WO2015029478A1 - セラミックス回路基板の製造方法 - Google Patents

セラミックス回路基板の製造方法 Download PDF

Info

Publication number
WO2015029478A1
WO2015029478A1 PCT/JP2014/056534 JP2014056534W WO2015029478A1 WO 2015029478 A1 WO2015029478 A1 WO 2015029478A1 JP 2014056534 W JP2014056534 W JP 2014056534W WO 2015029478 A1 WO2015029478 A1 WO 2015029478A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing material
circuit board
ceramic circuit
etching
hydrogen peroxide
Prior art date
Application number
PCT/JP2014/056534
Other languages
English (en)
French (fr)
Inventor
千綿 伸彦
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to PL14840942T priority Critical patent/PL2916627T3/pl
Priority to EP14840942.8A priority patent/EP2916627B1/en
Priority to JP2014549842A priority patent/JP5720860B1/ja
Priority to US14/911,064 priority patent/US10104783B2/en
Publication of WO2015029478A1 publication Critical patent/WO2015029478A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/067Etchants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0789Aqueous acid solution, e.g. for cleaning or etching

Definitions

  • the present invention relates to a method for manufacturing a ceramic circuit board used for a power module or the like.
  • a circuit board is applied by applying a brazing material containing an active metal to the surface of a ceramic substrate such as silicon nitride or aluminum nitride having a high thermal conductivity, placing a metal plate such as copper or aluminum, and heating and bonding. After that, the resist is generally printed on the metal plate in the form of a so-called circuit pattern, and an unnecessary portion of the metal plate not covered with the resist is removed by etching.
  • the bonding layer between the ceramic substrate and the copper plate formed of the brazing material containing the active metal uses, for example, a brazing material containing Ag, Cu, and Ti as the active metal, as described in Japanese Patent No. 3627983.
  • a brazing material containing Ag, Cu, and Ti as the active metal, as described in Japanese Patent No. 3627983.
  • Unnecessary brazing material between circuit patterns is removed to some extent at the same time when the metal plate is etched, but depending on conditions, the alloy layer of the brazing material (for example, a layer containing Cu-Ag as a main component) and reaction A layer (for example, a layer containing titanium nitride as a main component) may not be completely removed and a part of the layer may remain. If a part of the brazing material remains, there arises a problem that insulation between adjacent circuit patterns is lowered or short-circuited.
  • the alloy layer of the brazing material for example, a layer containing Cu-Ag as a main component
  • reaction A layer for example, a layer containing titanium nitride as a main component
  • Japanese Unexamined Patent Publication No. 2006-351988 discloses a ceramic circuit board in which a metal plate is bonded to both main surfaces of a ceramic plate (a nitride ceramic such as aluminum nitride and silicon nitride) via a brazing material having an active metal. It describes that a brazing material is applied to a ceramic plate, a ceramic plate and a metal plate are joined, and then an etching mask is applied to perform etching to produce a ceramic circuit board. Further, JP-A-2006-351988 discloses that the applied brazing material, its alloy layer and nitride layer remain on the ceramic circuit board from which unnecessary metal portions have been removed by the etching.
  • an etching solution containing an aqueous ammonium fluoride solution for removing a brazing material has a large effect of removing a reaction layer mainly composed of titanium nitride, but is not sufficient for removing an alloy layer.
  • the brazing filler metal may remain, resulting in a problem that the insulation between the circuit patterns is lowered or short-circuited.
  • Japanese Patent Laid-Open No. 9-16325 includes a silicon nitride substrate in which a metal circuit or a metal circuit and a metal heat sink are formed via a bonding layer containing an active metal, and the bonding layer has a thickness of 20 ⁇ m or less and a metal circuit and Disclosed is a silicon nitride circuit board in which the oxygen content of the metal heat sink is 50 ppm or less, the silicon nitride circuit board applying a brazing material paste containing an active metal or a compound containing an active metal, A step of joining a metal plate having a sufficient width to cover the coating paste, a step of forming a circuit pattern on the metal plate of the joined body with an etching resist, a step of forming a metal circuit by etching, and a gap between the metal circuits It describes that it consists of a step of removing the existing brazing material.
  • JP-A-9-16325 describes that a (warm) aqueous solution of ammonium hydrogen fluoride (NH 4 F ⁇ HF), hydrogen peroxide (H 2 O 2 ) or the like is used in the step of removing the brazing filler metal. is doing.
  • an etching solution containing an aqueous ammonium fluoride solution for removing a brazing material has a large effect of removing a reaction layer mainly composed of titanium nitride, but is not sufficient for removing an alloy layer.
  • the brazing filler metal may remain, resulting in a problem that the insulation between the circuit patterns is lowered or short-circuited.
  • JP-A-10-154866 discloses a method comprising a first treatment with an aqueous solution containing ammonium fluoride and hydrogen peroxide and a second treatment with an aqueous solution containing alkali and hydrogen peroxide, This method describes that the unnecessary brazing material can be completely removed without reducing the dimensional accuracy of the circuit pattern.
  • the brazing material removing method described in JP-A-10-154866 uses an alkaline aqueous solution, there is a problem that the etching resist that is removed with the alkaline solution is eroded.
  • Japanese Patent Laid-Open No. 10-251878 removes silver chloride deposited on the surface of silver or a silver alloy by etching a copper plate by treating it with an aqueous solution of sodium thiosulfate and / or potassium thiosulfate, and further residual silver or silver
  • a method of removing an alloy by treating it with an aqueous solution containing NH 4 F.HF and hydrogen peroxide is disclosed, and this method does not use an alkaline treatment solution. It states that it will not erode.
  • the aqueous solution of sodium thiosulfate and / or potassium thiosulfate has a high dissolution effect on silver chloride, it does not have a reduction and dissolution effect on metallic silver and silver alloys.
  • metal silver and silver alloy are not sufficiently removed, and a part of the brazing material remains, which may deteriorate the quality of the circuit board.
  • Japanese Patent Laid-Open No. 2005-35874 discloses a method in which a metal member is bonded to at least one surface of a ceramic substrate via an active metal-containing brazing material, and then a resist is applied to a predetermined portion of the surface of the metal member to partially After etching and removing the resist, after etching a part of the metal layer formed of a metal other than the active metal of the active metal-containing brazing material, for example, with a chemical agent consisting of hydrogen peroxide, ammonia water and EDTA, Disclosed is a method for producing a metal / ceramic bonding substrate that is treated with a chemical that selectively etches an active metal layer.
  • a carboxylic acid compound (a Acid, diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), 1,3-propanediaminetriacetic acid (1,3PDTA) (Nitrilotriacetic acid (NTA), hydroxyethylidene diphosphate (HEDT), etc.) and an agent containing an oxidizing agent and an alkali, or (b) a compound having one or more amino groups in the soot molecule (such as an ethylenediamine-based compound)
  • DTPA diethylenetriaminepentaacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • HEDTA hydroxyethylethylenediaminetriacetic acid
  • 1,3PDTA 1,3-propanediaminetriacetic acid
  • NTA hydroxyethylidene diphosphate
  • HEDT hydroxyethylidene diphosphat
  • the method for producing a metal / ceramic bonding substrate described in Japanese Patent Application Laid-Open No. 2005-35874 includes a process of removing a part of a metal layer formed of a metal other than an active metal after removing a resist, and an active metal Since the process of selectively etching the layer is performed, there is a problem that the surface of the metal member is corroded by the process after removing the resist. When the resist is removed last, an alkaline solution is used as an agent for removing a part of the metal layer formed of a metal other than the active metal. There arises a problem that the etching resist is eroded. Further, since the chemical containing the carboxylic acid compound (a) uses an alkaline solution, it has the same problem. Accordingly, development of a brazing material removal technique that can be used in an acidic state is desired.
  • an object of the present invention is to provide a method for producing a ceramic circuit board having a treatment liquid that does not corrode an etching resist that is removed with an alkaline solution, has a high brazing material removal ability, and has good handleability. is there.
  • an acidic solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide has a high ability to remove brazing material containing Ag and is very easy to handle.
  • the present inventors have found that the present invention is good, and that the subsequent treatment with an acidic solution containing ammonium fluoride and hydrogen peroxide can reduce a trace amount of the brazing material to a level at which there is no practical problem.
  • the manufacture of a ceramic circuit board includes a joining step of joining a metal plate to a ceramic substrate via a brazing material to obtain a joined body, and a pattern forming step of forming a circuit pattern by etching the joined metal plate. is doing. After the pattern formation step, a residue remains even when etching is performed with a conventional etching solution (for example, an aqueous solution containing ammonium fluoride and hydrogen peroxide described in JP-A-10-154866).
  • a conventional etching solution for example, an aqueous solution containing ammonium fluoride and hydrogen peroxide described in JP-A-10-154866.
  • the inventor of the present application diligently studied and eluted at least a part of the alloy layer (for example, Cu-Ag layer) derived from the metal other than the active metal of the brazing material with the first brazing material etching solution containing acetic acid and hydrogen peroxide. Then, a first brazing material etch is performed by dissolving a reaction layer (for example, a titanium nitride layer) formed by an active metal in the brazing material with a second brazing material etching solution containing ammonium fluoride and hydrogen peroxide. It has been found that the residue of the brazing material remaining after the treatment can be removed to a level where there is no practical problem.
  • a reaction layer for example, a titanium nitride layer
  • a metal plate is bonded to a ceramic substrate via a brazing material to obtain a bonded body, and the bonded metal plate is etched to form a circuit pattern.
  • a pattern forming process The brazing material contains Ag,
  • the substrate on which the circuit pattern is formed further includes a step of removing unnecessary brazing material by etching with an acidic solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide.
  • the brazing material preferably contains Ag and an active metal.
  • the acidic solution containing ammonium fluoride and hydrogen peroxide is an aqueous solution containing 0.7 to 2.1 mol / L ammonium fluoride and 2.9 to 8.9 mol / L hydrogen peroxide and having a pH of 5 or less. preferable.
  • the acidic solution containing ammonium fluoride and hydrogen peroxide preferably further contains at least one of sulfuric acid, urea, and phosphoric acid.
  • the acidic solution containing the carboxylic acid and / or carboxylate salt and hydrogen peroxide contains 0.083 to 1.7 mol / L carboxylic acid and / or carboxylate salt and 2.9 to 8.9 mol / L hydrogen peroxide.
  • An aqueous solution having a pH of 6 or less is preferred.
  • the acidic solution containing the carboxylic acid and / or carboxylate salt and hydrogen peroxide preferably further contains at least one of sulfuric acid, urea and phosphoric acid.
  • Another method of the present invention for producing a ceramic circuit board is: A bonding step of bonding a metal plate to a ceramic substrate through a brazing material to obtain a bonded body, and a pattern forming step of forming a circuit pattern by etching the bonded metal plate,
  • the brazing material contains Ag
  • the substrate having the circuit pattern formed thereon is further etched with an acidic solution containing carboxylic acid and / or carboxylate salt, ammonium fluoride, and hydrogen peroxide to remove unnecessary brazing material.
  • the acidic solution containing the carboxylic acid and / or carboxylate salt, ammonium fluoride, and hydrogen peroxide is 0.083 to 1.7 mol / L carboxylic acid and / or carboxylate, 0.7 to 2.1 mol / L fluoride.
  • An aqueous solution containing ammonium and 2.9 to 8.9 mol / L hydrogen peroxide and having a pH of 6 or less is preferable.
  • the acidic solution containing the carboxylic acid and / or carboxylate salt, ammonium fluoride, and hydrogen peroxide preferably further contains at least one of sulfuric acid, urea, and phosphoric acid.
  • the brazing material preferably contains Ag and an active metal.
  • the metal plate is a copper plate; It is preferable that the etching solution for etching the joined metal plates in the pattern forming step is a copper etching solution.
  • the brazing material preferably contains Ag, Cu and an active metal.
  • the process for removing the brazing material uses an etching solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide, and thus has a high brazing material removal effect. Since the etching solution is composed of an acidic solution, the etching resist that is removed with an alkaline solution is not eroded. Therefore, a ceramic circuit board can be manufactured with a high acceptance rate. In addition, since carboxylic acid (or a salt thereof) that is inexpensive and excellent in handleability is used, safety is high and cost merit is great.
  • the first embodiment is A bonding step of bonding a metal plate to a ceramic substrate through a brazing material to obtain a bonded body, and a pattern forming step of forming a circuit pattern by etching the bonded metal plate,
  • the brazing material contains Ag
  • the substrate on which the circuit pattern is formed further includes a step of removing unnecessary brazing material by etching with an acidic solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide.
  • a metal plate M (copper plate, aluminum plate, etc.) is pressed and adhered to a ceramic substrate coated with the brazing material containing the active metal, and the brazing material containing the active metal in a vacuum or an inert atmosphere such as argon gas. Then, the ceramic substrate S and the metal plate M are joined together via the brazing materials C1 and C2 to obtain a joined body (see FIG. 2).
  • the coating thickness of the brazing material containing the active metal is preferably about 20 to 50 ⁇ m so that the thermal expansion difference between the ceramic substrate and the metal plate can be reduced.
  • Resist films R1 and R2 are formed on the surface of the metal plate M of the obtained bonded body so that a desired circuit pattern is formed (see FIG. 3).
  • a metal plate M3 which is a heat radiating plate, is joined to the other surface of the ceramic substrate S by a brazing material C3 containing an active metal.
  • the contents of each process relating to the metal plates M1 and M2 which are circuit boards and the metal plate M3 which is a heat sink are basically the same, so only the metal plates M1 and M2 are used. This will be described in detail, and a description of the metal plate M3 will be omitted.
  • the brazing material used in the present invention contains at least Ag and an active metal.
  • a metal other than the active metal it is preferable to contain Cu in addition to Ag, and may further contain In. Inevitable impurities may also be contained.
  • a brazing material made of Ag, Cu and an active metal is preferable.
  • the active metal is at least one selected from, for example, Ti, Zr, and Hf.
  • Preferred brazing materials include 55 to 81 mass% Ag, 1 to 5 mass% In, 14 to 44 mass% Cu, alloy powder containing unavoidable impurities, Ag powder, and active metal hydride powder. And a powder obtained by mixing the above.
  • the ratio of Ag to the total of Ag and Cu in the alloy powder, that is, Ag / (Ag + Cu) is preferably 0.57 to 0.85.
  • the brazing material preferably has an oxygen content of 0.1% by mass or less, and preferably contains 0.0001 to 0.5% by mass of Si.
  • the active metal hydride powder is preferably contained in 1 to 3 parts by mass with respect to 100 parts by mass of the alloy powder.
  • As the active metal hydride a hydride of at least one metal selected from Ti, Zr and Hf can be used, and a hydride of Ti is particularly preferable.
  • the brazing material is kneaded by adding 1 to 10% by weight of a binder and 2 to 20% by weight of an organic solvent with respect to 100% by weight of the metal components (total of metals and active metals other than the active metal).
  • a paste suitable for screen printing can be obtained.
  • the resist film is preferably formed of an ultraviolet curable resist agent.
  • the ultraviolet curable resist agent contains a copolymer acrylate / oligomer, an acrylate ester / monomer, a filler, a photopolymerization initiator, a dye adjusting agent, and a defoaming / leveling agent.
  • the copolymer acrylate / oligomer which is the main component of the ultraviolet curable resist agent, is a highly viscous polymer that cures by condensation / polymerization reaction.
  • the copolymer acrylate / oligomer as the main component is epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, or other copolymer resins.
  • acrylate ester monomer examples include isoamyl acrylate, lauryl acrylate, stearyl acrylate, ethoxyethylene ethylene glycol acrylate, 2-hydroxyethyl acrylate, and phenoxyethyl acrylate.
  • a solution containing iron chloride may be used as the copper etching solution.
  • the copper etching solution may be sprayed onto the joined body using a shower device.
  • the copper plate (unnecessary copper plate) in a portion not covered with the resist is removed, and then a part of the brazing material is removed.
  • the copper etching solution is used, Cu in the brazing material is almost removed, but undissolved residue estimated to be a brazing material containing Ag is generated.
  • FIG. 4 shows a ceramic circuit board in which metal plates M1 and M2 are formed on both sides of the ceramic substrate S with a gap G therebetween.
  • the brazing material that protrudes from the surface of the silicon nitride substrate S when the bonded body of the silicon nitride substrate S and the copper plate M is produced is not completely removed by the copper etching process, and the circuit pattern (metal plates M1, M2) It exists so as to protrude from the end into the gap G (the portion where the copper plate has been removed by etching). This is called “a brazing material protruding portion D”.
  • brazing material removal step Cu in the brazing material is almost etched by the copper etching treatment performed at the time of pattern formation, the brazing material protruding portion D is derived from a metal other than Cu in the brazing material, for example, It is considered to contain Ag (alloy layer) and TiN (reaction layer).
  • the following first brazing material etching process is performed. Further, a second brazing material etching process is performed as necessary.
  • first brazing material etching solution containing carboxylic acid and / or carboxylate salt and hydrogen peroxide, and the brazing material protruding portion Etching the unmelted brazing material where D is formed.
  • the first brazing material etching solution is, for example, an aqueous solution having a pH of 6 or less containing 0.083 to 1.7 mol / L carboxylic acid and / or carboxylate salt and 2.9 to 8.9 mol / L hydrogen peroxide. Is preferred.
  • the concentration of carboxylic acid and / or carboxylate is the total value thereof.
  • the carboxylic acid and / or carboxylate added to the first brazing material etching solution may be only carboxylic acid, may be only carboxylate, or a combination of carboxylic acid and carboxylate. Mixing is also acceptable.
  • the carboxylic acid and / or carboxylate is preferably a saturated or unsaturated fatty acid, a divalent or trivalent carboxylic acid, and a salt thereof.
  • the fatty acid may have a substituent such as an alkyl group or a hydroxyl group, and is preferably a lower fatty acid having 2 to 4 carbon atoms.
  • the counter salt is not particularly limited, but Li + , Na + , K + and the like are preferable.
  • Examples of the carboxylic acid and / or carboxylate include formic acid, acetic acid, propionic acid, butyric acid, good phase acid, glycolic acid, oxalic acid, malonic acid, succinic acid, maleic acid, glutaric acid, malic acid, citric acid, and the like Of the salt.
  • formic acid, acetic acid, sodium formate, and glycolic acid are preferable, and acetic acid is most preferable from the viewpoint of cost and handleability.
  • the concentration of the carboxylic acid and / or carboxylate is preferably 0.1 to 1.5 mol / L in total, and more preferably 0.2 to 1.4 mol / L.
  • the pH of the first brazing material etching solution is 6 or less. When the pH exceeds 6, the ability to remove the brazing material decreases.
  • the pH is preferably 5 or less, more preferably 1 to 5, and most preferably 2 to 4.
  • carboxylic acid is used, pH adjustment is usually unnecessary because the aqueous solution shows acidity.
  • carboxylic acid salt is used, the pH is adjusted to 6 or less with an acid described later, if necessary.
  • the dissolution rate of the undissolved brazing material is limited by the decomposition reaction of hydrogen peroxide, and the dissolution capacity depends on the concentration of carboxylic acid and / or carboxylate. For example, 3% by mass (0.5 mol / L) of acetic acid has the ability to dissolve 10 mg / L of Ag.
  • the decomposition reaction of hydrogen peroxide varies greatly depending on the temperature, but in order to ensure the stability of the solution temperature by the chain reaction, the temperature of the solution is preferably controlled at room temperature to less than 50 ° C, preferably from room temperature to 40 ° C. More preferably.
  • the hydrogen peroxide a commercially available hydrogen peroxide solution can be used.
  • the concentration of hydrogen peroxide is preferably 3 to 8 mol / L.
  • the water used is preferably water from which impurities have been removed using an ion exchange resin and / or a reverse osmosis membrane, and ion exchange water (also called deionized water) is preferably used.
  • An antifoaming agent, a surfactant, a pH adjuster, a stabilizer and the like can be added to the first brazing material etching solution.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, monoethanolamine, and triethanolamine.
  • antifoaming agents include polyoxyalkylene alkyl ethers, polyoxyethylene alkylene ethers, and silicone-based agents.
  • Examples of the pH adjuster include alkalis such as sodium hydroxide, potassium hydroxide and aqueous ammonia, and acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid.
  • the stabilizer include sulfuric acid, urea, phosphoric acid and the like.
  • the first brazing material etching solution preferably contains, for example, 0.1 to 1.0 mass% sulfuric acid, 1.0 to 5.0 mass% urea, 10 to 100 mass ppm phosphoric acid, and the like. These can also be used for second and third brazing material etching solutions described later.
  • the components in the first brazing material etching solution are gradually consumed, and the ability to remove the brazing material decreases.
  • all of the deteriorated solution may be replaced with a new first brazing material etching solution, or the first solution is replaced with the deteriorated solution. You may add the component of the brazing material etching liquid.
  • the old first brazing material etching solution that has filled the first etching bath is disposed of, and the new first brazing material etching solution is filled into the first etching bath.
  • the total concentration of carboxylic acid and / or carboxylate is preferably about 0.2 to 1.4 mol / L. Even if a solution in which only carboxylic acid and / or carboxylate is added to water is used, the undissolved residue of the brazing material is not etched.
  • the lifetime of the first brazing material etchant in the first etching tank can be extended and the cost can be reduced.
  • the carboxylic acid and / or carboxylic acid salt should be kept at a high concentration. It is also effective to give a sufficient dissolving ability.
  • carboxylic acid and / or a carboxylate salt attack the stainless steel which comprises an apparatus and a drainage facility, a density
  • concentration may be determined to the level which suppresses the influence with respect to stainless steel.
  • Second brazing material etching treatment After the first brazing material etching treatment, the joined body is changed to an acidic solution containing ammonium fluoride and hydrogen peroxide (second brazing material etching solution) as necessary. It is preferable to immerse and etch the remaining brazing material that cannot be removed by the first brazing material etching process.
  • This second brazing material etching solution is an aqueous solution containing ammonium fluoride and hydrogen peroxide.
  • the pH containing 0.7 to 2.1 mol / L ammonium fluoride and 2.9 to 8.9 mol / L hydrogen peroxide is 5 The following aqueous solutions are preferred.
  • the hydrogen salt ammonium hydrogen fluoride [chemical formula: (NH 4 ) HF 2 ] or the normal salt ammonium fluoride [chemical formula: NH 4 F] can be used.
  • the former is also called acidic ammonium fluoride.
  • the concentration of ammonium fluoride is preferably 1 to 2 mol / L, and more preferably 1.2 to 1.8 mol / L.
  • the hydrogen peroxide a commercially available hydrogen peroxide solution can be used.
  • the concentration of hydrogen peroxide is preferably 3 to 8 mol / L.
  • the water used is preferably water from which impurities have been removed using an ion exchange resin and / or a reverse osmosis membrane, and ion exchange water (also called deionized water) is preferably used.
  • the pH of the second brazing material etching solution is 5 or less. When the pH exceeds 5, the ability to remove the brazing material decreases.
  • the pH is preferably 4.5 or less, more preferably 1 to 4.5, and most preferably 2 to 4.
  • the pH of the second brazing material etching solution is adjusted to 5 or less with an acid or an alkali, which will be described later, as necessary.
  • the temperature of the second brazing material etching solution is preferably controlled at room temperature to less than 50 ° C., more preferably from room temperature to 40 ° C.
  • an antifoaming agent, a surfactant, a pH adjuster, a stabilizer and the like can be added to the second brazing material etching solution.
  • the antifoaming agent, surfactant, pH adjuster and stabilizer the same compounds and chemicals that can be used for the first brazing material etching solution described above can be used.
  • the second brazing material etching solution preferably contains 0.1 to 1.0 mass% sulfuric acid, 1.0 to 5.0 mass% urea, 10 to 100 mass ppm phosphoric acid, and the like.
  • the etching process using a solution containing sodium thiosulfate can be omitted.
  • the etching treatment with sodium thiosulfate is performed, for example, by immersing the joined body in an aqueous solution containing 5 to 15% by mass of sodium thiosulfate and applying ultrasonic waves for 10 to 30 minutes.
  • the temperature of the solution is preferably 10 to 30 ° C., for example.
  • Etching silver chloride with sodium thiosulfate can prevent the first brazing material etching step from being inhibited by silver chloride. Note that the treatment with sodium thiosulfate only etches silver chloride and cannot etch Ag.
  • the resist film is removed and further subjected to chemical polishing treatment, rust prevention treatment, plating, etc.
  • chemical polishing treatment for example, a solution in which an 8 to 12 mass% sodium hydroxide aqueous solution is maintained at about 50 ° C.
  • an alkaline solution for example, a solution in which an 8 to 12 mass% sodium hydroxide aqueous solution is maintained at about 50 ° C.
  • potassium hydroxide can also be used.
  • the treatment temperature can be selected in the range of 30 to 70 ° C.
  • first and second brazing material etching treatment liquids of the present invention are made of an acidic aqueous solution, the alkali peeling type resist film is not peeled off by these brazing material etching treatments, and the copper circuit pattern of the wiring becomes Damage and damage to the ceramic substrate can be avoided.
  • chemical polishing is an effective treatment not only for the purpose of removing surface oxidation during the treatment but also for the purpose of adjusting the surface state.
  • glossy, non-glossy, rough by selecting an etching solution and method according to the method of installing electronic components such as semiconductor chips on a copper circuit pattern on a ceramic circuit board or wiring a metal wire or the like. It is possible to meet demands such as degree.
  • the circuit board W obtained by the method described above includes the ceramic substrate S, the two brazing materials C1 and C2 formed on the upper surface (front surface) of the ceramic substrate S, and the two A basic configuration comprising metal plates M1 and M2 joined via brazing materials C1 and C2, respectively, and a gap G arranged to separate the brazing materials C1 and C2 (and metal plates M1 and M2) in the plane direction.
  • the metal plates M1 and M2 function as circuit boards on which semiconductor elements and the like are mounted.
  • a metal plate M3 functioning as a heat radiating plate is joined to the lower surface (back surface) of the ceramic substrate S via a brazing material C3.
  • a plating layer such as Ni or Au can be formed as necessary.
  • an etching process, a polishing process, and a plating process using sodium thiosulfate are performed as necessary. Since steps other than the brazing material removal step are the same as those in the first embodiment, a third brazing material removal step performed in place of the first and second brazing material removal steps will be described below.
  • the third brazing material removal step in the second embodiment is a third brazing material in which the components of the first and second brazing material etching solutions in the first embodiment are combined into one bath. This is performed using a brazing material etching solution.
  • the third brazing material etching solution is an acidic solution containing carboxylic acid and / or carboxylate salt, ammonium fluoride, and hydrogen peroxide.
  • aqueous solution containing a salt, 0.7 to 2.1 mol / L ammonium fluoride, and 2.9 to 8.9 mol / L hydrogen peroxide and having a pH of 6 or less is preferable.
  • the carboxylic acid and / or carboxylate, ammonium fluoride, and hydrogen peroxide used in the third brazing material etching solution are the same as those used in the first and second brazing material etching solutions. can do.
  • the total concentration of carboxylic acid and / or carboxylate is preferably 0.1 to 1.5 mol / L, and more preferably 0.2 to 1.4 mol / L.
  • the concentration of ammonium fluoride is preferably 1 to 2 mol / L, and more preferably 1.2 to 1.8 mol / L.
  • the concentration of hydrogen peroxide is preferably 3 to 8 mol / L.
  • the pH of the third brazing material etching solution is 6 or less. When the pH exceeds 6, the ability to remove the brazing material decreases.
  • the pH is preferably 5 or less, more preferably 1 to 5, and most preferably 2 to 4.
  • carboxylic acid is used, pH adjustment is usually unnecessary because the aqueous solution shows acidity.
  • carboxylic acid salt is used, the pH is adjusted to 6 or less with an acid as necessary.
  • the acid that can be used is the same as that used in the first brazing material etching solution.
  • the same defoaming agent, surfactant, pH adjuster, stabilizer and the like as in the first and second brazing material etching solutions can be added as necessary.
  • the antifoaming agent, surfactant, pH adjusting agent, and stabilizer the same compounds and chemicals that can be used for the first and second brazing filler metal etching solutions described above can be used.
  • the third brazing material etching solution preferably contains 0.1 to 1.0 mass% sulfuric acid, 1.0 to 5.0 mass% urea, 10 to 100 mass ppm phosphoric acid, and the like.
  • the processing conditions such as the temperature of the third brazing material etching solution may be the same as those in the second brazing material removing step.
  • a ceramic circuit board includes a ceramic substrate, at least two brazing material layers formed on the ceramic substrate via a gap, and at least two metal plates each joined via the at least two brazing material layers. Is a ceramic circuit board.
  • the insulation resistance between the two metal plates is preferably 500 M ⁇ / mm or more.
  • the number of brazing material layers and metal plates to be joined is not limited to two, and three or more metal plates can be provided. In that case, three or more metal plates to be joined can be provided.
  • the insulation resistance between the two metal plates breaks down when the ceramic circuit board on which the semiconductor element is mounted on the two metal plates is formed by the insulation resistance between the two metal plates being 500 M ⁇ / mm or more. Therefore, it is possible to prevent a trouble that an excessive current flows through the semiconductor element.
  • the ceramic circuit board is preferably formed by the above-described method for manufacturing a ceramic circuit board of the present invention.
  • the ceramic circuit board having a high insulation resistance as described above can reduce, for example, the brazing material or residue thereof present on the surface of the ceramic substrate exposed in the gap between the two metal plates by the brazing material removal process described above. Obtained by.
  • Ceramic substrate The material of the ceramic substrate used for the ceramic circuit board is not particularly limited, and can be basically composed of a sintered body made of an electrically insulating material. However, since the semiconductor element mounted on the ceramic circuit board has recently increased in calorific value and has increased its operating speed, nitride ceramics having high thermal conductivity are particularly preferred as the ceramic board. Specifically, an aluminum nitride sintered body including a main phase composed of particles mainly composed of aluminum nitride and a grain boundary phase mainly composed of a sintering aid existing between the particles, or mainly composed of silicon nitride.
  • the ceramic substrate is preferably composed of a silicon nitride-based sintered body including a main phase composed of particles and a grain boundary phase mainly composed of a sintering aid existing between the particles, and in particular, a machine such as strength and fracture toughness. It is more preferable that the ceramic substrate S is composed of a silicon nitride sintered body that is excellent in terms of mechanical strength.
  • the ceramic substrate is a nitride ceramic sintered body including a main phase composed of particles mainly composed of silicon nitride or aluminum nitride and a grain boundary phase mainly composed of a sintering aid existing between the particles.
  • the maximum diameter of the pores existing on the surface of the ceramic substrate existing in the gap is 2 to 15 ⁇ m. If the maximum diameter of the pores is less than 2 ⁇ m, the deposits may not be sufficiently removed by the chemical in the cleaning process. On the other hand, when the maximum diameter of the pores exceeds 15 ⁇ m, the strength of the ceramic substrate is lowered, and the reliability of the ceramic circuit substrate under, for example, a cooling cycle is deteriorated.
  • a ceramic substrate made of a silicon nitride-based sintered body is, for example, a raw material powder containing 90 to 97% by mass of silicon nitride and 0.5 to 10% by mass of a sintering aid (including Mg or Y and other rare earth elements).
  • a sintering aid including Mg or Y and other rare earth elements.
  • the sintering aid exceeds 10% by mass, the characteristics of joining the ceramic substrate and the circuit board are not sufficient, and when the sintering aid is less than 0.5% by mass, the silicon nitride particles are not sufficiently sintered. .
  • the amount of the sintering aid used is more preferably 3 to 10% by mass.
  • magnesium (Mg) is contained as a sintering aid in an amount of 2 to 4% by mass in terms of magnesium oxide and yttrium (Y) in an amount of 2 to 5% by mass in terms of yttrium oxide. Is preferred.
  • the metal plate constituting the ceramic circuit board is not particularly limited as long as it can be joined with a brazing material and has a higher melting point than the brazing material.
  • a brazing material for example, using copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, nickel, nickel alloy, nickel-plated molybdenum, nickel-plated tungsten, nickel-plated iron alloy as the metal plate Is possible.
  • copper or an alloy containing copper is most preferable from the viewpoints of electrical resistance and stretchability, high thermal conductivity (low thermal resistance), and low migration.
  • Aluminum or an alloy containing aluminum is preferable in that it has mounting reliability with respect to a thermal cycle by utilizing its plastic deformability, although it is inferior to copper in electrical resistance and high thermal conductivity (low thermal resistance).
  • the brazing material layers C1 to C3 that join the ceramic substrate S and the metal plates M1 to M3 are mainly composed of Ag and Cu, which are eutectic compositions that provide high strength and high sealing properties.
  • An Ag—Cu based active brazing material to which an active metal such as Ti, Zr, or Hf is added is preferred.
  • a ternary Ag—Cu—In active brazing material in which In is added to the Ag—Cu active brazing material is more preferable.
  • the bonding of the ceramic substrate S and the metal plate is performed using a brazing material paste containing powder of the brazing material component and an organic binder.
  • Example 1 Formation of bonded body A solder containing active metal Ti containing Ag and Cu as main raw materials on both sides of a silicon nitride substrate S (area: 50 mm ⁇ 50 mm, thickness: 150 ⁇ m) in the arrangement shown in FIG. Materials c1 and c2 were applied by screen printing.
  • the silicon nitride substrate S was composed of a grain boundary phase containing silicon nitride particles and rare earth elements using MgO and Y 2 O 3 as sintering aids.
  • the brazing materials c1 and c2 are added with 0.3 parts by mass of TiH 2 with respect to an alloy powder composed of 70% by mass of Ag, 3% by mass of In, and 27% by mass of Cu (total 100 parts by mass), A paste prepared by adding an organic solvent and kneading was used.
  • brazing material coated substrate After drying the brazing material coated substrate, 0.3 mm copper plate M is placed in contact with the circuit pattern side (front side) and heat radiation pattern side (back side), and heat treated in vacuum at 750 to 850 ° C for 20 minutes while applying pressure. A joined body of the silicon substrate S and the copper plate M was produced. Between the silicon nitride substrate S and the copper plate M, brazing material layers C1 and C2 having a thickness of about 30 ⁇ m were formed.
  • Pattern formation Etching is performed with a copper chloride base etchant (mixed solution containing copper chloride, hydrochloric acid and hydrogen peroxide) maintained at 30 ° C, and an unnecessary copper plate outside the pattern (that is, no resist is applied) A portion of the copper plate) was removed to form a circuit pattern.
  • the front side of the substrate after the processing had copper plates M1 and M2 constituting a circuit pattern and a gap G of 1 mm separating the copper plates M1 and M2.
  • the brazing material protruding on the surface of the silicon nitride substrate S was not completely removed, and the brazing material protruding portion D was formed ( (See Figure 4).
  • the brazing material protrusion D exhibited a metallic luster.
  • PH 3 aqueous solution (first brazing material etching solution) containing 3% by mass (0.5 Lmol / L) acetic acid and 20% by mass (5.9 mol / L) hydrogen peroxide is bonded to the joined body having the brazing filler metal part D. Then, it was immersed in a liquid temperature of 30 ° C. for 20 minutes. Note that ion-exchanged water was used to prepare the first brazing material etching solution.
  • the brazing material protrusion D which had exhibited a metallic luster after pattern formation, disappeared due to the first brazing material etching treatment, and the contrast of the brazing material protrusion D with respect to the surface of the silicon nitride substrate S became clear.
  • Second brazing material etching treatment Furthermore, in order to remove Ag that could not be removed by the first brazing material etching treatment and the TiN phase that forms the reaction layer, hydrogen fluoride as the second brazing material etching treatment. Etching with a solution containing ammonium and hydrogen peroxide
  • the joined body is 4 mass% (0.7 mol / L) ammonium hydrogen fluoride, 26 mass% (7.6 mol / L) hydrogen peroxide, 1 mass% (0.2 N).
  • Immerse in an aqueous solution of pH 3 containing sulfuric acid, 3% by mass (0.5 mol / L) urea, and 100 ppm (1.0 mmol / L) phosphoric acid (second brazing material etchant) at a liquid temperature of 40 ° C for 20 minutes did. Note that ion-exchanged water was used to prepare the second brazing material etching solution. Due to the second brazing material etching process, the protruding portion of the brazing material was hardly seen.
  • Examples 2-10 A ceramic circuit board was produced in the same manner as in Example 1 except that the treatment temperature and treatment time of the first and second brazing material etching treatments were changed as shown in Table 1.
  • Comparative Example 1 A ceramic circuit board was produced in the same manner as in Example 2 except that the first brazing material etching treatment was not performed.
  • the brazing material protruding portion was observed using an optical microscope. In the direction perpendicular to the gap G (the left-right direction in FIG. 4), the sample with the brazing material protruding portion D having a length of 0.2 mm or more is determined to be defective because it adversely affects the insulation between the wirings.
  • the pass rate was determined by the evaluation, and the case where the pass rate was 90% or more was evaluated as ⁇ , the case where the pass rate was less than 90% and greater than 60%, ⁇ , and the case where the pass rate was 60% or less. The results are shown in Table 1.
  • the ceramic circuit boards of Examples 1 to 10 all had a pass rate of 90% or more, and it was found that ceramic circuit boards can be produced with a high pass rate by processing in the first and second etching steps.
  • the mixed solution used in the first and second etching steps in the example is not alkaline, the problem of damaging the copper circuit pattern serving as the wiring does not occur without dissolving the alkali peeling type resist film. It was. Further, no void was formed on the surface of the ceramic substrate as when treated with an alkaline solution, and damage to the silicon nitride substrate was suppressed.
  • Comparative Example 1 the first brazing material etching process (etching process using acetic acid and hydrogen peroxide) was not performed, and only the second brazing material etching process (etching process using ammonium hydrogen fluoride and hydrogen peroxide) was performed. Therefore, the brazing material was not sufficiently removed, and the pass rate was 60% or less. For this reason, the method of Comparative Example 1 requires man-hours for sorting out defects.
  • Example 11 Instead of the first and second brazing material etching treatment, 3% by mass (0.5 mol / L) acetic acid, 4% by mass (0.7 mol / L) ammonium hydrogen fluoride, 26% by mass (7.6 mol / L) PH 3 aqueous solution (3rd brazing filler metal) containing 1 wt% (0.2 N) sulfuric acid, 3 wt% (0.5 mol / L) urea, and 100 ppm (1.0 mmol / L) phosphoric acid A ceramic circuit board was produced in the same manner as in Example 1 except that the joined body having the brazing protrusion D was immersed for 30 minutes at a liquid temperature of 40 ° C. using an etching solution.
  • a ceramic circuit board could be produced with a high pass rate of 100% (evaluation: ⁇ ). Since the third brazing material etching solution is not alkaline, there was no problem that the resist film was not dissolved and the circuit pattern serving as the wiring was damaged.
  • Example 12 As a brazing material, 15 parts by mass of Ag and 0.2 parts by mass of TiH 2 are added to an alloy powder composed of 65.5% by mass of Ag, 2% by mass of In, and the balance Cu (total 100 parts by mass).
  • a ceramic circuit board was produced in the same manner as in Example 1 except that a paste obtained by adding an organic solvent and kneading was used. As a result, it was possible to produce with a pass rate of 100% (evaluation: ⁇ ).
  • Example 13 As a brazing material, 0.2 parts by mass of Ti is added to an alloy powder composed of 50% by mass of Ag, 25% by mass of In, and 25% by mass of Cu (100 parts by mass in total), and further an organic solvent is added. Then, a ceramic circuit board was produced in the same manner as in Example 1 except that the paste obtained by kneading was used. As a result, it was possible to produce with a pass rate of 100% (evaluation: ⁇ ).
  • Examples 14-18 A ceramic circuit board was produced in the same manner as in Example 1 except that the addition amounts of acetic acid and hydrogen peroxide in the first brazing material etching solution and the first brazing material etching time were changed as shown in Table 2. As a result, as shown in Table 2, it could be produced with a high pass rate.
  • Example 14 is 0.8% by mass (0.13 mol / L) acetic acid and 26% by mass (7.6 mol / L) hydrogen peroxide
  • Example 15 is 1.7% by mass (0.28 mol / L) acetic acid and 23% by mass.
  • Example 16 (6.8 mol / L) hydrogen peroxide
  • Example 16 is 2.8% by mass (0.47 mol / L) acetic acid and 17% by mass (5.0 mol / L) hydrogen peroxide
  • Example 17 is 3.0% by mass (0.5 mol / L) acetic acid and 24% by mass (7.1 mol / L) hydrogen peroxide
  • Example 18 is 5.1% by mass (0.85 mol / L) acetic acid and 10% by mass (2.9 mol / L) hydrogen peroxide.
  • Example 18 is 5.1% by mass (0.85 mol / L) acetic acid and 10% by mass (2.9 mol / L) hydrogen peroxide.
  • Examples 19-21 A ceramic circuit board was prepared in the same manner as in Example 1 except that the concentrations of ammonium hydrogen fluoride and hydrogen peroxide in the second brazing material etching solution and the second brazing material etching time were changed as shown in Table 3. Produced. As a result, as shown in Table 3, it could be produced with a high pass rate.
  • Example 19 is 15% by mass (4.4 mol / L) hydrogen peroxide and 3.4% by mass (0.60 mol / L) ammonium hydrogen fluoride, and
  • Example 20 is 25% by mass (7.4 mol / L) peroxidation.
  • Example 21 contains 30 wt% (8.8 mol / L) hydrogen peroxide and 15 wt% (2.6 mol / L) ammonium hydrogen fluoride Using.
  • Example 22-25 In the same manner as in Example 11 except that the concentrations of acetic acid, ammonium hydrogen fluoride and hydrogen peroxide in the third brazing material etching solution, and the third brazing material etching time were changed as shown in Table 4, ceramic circuit A substrate was produced. As a result, as shown in Table 4, it was possible to produce with a high pass rate.
  • Example 22 is 1.1% by mass (0.18 mol / L) acetic acid, 20% by mass (5.9 mol / L) hydrogen peroxide and 8% by mass (1.4 mol / L) ammonium hydrogen fluoride.
  • Example 23 is 1.7% by mass (0.28 mol / L) acetic acid, 23% by mass (6.8 mol / L) hydrogen peroxide and 4% by mass (0.70 mol / L) ammonium hydrogen fluoride
  • Example 24 was 2.8% by mass (0.47 mol / L) acetic acid, 18 wt% (5.3 mol / L) hydrogen peroxide and 10.5 wt% (1.8 mol / L) ammonium hydrogen fluoride
  • Example 25 was 12 wt% (2.0 mol / L) Acetic acid, 8% by mass (2.4 mol / L) hydrogen peroxide and 8% by mass (1.4 mol / L) ammonium hydrogen fluoride were used.
  • Example 26 Example 1 except that after the pattern formation step and before the first brazing material etching step, the joined body was immersed in a 10% by mass sodium thiosulfate aqueous solution (liquid temperature: 20 ° C.) for 20 minutes and etched. A ceramic circuit board was produced in the same manner as described above. The etching process was performed while applying 600 W and 35 kHz ultrasonic waves to the aqueous sodium thiosulfate solution. In addition, ion exchange water was used for the preparation of the sodium thiosulfate aqueous solution. As a result, similar to Example 1, it was possible to produce with a high pass rate (evaluation: ⁇ ).
  • Example 38 3 N hydrochloric acid was dropped into an aqueous solution (approximately pH 6) containing 2.3% by mass (0.34 mol / L) sodium formate and 10% by mass (2.9 mol / L) hydrogen peroxide as the first brazing filler metal etchant. Then, a ceramic circuit board was produced in the same manner as in Example 1 except that an aqueous solution adjusted to pH 3 was used, and the joined body was immersed and etched at a liquid temperature of 40 ° C. for 30 minutes. As a result, the acceptance rate (evaluation: ⁇ ) was 90% or more.
  • Example 39 As the first brazing material etching solution, an aqueous solution (about pH 3) containing 3.8% by mass (0.5 mol / L) glycolic acid and 15% by mass (4.4 mol / L) hydrogen peroxide was used. A ceramic circuit board was produced in the same manner as in Example 1 except that the film was immersed and etched at a temperature of 40 ° C. for 30 minutes. As a result, the acceptance rate (evaluation: ⁇ ) was 90% or more.
  • the dielectric strength test is a test for measuring a dielectric breakdown voltage when an AC voltage is applied between the front and back of the ceramic circuit board.
  • the electrodes A and B are arranged on the metal plate M1 and the metal plate M2 (A and B are electrically short-circuited), and the electrode C is similarly applied to the metal plate M3 on the back surface of the ceramic circuit board.
  • An AC voltage with a frequency of 50 Hz was applied while gradually increasing from 0 to 10 kV at a boosting rate of 0.1 kV / sec.
  • the voltage value when the leakage current suddenly increased and insulation could not be maintained was taken as the breakdown voltage. This measurement was performed on 20 samples, and the average value thereof was evaluated.
  • the dielectric breakdown voltage was 5 kV or more for the acceptable product with the brazing material protruding part 0.2 mm or less, and it had sufficient insulation.
  • the dielectric breakdown voltage of the rejected product with a brazing metal protrusion of more than 0.2mm around the copper plate was less than 5mm kV.
  • Insulation Resistance For the ceramic circuit boards produced in Examples 1 to 10 and Comparative Example 1, the insulation resistance between the wires was measured. Insulation resistance, as shown in FIG. 5, spherical electrodes A and B for insulation resistance test are arranged so as to be in contact with any part of the metal plate M1 made of copper plate and any part of the metal plate M2, respectively. A 1000 V DC voltage was applied between the plate M1 and the metal plate M2, and the resistance value after 30 seconds was defined as the insulation resistance value. The distance between the metal plate M1 and the metal plate M2 was 1 mm. The insulation resistance was evaluated by the minimum resistance value obtained for each of the 10 ceramic circuit boards in each Example and Comparative Example.
  • the first and second brazing material etching etching processes (or the third brazing material etching etching process) for removing the brazing material remaining between the circuit patterns (namely, copper wiring) (gap G).
  • the manufacturing method of the present invention is suitable for manufacturing a ceramic circuit board for small size or high output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Powder Metallurgy (AREA)

Abstract

 セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有するセラミックス回路基板の製造方法であって 前記ロウ材がAgを含み、 前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とするセラミックス回路基板の製造方法。

Description

セラミックス回路基板の製造方法
 本発明はパワーモジュール等に使用されるセラミックス回路基板の製造方法に関する。
 EV(Electric Car)などに搭載するパワーモジュールで用いるために、良好な熱伝導を有するセラミックス基板にロウ材を介して銅板を接合したセラミックス回路基板の需要が増えててきている。このような回路基板は、高熱伝導率を有する窒化珪素、窒化アルミニウム等のセラミックス基板の表面に活性金属を含むロウ材を塗布して、銅、アルミニウム等の金属板を載せて、加熱して接合した後に、金属板上にレジストをいわゆる回路パターンの形に印刷し、レジストで被覆されていない不要部分の金属板をエッチングにより除去する方法により一般に製造されている。
 前記活性金属を含むろう材により形成されるセラミックス基板と銅板との接合層は、例えば、特許第3629783号に記載されているように、Ag、Cu及び活性金属としてTiを含むろう材を使用して窒化珪素焼結体と銅板とを接合した場合、銅板側に形成されたCu-Agを主成分とする合金層と、窒化珪素焼結体と接する側に形成された窒化チタンを主成分とする反応層とからなると考えられている。
 回路パターン間の不要なロウ材は、前記金属板をエッチングする際に、同時にある程度除去されるが、条件によってはロウ材の前記合金層(例えば、Cu-Agを主成分とする層)及び反応層(例えば、窒化チタンを主成分とする層)が完全に除去されずその一部が残る場合がある。ろう材の一部が残存すると、隣り合う回路パターン間の絶縁性が低下したり、ショートしたりするという問題が生じる。
 特開2006-351988号は、セラミック板(窒化アルミニウム、窒化珪素等の窒化物セラミック)の両主面に、活性金属を有するろう材を介して金属板を接合してなるセラミック回路基板を開示しており、セラミック版にろう材を塗布し、セラミック板と金属板とを接合した後、エッチングマスクを被せてエッチングを行い、セラミック回路基板を作製すると記載している。さらに特開2006-351988号は、前記エッチングによって不要な金属部分が除去されたセラミック回路基板には、塗布したろう材、その合金層及び窒化物層等が残っているので、フッ化アンモニウム水溶液、硫酸、硝酸等の無機酸、過酸化水素水を含む溶液を用いて、それらを除去するのが一般的であると記載している。しかしながら、ろう材除去のための、フッ化アンモニウム水溶液を含むエッチング液は、窒化チタンを主成分とする反応層を除去する効果は大きいが、合金層の除去能としては十分ではないため、一部のろう材が残存し、回路パターン間の絶縁性が低下したり、ショートしたりするという問題が生じる場合がある。
 特開平9-162325号は、窒化珪素基板に金属回路又は金属回路と金属放熱板とが活性金属を含む接合層を介して形成されてなり、前記接合層の厚みが20μm以下でかつ金属回路及び金属放熱板の酸素含有量が50 ppm以下である窒化珪素回路基板を開示しており、前記窒化珪素回路基板は、活性金属又は活性金属を含む化合物を含んでなるろう材ペーストを塗布する工程、塗布ペーストを覆うに十分な広さの金属板を接合する工程、接合体の金属板上に回路パターンをエッチングレジストにより形成させる工程、エッチング処理して金属回路を形成する工程、及び金属回路間に存在するろう材を除去する工程からなると記載している。特開平9-162325号は、前記ろう材を除去する工程には、フッ化水素アンモニウム(NH4F・HF)、過酸化水素(H2O2)等の(温)水溶液が用いられると記載している。しかしながら、ろう材除去のための、フッ化アンモニウム水溶液を含むエッチング液は、窒化チタンを主成分とする反応層を除去する効果は大きいが、合金層の除去能としては十分ではないため、一部のろう材が残存し、回路パターン間の絶縁性が低下したり、ショートしたりするという問題が生じる場合がある。
 回路パターン間の不要なロウ材を完全に除去するために、銅板のエッチング工程の後に、さらにロウ材をエッチングするための工程を追加する方法が知られている。例えば、特開平10-154866号は、フッ化アンモニウムと過酸化水素とを含む水溶液による第1処理と、アルカリと過酸化水素とを含む水溶液による第2の処理からなる方法を開示しており、この方法は、回路パターンの寸法精度を低下させずに不要ろう材を完全に除去できると記載している。しかしながら、特開平10-154866号に記載のろう材除去方法は、アルカリ水溶液を使用するため、アルカリ溶液で除去するタイプのエッチングレジストを浸食してしまうという問題がある。
 また特開平10-251878号は、銅板のエッチング処理により銀又は銀合金表面に析出した塩化銀をチオ硫酸ナトリウム及び/又はチオ硫酸カリウムの水溶液で処理することにより除去し、さらに残存する銀又は銀合金をNH4F・HF及び過酸化水素を含む水溶液で処理することにより除去する方法を開示しており、この方法はアルカリ性の処理液を使用しないので、アルカリ溶液で除去するタイプのエッチングレジストを浸食しないと記載している。しかしながら、前記チオ硫酸ナトリウム及び/又はチオ硫酸カリウムの水溶液は、塩化銀に対する高い溶解効果は有しているものの、金属銀及び銀合金の還元及び溶解効果は有していないため、特開平10-251878号に記載の方法では金属銀及び銀合金が十分に除去されず、ろう材の一部が残存し回路基板の品質を低下させる場合があった。
 特開2005-35874号は、セラミックス基板の少なくとも一方の面に活性金属含有ろう材を介して金属部材を接合した後に、金属部材の表面の所定の部分にレジストを塗布して金属部材の一部をエッチングし、レジストを除去した後、活性金属含有ろう材の活性金属以外の金属により形成された金属層の一部を、例えば過酸化水素とアンモニア水とEDTAとからなる薬剤によりエッチングした後、活性金属層を選択的にエッチングする薬剤で処理する金属-セラミックス接合基板の製造方法を開示しており、前記活性金属層を選択的にエッチングする薬剤として、(a) カルボン酸系の化合物(クエン酸、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、1,3-プロパンジアミン三酢酸(1,3PDTA)、ニトリロ3酢酸(NTA)、ヒドロキシエチリデン2リン酸(HEDT)等)と酸化剤とアルカリを含む薬剤、又は(b) 分子内に1つ以上のアミノ基を有する化合物(エチレンジアミン系の化合物等)と酸化剤と酸を含む薬剤を記載している。
 しかしながら、特開2005-35874号に記載の金属-セラミックス接合基板の製造方法は、レジストを除去した後で、活性金属以外の金属により形成された金属層の一部を除去する処理、及び活性金属層を選択的にエッチングする処理を行っているため、金属部材の表面がレジスト除去後の処理で腐食されてしまうという問題を有している。またレジストの除去を最後に実施した場合は、前記活性金属以外の金属により形成された金属層の一部を除去するための薬剤としてアルカリ溶液を使用しているため、アルカリ溶液で除去するタイプのエッチングレジストを浸食してしまうという問題が生じる。また(a)のカルボン酸系の化合物を含む薬剤もアルカリ溶液を使用しているため同様の問題を有している。従って、酸性で使用できるろう材除去技術の開発が望まれている。
 従って、本発明の目的は、アルカリ溶液で除去するタイプのエッチングレジストを腐食せず、ろう材除去能が高く、かつ取り扱い性の良好な処理液を有するセラミックス回路基板の製造方法を提供することにある。
 上記目的に鑑み鋭意研究の結果、本発明者は、カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液がAgを含むロウ材の除去能力が高く、かつ取り扱い性が非常に良好なこと、さらにその後フッ化アンモニウム及び過酸化水素を含む酸性の溶液で処理することにより、微量に残存したロウ材を実用上問題のないレベルまで低減できることを見出し、本発明に想到した。
 通常セラミックス回路基板の製造は、セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有している。前記パターン形成工程の後に、従来のエッチング液(例えば、特開平10-154866号等に記載されたフッ化アンモニウムと過酸化水素とを含む水溶液)でエッチングを行っても、残渣が残る。本願の発明者は鋭意検討し、酢酸及び過酸化水素を含む第1のろう材エッチング溶液でロウ材の活性金属以外の金属由来の合金層(例えば、Cu-Ag層)の少なくとも一部を溶出させ、次いでフッ化アンモニウム及び過酸化水素を含む第2のろう材エッチング溶液でろう材中の活性金属によって形成された反応層(例えば、窒化チタン層)を溶解し、前記第1のろう材エッチング処理で残ったロウ材の残渣を実用上問題のないレベルまで除去できることを見出した。さらに、第1のろう材エッチングの溶液成分及び第2のろう材エッチングの溶液成分を合わせて1つのエッチング液とすることで、前記合金層の溶出と、活性金属由来の反応層の溶解とを1浴で行い、ロウ材の残渣を実用上問題のないレベルまで除去できることも見出した。
 従って、セラミックス回路基板を製造する本発明の方法は、セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有し、
 前記ロウ材はAgを含み、
 前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とする。
 前記不要なロウ材を除去した基板を、さらにフッ化アンモニウム及び過酸化水素を含む酸性の溶液でエッチングして残存するロウ材を除去する工程を有するのが好ましい。
 前記ロウ材が、Ag及び活性金属を含有するのが好ましい。
 前記フッ化アンモニウム及び過酸化水素を含む酸性の溶液は、0.7~2.1 mol/Lのフッ化アンモニウム、及び2.9~8.9 mol/Lの過酸化水素を含有するpHが5以下の水溶液であるのが好ましい。
 前記フッ化アンモニウム及び過酸化水素を含む酸性の溶液は、さらに硫酸、尿素及びリン酸の少なくとも1種を含むのが好ましい。
 前記カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液は、0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、並びに2.9~8.9 mol/Lの過酸化水素を含有するpHが6以下の水溶液であるのが好ましい。
 前記カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液は、さらに硫酸、尿素及びリン酸の少なくとも1種を含むのが好ましい。
 セラミックス回路基板を製造する本発明のもう一つの方法は、
 セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有し、
 前記ロウ材がAgを含み、
 前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とする。
 前記カルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液は、0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、0.7~2.1 mol/Lのフッ化アンモニウム、並びに2.9~8.9 mol/Lの過酸化水素を含有するpHが6以下の水溶液であるのが好ましい。
 前記カルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液は、さらに硫酸、尿素及びリン酸の少なくとも1種を含むのが好ましい。
 前記ロウ材は、Ag及び活性金属を含有するのが好ましい。
 前記金属板が銅板であり、
 前記パターン形成工程において前記接合した金属板をエッチングためのエッチング液が、銅エッチング溶液であるのが好ましい。
 前記ロウ材が、Ag、Cu及び活性金属を含有するのが好ましい。
 本発明のセラミックス回路基板の製造方法において、ろう材を除去するための工程は、カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含むエッチング液を用いるので、高いろう材除去効果を有するとともに、前記エッチング液が酸性の溶液で構成されているので、アルカリ溶液で除去するタイプのエッチングレジストを浸食しない。従って、セラミックス回路基板を高い合格率で製造できる。また安価で取り扱い性に優れたカルボン酸(又はその塩)を使用しているため、安全性が高く、コスト的なメリットが大きい。
セラミックス基板にろう材をスクリーン印刷法により印刷した状態を模式的に示す平面図である。 セラミックス基板にろう材を介して金属板を接合してなる接合体を模式的に示す平面図である。 接合体の金属板の表面に、所望の回路パターンが形成されるようにレジストを被覆した状態を模式的に示す平面図である。 不要な金属板をエッチングにより除去した後に生じたろう材の溶け残りを模式的に示す平面図である。 セラミックス回路基板の正面図である。
[1] セラミックス回路基板の製造方法
(1)第1の実施形態
 本発明のセラミックス回路基板の製造方法の第1の実施形態について以下に説明する。第1の実施形態は、
 セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有し、
 前記ロウ材がAgを含み、
 前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とする。
(a)接合工程
 セラミックス基板S(窒化珪素基板、窒化アルミニウム基板等)の一方の表面に、活性金属を含むロウ材C1,C2をスクリーン印刷法にて間隙Gを介して隔てるようにパターン印刷する(図1参照)。前記活性金属を含むロウ材を塗布したセラミックス基板に金属板M(銅板、アルミニウム板等)を加圧密着させ、真空中又はアルゴンガス等の不活性雰囲気中にて、前記活性金属を含むロウ材の溶融温度以上に加熱し、ロウ材C1,C2を介してセラミックス基板Sと金属板Mが接合され一体となった接合体を得る(図2参照)。前記活性金属を含むロウ材の塗布厚は、セラミックス基板と金属板との熱膨張差を緩和できるように20~50μm程度であるのが好ましい。得られた接合体の金属板Mの表面に、所望の回路パターンが形成されるようにレジスト膜R1,R2を形成する(図3参照)。
 同様にして、セラミックス基板Sの他方の表面に、放熱板である金属板M3を活性金属を含むロウ材C3により接合する。なお、セラミックス回路基板を作製する工程において、回路板である金属板M1,M2、及び放熱板である金属板M3に関する各工程の内容は基本的に同一であるので、金属板M1,M2についてのみ詳述し、金属板M3についての説明は省略する。
 本発明で使用するロウ材は、少なくともAg及び活性金属を含有する。活性金属以外の金属としては、Ag以外にCuを含有するのが好ましく、さらにInを含有してもよい。また不可避的不純物を含有してもよい。特にAg、Cu及び活性金属からなるロウ材が好ましい。前記活性金属は、例えばTi、Zr及びHfから選ばれる少なくとも1種である。
 好ましいロウ材としては、55~81質量%のAg、1~5質量%のIn、14~44質量%のCu、及び不可避的不純物を含有する合金粉末と、Ag粉末と、活性金属水素化物粉末とを混合してなる粉末が挙げられる。前記合金粉末中のAg及びCuの合計に対するAgの比、すなわち、Ag/(Ag+Cu)は0.57~0.85であるのが好ましい。ろう材は、酸素含有量を0.1質量%以下にするのが好ましく、Siを0.0001~0.5質量%含むのが好ましい。前記活性金属水素化物粉末は、前記合金粉末100質量部に対して、1~3質量部含有するのが好ましい。活性金属水素化物は、Ti、Zr及びHfから選ばれる少なくとも1種の金属の水素化物を用いることができ、特にTiの水素化物が好ましい。
 ロウ材は、前記金属成分(活性金属以外の金属及び活性金属の合計)100質量%に対して、1~10質量%のバインダ、及び2~20質量%の有機溶剤を添加して混練することにより、スクリーン印刷に適したペーストにすることができる。
 前記レジスト膜は紫外線硬化型レジスト剤で形成するのが望ましい。紫外線硬化型レジスト剤は、共重合系アクリレート・オリゴマー、アクリル酸エステル・モノマー、充填剤、光重合開始剤、色素調整剤、及び消泡・レベリング剤を含む。前記紫外線硬化型レジスト剤の主成分である共重合系アクリレート・オリゴマーは、縮合・重合反応して硬化する高粘性ポリマーである。主成分である共重合系アクリレート・オリゴマーは、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、その他の共重合樹脂である。アクリル酸エステル・モノマーは、イソアミルアクリレート、ラウリルアクリレート、ステアリルアクリレート、エトキシージーエチレングリコールアクリレート、2ヒドロキシエチルアクリレート、フェノキシエチルアクリレート等である。
(b)パターン形成工程
 金属板Mとして銅板を選択する場合を例にして説明する。レジスト膜R1,R2を被覆することにより回路パターンが形成された前記接合体を、塩化銅(CuCl2)、塩酸(HCl)及び過酸化水素(H2O2)を混合してなる銅エッチング溶液に浸漬し、例えば液温50℃でレジストに被覆されていない箇所の銅板をエッチングする。なお、銅エッチング溶液として、例えば塩化鉄を含む溶液を用いてもよい。また浸漬に替えて、シャワー装置を用いて前記接合体に前記銅エッチング溶液を噴射してもよい。この処理にてレジストで被覆されていない箇所の銅板(不要な銅板)が除去されて、ついでロウ材の一部が除去される。この例では、銅エッチング溶液を用いているので、ロウ材中のCuはほとんど除去されるが、Agを含むロウ材と推定される溶け残りが生じる。
 図4は、セラミックス基板Sの左右に間隙Gを介して金属板M1,M2が形成されたセラミックス回路基板を示す。窒化珪素基板Sと銅板Mとの接合体を作製した際に窒化珪素基板Sの表面にはみだしたロウ材は、前記銅エッチング処理では完全に除去されず、回路パターン(金属板M1,M2)の端部から間隙G(エッチングにより銅板が除去された部分)にはみ出すようにして存在する。これを“ロウ材はみ出し部D”と呼ぶ。
(c)ろう材除去工程
 パターン形成時に行う銅エッチング処理により、ろう材中のCuはほとんどエッチングされるので、前記ロウ材はみ出し部Dは、ろう材中のCu以外の金属に由来し、例えば、Ag(合金層)及びTiN(反応層)を含むと考えられる。これらの残存物を除去するために、以下の第1のろう材エッチング処理を行う。さらに必要に応じて第2のろう材エッチング処理を行う。
(i)第1のろう材エッチング処理
 接合体を、カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液(第1のろう材エッチング液)に浸漬して、ロウ材はみ出し部Dが生じたロウ材の溶け残りをエッチングする。前記第1のろう材エッチング液は、例えば、 0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、並びに2.9~8.9 mol/Lの過酸化水素を含有するpHが6以下の水溶液であるのが好ましい。なおカルボン酸及び/又はカルボン酸塩の濃度は、それらの合計の値である。第1のろう材エッチング液中に添加するカルボン酸及び/又はカルボン酸塩は、カルボン酸のみであっても良いし、カルボン酸塩のみであっても良いし、カルボン酸とカルボン酸塩との混合でも良い。
 カルボン酸及び/又はカルボン酸塩は、飽和又は不飽和の脂肪酸、二価又は三価のカルボン酸、並びにそれらの塩であるのが好ましい。前記脂肪酸は、アルキル基、水酸基等の置換基を有していてもよく、炭素数2~4個の低級脂肪酸であるのが好ましい。対塩としては特に限定されないが、Li+、Na+、K+等が好ましい。カルボン酸及び/又はカルボン酸塩としては、ギ酸、酢酸、プロピオン酸、酪酸、吉相酸、グリコール酸、シュウ酸、マロン酸、コハク酸、マレイン酸、グルタル酸、リンゴ酸、クエン酸等、及びそれらの塩が挙げられる。中でも、ギ酸、酢酸、ギ酸ナトリウム、グリコール酸が好ましく、コスト及び取り扱い性の観点で酢酸が最も好ましい。カルボン酸及び/又はカルボン酸塩の濃度は、合計で0.1~1.5 mol/Lであるのが好ましく、0.2~1.4 mol/Lであるのがより好ましい。
 第1のろう材エッチング液のpHは6以下である。pHが6を越える場合ろう材を除去する能力が低下する。前記pHは5以下が好ましく、1~5がより好ましく、2~4が最も好ましい。カルボン酸を使用する場合、水溶液は酸性を示すため通常pH調整は不要であるが、カルボン酸塩を使用する場合は、必要に応じて、後述する酸によってpHを6以下に調節する。
 第1のろう材エッチング処理において、溶け残ったロウ材の溶解速度は過酸化水素の分解反応に律速され、その溶解能力はカルボン酸及び/又はカルボン酸塩の濃度に依存する。例えば、3質量%(0.5 mol/L)の酢酸は10 g/LのAgを溶解する能力がある。過酸化水素の分解反応は温度によって大きく変化するが、連鎖反応による溶液温度の安定性を確保するためには、前記溶液の温度は室温~50℃未満で管理するのが好ましく、室温~40℃とするのがさらに好ましい。
 過酸化水素は、市販の過酸化水素水を使用することができる。過酸化水素の濃度は3~8 mol/Lであるのが好ましい。使用する水は、イオン交換樹脂及び/又は逆浸透膜など用いて不純物を取り除いた水であるのが好ましく、イオン交換水(脱イオン水とも呼ばれる)を用いるのが好ましい。
 前記第1のろう材エッチング液には、消泡剤、界面活性剤、pH調整剤、安定剤等を加えることができる。界面活性剤として、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、モノエタノールアミン、トリエタノールアミン等が挙げられる。消泡剤として、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレンアルキレンエーテル、シリコーン系剤等が挙げられる。pH調整剤として、水酸化ナトリウム、水酸化カリウム、アンモニア水等のアルカリ、及び塩酸、硫酸、硝酸、リン酸等の酸が挙げられる。安定剤としては、硫酸、尿素、リン酸等が挙げられる。第1のろう材エッチング液には、例えば、0.1~1.0質量%の硫酸、1.0~5.0質量%の尿素、10~100質量ppmのリン酸等を含有させるのが好ましい。これらは、後述する第2及び第3のろう材エッチング液にも使用できる。
 エッチングを続けると、第1のろう材エッチング液中の成分が徐々に消費され、ろう材を除去する能力が低下してゆく。第1のろう材エッチング液が劣化した場合、ろう材除去能を回復させるために、劣化した液を全て新たな第1のろう材エッチング液と交換してもよいし、劣化した液に第1のろう材エッチング液の成分を注ぎ足しても良い。エッチング液を全て交換する場合は、第1エッチング槽を満たしていた古い第1のろう材エッチング液を処分し、新しい第1のろう材エッチング液を第1エッチング槽に満たす。このように、溶液に含まれる成分を注ぎ足さないで、全て交換してエッチングする場合を「注ぎ足し無し」と呼ぶ。エッチング液に含まれる成分を注ぎ足しながらエッチングを行う方法を「注ぎ足し有り」と呼ぶ。後者は、消費された成分を補充していく方法である。
(i-1)注ぎ足し無しでエッチングする場合
 前記溶液に成分の継ぎ足しを行うことなく、試料を溶液に浸漬させて、ロウ材をエッチングする場合には、過酸化水素の分解反応量とのバランスからカルボン酸及び/又はカルボン酸塩濃度が合計で0.2~1.4 mol/L程度であるのが望ましい。なお、カルボン酸及び/又はカルボン酸塩のみを水に添加した溶液を用いても、ロウ材の溶け残りはエッチングされない。
(i-2)注ぎ足し有りでエッチングする場合
 第1のろう材エッチング液中の過酸化水素は、試料を浸漬してエッチング処理を行っている間に分解していくため、溶液に過酸化水素を逐次補給することにより、常時適切な範囲で濃度制御することができる。予め、カルボン酸及び/又はカルボン酸塩の濃度を高く調整しておき(例えば、2.5 mol/L程度)、過酸化水素の補給によって薄まったカルボン酸及び/又はカルボン酸塩の濃度が一定以下(例えば0.33 mol/L以下)になった時点で交換する管理も可能である。この方法は、溶液の交換頻度を下げることができ、多量処理において有効である。すなわち、第1エッチング槽中での第1のろう材エッチング液の寿命を延ばし、コストを低減できる。また、浸漬ではなく、第1のろう材エッチング液をシャワーに適用する場合も、一般に過酸化水素の濃度の逐次測定は難しいため、カルボン酸及び/又はカルボン酸塩を高い濃度にしておき、十分な溶解能力を付与しておくことも有効である。なお、カルボン酸及び/又はカルボン酸塩は装置や排水設備を構成するステンレスを侵すため、ステンレスに対する影響を抑えるレベルに濃度が決定される場合もある。
(ii)第2のろう材エッチング処理
 第1のろう材エッチング処理の後、必要に応じて、接合体をフッ化アンモニウム及び過酸化水素を含む酸性の溶液(第2のろう材エッチング液)に浸漬し、第1のろう材エッチング処理で除去しきれず残存したろう材をエッチングするのが好ましい。この第2のろう材エッチング液は、フッ化アンモニウム及び過酸化水素を含む水溶液であり、例えば0.7~2.1 mol/Lのフッ化アンモニウム及び 2.9~8.9mol/Lの過酸化水素を含むpHは5以下の水溶液であるのが好ましい。
 フッ化アンモニウムは、水素塩のフッ化水素アンモニウム[化学式:(NH4)HF2]、又は正塩のフッ化アンモニウム[化学式:NH4F]を使用できる。前者は酸性フッ化アンモニウムとも呼ばれる。後者を用いる場合には、正塩のフッ化アンモニウムが分解してHF及びアンモニアを発生しないように適切に処理すること、溶液を酸性に維持するために硫酸等を添加してpHを調整すること(弱アルカリ化の防止)が求められる。従って、前者のフッ化水素アンモニウムを用いるのが好ましい。フッ化アンモニウムの濃度は 1~2 mol/Lであるのが好ましく、1.2~1.8 mol/Lであるのがより好ましい。
 過酸化水素は、市販の過酸化水素水を使用することができる。過酸化水素の濃度は3~8 mol/Lであるのが好ましい。使用する水は、イオン交換樹脂及び/又は逆浸透膜など用いて不純物を取り除いた水であるのが好ましく、イオン交換水(脱イオン水とも呼ばれる)を用いるのが好ましい。
 第2のろう材エッチング液のpHは5以下である。pHが5を越える場合ろう材を除去する能力が低下する。前記pHは4.5以下が好ましく、1~4.5がより好ましく、2~4が最も好ましい。第2のろう材エッチング液のpHは、必要に応じて、後述する酸又はアルカリによってpHを5以下に調節する。第2のろう材エッチング液の温度は、室温~50℃未満で管理するのが好ましく、室温~40℃がさらに好ましい。
 前記第2のろう材エッチング液には、消泡剤、界面活性剤、pH調整剤、安定剤等を加えることができる。消泡剤、界面活性剤、pH調整剤及び安定剤は、前述した第1のろう材エッチング液に使用できる化合物・薬品と同じものを使用することができる。例えば、第2のろう材エッチング液には、0.1~1.0質量%の硫酸、1.0~5.0質量%の尿素、10~100質量ppmのリン酸等を含有させるのが好ましい。
(d)チオ硫酸ナトリウムによるエッチング工程
 銅エッチング液を使用したパターン形成工程で、前記銅エッチング液中のCl-イオンがロウ材中のAgイオンと塩を形成して塩化銀(AgCl)が生成し、生成した塩化銀によって後段の第1のろう材エッチング工程が阻害される場合がある。このような阻害を防止するために、銅エッチング処理の後、第1のろう材エッチング工程を行う前に、必要に応じて、チオ硫酸ナトリウムを含む溶液に接合体を浸漬し塩化銀をエッチングする処理を加えてもよい。ただし、パターン形成工程において塩化銀の生成自体が少ない場合には、チオ硫酸ナトリウムを含む溶液によるエッチング処理は省略することができる。このチオ硫酸ナトリウムによるエッチング処理は、例えば、5~15質量%のチオ硫酸ナトリウムを含む水溶液中に接合体を浸漬し、10~30分間超音波を印加して行う。溶液の温度は、例えば10~30℃であるのが好ましい。チオ硫酸ナトリウムによって塩化銀をエッチングすることにより、第1のろう材エッチング工程が塩化銀によって阻害されるのを防止できる。なお、チオ硫酸ナトリウムによる処理は、塩化銀をエッチングするだけであり、Agをエッチングすることはできない。
(e)その他の工程
 第1のろう材エッチング工程の後(第2のろう材エッチング工程を行った場合はその後)に、レジスト膜を除去し、さらに化学研磨処理、防錆処理、めっき等を施すことで所定の形状で銅の回路パターンを備えるセラミックス回路基板が得られる。なお、アルカリ剥離型のレジストを用いる場合、アルカリ溶液(例えば、8~12質量%の水酸化ナトリウム水溶液を約50℃に保持した液)でレジスト膜を除去する。水酸化ナトリウムの他に水酸化カリウムを用いることもできる。処理温度は30~70℃の範囲で選択できる。本発明の第1及び第2のろう材エッチング処理液は酸性の水溶液からなるので、これらのろう材エッチング処理によってアルカリ剥離型のレジスト膜が剥離することはなく、配線となる銅の回路パターンの損傷やセラミックス基板へのダメージを避けることができる。
 なお化学研磨は、処理中の表面酸化を除去する目的の他に、表面状態を調整するという目的のためにも有効な処理である。つまり、セラミックス回路基板上で銅の回路パターンに半導体チップなどの電子部品を設置したり、金属線などを配線する方法に応じて、エッチング液及び手法を選択することにより、光沢、無光沢、粗度等の要求に対応することができる。
 以上説明した方法により得られた回路基板Wは、図5に示すように、セラミックス基板Sと、前記セラミックス基板Sの上面(表面)に形成された2つのロウ材C1,C2と、前記2つのロウ材C1,C2を介してそれぞれ接合された金属板M1,M2と、平面方向において前記ロウ材C1,C2(及び金属板M1,M2)を隔てるよう配置された間隙Gとからなる基本構成を有している。前記金属板M1,M2は、半導体素子等が搭載される回路板として機能する。さらに前記回路基板Wは、セラミックス基板Sの下面(裏面)に、放熱板として機能する金属板M3がロウ材C3を介し接合されている。2つの金属板M1,M2の表面には、例えばNi、Au等のメッキ層を必要に応じ形成することができる。
(2)第2の実施形態
 本発明の製造方法の第2の実施形態は、第1及び第2のろう材除去工程の代わりに、カルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液(第3のろう材エッチング液)で接合体をエッチングし、ろう材を除去する工程を行う以外第1の実施形態と同様である。すなわち、第2の実施形態は、第1の実施形態と同様にして接合工程及びパターン形成工程を実施した後、前記第3のろう材エッチング液でろう材を除去する工程(第3のろう材除去工程)を有している。さらに実施形態1と同様に、必要に応じてチオ硫酸ナトリウムによるエッチング工程、研磨工程及びめっき工程を行う。ろう材除去工程以外の工程については実施形態1と同様なので、以下に第1及び第2のろう材除去工程に代えて行う第3のろう材除去工程について説明する。
(f)第3のろう材除去工程
 実施形態2における第3のろう材除去工程は、実施形態1における第1及び第2のろう材エッチング液の各成分を合わせて1浴化した第3のろう材エッチング液を用いて行う。第3のろう材エッチング液は、カルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液であり、例えば、0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、 0.7~2.1 mol/Lのフッ化アンモニウム、並びに2.9~8.9mol/Lの過酸化水素を含有するpHが6以下の水溶液であるのが好ましい。この第3のろう材エッチング液で使用するカルボン酸及び/又はカルボン酸塩、フッ化アンモニウム及び過酸化水素は、前述の第1及び第2のろう材エッチング液で使用するのと同じものを使用することができる。
 カルボン酸及び/又はカルボン酸塩の濃度は、合計で0.1~1.5 mol/Lであるのが好ましく、0.2~1.4 mol/Lであるのがより好ましい。フッ化アンモニウムの濃度は1~2 mol/Lであるのが好ましく、1.2~1.8 mol/Lであるのがより好ましい。過酸化水素の濃度は3~8 mol/Lであるのが好ましい。
 第3のろう材エッチング液のpHは6以下である。pHが6を越える場合ろう材を除去する能力が低下する。前記pHは5以下が好ましく、1~5がさらに好ましく、2~4が最も好ましい。カルボン酸を使用する場合、水溶液は酸性を示すため通常pH調整は不要であるが、カルボン酸塩を使用する場合は、必要に応じて、酸によってpHを6以下に調節する。なお使用できる酸は第1のろう材エッチング液で使用したものと同様である。
 前記第3のろう材エッチング液には、必要に応じて第1及び第2のろう材エッチング液と同様の消泡剤、界面活性剤、pH調整剤、安定剤等を添加することができる。消泡剤、界面活性剤、pH調整剤及び安定剤は、前述した第1及び第2のろう材エッチング液に使用できる化合物・薬品と同じものを使用することができる。例えば、第3のろう材エッチング液には、0.1~1.0質量%の硫酸、1.0~5.0質量%の尿素、10~100質量ppmのリン酸等を含有させるのが好ましい。また第3のろう材エッチング液の温度等の処理条件は第2のろう材除去工程と同様でよい。
[2] セラミックス回路基板
(1) 構成
 セラミックス回路基板は、セラミックス基板と、前記セラミックス基板に間隙を介して形成された少なくとも2つのろう材層と、前記少なくとも2つのろう材層を介し各々接合された少なくとも2つの金属板とを有するセラミックス回路基板である。2つの金属板間の絶縁抵抗は、500 MΩ/mm以上であるのが好ましい。ろう材層及び接合する金属板の数は2つに限定されず、3つ以上設けることもでき、その場合、接合する金属板も3つ以上設けることができる。2つの金属板間の絶縁抵抗が500 MΩ/mm以上であることにより、前記2つの金属板に半導体素子が搭載されたセラミックス回路基板を構成した場合に、前記2つの金属板間の絶縁が破壊され過大な電流が半導体素子に流れるようなトラブルの発生を防止することが可能となる。セラミックス回路基板は、好ましくは前述の本発明のセラミックス回路基板の製造方法により形成される。
 前述のような高い絶縁抵抗を有するセラミックス回路基板は、例えば、2つの金属板間の間隙に露出したセラミックス基板の表面に存在するろう材又はその残渣を、前述のろう材除去処理により低減することによって得られる。
(2) セラミックス基板
 セラミックス回路基板に使用するセラミックス基板の材質は特に限定されず、基本的に電気絶縁材料からなる焼結体で構成することができる。しかしながら、セラミックス回路基板に実装される半導体素子は、近年、発熱量が増大しかつその動作速度も高速化しているため、前記セラミックス基板としては、高い熱伝導率を有する窒化物セラミックスが特に好ましい。具体的には窒化アルミニウムを主体とした粒子からなる主相と前記粒子の間に存在する焼結助剤を主体とした粒界相とを含む窒化アルミニウム焼結体、又は窒化珪素を主体とした粒子からなる主相と前記粒子の間に存在する焼結助剤を主体とした粒界相とを含む窒化珪素質焼結体でセラミックス基板を構成するのが好ましく、特に強度及び破壊靭性など機械的強度の面で優れた窒化珪素質焼結体でセラミックス基板Sを構成するのがより好ましい。
 セラミックス基板が、窒化珪素又は窒化アルミニウムを主体とした粒子からなる主相と、前記粒子の間に存在する焼結助剤を主体とした粒界相とを含む窒化物セラミックス焼結体である場合には、前記間隙に存在するセラミックス基板の表面に存在する空孔の最大径を2~15μmとするのが好ましい。前記空孔の最大径が2μm未満の場合、洗浄工程における薬剤による付着物の除去が十分に行われない場合がある。一方で、前記空孔の最大径が15μmを超える場合、セラミックス基板の強度が低下し、例えば冷熱サイクル下におけるセラミックス回路基板の信頼性を劣化させる。
 窒化珪素質焼結体からなるセラミックス基板は、例えば、90~97質量%の窒化珪素、及び0.5~10質量%の焼結助剤(Mg又はY及びその他希土類元素を含む)を含む原料粉末に、適量の有機バインダ、可塑剤、分散剤及び有機溶剤を添加し、ボールミル等で混合し、スラリーを形成し、このスラリーをドクターブレード法やカレンダーロール法で薄板状に成形し、セラミックスグリーンシートを得、所望の形状となるよう打ち抜き又は裁断し、1700~1900℃の温度で焼成することにより得ることができる。前記焼結助剤が10質量%を超えると、セラミックス基板と回路基板を接合する特性が十分でなくなり、焼結助剤が0.5質量%未満であると、窒化珪素粒子の焼結が十分でなくなる。前記焼結助剤の使用量は、3~10質量%であるのがより好ましい。高い熱伝導率及び高強度を得るには、焼結助剤として、マグネシウム(Mg)を酸化マグネシウム換算で2~4質量%、イットリウム(Y)を酸化イットリウム換算で2~5質量%含有するのが好ましい。
(3) 金属板
 前記セラミックス回路基板を構成する金属板についても、その材質は特に限定されず、ろう材で接合できかつ融点がろう材よりも高ければ特に制約はない。例えば、銅、銅合金、アルミニウム、アルミニウム合金、銀、銀合金、ニッケル、ニッケル合金、ニッケルメッキを施したモリブデン、ニッケルメッキを施したタングステン、ニッケルメッキを施した鉄合金を前記金属板として用いることが可能である。これらの中でも銅又は銅を含む合金が、電気的抵抗及び延伸性、高熱伝導性(低熱抵抗性)、マイグレーションが少ない等の点から最も好ましい。アルミニウム又はアルミニウムを含む合金は、電気的抵抗、高熱伝導性(低熱抵抗性)は、銅に劣るものの、その塑性変形性を利用して、冷熱サイクルに対する実装信頼性を有する点で好ましい。
(4) ろう材層
 セラミックス基板Sと金属板M1~M3を接合するろう材層C1~C3の材質は、高強度・高封着性等が得られる、共晶組成であるAg及びCuを主体としTi・Zr・Hf等の活性金属を添加したAg-Cu系活性ろう材が好ましい。さらにセラミックス基板と金属板の接合強度の観点から、前記Ag-Cu系活性ろう材にInが添加された三元系のAg-Cu-In系活性ろう材がより好ましい。セラミックス基板Sと金属板との接合は、前述したように、前記ろう材成分の粉末と有機バインダとを含むろう材ペーストを用いて行う。
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
実施例1
(1)接合体の形成
 窒化珪素基板S(面積:50 mm×50 mm、厚さ:150μm)の両面に、図1に示す配置で、Ag及びCuを主原料として活性金属Tiを含有するロウ材c1,c2をスクリーン印刷法で塗布した。前記窒化珪素基板Sは、焼結助剤にMgOとY2O3を用い、窒化珪素粒子と希土類元素を含む粒界相により構成されていた。前記ろう材c1,c2は、70質量%のAg、3質量%のIn、及び27質量%のCu(合計100質量部)からなる合金粉末に対して0.3質量部のTiH2を添加し、さらに有機溶剤を添加して混練してペーストとしたものを使用した。
 ロウ材塗布済み基板を乾燥後、回路パターン側(表側)及び放熱パターン側(裏側)に0.3 mmの銅板Mを接触配置し、加圧しながら750~850℃及び20分真空中で熱処理し、窒化珪素基板Sと銅板Mとの接合体を作製した。窒化珪素基板S及び銅板Mの間には、厚さがおよそ30μmのロウ材の層C1,C2が形成された。
(2)レジスト塗布
 得られた接合体の銅板M上に、紫外線で硬化可能なエッチングレジストインクを塗布した後、紫外線を照射してエッチングレジストインクを硬化させてエッチングレジスト膜R1,R2のパターンを形成した。このエッチングレジストインクには、アルカリ剥離型のものを用いた。
(3)パターン形成
 30℃に保持した塩化銅ベースエッチング液(塩化銅、塩酸及び過酸化水素を含む混合液)でエッチング処理を行い、パターン外の不要な銅板(すなわち、レジストが塗布されていない部分の銅板)の除去を行い、回路パターンを形成した。処理後の基板表側は、回路パターンを構成する銅板M1,M2、及び前記銅板M1,M2を隔てる1 mmの間隙Gを有していた。前記間隙Gには、窒化珪素基板Sと銅板Mとの接合体を作製した際に窒化珪素基板Sの表面にはみだしたロウ材が完全に除去されずロウ材はみ出し部Dを形成していた(図4を参照)。前記ロウ材はみ出し部Dは金属光沢を呈していた。
(4)ろう材除去工程
 前記ロウ材はみ出し部Dを除去するため、下記のように第1のろう材エッチング処理(カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液によるエッチング処理)、及び第2のろう材エッチング処理(フッ化水素アンモニウム及び過酸化水素を含む溶液によるエッチング処理)を順に行った。
(i)第1のろう材エッチング処理
 前記ロウ材はみ出し部Dは、前述したように、パターン形成時に行う銅エッチング処理によりCuはほとんどエッチングされているので、主にAgとTiN相を含んだ組成であると考えられる。そこで、第1のろう材エッチング工程として、主にAgを除去する目的で、カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液によるエッチング処理を行った。
 ロウ材はみ出し部Dを有する接合体を、3質量%(0.5 mol/L)の酢酸及び20質量%(5.9 mol/L)の過酸化水素を含むpH3の水溶液(第1のろう材エッチング液)に、液温30℃で20分間浸漬した。なお第1のろう材エッチング液の調液にはイオン交換水を用いた。パターン形成後に金属光沢を呈していた前記ロウ材はみ出し部Dは、第1のろう材エッチング処理により金属光沢が無くなり、窒化珪素基板S表面に対するロウ材はみ出し部Dのコントラストが明瞭になった。
(ii)第2のろう材エッチング処理
 さらに、第1のろう材エッチング処理で除去しきれなかったAg及び反応層を形成するTiN相等を除去するため、第2のろう材エッチング処理としてフッ化水素アンモニウム及び過酸化水素を含む溶液によるエッチング処理を行った
 第1のろう材エッチング処理後の接合体を、4質量%(0.7 mol/L)のフッ化水素アンモニウム、26質量%(7.6 mol/L)の過酸化水素、1質量%(0.2 N)の硫酸、3質量%(0.5 mol/L)の尿素、及び100 ppm(1.0 mmol/L)のリン酸を含むpH3の水溶液(第2のろう材エッチング液)に、液温40℃で20分間浸漬した。なお第2のろう材エッチング液の調液にはイオン交換水を用いた。第2のろう材エッチング処理によりロウ材はみ出し部はほとんど見られなくなった。
(5)レジスト膜除去、化学研磨及びNiめっき
 第2のろう材エッチング処理後の接合体を、3質量%の水酸化ナトリウム水溶液で処理し、前記レジスト膜を除去した。次いで、化学研磨、及びイオン交換水による洗浄を経た後に、表側の回路パターン及び裏側の銅板にNiメッキを施した。前記化学研磨は、光沢処理を狙って、硫酸ベースの一般市販液を用いて行った。このようにして図5に示すセラミックス回路基板(窒化珪素回路基板)が得られた。
実施例2~10
 第1及び第2のろう材エッチング処理の処理温度及び処理時間を表1に示すように変更した以外は実施例1と同様にして、セラミックス回路基板を作製した。
比較例1
 第1のろう材エッチング処理を行わなかった以外は実施例2と同様にして、セラミックス回路基板を作製した。
 得られた実施例1~10及び比較例1のセラミックス回路基板(各試料10個ずつ)について、光学顕微鏡を用いてロウ材はみ出し部を観察した。間隙Gに直交する方向(図4の左右方向)において、前記ロウ材はみ出し部Dの長さが0.2 mm以上である試料は配線間の絶縁に悪影響を及ぼすため不良と判定し、前記ロウ材はみ出し部Dの長さが0.2 mm未満である試料、又は前記ロウ材はみ出し部Dが観察されない試料は金属板の間で絶縁性が確保されるので合格と判定し、各実施例及び比較例の10この試料について評価し、式: 
 合格率(%)=(合格試料の数/(合格試料の数+不良試料の数))×100
によって合格率を求め、合格率が90%以上の場合を○、合格率が90%未満60%より大きい場合を△、合格率が60%以下である場合を×として評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 実施例1~10のセラミックス回路基板は全て合格率90%以上となり、第1及び第2エッチング工程で処理することによって高い合格率でセラミックス回路基板を作製することができることが分かった。なお、実施例で第1及び第2エッチング工程に用いた混合液はアルカリではない為に、アルカリ剥離型のレジスト膜を溶解せず、配線となる銅の回路パターンを傷めるという問題は発生しなかった。また、セラミックス基板の表面にアルカリ溶液で処理したときのようなボイドは形成されず、窒化珪素基板へのダメージは抑制された。
 比較例1は第1のろう材エッチング工程(酢酸及び過酸化水素を用いるエッチング処理)を行わず、第2のろう材エッチング工程(フッ化水素アンモニウム及び過酸化水素を用いるエッチング処理)のみを行ったため、ろう材の除去が十分ではなく合格率が60%以下であった。このため比較例1の方法では不良を選別するための工数が必要となってくる。
実施例11
 第1及び第2のろう材エッチング処理の代わりに、3質量%(0.5 mol/L)の酢酸、4質量%(0.7 mol/L)のフッ化水素アンモニウム、26質量%(7.6 mol/L)の過酸化水素、1質量%(0.2 N)の硫酸、3質量%(0.5 mol/L)の尿素、及び100 ppm(1.0 mmol/L)のリン酸を含むpH3の水溶液(第3のろう材エッチング液)を用いて、ロウ材はみ出し部Dを有する接合体を液温40℃で30分間浸漬した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、100%という高い合格率(評価:○)でセラミックス回路基板を作製することができた。なお、前記第3のろう材エッチング液はアルカリではないため、レジスト膜を溶解せず、配線となる回路パターンを傷めるという問題は発生しなかった。
実施例12
 ロウ材として、65.5質量%のAg、2質量%のIn、及び残部Cu(合計100質量部)からなる合金粉末に対して、15質量部のAg及び0.2質量部のTiH2を添加し、さらに有機溶剤を添加して混練してペーストとしたものを使用した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、合格率100%(評価:○)で作製することができた。
実施例13
 ロウ材として、50質量%のAg、25質量%のIn、及び25質量%のCu(合計100質量部)からなる合金粉末に対して、0.2質量部のTiを添加し、さらに有機溶剤を添加して混練してペーストとしたものを使用した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、合格率100%(評価:○)で作製することができた。
実施例14~18
 第1のろう材エッチング液の酢酸及び過酸化水素の添加量、第1のろう材エッチング処理時間を表2に示すように変更した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、表2に示すように高い合格率で作製することができた。なお実施例14は0.8質量%(0.13 mol/L)の酢酸と26質量%(7.6 mol/L)の過酸化水素、実施例15は1.7質量%(0.28 mol/L)の酢酸と23質量%(6.8 mol/L)の過酸化水素、実施例16は2.8質量%(0.47 mol/L)の酢酸と17質量%(5.0 mol/L)の過酸化水素、実施例17は3.0質量%(0.5 mol/L)の酢酸と24質量%(7.1 mol/L)の過酸化水素、実施例18は5.1質量%(0.85 mol/L)の酢酸と10質量%(2.9 mol/L)の過酸化水素を用いた。
Figure JPOXMLDOC01-appb-T000002
 
実施例19~21
 第2のろう材エッチング液のフッ化水素アンモニウム及び過酸化水素の濃度、並びに第2のろう材エッチング処理時間を表3に示すように変更した以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、表3に示すように高い合格率で作製することができた。なお実施例19は15質量%(4.4 mol/L)の過酸化水素と3.4質量%(0.60 mol/L)のフッ化水素アンモニウム、実施例20は25質量%(7.4 mol/L)の過酸化水素と8.1質量%(1.4 mol/L)のフッ化水素アンモニウム、実施例21は30質量%(8.8 mol/L)の過酸化水素と15質量%(2.6 mol/L)のフッ化水素アンモニウムを用いた。
Figure JPOXMLDOC01-appb-T000003
 
実施例22~25
 第3のろう材エッチング液の酢酸、フッ化水素アンモニウム及び過酸化水素の濃度、並びに第3のろう材エッチング処理時間を表4に示すように変更した以外実施例11と同様にして、セラミックス回路基板を作製した。その結果、表4に示すように高い合格率で作製することができた。なお実施例22は1.1質量%(0.18 mol/L)の酢酸と20質量%(5.9 mol/L)の過酸化水素と8質量%(1.4 mol/L)のフッ化水素アンモニウム、実施例23は1.7質量%(0.28 mol/L)の酢酸と23質量%(6.8 mol/L)の過酸化水素と4質量%(0.70 mol/L)のフッ化水素アンモニウム、実施例24は2.8質量%(0.47 mol/L)の酢酸と18質量%(5.3 mol/L)の過酸化水素と10.5質量%(1.8 mol/L)のフッ化水素アンモニウム、実施例25は12質量%(2.0 mol/L)の酢酸と8質量%(2.4 mol/L)の過酸化水素と8質量%(1.4 mol/L)のフッ化水素アンモニウムを用いた。
Figure JPOXMLDOC01-appb-T000004
 
実施例26
 パターン形成工程の後で第1のろう材エッチング工程の前に、接合体を10質量%のチオ硫酸ナトリウム水溶液(液温:20℃)に20分間浸漬してエッチング処理した以外は、実施例1と同様にしてセラミックス回路基板を作製した。前記エッチング処理は、チオ硫酸ナトリウム水溶液に600W及び35kHzの超音波を印加しながら行った。なお前記チオ硫酸ナトリウム水溶液の調液にはイオン交換水を用いた。その結果、実施例1と同様、高い合格率(評価:○)で作製することができた。
実施例27~37
 実施例11及び14~24においても、パターン形成工程の後に実施例26で行ったチオ硫酸ナトリウム水溶液によるエッチング処理を追加したところ、同様に全て高い合格率(評価:○)でセラミックス回路基板を作製することができた。
実施例38
 第1のろう材エッチング液として、2.3質量%(0.34 mol/L)のギ酸ナトリウム及び10質量%(2.9 mol/L)の過酸化水素を含む水溶液(約pH6)に、3 Nの塩酸を滴下してpH3に調節した水溶液を使用し、接合体を液温40℃で30分間浸漬してエッチングした以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、90%以上の合格率(評価:○)であった。
実施例39
 第1のろう材エッチング液として、3.8質量%(0.5 mol/L)のグリコール酸及び15質量%(4.4 mol/L)の過酸化水素を含む水溶液(約pH3)を使用し、接合体を液温40℃で30分間浸漬してエッチングした以外実施例1と同様にして、セラミックス回路基板を作製した。その結果、90%以上の合格率(評価:○)であった。
絶縁耐圧試験
 実施例1~10及び比較例1で作製したセラミックス回路基板について、絶縁耐圧試験を実施した。絶縁耐圧試験は、セラミックス回路基板の表裏間に交流電圧を印加したときの絶縁破壊電圧を測定する試験である。図5に記載したように、金属板M1及び金属板M2に電極A及びBを配置し(A及びBは電気的に短絡)、さらにセラミックス回路基板の裏面の金属板M3に同様にして電極C(図示せず)を配置し、このセラミックス回路基板をシリコーン絶縁油中(室温)にセットし、菊水電子工業製の耐電圧試験器TOS5101で回路基板の表裏間(放熱板及び回路板間)に周波数50Hzの交流電圧を0~10 kVまで昇圧速度0.1 kV/secで徐々に上げながら印加し、漏れ電流が急激に増加して絶縁が保てなくなったときの電圧値を絶縁破壊電圧とした。この測定を20個の試料について行いそれらの平均値で評価した。
 その結果、ロウ材はみ出し部0.2 mm以下の合格品では絶縁破壊電圧が5 kV以上となり、十分な絶縁性を有することが判った。銅板の周囲でロウ材はみ出し部0.2 mm超の不合格品は絶縁破壊電圧が5 kV未満となった。
絶縁抵抗
 実施例1~10及び比較例1で作製したセラミックス回路基板について、配線間の絶縁抵抗を測定した。絶縁抵抗は、図5に示すように、銅板からなる金属板M1の任意の箇所及び金属板M2の任意の箇所に接するように、それぞれ絶縁抵抗試験用の球形電極A、Bを配置し、金属板M1と金属板M2との間に1000 Vの直流電圧を印圧し、30秒後の抵抗値を絶縁抵抗値とした。金属板M1及び金属板M2間の距離は1 mmとした。絶縁抵抗は、各実施例及び比較例ともに10枚のセラミックス回路基板について求めた抵抗値の最小値で評価した。その結果、合格品(ロウ材はみ出し部0.2 mm以下)では端子間で500 MΩ/mm以上の絶縁抵抗が確保できていたが、不合格品(ロウ材はみ出し部0.2 mm超)では端子間で500 MΩ/mm未満の絶縁抵抗となった。
 以上の実施例から、回路パターン(すなわち銅の配線)間(間隙G)に残存したろう材を除去するための第1及び第2のろう材エッチングエッチング処理(又は第3のろう材エッチングエッチング処理)によって、配線間での絶縁が確保されたセラミックス回路基板を高い合格率で作製できることが明らかになった。間隙Gが小さくても高い合格率を達成できたので、本発明の製造方法は小型又は高出力用のセラミックス回路基板の作製に適している。

Claims (13)

  1.  セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有するセラミックス回路基板の製造方法であって、
     前記ロウ材がAgを含み、
     前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とするセラミックス回路基板の製造方法。
  2.  請求項1に記載のセラミックス回路基板の製造方法において、
     前記不要なロウ材を除去した基板を、さらにフッ化アンモニウム及び過酸化水素を含む酸性の溶液でエッチングして残存するロウ材を除去する工程を有することを特徴とするセラミックス回路基板の製造方法。
  3.  請求項1又は2に記載のセラミックス回路基板の製造方法において、
     前記ロウ材がAg及び活性金属を含有することを特徴とするセラミックス回路基板の製造方法。
  4.  請求項2又は3に記載のセラミックス回路基板の製造方法において、
     前記フッ化アンモニウム及び過酸化水素を含む溶液は、 0.7~2.1 mol/Lのフッ化アンモニウム、及び2.9~8.9 mol/Lの過酸化水素を含有するpHが5以下の水溶液であることを特徴とするセラミックス回路基板の製造方法。
  5.  請求項2~4のいずれかに記載のセラミックス回路基板の製造方法において、
     前記フッ化アンモニウム及び過酸化水素を含む酸性の溶液が、さらに硫酸、尿素及びリン酸の少なくとも1種を含むことを特徴とするセラミックス回路基板の製造方法。
  6.  請求項1~5のいずれかに記載のセラミックス回路基板の製造方法において、
     前記カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液は、0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、並びに2.9~8.9 mol/Lの過酸化水素を含有するpHが6以下の水溶液であることを特徴とするセラミックス回路基板の製造方法。
  7.  請求項1~6のいずれかに記載のセラミックス回路基板の製造方法において、
     前記カルボン酸及び/又はカルボン酸塩、並びに過酸化水素を含む酸性の溶液が、さらに硫酸、尿素及びリン酸の少なくとも1種を含むことを特徴とするセラミックス回路基板の製造方法。
  8.  セラミックス基板にロウ材を介して金属板を接合して接合体を得る接合工程と、前記接合した金属板をエッチングして回路パターンを形成するパターン形成工程とを有するセラミックス回路基板の製造方法であって、
     前記ロウ材がAgを含み、
     前記回路パターンを形成した基板を、さらにカルボン酸及び/又はカルボン酸塩、フッ化アンモニウム、並びに過酸化水素を含む酸性の溶液でエッチングして不要なロウ材を除去する工程を有することを特徴とするセラミックス回路基板の製造方法。
  9.  請求項8に記載のセラミックス回路基板の製造方法において、
     前記酸性の溶液は、0.083~1.7 mol/Lのカルボン酸及び/又はカルボン酸塩、0.7~2.1 mol/Lのフッ化アンモニウム、並びに2.9~8.9 mol/Lの過酸化水素を含有するpHが6以下の水溶液であることを特徴とするセラミックス回路基板の製造方法。
  10.  請求項8又は9に記載のセラミックス回路基板の製造方法において、
     前記酸性の溶液が、さらに硫酸、尿素及びリン酸の少なくとも1種を含むことを特徴とするセラミックス回路基板の製造方法。
  11.  請求項8~10のいずれかに記載のセラミックス回路基板の製造方法において、
     前記ロウ材がAg及び活性金属を含有することを特徴とするセラミックス回路基板の製造方法。
  12.  請求項1~11のいずれかに記載のセラミックス回路基板の製造方法において、
     前記金属板が銅板であり、
     前記パターン形成工程において前記接合した金属板をエッチングためのエッチング液が、銅エッチング溶液であることを特徴とするセラミックス回路基板の製造方法。
  13.  請求項1~12のいずれかに記載のセラミックス回路基板の製造方法において、
     前記ロウ材が、Ag、Cu及び活性金属を含有することを特徴とするセラミックス回路基板の製造方法。
PCT/JP2014/056534 2013-08-29 2014-03-12 セラミックス回路基板の製造方法 WO2015029478A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL14840942T PL2916627T3 (pl) 2013-08-29 2014-03-12 Sposób wytwarzania ceramicznej płytki drukowanej układu elektronicznego
EP14840942.8A EP2916627B1 (en) 2013-08-29 2014-03-12 Method for manufacturing ceramic circuit board
JP2014549842A JP5720860B1 (ja) 2013-08-29 2014-03-12 セラミックス回路基板の製造方法
US14/911,064 US10104783B2 (en) 2013-08-29 2014-03-12 Method for producing ceramic circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013177709 2013-08-29
JP2013-177709 2013-08-29

Publications (1)

Publication Number Publication Date
WO2015029478A1 true WO2015029478A1 (ja) 2015-03-05

Family

ID=52586061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056534 WO2015029478A1 (ja) 2013-08-29 2014-03-12 セラミックス回路基板の製造方法

Country Status (6)

Country Link
US (1) US10104783B2 (ja)
EP (1) EP2916627B1 (ja)
JP (1) JP5720860B1 (ja)
HU (1) HUE044481T2 (ja)
PL (1) PL2916627T3 (ja)
WO (1) WO2015029478A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101202A (ko) * 2017-03-03 2018-09-12 도와 메탈테크 가부시키가이샤 금속/세라믹 회로 기판 제조 방법
WO2019054294A1 (ja) * 2017-09-12 2019-03-21 株式会社 東芝 セラミックス回路基板の製造方法
WO2020003879A1 (ja) * 2018-06-26 2020-01-02 Dic株式会社 金属パターンを有する成形体の製造方法
WO2020130071A1 (ja) * 2018-12-21 2020-06-25 Dic株式会社 プリント配線板の製造方法
WO2020171051A1 (ja) * 2019-02-19 2020-08-27 Dic株式会社 銀用エッチング液、及びそれを用いたプリント配線板の製造方法
CN112469201A (zh) * 2020-11-24 2021-03-09 绍兴德汇半导体材料有限公司 一种覆铜衬板制作方法
WO2021112187A1 (ja) * 2019-12-03 2021-06-10 日本碍子株式会社 接合基板及び接合基板の製造方法
WO2021200810A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 レジスト硬化膜付きセラミック回路基板及びその製造方法、並びにセラミック回路基板の製造方法
JP7543805B2 (ja) 2020-09-24 2024-09-03 三菱マテリアル株式会社 絶縁回路基板の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6904094B2 (ja) * 2016-06-23 2021-07-14 三菱マテリアル株式会社 絶縁回路基板の製造方法
EP3263537B1 (de) * 2016-06-27 2021-09-22 Infineon Technologies AG Verfahren zur herstellung eines metall-keramik-substrats
WO2018151530A1 (ko) * 2017-02-14 2018-08-23 (주)잉크테크 전기전도성 금속 박막 시드층의 선택적 에칭을 이용한 회로형성방법 및 에칭액 조성물
WO2018154687A1 (ja) * 2017-02-23 2018-08-30 三菱電機株式会社 半導体装置
CN111032916A (zh) * 2017-09-12 2020-04-17 株式会社东芝 活性金属钎料用蚀刻液及使用了其的陶瓷电路基板的制造方法
EP3817523A4 (en) * 2018-06-26 2022-03-16 DIC Corporation PROCESS FOR MANUFACTURING A CIRCUIT BOARD
KR20210022548A (ko) * 2018-06-26 2021-03-03 디아이씨 가부시끼가이샤 프린트 배선판의 제조 방법
CN109321957B (zh) * 2018-10-24 2023-01-17 中国电子科技集团公司第五十五研究所 一种环保型外壳镀覆前处理蚀刻液工艺及镀覆方法
CN111621787B (zh) * 2020-04-27 2022-07-12 江苏富乐华半导体科技股份有限公司 一种蚀刻液体系及一种氮化铝基板的刻蚀方法
CN112752415A (zh) * 2020-12-14 2021-05-04 广州添利电子科技有限公司 一种沉银工艺中爬银的抑制方法
CN116489893A (zh) * 2023-04-23 2023-07-25 南通威斯派尔半导体技术有限公司 一种沟槽侧壁无银的覆铜陶瓷线路板及其制备方法
CN117646214B (zh) * 2023-09-27 2024-06-18 江苏富乐华半导体科技股份有限公司 一种直接覆铝陶瓷基板蚀刻清洗方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162325A (ja) 1995-12-07 1997-06-20 Denki Kagaku Kogyo Kk 窒化珪素回路基板及びその製造方法
JPH10154866A (ja) 1996-11-21 1998-06-09 Sumitomo Kinzoku Electro Device:Kk セラミックス回路基板の製造方法
JPH10251878A (ja) 1997-03-14 1998-09-22 Asahi Denka Kogyo Kk 塩化銀除去剤
JP2003110222A (ja) * 2001-09-28 2003-04-11 Dowa Mining Co Ltd 金属−セラミックス接合回路基板の製造方法
JP2005035874A (ja) 2003-03-27 2005-02-10 Dowa Mining Co Ltd 金属−セラミックス接合基板の製造方法
JP3629783B2 (ja) 1995-12-07 2005-03-16 電気化学工業株式会社 回路基板
JP2006351988A (ja) 2005-06-20 2006-12-28 Denki Kagaku Kogyo Kk セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。
JP2008147446A (ja) * 2006-12-11 2008-06-26 Hitachi Metals Ltd セラミックス回路基板およびその製造方法
JP2012234857A (ja) * 2011-04-28 2012-11-29 Denki Kagaku Kogyo Kk セラミックス回路基板及びそれを用いたモジュール

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353990B2 (ja) * 1994-02-22 2002-12-09 電気化学工業株式会社 回路基板の製造方法
JP4077888B2 (ja) * 1995-07-21 2008-04-23 株式会社東芝 セラミックス回路基板
JP3512977B2 (ja) * 1996-08-27 2004-03-31 同和鉱業株式会社 高信頼性半導体用基板
US6453914B2 (en) * 1999-06-29 2002-09-24 Micron Technology, Inc. Acid blend for removing etch residue
JP4887583B2 (ja) * 2001-08-09 2012-02-29 Dowaメタルテック株式会社 セラミックス回路基板の製造方法
KR100440343B1 (ko) 2002-04-03 2004-07-15 동우 화인켐 주식회사 고 선택성 은 식각용액-1
JP5299160B2 (ja) * 2003-03-27 2013-09-25 Dowaメタルテック株式会社 金属−セラミックス接合基板の製造方法
US20100051066A1 (en) * 2005-12-20 2010-03-04 Eiko Kuwabara Composition for removing residue from wiring board and cleaning method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162325A (ja) 1995-12-07 1997-06-20 Denki Kagaku Kogyo Kk 窒化珪素回路基板及びその製造方法
JP3629783B2 (ja) 1995-12-07 2005-03-16 電気化学工業株式会社 回路基板
JPH10154866A (ja) 1996-11-21 1998-06-09 Sumitomo Kinzoku Electro Device:Kk セラミックス回路基板の製造方法
JPH10251878A (ja) 1997-03-14 1998-09-22 Asahi Denka Kogyo Kk 塩化銀除去剤
JP2003110222A (ja) * 2001-09-28 2003-04-11 Dowa Mining Co Ltd 金属−セラミックス接合回路基板の製造方法
JP2005035874A (ja) 2003-03-27 2005-02-10 Dowa Mining Co Ltd 金属−セラミックス接合基板の製造方法
JP2006351988A (ja) 2005-06-20 2006-12-28 Denki Kagaku Kogyo Kk セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。
JP2008147446A (ja) * 2006-12-11 2008-06-26 Hitachi Metals Ltd セラミックス回路基板およびその製造方法
JP2012234857A (ja) * 2011-04-28 2012-11-29 Denki Kagaku Kogyo Kk セラミックス回路基板及びそれを用いたモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2916627A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145047A (ja) * 2017-03-03 2018-09-20 Dowaメタルテック株式会社 金属−セラミックス回路基板の製造方法
KR102387227B1 (ko) 2017-03-03 2022-04-14 도와 메탈테크 가부시키가이샤 금속/세라믹 회로 기판 제조 방법
KR20180101202A (ko) * 2017-03-03 2018-09-12 도와 메탈테크 가부시키가이샤 금속/세라믹 회로 기판 제조 방법
JP7448617B2 (ja) 2017-09-12 2024-03-12 株式会社東芝 セラミックス回路基板の製造方法
WO2019054294A1 (ja) * 2017-09-12 2019-03-21 株式会社 東芝 セラミックス回路基板の製造方法
US11129282B2 (en) 2017-09-12 2021-09-21 Kabushiki Kaisha Toshiba Method for manufacturing ceramic circuit board
CN110999553A (zh) * 2017-09-12 2020-04-10 株式会社东芝 陶瓷电路基板的制造方法
JPWO2019054294A1 (ja) * 2017-09-12 2020-08-27 株式会社東芝 セラミックス回路基板の製造方法
JP7278215B2 (ja) 2017-09-12 2023-05-19 株式会社東芝 セラミックス回路基板の製造方法
CN110999553B (zh) * 2017-09-12 2024-02-23 株式会社东芝 陶瓷电路基板的制造方法
WO2020003879A1 (ja) * 2018-06-26 2020-01-02 Dic株式会社 金属パターンを有する成形体の製造方法
KR102707316B1 (ko) * 2018-06-26 2024-09-19 디아이씨 가부시끼가이샤 금속 패턴을 갖는 성형체의 제조 방법
KR20210023841A (ko) * 2018-06-26 2021-03-04 디아이씨 가부시끼가이샤 금속 패턴을 갖는 성형체의 제조 방법
JPWO2020003879A1 (ja) * 2018-06-26 2020-09-24 Dic株式会社 金属パターンを有する成形体の製造方法
WO2020130071A1 (ja) * 2018-12-21 2020-06-25 Dic株式会社 プリント配線板の製造方法
WO2020171051A1 (ja) * 2019-02-19 2020-08-27 Dic株式会社 銀用エッチング液、及びそれを用いたプリント配線板の製造方法
JPWO2020171051A1 (ja) * 2019-02-19 2021-03-11 Dic株式会社 銀用エッチング液、及びそれを用いたプリント配線板の製造方法
WO2021111508A1 (ja) * 2019-12-03 2021-06-10 日本碍子株式会社 接合基板及び接合基板の製造方法
JPWO2021112187A1 (ja) * 2019-12-03 2021-06-10
JP7311625B2 (ja) 2019-12-03 2023-07-19 日本碍子株式会社 接合基板及び接合基板の製造方法
WO2021112187A1 (ja) * 2019-12-03 2021-06-10 日本碍子株式会社 接合基板及び接合基板の製造方法
WO2021200810A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 レジスト硬化膜付きセラミック回路基板及びその製造方法、並びにセラミック回路基板の製造方法
JP7543805B2 (ja) 2020-09-24 2024-09-03 三菱マテリアル株式会社 絶縁回路基板の製造方法
CN112469201A (zh) * 2020-11-24 2021-03-09 绍兴德汇半导体材料有限公司 一种覆铜衬板制作方法

Also Published As

Publication number Publication date
JP5720860B1 (ja) 2015-05-20
US10104783B2 (en) 2018-10-16
US20160192503A1 (en) 2016-06-30
EP2916627A4 (en) 2016-03-09
HUE044481T2 (hu) 2019-10-28
JPWO2015029478A1 (ja) 2017-03-02
EP2916627B1 (en) 2019-04-03
PL2916627T3 (pl) 2019-09-30
EP2916627A1 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5720860B1 (ja) セラミックス回路基板の製造方法
CN108541149B (zh) 金属/陶瓷电路板的制造方法
JP5720861B1 (ja) セラミックス回路基板の製造方法及びセラミックス回路基板
US11129282B2 (en) Method for manufacturing ceramic circuit board
US6918529B2 (en) Method for producing metal/ceramic bonding circuit board
KR20110139654A (ko) 알루미늄 산화피막용 제거액 및 알루미늄 또는 알루미늄합금의 표면처리방법
JP5741971B2 (ja) 金属−セラミックス接合回路基板の製造方法
JP2007324301A (ja) 窒化物セラミックス回路基板の製造方法。
US20230390845A1 (en) Method For Manufacturing Ceramic Circuit Board
WO2023234286A1 (ja) セラミックス回路基板およびそれを用いた半導体装置
JP3959044B2 (ja) アルミニウムおよびアルミニウム合金のめっき前処理方法
JP2011211217A (ja) 金属−セラミックス接合回路基板の製造方法
JP3175095B2 (ja) アルミニウム合金のデバーリング液および精密バリ取り方法
JP3827605B2 (ja) 回路基板及び回路基板の半田濡れ性向上方法
JP6162986B2 (ja) 金属−セラミックス回路基板の製造方法
JP2015178424A (ja) セラミックス回路基板の製造方法
JP2024132810A (ja) 半導体モジュールの製造方法、回路基板およびその製造方法
CN116686081A (zh) 绝缘性电路基板及使用了其的半导体装置
JP2012079808A (ja) 金属−セラミックス回路基板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014549842

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014840942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14911064

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE