sufficient, and when the sintering aid is less than 0.5% by mass, the silicon nitride particles are not sufficiently sintered. .
- the amount of the sintering aid used is more preferably 3 to 10% by mass.
- magnesium (Mg) is contained as a sintering aid in an amount of 2 to 4% by mass in terms of magnesium oxide and yttrium (Y) in an amount of 2 to 5% by mass in terms of yttrium oxide. Is preferred.
- the metal plate constituting the ceramic circuit board is not particularly limited as long as it can be joined with a brazing material and has a higher melting point than the brazing material.
- a brazing material for example, using copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, nickel, nickel alloy, nickel-plated molybdenum, nickel-plated tungsten, nickel-plated iron alloy as the metal plate Is possible.
- copper or an alloy containing copper is most preferable from the viewpoints of electrical resistance and stretchability, high thermal conductivity (low thermal resistance), and low migration.
- Aluminum or an alloy containing aluminum is preferable in that it has mounting reliability with respect to a thermal cycle by utilizing its plastic deformability, although it is inferior to copper in electrical resistance and high thermal conductivity (low thermal resistance).
- the brazing material layers C1 to C3 that join the ceramic substrate S and the metal plates M1 to M3 are mainly composed of Ag and Cu, which are eutectic compositions that provide high strength and high sealing properties.
- An Ag—Cu based active brazing material to which an active metal such as Ti, Zr, or Hf is added is preferred.
- a ternary Ag—Cu—In active brazing material in which In is added to the Ag—Cu active brazing material is more preferable.
- the bonding of the ceramic substrate S and the metal plate is performed using a brazing material paste containing powder of the brazing material component and an organic binder.
- Example 1 Formation of bonded body A solder containing active metal Ti containing Ag and Cu as main raw materials on both sides of a silicon nitride substrate S (area: 50 mm ⁇ 50 mm, thickness: 150 ⁇ m) in the arrangement shown in FIG. Materials c1 and c2 were applied by screen printing.
- the silicon nitride substrate S was composed of a grain boundary phase containing silicon nitride particles and rare earth elements using MgO and Y 2 O 3 as sintering aids.
- the brazing materials c1 and c2 are added with 0.3 parts by mass of TiH 2 with respect to an alloy powder composed of 70% by mass of Ag, 3% by mass of In, and 27% by mass of Cu (total 100 parts by mass), A paste prepared by adding an organic solvent and kneading was used.
- brazing material coated substrate After drying the brazing material coated substrate, 0.3 mm copper plate M is placed in contact with the circuit pattern side (front side) and heat radiation pattern side (back side), and heat treated in vacuum at 750 to 850 ° C for 20 minutes while applying pressure. A joined body of the silicon substrate S and the copper plate M was produced. Between the silicon nitride substrate S and the copper plate M, brazing material layers C1 and C2 having a thickness of about 30 ⁇ m were formed.
- Pattern formation Etching is performed with a copper chloride base etchant (mixed solution containing copper chloride, hydrochloric acid and hydrogen peroxide) maintained at 30 ° C, and an unnecessary copper plate outside the pattern (that is, no resist is applied) A portion of the copper plate) was removed to form a circuit pattern.
- the front side of the substrate after the processing had copper plates M1 and M2 constituting a circuit pattern and a gap G of 1 mm separating the copper plates M1 and M2.
- the brazing material protruding on the surface of the silicon nitride substrate S was not completely removed, and the brazing material protruding portion D was formed ( (See Figure 4).
- the brazing material protrusion D exhibited a metallic luster.
- PH 3 aqueous solution (first brazing material etching solution) containing 3% by mass (0.5 Lmol / L) acetic acid and 20% by mass (5.9 mol / L) hydrogen peroxide is bonded to the joined body having the brazing filler metal part D. Then, it was immersed in a liquid temperature of 30 ° C. for 20 minutes. Note that ion-exchanged water was used to prepare the first brazing material etching solution.
- the brazing material protrusion D which had exhibited a metallic luster after pattern formation, disappeared due to the first brazing material etching treatment, and the contrast of the brazing material protrusion D with respect to the surface of the silicon nitride substrate S became clear.
- Second brazing material etching treatment Furthermore, in order to remove Ag that could not be removed by the first brazing material etching treatment and the TiN phase that forms the reaction layer, hydrogen fluoride as the second brazing material etching treatment. Etching with a solution containing ammonium and hydrogen peroxide
- the joined body is 4 mass% (0.7 mol / L) ammonium hydrogen fluoride, 26 mass% (7.6 mol / L) hydrogen peroxide, 1 mass% (0.2 N).
- Immerse in an aqueous solution of pH 3 containing sulfuric acid, 3% by mass (0.5 mol / L) urea, and 100 ppm (1.0 mmol / L) phosphoric acid (second brazing material etchant) at a liquid temperature of 40 ° C for 20 minutes did. Note that ion-exchanged water was used to prepare the second brazing material etching solution. Due to the second brazing material etching process, the protruding portion of the brazing material was hardly seen.
- Examples 2-10 A ceramic circuit board was produced in the same manner as in Example 1 except that the treatment temperature and treatment time of the first and second brazing material etching treatments were changed as shown in Table 1.
- Comparative Example 1 A ceramic circuit board was produced in the same manner as in Example 2 except that the first brazing material etching treatment was not performed.
- the brazing material protruding portion was observed using an optical microscope. In the direction perpendicular to the gap G (the left-right direction in FIG. 4), the sample with the brazing material protruding portion D having a length of 0.2 mm or more is determined to be defective because it adversely affects the insulation between the wirings.
- the pass rate was determined by the evaluation, and the case where the pass rate was 90% or more was evaluated as ⁇ , the case where the pass rate was less than 90% and greater than 60%, ⁇ , and the case where the pass rate was 60% or less. The results are shown in Table 1.
- the ceramic circuit boards of Examples 1 to 10 all had a pass rate of 90% or more, and it was found that ceramic circuit boards can be produced with a high pass rate by processing in the first and second etching steps.
- the mixed solution used in the first and second etching steps in the example is not alkaline, the problem of damaging the copper circuit pattern serving as the wiring does not occur without dissolving the alkali peeling type resist film. It was. Further, no void was formed on the surface of the ceramic substrate as when treated with an alkaline solution, and damage to the silicon nitride substrate was suppressed.
- Comparative Example 1 the first brazing material etching process (etching process using acetic acid and hydrogen peroxide) was not performed, and only the second brazing material etching process (etching process using ammonium hydrogen fluoride and hydrogen peroxide) was performed. Therefore, the brazing material was not sufficiently removed, and the pass rate was 60% or less. For this reason, the method of Comparative Example 1 requires man-hours for sorting out defects.
- Example 11 Instead of the first and second brazing material etching treatment, 3% by mass (0.5 mol / L) acetic acid, 4% by mass (0.7 mol / L) ammonium hydrogen fluoride, 26% by mass (7.6 mol / L) PH 3 aqueous solution (3rd brazing filler metal) containing 1 wt% (0.2 N) sulfuric acid, 3 wt% (0.5 mol / L) urea, and 100 ppm (1.0 mmol / L) phosphoric acid A ceramic circuit board was produced in the same manner as in Example 1 except that the joined body having the brazing protrusion D was immersed for 30 minutes at a liquid temperature of 40 ° C. using an etching solution.
- a ceramic circuit board could be produced with a high pass rate of 100% (evaluation: ⁇ ). Since the third brazing material etching solution is not alkaline, there was no problem that the resist film was not dissolved and the circuit pattern serving as the wiring was damaged.
- Example 12 As a brazing material, 15 parts by mass of Ag and 0.2 parts by mass of TiH 2 are added to an alloy powder composed of 65.5% by mass of Ag, 2% by mass of In, and the balance Cu (total 100 parts by mass).
- a ceramic circuit board was produced in the same manner as in Example 1 except that a paste obtained by adding an organic solvent and kneading was used. As a result, it was possible to produce with a pass rate of 100% (evaluation: ⁇ ).
- Example 13 As a brazing material, 0.2 parts by mass of Ti is added to an alloy powder composed of 50% by mass of Ag, 25% by mass of In, and 25% by mass of Cu (100 parts by mass in total), and further an organic solvent is added. Then, a ceramic circuit board was produced in the same manner as in Example 1 except that the paste obtained by kneading was used. As a result, it was possible to produce with a pass rate of 100% (evaluation: ⁇ ).
- Examples 14-18 A ceramic circuit board was produced in the same manner as in Example 1 except that the addition amounts of acetic acid and hydrogen peroxide in the first brazing material etching solution and the first brazing material etching time were changed as shown in Table 2. As a result, as shown in Table 2, it could be produced with a high pass rate.
- Example 14 is 0.8% by mass (0.13 mol / L) acetic acid and 26% by mass (7.6 mol / L) hydrogen peroxide
- Example 15 is 1.7% by mass (0.28 mol / L) acetic acid and 23% by mass.
- Example 16 (6.8 mol / L) hydrogen peroxide
- Example 16 is 2.8% by mass (0.47 mol / L) acetic acid and 17% by mass (5.0 mol / L) hydrogen peroxide
- Example 17 is 3.0% by mass (0.5 mol / L) acetic acid and 24% by mass (7.1 mol / L) hydrogen peroxide
- Example 18 is 5.1% by mass (0.85 mol / L) acetic acid and 10% by mass (2.9 mol / L) hydrogen peroxide.
- Example 18 is 5.1% by mass (0.85 mol / L) acetic acid and 10% by mass (2.9 mol / L) hydrogen peroxide.
- Examples 19-21 A ceramic circuit board was prepared in the same manner as in Example 1 except that the concentrations of ammonium hydrogen fluoride and hydrogen peroxide in the second brazing material etching solution and the second brazing material etching time were changed as shown in Table 3. Produced. As a result, as shown in Table 3, it could be produced with a high pass rate.
- Example 19 is 15% by mass (4.4 mol / L) hydrogen peroxide and 3.4% by mass (0.60 mol / L) ammonium hydrogen fluoride, and
- Example 20 is 25% by mass (7.4 mol / L) peroxidation.
- Example 21 contains 30 wt% (8.8 mol / L) hydrogen peroxide and 15 wt% (2.6 mol / L) ammonium hydrogen fluoride Using.
- Example 22-25 In the same manner as in Example 11 except that the concentrations of acetic acid, ammonium hydrogen fluoride and hydrogen peroxide in the third brazing material etching solution, and the third brazing material etching time were changed as shown in Table 4, ceramic circuit A substrate was produced. As a result, as shown in Table 4, it was possible to produce with a high pass rate.
- Example 22 is 1.1% by mass (0.18 mol / L) acetic acid, 20% by mass (5.9 mol / L) hydrogen peroxide and 8% by mass (1.4 mol / L) ammonium hydrogen fluoride.
- Example 23 is 1.7% by mass (0.28 mol / L) acetic acid, 23% by mass (6.8 mol / L) hydrogen peroxide and 4% by mass (0.70 mol / L) ammonium hydrogen fluoride
- Example 24 was 2.8% by mass (0.47 mol / L) acetic acid, 18 wt% (5.3 mol / L) hydrogen peroxide and 10.5 wt% (1.8 mol / L) ammonium hydrogen fluoride
- Example 25 was 12 wt% (2.0 mol / L) Acetic acid, 8% by mass (2.4 mol / L) hydrogen peroxide and 8% by mass (1.4 mol / L) ammonium hydrogen fluoride were used.
- Example 26 Example 1 except that after the pattern formation step and before the first brazing material etching step, the joined body was immersed in a 10% by mass sodium thiosulfate aqueous solution (liquid temperature: 20 ° C.) for 20 minutes and etched. A ceramic circuit board was produced in the same manner as described above. The etching process was performed while applying 600 W and 35 kHz ultrasonic waves to the aqueous sodium thiosulfate solution. In addition, ion exchange water was used for the preparation of the sodium thiosulfate aqueous solution. As a result, similar to Example 1, it was possible to produce with a high pass rate (evaluation: ⁇ ).
- Example 38 3 N hydrochloric acid was dropped into an aqueous solution (approximately pH 6) containing 2.3% by mass (0.34 mol / L) sodium formate and 10% by mass (2.9 mol / L) hydrogen peroxide as the first brazing filler metal etchant. Then, a ceramic circuit board was produced in the same manner as in Example 1 except that an aqueous solution adjusted to pH 3 was used, and the joined body was immersed and etched at a liquid temperature of 40 ° C. for 30 minutes. As a result, the acceptance rate (evaluation: ⁇ ) was 90% or more.
- Example 39 As the first brazing material etching solution, an aqueous solution (about pH 3) containing 3.8% by mass (0.5 mol / L) glycolic acid and 15% by mass (4.4 mol / L) hydrogen peroxide was used. A ceramic circuit board was produced in the same manner as in Example 1 except that the film was immersed and etched at a temperature of 40 ° C. for 30 minutes. As a result, the acceptance rate (evaluation: ⁇ ) was 90% or more.
- the dielectric strength test is a test for measuring a dielectric breakdown voltage when an AC voltage is applied between the front and back of the ceramic circuit board.
- the electrodes A and B are arranged on the metal plate M1 and the metal plate M2 (A and B are electrically short-circuited), and the electrode C is similarly applied to the metal plate M3 on the back surface of the ceramic circuit board.
- An AC voltage with a frequency of 50 Hz was applied while gradually increasing from 0 to 10 kV at a boosting rate of 0.1 kV / sec.
- the voltage value when the leakage current suddenly increased and insulation could not be maintained was taken as the breakdown voltage. This measurement was performed on 20 samples, and the average value thereof was evaluated.
- the dielectric breakdown voltage was 5 kV or more for the acceptable product with the brazing material protruding part 0.2 mm or less, and it had sufficient insulation.
- the dielectric breakdown voltage of the rejected product with a brazing metal protrusion of more than 0.2mm around the copper plate was less than 5mm kV.
- Insulation Resistance For the ceramic circuit boards produced in Examples 1 to 10 and Comparative Example 1, the insulation resistance between the wires was measured. Insulation resistance, as shown in FIG. 5, spherical electrodes A and B for insulation resistance test are arranged so as to be in contact with any part of the metal plate M1 made of copper plate and any part of the metal plate M2, respectively. A 1000 V DC voltage was applied between the plate M1 and the metal plate M2, and the resistance value after 30 seconds was defined as the insulation resistance value. The distance between the metal plate M1 and the metal plate M2 was 1 mm. The insulation resistance was evaluated by the minimum resistance value obtained for each of the 10 ceramic circuit boards in each Example and Comparative Example.
- the first and second brazing material etching etching processes (or the third brazing material etching etching process) for removing the brazing material remaining between the circuit patterns (namely, copper wiring) (gap G).
- the manufacturing method of the present invention is suitable for manufacturing a ceramic circuit board for small size or high output.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Structural Engineering (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
前記ロウ材はAgを含み、
前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とする。
セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有し、
前記ロウ材がAgを含み、
前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とする。
前記パターン形成工程において前記接合した金属板をエッチングためのエッチング液が、銅エッチング溶液であるのが好ましい。
(1)第1の実施形態
本発明のセラミックス回路基板の製造方法の第1の実施形態について以下に説明する。第1の実施形態は、
セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有し、
前記ロウ材がAgを含み、
前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とする。
セラミックス基板S(窒化珪素基板、窒化アルミニウム基板等)の一方の表面に、活性金属を含むロウ材C1,C2をスクリーン印刷法にて間隙Gを介して隔てるようにパターン印刷する(図1参照)。前記活性金属を含むロウ材を塗布したセラミックス基板に金属板M(銅板、アルミニウム板等)を加圧密着させ、真空中又はアルゴンガス等の不活性雰囲気中にて、前記活性金属を含むロウ材の溶融温度以上に加熱し、ロウ材C1,C2を介してセラミックス基板Sと金属板Mが接合され一体となった接合体を得る(図2参照)。前記活性金属を含むロウ材の塗布厚は、セラミックス基板と金属板との熱膨張差を緩和できるように20~50μm程度であるのが好ましい。得られた接合体の金属板Mの表面に、所望の回路パターンが形成されるようにレジスト膜R1,R2を形成する(図3参照)。
金属板Mとして銅板を選択する場合を例にして説明する。レジスト膜R1,R2を被覆することにより回路パターンが形成された前記接合体を、塩化銅(CuCl2)、塩酸(HCl)及び過酸化水素(H2O2)を混合してなる銅エッチング溶液に浸漬し、例えば液温50℃でレジストに被覆されていない箇所の銅板をエッチングする。なお、銅エッチング溶液として、例えば塩化鉄を含む溶液を用いてもよい。また浸漬に替えて、シャワー装置を用いて前記接合体に前記銅エッチング溶液を噴射してもよい。この処理にてレジストで被覆されていない箇所の銅板(不要な銅板)が除去されて、ついでロウ材の一部が除去される。この例では、銅エッチング溶液を用いているので、ロウ材中のCuはほとんど除去されるが、Agを含むロウ材と推定される溶け残りが生じる。
パターン形成時に行う銅エッチング処理により、ろう材中のCuはほとんどエッチングされるので、前記ロウ材はみ出し部Dは、ろう材中のCu以外の金属に由来し、例えば、Ag(合金層)及びTiN(反応層)を含むと考えられる。これらの残存物を除去するために、以下の第1のろう材エッチング処理を行う。さらに必要に応じて第2のろう材エッチング処理を行う。
接合体を、カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液(第1のろう材エッチング液)に浸漬して、ロウ材はみ出し部Dが生じたロウ材の溶け残りをエッチングする。前記第1のろう材エッチング液は、例えば、 0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、並びに2.9~8.9 mol/Lの過酸化水素を含有するpHが6以下の水溶液であるのが好ましい。なおカルボン酸及び/又はカルボン酸塩の濃度は、それらの合計の値である。第1のろう材エッチング液中に添加するカルボン酸及び/又はカルボン酸塩は、カルボン酸のみであっても良いし、カルボン酸塩のみであっても良いし、カルボン酸とカルボン酸塩との混合でも良い。
前記溶液に成分の継ぎ足しを行うことなく、試料を溶液に浸漬させて、ロウ材をエッチングする場合には、過酸化水素の分解反応量とのバランスからカルボン酸及び/又はカルボン酸塩濃度が合計で0.2~1.4 mol/L程度であるのが望ましい。なお、カルボン酸及び/又はカルボン酸塩のみを水に添加した溶液を用いても、ロウ材の溶け残りはエッチングされない。
第1のろう材エッチング液中の過酸化水素は、試料を浸漬してエッチング処理を行っている間に分解していくため、溶液に過酸化水素を逐次補給することにより、常時適切な範囲で濃度制御することができる。予め、カルボン酸及び/又はカルボン酸塩の濃度を高く調整しておき(例えば、2.5 mol/L程度)、過酸化水素の補給によって薄まったカルボン酸及び/又はカルボン酸塩の濃度が一定以下(例えば0.33 mol/L以下)になった時点で交換する管理も可能である。この方法は、溶液の交換頻度を下げることができ、多量処理において有効である。すなわち、第1エッチング槽中での第1のろう材エッチング液の寿命を延ばし、コストを低減できる。また、浸漬ではなく、第1のろう材エッチング液をシャワーに適用する場合も、一般に過酸化水素の濃度の逐次測定は難しいため、カルボン酸及び/又はカルボン酸塩を高い濃度にしておき、十分な溶解能力を付与しておくことも有効である。なお、カルボン酸及び/又はカルボン酸塩は装置や排水設備を構成するステンレスを侵すため、ステンレスに対する影響を抑えるレベルに濃度が決定される場合もある。
第1のろう材エッチング処理の後、必要に応じて、接合体をフッ化アンモニウム及び過酸化水素を含む酸性の溶液(第2のろう材エッチング液)に浸漬し、第1のろう材エッチング処理で除去しきれず残存したろう材をエッチングするのが好ましい。この第2のろう材エッチング液は、フッ化アンモニウム及び過酸化水素を含む水溶液であり、例えば0.7~2.1 mol/Lのフッ化アンモニウム及び 2.9~8.9mol/Lの過酸化水素を含むpHは5以下の水溶液であるのが好ましい。
銅エッチング液を使用したパターン形成工程で、前記銅エッチング液中のCl-イオンがロウ材中のAgイオンと塩を形成して塩化銀(AgCl)が生成し、生成した塩化銀によって後段の第1のろう材エッチング工程が阻害される場合がある。このような阻害を防止するために、銅エッチング処理の後、第1のろう材エッチング工程を行う前に、必要に応じて、チオ硫酸ナトリウムを含む溶液に接合体を浸漬し塩化銀をエッチングする処理を加えてもよい。ただし、パターン形成工程において塩化銀の生成自体が少ない場合には、チオ硫酸ナトリウムを含む溶液によるエッチング処理は省略することができる。このチオ硫酸ナトリウムによるエッチング処理は、例えば、5~15質量%のチオ硫酸ナトリウムを含む水溶液中に接合体を浸漬し、10~30分間超音波を印加して行う。溶液の温度は、例えば10~30℃であるのが好ましい。チオ硫酸ナトリウムによって塩化銀をエッチングすることにより、第1のろう材エッチング工程が塩化銀によって阻害されるのを防止できる。なお、チオ硫酸ナトリウムによる処理は、塩化銀をエッチングするだけであり、Agをエッチングすることはできない。
第1のろう材エッチング工程の後(第2のろう材エッチング工程を行った場合はその後)に、レジスト膜を除去し、さらに化学研磨処理、防錆処理、めっき等を施すことで所定の形状で銅の回路パターンを備えるセラミックス回路基板が得られる。なお、アルカリ剥離型のレジストを用いる場合、アルカリ溶液(例えば、8~12質量%の水酸化ナトリウム水溶液を約50℃に保持した液)でレジスト膜を除去する。水酸化ナトリウムの他に水酸化カリウムを用いることもできる。処理温度は30~70℃の範囲で選択できる。本発明の第1及び第2のろう材エッチング処理液は酸性の水溶液からなるので、これらのろう材エッチング処理によってアルカリ剥離型のレジスト膜が剥離することはなく、配線となる銅の回路パターンの損傷やセラミックス基板へのダメージを避けることができる。
本発明の製造方法の第2の実施形態は、第1及び第2のろう材除去工程の代わりに、カルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液(第3のろう材エッチング液)で接合体をエッチングし、ろう材を除去する工程を行う以外第1の実施形態と同様である。すなわち、第2の実施形態は、第1の実施形態と同様にして接合工程及びパターン形成工程を実施した後、前記第3のろう材エッチング液でろう材を除去する工程(第3のろう材除去工程)を有している。さらに実施形態1と同様に、必要に応じてチオ硫酸ナトリウムによるエッチング工程、研磨工程及びめっき工程を行う。ろう材除去工程以外の工程については実施形態1と同様なので、以下に第1及び第2のろう材除去工程に代えて行う第3のろう材除去工程について説明する。
実施形態2における第3のろう材除去工程は、実施形態1における第1及び第2のろう材エッチング液の各成分を合わせて1浴化した第3のろう材エッチング液を用いて行う。第3のろう材エッチング液は、カルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液であり、例えば、0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、 0.7~2.1 mol/Lのフッ化アンモニウム、並びに2.9~8.9mol/Lの過酸化水素を含有するpHが6以下の水溶液であるのが好ましい。この第3のろう材エッチング液で使用するカルボン酸及び/又はカルボン酸塩、フッ化アンモニウム及び過酸化水素は、前述の第1及び第2のろう材エッチング液で使用するのと同じものを使用することができる。
(1) 構成
セラミックス回路基板は、セラミックス基板と、前記セラミックス基板に間隙を介して形成された少なくとも2つのろう材層と、前記少なくとも2つのろう材層を介し各々接合された少なくとも2つの金属板とを有するセラミックス回路基板である。2つの金属板間の絶縁抵抗は、500 MΩ/mm以上であるのが好ましい。ろう材層及び接合する金属板の数は2つに限定されず、3つ以上設けることもでき、その場合、接合する金属板も3つ以上設けることができる。2つの金属板間の絶縁抵抗が500 MΩ/mm以上であることにより、前記2つの金属板に半導体素子が搭載されたセラミックス回路基板を構成した場合に、前記2つの金属板間の絶縁が破壊され過大な電流が半導体素子に流れるようなトラブルの発生を防止することが可能となる。セラミックス回路基板は、好ましくは前述の本発明のセラミックス回路基板の製造方法により形成される。
セラミックス回路基板に使用するセラミックス基板の材質は特に限定されず、基本的に電気絶縁材料からなる焼結体で構成することができる。しかしながら、セラミックス回路基板に実装される半導体素子は、近年、発熱量が増大しかつその動作速度も高速化しているため、前記セラミックス基板としては、高い熱伝導率を有する窒化物セラミックスが特に好ましい。具体的には窒化アルミニウムを主体とした粒子からなる主相と前記粒子の間に存在する焼結助剤を主体とした粒界相とを含む窒化アルミニウム焼結体、又は窒化珪素を主体とした粒子からなる主相と前記粒子の間に存在する焼結助剤を主体とした粒界相とを含む窒化珪素質焼結体でセラミックス基板を構成するのが好ましく、特に強度及び破壊靭性など機械的強度の面で優れた窒化珪素質焼結体でセラミックス基板Sを構成するのがより好ましい。
前記セラミックス回路基板を構成する金属板についても、その材質は特に限定されず、ろう材で接合できかつ融点がろう材よりも高ければ特に制約はない。例えば、銅、銅合金、アルミニウム、アルミニウム合金、銀、銀合金、ニッケル、ニッケル合金、ニッケルメッキを施したモリブデン、ニッケルメッキを施したタングステン、ニッケルメッキを施した鉄合金を前記金属板として用いることが可能である。これらの中でも銅又は銅を含む合金が、電気的抵抗及び延伸性、高熱伝導性(低熱抵抗性)、マイグレーションが少ない等の点から最も好ましい。アルミニウム又はアルミニウムを含む合金は、電気的抵抗、高熱伝導性(低熱抵抗性)は、銅に劣るものの、その塑性変形性を利用して、冷熱サイクルに対する実装信頼性を有する点で好ましい。
セラミックス基板Sと金属板M1~M3を接合するろう材層C1~C3の材質は、高強度・高封着性等が得られる、共晶組成であるAg及びCuを主体としTi・Zr・Hf等の活性金属を添加したAg-Cu系活性ろう材が好ましい。さらにセラミックス基板と金属板の接合強度の観点から、前記Ag-Cu系活性ろう材にInが添加された三元系のAg-Cu-In系活性ろう材がより好ましい。セラミックス基板Sと金属板との接合は、前述したように、前記ろう材成分の粉末と有機バインダとを含むろう材ペーストを用いて行う。
(1)接合体の形成
窒化珪素基板S(面積:50 mm×50 mm、厚さ:150μm)の両面に、図1に示す配置で、Ag及びCuを主原料として活性金属Tiを含有するロウ材c1,c2をスクリーン印刷法で塗布した。前記窒化珪素基板Sは、焼結助剤にMgOとY2O3を用い、窒化珪素粒子と希土類元素を含む粒界相により構成されていた。前記ろう材c1,c2は、70質量%のAg、3質量%のIn、及び27質量%のCu(合計100質量部)からなる合金粉末に対して0.3質量部のTiH2を添加し、さらに有機溶剤を添加して混練してペーストとしたものを使用した。
得られた接合体の銅板M上に、紫外線で硬化可能なエッチングレジストインクを塗布した後、紫外線を照射してエッチングレジストインクを硬化させてエッチングレジスト膜R1,R2のパターンを形成した。このエッチングレジストインクには、アルカリ剥離型のものを用いた。
30℃に保持した塩化銅ベースエッチング液(塩化銅、塩酸及び過酸化水素を含む混合液)でエッチング処理を行い、パターン外の不要な銅板(すなわち、レジストが塗布されていない部分の銅板)の除去を行い、回路パターンを形成した。処理後の基板表側は、回路パターンを構成する銅板M1,M2、及び前記銅板M1,M2を隔てる1 mmの間隙Gを有していた。前記間隙Gには、窒化珪素基板Sと銅板Mとの接合体を作製した際に窒化珪素基板Sの表面にはみだしたロウ材が完全に除去されずロウ材はみ出し部Dを形成していた(図4を参照)。前記ロウ材はみ出し部Dは金属光沢を呈していた。
前記ロウ材はみ出し部Dを除去するため、下記のように第1のろう材エッチング処理(カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液によるエッチング処理)、及び第2のろう材エッチング処理(フッ化水素アンモニウム及び過酸化水素を含む溶液によるエッチング処理)を順に行った。
前記ロウ材はみ出し部Dは、前述したように、パターン形成時に行う銅エッチング処理によりCuはほとんどエッチングされているので、主にAgとTiN相を含んだ組成であると考えられる。そこで、第1のろう材エッチング工程として、主にAgを除去する目的で、カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液によるエッチング処理を行った。
さらに、第1のろう材エッチング処理で除去しきれなかったAg及び反応層を形成するTiN相等を除去するため、第2のろう材エッチング処理としてフッ化水素アンモニウム及び過酸化水素を含む溶液によるエッチング処理を行った
第2のろう材エッチング処理後の接合体を、3質量%の水酸化ナトリウム水溶液で処理し、前記レジスト膜を除去した。次いで、化学研磨、及びイオン交換水による洗浄を経た後に、表側の回路パターン及び裏側の銅板にNiメッキを施した。前記化学研磨は、光沢処理を狙って、硫酸ベースの一般市販液を用いて行った。このようにして図5に示すセラミックス回路基板(窒化珪素回路基板)が得られた。
第1及び第2のろう材エッチング処理の処理温度及び処理時間を表1に示すように変更した以外は実施例1と同様にして、セラミックス回路基板を作製した。
第1のろう材エッチング処理を行わなかった以外は実施例2と同様にして、セラミックス回路基板を作製した。
合格率(%)=(合格試料の数/(合格試料の数+不良試料の数))×100
によって合格率を求め、合格率が90%以上の場合を○、合格率が90%未満60%より大きい場合を△、合格率が60%以下である場合を×として評価した。結果を表1に示す。
第1及び第2のろう材エッチング処理の代わりに、3質量%(0.5 mol/L)の酢酸、4質量%(0.7 mol/L)のフッ化水素アンモニウム、26質量%(7.6 mol/L)の過酸化水素、1質量%(0.2 N)の硫酸、3質量%(0.5 mol/L)の尿素、及び100 ppm(1.0 mmol/L)のリン酸を含むpH3の水溶液(第3のろう材エッチング液)を用いて、ロウ材はみ出し部Dを有する接合体を液温40℃で30分間浸漬した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、100%という高い合格率(評価:○)でセラミックス回路基板を作製することができた。なお、前記第3のろう材エッチング液はアルカリではないため、レジスト膜を溶解せず、配線となる回路パターンを傷めるという問題は発生しなかった。
ロウ材として、65.5質量%のAg、2質量%のIn、及び残部Cu(合計100質量部)からなる合金粉末に対して、15質量部のAg及び0.2質量部のTiH2を添加し、さらに有機溶剤を添加して混練してペーストとしたものを使用した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、合格率100%(評価:○)で作製することができた。
ロウ材として、50質量%のAg、25質量%のIn、及び25質量%のCu(合計100質量部)からなる合金粉末に対して、0.2質量部のTiを添加し、さらに有機溶剤を添加して混練してペーストとしたものを使用した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、合格率100%(評価:○)で作製することができた。
第1のろう材エッチング液の酢酸及び過酸化水素の添加量、第1のろう材エッチング処理時間を表2に示すように変更した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、表2に示すように高い合格率で作製することができた。なお実施例14は0.8質量%(0.13 mol/L)の酢酸と26質量%(7.6 mol/L)の過酸化水素、実施例15は1.7質量%(0.28 mol/L)の酢酸と23質量%(6.8 mol/L)の過酸化水素、実施例16は2.8質量%(0.47 mol/L)の酢酸と17質量%(5.0 mol/L)の過酸化水素、実施例17は3.0質量%(0.5 mol/L)の酢酸と24質量%(7.1 mol/L)の過酸化水素、実施例18は5.1質量%(0.85 mol/L)の酢酸と10質量%(2.9 mol/L)の過酸化水素を用いた。
第2のろう材エッチング液のフッ化水素アンモニウム及び過酸化水素の濃度、並びに第2のろう材エッチング処理時間を表3に示すように変更した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、表3に示すように高い合格率で作製することができた。なお実施例19は15質量%(4.4 mol/L)の過酸化水素と3.4質量%(0.60 mol/L)のフッ化水素アンモニウム、実施例20は25質量%(7.4 mol/L)の過酸化水素と8.1質量%(1.4 mol/L)のフッ化水素アンモニウム、実施例21は30質量%(8.8 mol/L)の過酸化水素と15質量%(2.6 mol/L)のフッ化水素アンモニウムを用いた。
第3のろう材エッチング液の酢酸、フッ化水素アンモニウム及び過酸化水素の濃度、並びに第3のろう材エッチング処理時間を表4に示すように変更した以外実施例11と同様にして、セラミックス回路基板を作製した。その結果、表4に示すように高い合格率で作製することができた。なお実施例22は1.1質量%(0.18 mol/L)の酢酸と20質量%(5.9 mol/L)の過酸化水素と8質量%(1.4 mol/L)のフッ化水素アンモニウム、実施例23は1.7質量%(0.28 mol/L)の酢酸と23質量%(6.8 mol/L)の過酸化水素と4質量%(0.70 mol/L)のフッ化水素アンモニウム、実施例24は2.8質量%(0.47 mol/L)の酢酸と18質量%(5.3 mol/L)の過酸化水素と10.5質量%(1.8 mol/L)のフッ化水素アンモニウム、実施例25は12質量%(2.0 mol/L)の酢酸と8質量%(2.4 mol/L)の過酸化水素と8質量%(1.4 mol/L)のフッ化水素アンモニウムを用いた。
パターン形成工程の後で第1のろう材エッチング工程の前に、接合体を10質量%のチオ硫酸ナトリウム水溶液(液温:20℃)に20分間浸漬してエッチング処理した以外は、実施例1と同様にしてセラミックス回路基板を作製した。前記エッチング処理は、チオ硫酸ナトリウム水溶液に600W及び35kHzの超音波を印加しながら行った。なお前記チオ硫酸ナトリウム水溶液の調液にはイオン交換水を用いた。その結果、実施例1と同様、高い合格率(評価:○)で作製することができた。
実施例11及び14~24においても、パターン形成工程の後に実施例26で行ったチオ硫酸ナトリウム水溶液によるエッチング処理を追加したところ、同様に全て高い合格率(評価:○)でセラミックス回路基板を作製することができた。
第1のろう材エッチング液として、2.3質量%(0.34 mol/L)のギ酸ナトリウム及び10質量%(2.9 mol/L)の過酸化水素を含む水溶液(約pH6)に、3 Nの塩酸を滴下してpH3に調節した水溶液を使用し、接合体を液温40℃で30分間浸漬してエッチングした以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、90%以上の合格率(評価:○)であった。
第1のろう材エッチング液として、3.8質量%(0.5 mol/L)のグリコール酸及び15質量%(4.4 mol/L)の過酸化水素を含む水溶液(約pH3)を使用し、接合体を液温40℃で30分間浸漬してエッチングした以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、90%以上の合格率(評価:○)であった。
実施例1~10及び比較例1で作製したセラミックス回路基板について、絶縁耐圧試験を実施した。絶縁耐圧試験は、セラミックス回路基板の表裏間に交流電圧を印加したときの絶縁破壊電圧を測定する試験である。図5に記載したように、金属板M1及び金属板M2に電極A及びBを配置し(A及びBは電気的に短絡)、さらにセラミックス回路基板の裏面の金属板M3に同様にして電極C(図示せず)を配置し、このセラミックス回路基板をシリコーン絶縁油中(室温)にセットし、菊水電子工業製の耐電圧試験器TOS5101で回路基板の表裏間(放熱板及び回路板間)に周波数50Hzの交流電圧を0~10 kVまで昇圧速度0.1 kV/secで徐々に上げながら印加し、漏れ電流が急激に増加して絶縁が保てなくなったときの電圧値を絶縁破壊電圧とした。この測定を20個の試料について行いそれらの平均値で評価した。
実施例1~10及び比較例1で作製したセラミックス回路基板について、配線間の絶縁抵抗を測定した。絶縁抵抗は、図5に示すように、銅板からなる金属板M1の任意の箇所及び金属板M2の任意の箇所に接するように、それぞれ絶縁抵抗試験用の球形電極A、Bを配置し、金属板M1と金属板M2との間に1000 Vの直流電圧を印圧し、30秒後の抵抗値を絶縁抵抗値とした。金属板M1及び金属板M2間の距離は1 mmとした。絶縁抵抗は、各実施例及び比較例ともに10枚のセラミックス回路基板について求めた抵抗値の最小値で評価した。その結果、合格品(ロウ材はみ出し部0.2 mm以下)では端子間で500 MΩ/mm以上の絶縁抵抗が確保できていたが、不合格品(ロウ材はみ出し部0.2 mm超)では端子間で500 MΩ/mm未満の絶縁抵抗となった。
Claims (13)
- セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有するセラミックス回路基板の製造方法であって、
前記ロウ材がAgを含み、
前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とするセラミックス回路基板の製造方法。 - 請求項1に記載のセラミックス回路基板の製造方法において、
前記不要なロウ材を除去した基板を、さらにフッ化アンモニウム及び過酸化水素を含む酸性の溶液でエッチングして残存するロウ材を除去する工程を有することを特徴とするセラミックス回路基板の製造方法。 - 請求項1又は2に記載のセラミックス回路基板の製造方法において、
前記ロウ材がAg及び活性金属を含有することを特徴とするセラミックス回路基板の製造方法。 - 請求項2又は3に記載のセラミックス回路基板の製造方法において、
前記フッ化アンモニウム及び過酸化水素を含む溶液は、 0.7~2.1 mol/Lのフッ化アンモニウム、及び2.9~8.9 mol/Lの過酸化水素を含有するpHが5以下の水溶液であることを特徴とするセラミックス回路基板の製造方法。 - 請求項2~4のいずれかに記載のセラミックス回路基板の製造方法において、
前記フッ化アンモニウム及び過酸化水素を含む酸性の溶液が、さらに硫酸、尿素及びリン酸の少なくとも1種を含むことを特徴とするセラミックス回路基板の製造方法。 - 請求項1~5のいずれかに記載のセラミックス回路基板の製造方法において、
前記カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液は、0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、並びに2.9~8.9 mol/Lの過酸化水素を含有するpHが6以下の水溶液であることを特徴とするセラミックス回路基板の製造方法。 - 請求項1~6のいずれかに記載のセラミックス回路基板の製造方法において、
前記カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液が、さらに硫酸、尿素及びリン酸の少なくとも1種を含むことを特徴とするセラミックス回路基板の製造方法。 - セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有するセラミックス回路基板の製造方法であって、
前記ロウ材がAgを含み、
前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とするセラミックス回路基板の製造方法。 - 請求項8に記載のセラミックス回路基板の製造方法において、
前記酸性の溶液は、0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、0.7~2.1 mol/Lのフッ化アンモニウム、並びに2.9~8.9 mol/Lの過酸化水素を含有するpHが6以下の水溶液であることを特徴とするセラミックス回路基板の製造方法。 - 請求項8又は9に記載のセラミックス回路基板の製造方法において、
前記酸性の溶液が、さらに硫酸、尿素及びリン酸の少なくとも1種を含むことを特徴とするセラミックス回路基板の製造方法。 - 請求項8~10のいずれかに記載のセラミックス回路基板の製造方法において、
前記ロウ材がAg及び活性金属を含有することを特徴とするセラミックス回路基板の製造方法。 - 請求項1~11のいずれかに記載のセラミックス回路基板の製造方法において、
前記金属板が銅板であり、
前記パターン形成工程において前記接合した金属板をエッチングためのエッチング液が、銅エッチング溶液であることを特徴とするセラミックス回路基板の製造方法。 - 請求項1~12のいずれかに記載のセラミックス回路基板の製造方法において、
前記ロウ材が、Ag、Cu及び活性金属を含有することを特徴とするセラミックス回路基板の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL14840942T PL2916627T3 (pl) | 2013-08-29 | 2014-03-12 | Sposób wytwarzania ceramicznej płytki drukowanej układu elektronicznego |
EP14840942.8A EP2916627B1 (en) | 2013-08-29 | 2014-03-12 | Method for manufacturing ceramic circuit board |
JP2014549842A JP5720860B1 (ja) | 2013-08-29 | 2014-03-12 | セラミックス回路基板の製造方法 |
US14/911,064 US10104783B2 (en) | 2013-08-29 | 2014-03-12 | Method for producing ceramic circuit board |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013177709 | 2013-08-29 | ||
JP2013-177709 | 2013-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015029478A1 true WO2015029478A1 (ja) | 2015-03-05 |
Family
ID=52586061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056534 WO2015029478A1 (ja) | 2013-08-29 | 2014-03-12 | セラミックス回路基板の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10104783B2 (ja) |
EP (1) | EP2916627B1 (ja) |
JP (1) | JP5720860B1 (ja) |
HU (1) | HUE044481T2 (ja) |
PL (1) | PL2916627T3 (ja) |
WO (1) | WO2015029478A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180101202A (ko) * | 2017-03-03 | 2018-09-12 | 도와 메탈테크 가부시키가이샤 | 금속/세라믹 회로 기판 제조 방법 |
WO2019054294A1 (ja) * | 2017-09-12 | 2019-03-21 | 株式会社 東芝 | セラミックス回路基板の製造方法 |
WO2020003879A1 (ja) * | 2018-06-26 | 2020-01-02 | Dic株式会社 | 金属パターンを有する成形体の製造方法 |
WO2020130071A1 (ja) * | 2018-12-21 | 2020-06-25 | Dic株式会社 | プリント配線板の製造方法 |
WO2020171051A1 (ja) * | 2019-02-19 | 2020-08-27 | Dic株式会社 | 銀用エッチング液、及びそれを用いたプリント配線板の製造方法 |
CN112469201A (zh) * | 2020-11-24 | 2021-03-09 | 绍兴德汇半导体材料有限公司 | 一种覆铜衬板制作方法 |
WO2021112187A1 (ja) * | 2019-12-03 | 2021-06-10 | 日本碍子株式会社 | 接合基板及び接合基板の製造方法 |
WO2021200810A1 (ja) * | 2020-03-30 | 2021-10-07 | デンカ株式会社 | レジスト硬化膜付きセラミック回路基板及びその製造方法、並びにセラミック回路基板の製造方法 |
JP7543805B2 (ja) | 2020-09-24 | 2024-09-03 | 三菱マテリアル株式会社 | 絶縁回路基板の製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6904094B2 (ja) * | 2016-06-23 | 2021-07-14 | 三菱マテリアル株式会社 | 絶縁回路基板の製造方法 |
EP3263537B1 (de) * | 2016-06-27 | 2021-09-22 | Infineon Technologies AG | Verfahren zur herstellung eines metall-keramik-substrats |
WO2018151530A1 (ko) * | 2017-02-14 | 2018-08-23 | (주)잉크테크 | 전기전도성 금속 박막 시드층의 선택적 에칭을 이용한 회로형성방법 및 에칭액 조성물 |
WO2018154687A1 (ja) * | 2017-02-23 | 2018-08-30 | 三菱電機株式会社 | 半導体装置 |
CN111032916A (zh) * | 2017-09-12 | 2020-04-17 | 株式会社东芝 | 活性金属钎料用蚀刻液及使用了其的陶瓷电路基板的制造方法 |
EP3817523A4 (en) * | 2018-06-26 | 2022-03-16 | DIC Corporation | PROCESS FOR MANUFACTURING A CIRCUIT BOARD |
KR20210022548A (ko) * | 2018-06-26 | 2021-03-03 | 디아이씨 가부시끼가이샤 | 프린트 배선판의 제조 방법 |
CN109321957B (zh) * | 2018-10-24 | 2023-01-17 | 中国电子科技集团公司第五十五研究所 | 一种环保型外壳镀覆前处理蚀刻液工艺及镀覆方法 |
CN111621787B (zh) * | 2020-04-27 | 2022-07-12 | 江苏富乐华半导体科技股份有限公司 | 一种蚀刻液体系及一种氮化铝基板的刻蚀方法 |
CN112752415A (zh) * | 2020-12-14 | 2021-05-04 | 广州添利电子科技有限公司 | 一种沉银工艺中爬银的抑制方法 |
CN116489893A (zh) * | 2023-04-23 | 2023-07-25 | 南通威斯派尔半导体技术有限公司 | 一种沟槽侧壁无银的覆铜陶瓷线路板及其制备方法 |
CN117646214B (zh) * | 2023-09-27 | 2024-06-18 | 江苏富乐华半导体科技股份有限公司 | 一种直接覆铝陶瓷基板蚀刻清洗方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09162325A (ja) | 1995-12-07 | 1997-06-20 | Denki Kagaku Kogyo Kk | 窒化珪素回路基板及びその製造方法 |
JPH10154866A (ja) | 1996-11-21 | 1998-06-09 | Sumitomo Kinzoku Electro Device:Kk | セラミックス回路基板の製造方法 |
JPH10251878A (ja) | 1997-03-14 | 1998-09-22 | Asahi Denka Kogyo Kk | 塩化銀除去剤 |
JP2003110222A (ja) * | 2001-09-28 | 2003-04-11 | Dowa Mining Co Ltd | 金属−セラミックス接合回路基板の製造方法 |
JP2005035874A (ja) | 2003-03-27 | 2005-02-10 | Dowa Mining Co Ltd | 金属−セラミックス接合基板の製造方法 |
JP3629783B2 (ja) | 1995-12-07 | 2005-03-16 | 電気化学工業株式会社 | 回路基板 |
JP2006351988A (ja) | 2005-06-20 | 2006-12-28 | Denki Kagaku Kogyo Kk | セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。 |
JP2008147446A (ja) * | 2006-12-11 | 2008-06-26 | Hitachi Metals Ltd | セラミックス回路基板およびその製造方法 |
JP2012234857A (ja) * | 2011-04-28 | 2012-11-29 | Denki Kagaku Kogyo Kk | セラミックス回路基板及びそれを用いたモジュール |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3353990B2 (ja) * | 1994-02-22 | 2002-12-09 | 電気化学工業株式会社 | 回路基板の製造方法 |
JP4077888B2 (ja) * | 1995-07-21 | 2008-04-23 | 株式会社東芝 | セラミックス回路基板 |
JP3512977B2 (ja) * | 1996-08-27 | 2004-03-31 | 同和鉱業株式会社 | 高信頼性半導体用基板 |
US6453914B2 (en) * | 1999-06-29 | 2002-09-24 | Micron Technology, Inc. | Acid blend for removing etch residue |
JP4887583B2 (ja) * | 2001-08-09 | 2012-02-29 | Dowaメタルテック株式会社 | セラミックス回路基板の製造方法 |
KR100440343B1 (ko) | 2002-04-03 | 2004-07-15 | 동우 화인켐 주식회사 | 고 선택성 은 식각용액-1 |
JP5299160B2 (ja) * | 2003-03-27 | 2013-09-25 | Dowaメタルテック株式会社 | 金属−セラミックス接合基板の製造方法 |
US20100051066A1 (en) * | 2005-12-20 | 2010-03-04 | Eiko Kuwabara | Composition for removing residue from wiring board and cleaning method |
-
2014
- 2014-03-12 EP EP14840942.8A patent/EP2916627B1/en active Active
- 2014-03-12 PL PL14840942T patent/PL2916627T3/pl unknown
- 2014-03-12 WO PCT/JP2014/056534 patent/WO2015029478A1/ja active Application Filing
- 2014-03-12 HU HUE14840942 patent/HUE044481T2/hu unknown
- 2014-03-12 US US14/911,064 patent/US10104783B2/en active Active
- 2014-03-12 JP JP2014549842A patent/JP5720860B1/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09162325A (ja) | 1995-12-07 | 1997-06-20 | Denki Kagaku Kogyo Kk | 窒化珪素回路基板及びその製造方法 |
JP3629783B2 (ja) | 1995-12-07 | 2005-03-16 | 電気化学工業株式会社 | 回路基板 |
JPH10154866A (ja) | 1996-11-21 | 1998-06-09 | Sumitomo Kinzoku Electro Device:Kk | セラミックス回路基板の製造方法 |
JPH10251878A (ja) | 1997-03-14 | 1998-09-22 | Asahi Denka Kogyo Kk | 塩化銀除去剤 |
JP2003110222A (ja) * | 2001-09-28 | 2003-04-11 | Dowa Mining Co Ltd | 金属−セラミックス接合回路基板の製造方法 |
JP2005035874A (ja) | 2003-03-27 | 2005-02-10 | Dowa Mining Co Ltd | 金属−セラミックス接合基板の製造方法 |
JP2006351988A (ja) | 2005-06-20 | 2006-12-28 | Denki Kagaku Kogyo Kk | セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。 |
JP2008147446A (ja) * | 2006-12-11 | 2008-06-26 | Hitachi Metals Ltd | セラミックス回路基板およびその製造方法 |
JP2012234857A (ja) * | 2011-04-28 | 2012-11-29 | Denki Kagaku Kogyo Kk | セラミックス回路基板及びそれを用いたモジュール |
Non-Patent Citations (1)
Title |
---|
See also references of EP2916627A4 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018145047A (ja) * | 2017-03-03 | 2018-09-20 | Dowaメタルテック株式会社 | 金属−セラミックス回路基板の製造方法 |
KR102387227B1 (ko) | 2017-03-03 | 2022-04-14 | 도와 메탈테크 가부시키가이샤 | 금속/세라믹 회로 기판 제조 방법 |
KR20180101202A (ko) * | 2017-03-03 | 2018-09-12 | 도와 메탈테크 가부시키가이샤 | 금속/세라믹 회로 기판 제조 방법 |
JP7448617B2 (ja) | 2017-09-12 | 2024-03-12 | 株式会社東芝 | セラミックス回路基板の製造方法 |
WO2019054294A1 (ja) * | 2017-09-12 | 2019-03-21 | 株式会社 東芝 | セラミックス回路基板の製造方法 |
US11129282B2 (en) | 2017-09-12 | 2021-09-21 | Kabushiki Kaisha Toshiba | Method for manufacturing ceramic circuit board |
CN110999553A (zh) * | 2017-09-12 | 2020-04-10 | 株式会社东芝 | 陶瓷电路基板的制造方法 |
JPWO2019054294A1 (ja) * | 2017-09-12 | 2020-08-27 | 株式会社東芝 | セラミックス回路基板の製造方法 |
JP7278215B2 (ja) | 2017-09-12 | 2023-05-19 | 株式会社東芝 | セラミックス回路基板の製造方法 |
CN110999553B (zh) * | 2017-09-12 | 2024-02-23 | 株式会社东芝 | 陶瓷电路基板的制造方法 |
WO2020003879A1 (ja) * | 2018-06-26 | 2020-01-02 | Dic株式会社 | 金属パターンを有する成形体の製造方法 |
KR102707316B1 (ko) * | 2018-06-26 | 2024-09-19 | 디아이씨 가부시끼가이샤 | 금속 패턴을 갖는 성형체의 제조 방법 |
KR20210023841A (ko) * | 2018-06-26 | 2021-03-04 | 디아이씨 가부시끼가이샤 | 금속 패턴을 갖는 성형체의 제조 방법 |
JPWO2020003879A1 (ja) * | 2018-06-26 | 2020-09-24 | Dic株式会社 | 金属パターンを有する成形体の製造方法 |
WO2020130071A1 (ja) * | 2018-12-21 | 2020-06-25 | Dic株式会社 | プリント配線板の製造方法 |
WO2020171051A1 (ja) * | 2019-02-19 | 2020-08-27 | Dic株式会社 | 銀用エッチング液、及びそれを用いたプリント配線板の製造方法 |
JPWO2020171051A1 (ja) * | 2019-02-19 | 2021-03-11 | Dic株式会社 | 銀用エッチング液、及びそれを用いたプリント配線板の製造方法 |
WO2021111508A1 (ja) * | 2019-12-03 | 2021-06-10 | 日本碍子株式会社 | 接合基板及び接合基板の製造方法 |
JPWO2021112187A1 (ja) * | 2019-12-03 | 2021-06-10 | ||
JP7311625B2 (ja) | 2019-12-03 | 2023-07-19 | 日本碍子株式会社 | 接合基板及び接合基板の製造方法 |
WO2021112187A1 (ja) * | 2019-12-03 | 2021-06-10 | 日本碍子株式会社 | 接合基板及び接合基板の製造方法 |
WO2021200810A1 (ja) * | 2020-03-30 | 2021-10-07 | デンカ株式会社 | レジスト硬化膜付きセラミック回路基板及びその製造方法、並びにセラミック回路基板の製造方法 |
JP7543805B2 (ja) | 2020-09-24 | 2024-09-03 | 三菱マテリアル株式会社 | 絶縁回路基板の製造方法 |
CN112469201A (zh) * | 2020-11-24 | 2021-03-09 | 绍兴德汇半导体材料有限公司 | 一种覆铜衬板制作方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5720860B1 (ja) | 2015-05-20 |
US10104783B2 (en) | 2018-10-16 |
US20160192503A1 (en) | 2016-06-30 |
EP2916627A4 (en) | 2016-03-09 |
HUE044481T2 (hu) | 2019-10-28 |
JPWO2015029478A1 (ja) | 2017-03-02 |
EP2916627B1 (en) | 2019-04-03 |
PL2916627T3 (pl) | 2019-09-30 |
EP2916627A1 (en) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5720860B1 (ja) | セラミックス回路基板の製造方法 | |
CN108541149B (zh) | 金属/陶瓷电路板的制造方法 | |
JP5720861B1 (ja) | セラミックス回路基板の製造方法及びセラミックス回路基板 | |
US11129282B2 (en) | Method for manufacturing ceramic circuit board | |
US6918529B2 (en) | Method for producing metal/ceramic bonding circuit board | |
KR20110139654A (ko) | 알루미늄 산화피막용 제거액 및 알루미늄 또는 알루미늄합금의 표면처리방법 | |
JP5741971B2 (ja) | 金属−セラミックス接合回路基板の製造方法 | |
JP2007324301A (ja) | 窒化物セラミックス回路基板の製造方法。 | |
US20230390845A1 (en) | Method For Manufacturing Ceramic Circuit Board | |
WO2023234286A1 (ja) | セラミックス回路基板およびそれを用いた半導体装置 | |
JP3959044B2 (ja) | アルミニウムおよびアルミニウム合金のめっき前処理方法 | |
JP2011211217A (ja) | 金属−セラミックス接合回路基板の製造方法 | |
JP3175095B2 (ja) | アルミニウム合金のデバーリング液および精密バリ取り方法 | |
JP3827605B2 (ja) | 回路基板及び回路基板の半田濡れ性向上方法 | |
JP6162986B2 (ja) | 金属−セラミックス回路基板の製造方法 | |
JP2015178424A (ja) | セラミックス回路基板の製造方法 | |
JP2024132810A (ja) | 半導体モジュールの製造方法、回路基板およびその製造方法 | |
CN116686081A (zh) | 绝缘性电路基板及使用了其的半导体装置 | |
JP2012079808A (ja) | 金属−セラミックス回路基板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014549842 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14840942 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014840942 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14911064 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |