JP6829584B2 - 金属−炭素粒子複合材及びその製造方法 - Google Patents

金属−炭素粒子複合材及びその製造方法 Download PDF

Info

Publication number
JP6829584B2
JP6829584B2 JP2016220275A JP2016220275A JP6829584B2 JP 6829584 B2 JP6829584 B2 JP 6829584B2 JP 2016220275 A JP2016220275 A JP 2016220275A JP 2016220275 A JP2016220275 A JP 2016220275A JP 6829584 B2 JP6829584 B2 JP 6829584B2
Authority
JP
Japan
Prior art keywords
metal
composite material
layer
carbon fiber
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220275A
Other languages
English (en)
Other versions
JP2018075617A (ja
Inventor
克昌 廣瀬
克昌 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016220275A priority Critical patent/JP6829584B2/ja
Publication of JP2018075617A publication Critical patent/JP2018075617A/ja
Application granted granted Critical
Publication of JP6829584B2 publication Critical patent/JP6829584B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属マトリックスと金属マトリックス中に分散した炭素粒子とを含む金属−炭素粒子複合材、その製造方法及びパワーモジュール用冷却器に関する。
なお、本明細書及び特許請求の範囲では、「アルミニウム」の語は、特に明示する場合を除き、純アルミニウム及びアルミニウム合金の双方を含む意味で用いられ、「銅」の語は、特に明示する場合を除き、純銅及び銅合金の双方を含む意味で用いられる。
また、本発明に係る金属−炭素粒子複合材の上下方向は限定されるものではないが、本明細書及び特許請求の範囲では、複合材の構成を理解し易くするため、複合材の厚さ方向及び積層体の厚さ方向をそれぞれ複合材の上下方向及び積層体の上下方向と定義する。
また、本発明に係るパワーモジュール用冷却器の上下方向は限定されるものではないが、本明細書及び特許請求の範囲では、冷却器の構成を理解し易くするため、発熱性素子(例:パワー半導体チップ)が搭載される冷却器の搭載面側を冷却器の上側、及び、その反対側を冷却器の下側とそれぞれ定義する。
金属−炭素粒子複合材を開示した文献として、例えば、特許5150905号公報(特許文献1)、特許第4441768号公報(特許文献2)及び特開2006−1232(特許文献3)がある。
特許第5150905号公報は、シート状又はフォイル状の金属支持体上に炭素粒子としての炭素繊維を含有する皮膜が形成されたプリフォームを形成し、これを複数積み重ねて積層体を形成し、積層体を加熱圧接することでプリフォーム同士を一体化させることにより、金属−炭素粒子複合材としての金属基炭素繊維複合材の製造方法を開示している。この方法では、得られる複合材において熱伝導率が高くなるのは炭素繊維が配列した一方向のみである。
特許第4441768号公報は、鱗状黒鉛粉末と所定の鱗状金属粉末との混合体を用いて焼結前駆体を形成し、焼結前駆体を加圧しながら焼結することにより、金属−炭素粒子複合材としての金属−黒鉛複合材の製造方法を開示している。この方法では、製造時において金属粉末の取り扱いが難しいし、製造コストが高いという問題がある。
特開2006−1232号公報は、結晶性カーボン材層と金属層とが積層され複合化された複合体をホットプレス焼結することにより、金属−炭素粒子複合材としての高熱伝導・低熱膨張複合材の製造方法を開示している。この方法では、複合体の焼結が難しく、そのため、接合が不十分で接合界面のずれが生じ易いと考えられる。
金属−炭素粒子複合材を開示したその他の文献として、特開2015−25158号公報(特許文献4)及び特開2015−217655号公報(特許文献5)がある。
特許第5150905号公報 特許4441768号公報 特開2006−1232号公報 特開2015−25158号公報 特開2015−217655号公報
而して、SiC等を用いた次世代半導体チップは高温動作が可能である。そのようなチップを冷却する冷却器の材料は、チップの動作温度が高くなることによる熱応力を低減するために低線膨張性を有していること、及び、冷却性能を高めるために高熱伝導性を有していることが望ましい。
さらに、冷却器には高い放熱性及び高い冷熱信頼性が要求される。この要求を確実に実現するため、冷却器の材料は、各部位によって熱特性(熱伝導性、線膨張性)が異なるものであることが望ましい。
本発明は、上述した技術背景に鑑みてなされたもので、その目的は、高熱伝導性と低線膨張性を有し且つ各部位によって熱特性(熱伝導性、線膨張性)が異なる金属−炭素粒子複合材、その製造方法及びパワーモジュール用冷却器を提供することにある。
本発明は以下の手段を提供する。
[1] 金属マトリックス中に炭素粒子としての鱗片状黒鉛粒子が分散した複数の鱗片状黒鉛粒子分散層と、前記金属マトリックス中に炭素粒子としての炭素繊維が分散した複数の炭素繊維分散層と、前記金属マトリックスで形成された複数の金属層と、を積層状に備えるとともに、
前記複数の鱗片状黒鉛粒子分散層と前記複数の炭素繊維分散層と前記複数の金属層とが接合一体化されており、
前記鱗片状黒鉛粒子分散層及び前記炭素繊維分散層のうち一方と前記金属層とは複合材の厚さ方向の略全体に亘って交互に積層された状態に配列しており、
複合材の各部位によって前記金属マトリックス中に含有されている前記鱗片状黒鉛粒子と前記炭素繊維との体積割合が異なっている金属−炭素粒子複合材。
[2] さらに、前記鱗片状黒鉛粒子分散層と前記炭素繊維分散層と前記金属層は、複合材の厚さ方向の各部位毎に異なる規則的な積層順序で積層された状態に配列している前項1記載の金属−炭素粒子複合材。
[3] 積層状に接合一体化された複数の冷却器構成層を備え、
前記複数の構成層のうち少なくとも一つが前項1又は2記載の金属−炭素粒子複合材製であるパワーモジュール用冷却器。
[4] 炭素粒子としての鱗片状黒鉛粒子と第1バインダとを含有する第1塗工液を第1金属箔上に塗工し乾燥することにより、前記第1金属箔上に鱗片状黒鉛粒子層が形成された鱗片状黒鉛粒子塗工箔を得る工程と、
炭素粒子としての炭素繊維と第2バインダとを含有する第2塗工液を第2金属箔上に塗工し乾燥することにより、前記第2金属箔上に炭素繊維層が形成された炭素繊維塗工箔を得る工程と、
複数の前記鱗片状黒鉛粒子塗工箔と複数の前記炭素繊維塗工箔とが積層された状態の積層体を形成する工程と、
前記積層体を加熱することにより前記複数の前記鱗片状黒鉛粒子塗工箔と前記複数の前記炭素繊維塗工箔を一括して接合一体化する工程と、
を含み、
前記積層体を形成する工程では、前記積層体を、前記積層体の厚さ方向の各部位によって前記鱗片状黒鉛粒子塗工箔と前記炭素繊維塗工箔との枚数比が異なるように形成する金属−炭素粒子複合材の製造方法。
[5] さらに、前記積層体を形成する工程では、前記積層体を、前記鱗片状黒鉛粒子塗工箔と前記炭素繊維塗工箔が前記積層体の厚さ方向の各部位において規則的な積層順序で積層された状態になるように形成する前項4記載の金属−炭素粒子複合材の製造方法。
本発明は以下の効果を奏する。
前項[1]では、金属マトリックス中に鱗片状黒鉛粒子が分散していることにより、材料の熱伝導性が金属単体よりも向上する。また、金属マトリックス中に炭素繊維が分散していることにより、材料の線膨張性が金属単体よりも低下する。したがって、前項[1]記載の金属−炭素粒子複合材は高熱伝導性(高い熱伝導率)と低線膨張性(低い線膨張率)を有している。
さらに、鱗片状黒鉛粒子分散層及び炭素繊維分散層のうち一方と金属層とが複合材の厚さ方向の略全体に亘って交互に積層された状態に配列しているので、複合材は高い接合強度を有している。
しかも、複合材の各部位によって金属マトリックス中に含有されている鱗片状黒鉛粒子と炭素繊維との体積割合が異なっているので、複合材の熱特性(熱伝導性、線膨張性)は複合材の各部位によって異なっている。
前項[2]では、鱗片状黒鉛粒子分散層と炭素繊維分散層と金属層が複合材の厚さ方向の各部位毎に異なる規則的な積層順序で積層された状態に配列している。これにより、複合材の熱特性を複合材の各部位によって確実に異ならせることができる。
さらに、複合材を製造する前に複合材の厚さ方向の各部位における金属マトリックス中に含有される鱗片状黒鉛粒子と炭素繊維との体積割合を予め設計し、鱗片状黒鉛粒子分散層と炭素繊維分散層と金属層を複合材の厚さ方向の各部位毎に異なる規則的な積層順序で積層した状態にして複合材を製造することにより、複合材の厚さ方向の各部位における熱伝導率と線膨張率を設計値に近づけることができる。
前項[3]では、複数の冷却器構成層のうち少なくとも一つが前項[1]又は[2]記載の金属−炭素粒子複合材製であるから、高い放熱性及び高い冷熱信頼性を有するパワーモジュール用冷却器を提供できる。
前項[4]では、本発明に係る金属−炭素粒子複合材を容易に製造できる。さらに、金属マトリックスの金属材料として金属箔が使用されることにより、金属粉末を使用する場合よりも金属材料の取り扱いが容易であるし製造コストが易くなる。さらに、複合材の厚さの制御が容易であり、薄い複合材を製造し易い。
前記[5]では、前項[2]の効果と同様の効果を奏する。
図1は、本発明の第1実施形態に係る金属−炭素粒子複合材の概略断面図である。 図2は、鱗片状黒鉛粒子塗工箔の概略斜視図(左)とその断面モデル図(右)である。 図3は、炭素繊維塗工箔の概略斜視図(左)とその断面モデル図(右)である。 図4は、同複合材形成用積層体の概略断面図である。 図5は、同複合材の製造工程図である。 図6は、本発明の第2実施形態に係る金属−炭素粒子複合材の概略断面図である。 図7は、同複合材形成用積層体の概略断面図である。 図8は、本発明の一実施形態に係るパワーモジュール用冷却器の概略正面図である。
次に、本発明の幾つかの実施形態について図面を参照して以下に説明する。
図1〜5は、本発明の第1実施形態に係る金属−炭素粒子複合材及びその製造方法を説明するための図である。
図1に示すように、本第1実施形態に係る金属−炭素粒子複合材30は、金属マトリックス(ドットハッチングで示す)9中に炭素粒子としての鱗片状黒鉛粒子1aが分散した複数の鱗片状黒鉛粒子分散層1と、金属マトリックス9中に炭素粒子としての炭素繊維2aが分散した複数の炭素繊維分散層2と、金属マトリックス9で形成された複数の金属層3と、を積層状に備えている。
さらに、複数の鱗片状黒鉛粒子分散層1と複数の炭素繊維分散層2と複数の金属層3とが積層状に接合一体化されており、これにより複合材30が形成されている。複合材30は金属基炭素粒子複合材の一種である。
各鱗片状黒鉛粒子分散層1中には炭素繊維2aは実質的に存在していない。各炭素繊維分散層2中には鱗片状黒鉛粒子1aは実質的に存在していない。各金属層3中には鱗片状黒鉛粒子1aと炭素繊維2aは実質的に存在していない。
なお、図1〜3では、複合材30の構成を理解し易くするため鱗片状黒鉛粒子1aと炭素繊維2aは大きく図示されている。ここで、複合材30の厚さ方向を説明の便宜上、複合材30の上下方向と定義する。鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3との積層方向は、複合材30の上下方向(即ち複合材30の厚さ方向)である。
本第1実施形態の複合材30では、図1に示すように、鱗片状黒鉛粒子分散層1及び炭素繊維分散層2のうち一方と金属層3とは複合材30の上下方向(即ち複合材30の厚さ方向)の全体に亘って交互に積層された状態に配列している。さらに、鱗片状黒鉛粒子分散層1及び炭素繊維分散層2の全ては複合材30の厚さ方向に金属層3と隣接した状態に配列している。
さらに、鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3は、複合材30の上下各部分31、32において規則的な積層順序で積層された状態に配列している。
さらに、鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3は、複合材30の上下各部分31、32毎に異なる規則的な積層順序で積層された状態に配列している。すなわち、複合材30の上部分31におけるこれらの層1、2、3についての積層順序と複合材30の下部分32におけるこれらの層1、2、3についての積層順序は互いに相異している。
本第1実施形態では、複合材30の上部分31における鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3についての積層順序の単位7は、鱗片状黒鉛粒子分散層1/金属層3/鱗片状黒鉛粒子分散層1/金属層3/炭素繊維分散層2/金属層3という単位である。そして、鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3は、この積層順序単位7が複合材30の上部分31において繰り返されるという積層規則に従って積層された状態に配列している。
複合材30の上部分31において、積層順序単位7中に存在する鱗片状黒鉛粒子分散層1と炭素繊維分散層2との層数比は2:1である。そして、鱗片状黒鉛粒子分散層1と炭素繊維分散層2はこの層数比で複合材30の上部分31において配列している。
複合材30の下部分32における鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3についての積層順序の単位8は、炭素繊維分散層2/金属層3/炭素繊維分散層2/金属層3/鱗片状黒鉛粒子分散層1/金属層3という単位である。そして、鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3は、この積層順序単位8が複合材30の下部分32において繰り返されるという積層規則に従って積層された状態に配列している。
複合材30の下部分32において、積層順序単位8中に存在する鱗片状黒鉛粒子分散層1と炭素繊維分散層2との層数比は1:2である。そして、鱗片状黒鉛粒子分散層1と炭素繊維分散層2はこの層数比で複合材30の下部分32において配列している。
したがって、複合材30の全体に存在する鱗片状黒鉛粒子分散層1と炭素繊維分散層2との層数比は、複合材30の上部分31と下部分32で相異している。
さらに、複合材30は、複合材30の上下各部分31、32によって金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合が異なっている。
本第1実施形態では、鱗片状黒鉛粒子分散層1と炭素繊維分散層2との層数比が複合材30の上部分31と下部分32で相異していることにより、複合材30の上部分31における金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合と複合材30の下部分32における金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合が相異している。
具体的には、複合材30の上部分31における金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合については鱗片状黒鉛粒子1aが炭素繊維2aよりもリッチである。また、複合材30の下部分32における金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合については炭素繊維2aが鱗片状黒鉛粒子1aよりもリッチである。
したがって、複合材30の上部分31の熱伝導率は複合材30の下部分32のそれよりも高く、複合材30の下部分32の線膨張率は複合材30の上部分31のそれよりも低い。
このように、複合材30は、熱特性(熱伝導率、線膨張率)が複合材30の上部分31と下部分32で変化している傾斜機能材料と捉えることができる。
本第1実施形態の複合材30は、図8に示したパワーモジュール用冷却器40を構成する複数の冷却器構成層41〜44のうち少なくとも一つの構成層の材料として好適に使用可能である。
パワーモジュールは、例えば、ハイブリッドカー(HEV)、電気自動車(EV)、電車などの車両に用いられたり、風力発電、太陽光発電などのエネルギー分野に用いられたりするものである。
冷却器40は、複数の冷却器構成層41〜44として、配線層41、絶縁層42、緩衝層43及び冷却層44を備えている。そして、上から下へ順に、配線層41、絶縁層42、緩衝層43及び冷却層44が積層された状態でろう付け等の所定の接合手段によりこれらの層41〜44が接合一体化されている。
配線層41の上面からなる搭載面41aには、一般に、半導体素子(例:パワー半導体チップ)等の発熱性素子(二点鎖線で示す)47がはんだ層(二点鎖線で示す)48を介して接合される。
絶縁層42は電気絶縁性を有しており、通常、セラミックで形成されている。
緩衝層43は、冷却器40に発生した熱応力等の応力を緩和するための層である。
冷却層44は、発熱性素子47の熱を放散して発熱性素子47を冷却するための層であり、例えば、複数の放熱フィンを有するヒートシンクからなる。
一般に、冷却器40において、配線層41の線膨張率と絶縁層42の線膨張率との差が大きい場合、冷却器40に作用する冷熱サイクル負荷によって配線層41と絶縁層42との接合界面で剥離や割れが生じ易く、そのため冷熱サイクル負荷に対する冷熱信頼性が低い。また同じく、緩衝層43の線膨張率と絶縁層42の線膨張率との差が大きい場合、やはり、緩衝層43と絶縁層42との接合界面で剥離や割れが生じ易く、冷熱信頼性が低い。したがって、冷却器40について冷熱サイクル負荷に対する冷熱信頼性を高めるためには、配線層41の線膨張率と絶縁層42の線膨張率との差、及び、緩衝層43の線膨張率と絶縁層42の線膨張率との差はそれぞれなるべく小さい方が望ましい。
図8に示した冷却器40では、詳述すると、上述した複数の構成層41〜44のうち絶縁層42を除く構成層(即ち、配線層41、緩衝層43及び冷却層44)からなる群から選択される少なくとも一つが本第1実施形態の複合材30製である。特に、配線層41が本第1実施形態の複合材30製であることが望ましい。その理由は次のとおりである。
配線層41はその上面からなる搭載面41aに発熱性素子47が接合されるものであることから、配線層41の上部は、発熱性素子47の熱を下方向に迅速に伝導させるため、なるべく高い熱伝導率を有していることが望ましい。配線層41の下面は絶縁層42に接合されることから、配線層41の下部は、配線層41の線膨張率と絶縁層42の線膨張率との差を小さくして冷却器40の冷熱信頼性を高くするため、なるべく低い線膨張率を有していることが望ましい。
したがって、配線層41が本第1実施形態の複合材30製である(即ち、配線層41が本第1実施形態の複合材30で形成されている)ことにより、発熱性素子47の熱を下方向に迅速に伝導できるし、冷熱サイクル負荷に対する冷却器40の冷熱信頼性を高めることができる。
次に、本第1実施形態の複合材30の望ましい製造方法を以下に説明する。
図5に示すように、複合材30の製造方法は、第1金属箔12上に炭素粒子層としての鱗片状黒鉛粒子層11が形成された鱗片状黒鉛粒子塗工箔13を得る工程S1(図2参照)と、第2金属箔15上に炭素粒子層としての炭素繊維層14が形成された炭素繊維塗工箔16を得る工程S2(図3参照)と、複数の鱗片状黒鉛粒子塗工箔13と複数の炭素繊維塗工箔16とが積層された状態の積層体20を形成する工程S3(図4参照)と、積層体20を加熱することにより複数の鱗片状黒鉛粒子塗工箔13と複数の炭素繊維塗工箔16を一括して接合一体化する工程S4と、を含む。
図2及び3において、第1及び第2金属箔12、15の金属材料は複合材30の金属マトリックス9を形成するものである。第1金属箔12の金属材料と第2金属箔15の金属材料は同一材料である。金属材料は限定されるものではないが、アルミニウム又は銅であることが望ましい。その理由は、これらの金属は高い熱伝導性を有しているからである。
第1及び第2金属箔12、15の厚さは限定されるものではなく、それぞれ5〜500μmであることが望ましく、特にそれぞれ10〜50μmであることが望ましい。
図2に示すように、鱗片状黒鉛粒子1aとしては例えば鱗片状黒鉛粉末を使用できる。鱗片状黒鉛粒子1aの粒径及アスペクト比は限定されるものではなく、それぞれなるべく大きい方が望ましい。鱗片状黒鉛粒子1aの平均粒径は300μm以上であることが特に望ましく、また鱗片状黒鉛粒子1aの平均アスペクト比は30以上であることが特に望ましい。平均粒径の上限は限定されるものではなく例えば1000μmであり、また平均アスペクト比の上限は限定されるものではなく例えば100である。
ここで、鱗片状黒鉛粒子1aの粒径とは、電子顕微鏡等の観察手段で観察される鱗片状黒鉛粒子1aの平面方向の円相当直径を意味する。鱗片状黒鉛粒子1aのアスペクト比は、鱗片状黒鉛粒子1aの「粒径/厚さ」により算出される。
図3に示すように、炭素繊維2aとしては繊維状の炭素粒子を使用でき、具体的には例えば、ピッチ系炭素繊維、PAN系炭素繊維、気相成長炭素繊維及びカーボンナノチューブからなる群より選択される一種の炭素繊維か又は複数種の混合炭素繊維を使用できる。炭素繊維2aはピッチ系炭素繊維であることが特に望ましい。その理由は、ピッチ系炭素繊維の繊維方向の熱伝導率がPAN系炭素繊維のそれよりも大きいからである。
炭素繊維2aの長さは限定されるものではなく、特に炭素繊維2aの平均長さが1mm以下であることが望ましい。炭素繊維2aの平均長さの下限は限定されるものではなく例えば10μmである。
また、鱗片状黒鉛粒子1a及び炭素繊維2aは、不活性雰囲気中にて2000〜3000℃の温度で加熱処理されたものであっても良い。
鱗片状黒鉛粒子塗工箔13を得る工程S1では、鱗片状黒鉛粒子1aと第1バインダ(図示せず)と第1バインダ用第1溶剤(図示せず)とを混合状態に含有する第1塗工液(図示せず)を第1金属箔12上に塗工し乾燥することにより、図2に示した鱗片状黒鉛粒子塗工箔13が得られる。なお、図2中の左では第1バインダは図示省略されている。
炭素繊維塗工箔16を得る工程S2では、炭素繊維2aと第2バインダ(図示せず)と第2バインダ用第2溶剤(図示せず)とを混合状態に含有する第2塗工液(図示せず)を第2金属箔15上に塗工し乾燥することにより、図3に示した炭素繊維塗工箔16が得られる。なお、図3中の左では第2バインダは図示省略されている。
第1バインダは、鱗片状黒鉛粒子1aに第1金属箔12への付着力を付与して鱗片状黒鉛粒子1aが第1金属箔12上から脱落するのを抑制するためのものである。
第2バインダは、炭素繊維2aに第2金属箔15への付着力を付与して炭素繊維2aが第2金属箔15上から脱落するのを抑制するためのものである。
第1及び第2バインダは通常、樹脂からなる。具体的には、第1及び第2バインダとして、アクリル系樹脂、ポリエチレングリコール系樹脂、ブチレンゴム樹脂、フェノール樹脂、セルロース系樹脂などが使用できる。これらの樹脂バインダは一般に常温で固形である。
第1溶剤は第1バインダを溶解するものである。第2溶剤は第2バインダを溶解するものである。具体的には、第1及び第2溶剤として、水、アルコール系溶剤、炭化水素系溶剤、エステル系溶剤、エーテル系溶剤などが使用できる。これらの溶剤は一般に常温でバインダを溶解可能である。
第1塗工液は、鱗片状黒鉛粒子1aと第1バインダと第1溶剤とを混合して得られる。
第1塗工液を第1金属箔12上に塗工する方法は限定されない。好ましくは、第1塗工液の塗工は、特開2015−25158号公報、特開2015−217655号公報等に開示されているようなロールtoロール方式により行われる。第1塗工液の塗工方法は、好ましくは、オフセットタイプの3本ロールコート法(即ち、オフセットタイプの3本ロールコーターによる塗工法)、グラビア印刷法、スプレー塗工法、カーテンコート法などから選択される。
鱗片状黒鉛粒子塗工箔13を得る工程S1では、第1塗工液は、詳述すると、第1金属箔12上として、第1金属箔12の厚さ方向の片側の表面12aにその略全体に亘って塗工される。次いで、第1塗工液は所定の乾燥手段(例:乾燥炉)によって乾燥されて第1塗工液中の溶剤が除去される。これにより、図2に示した鱗片状黒鉛粒子塗工箔13が得られる。
本第1実施形態では、第1塗工液が塗工される第1金属箔12の表面12aは、第1金属箔12が水平状に配置された状態における第1金属箔12の上表面である。したがって、鱗片状黒鉛粒子層11は詳述すると第1金属箔12の上表面12a上にその略全体に亘って形成されている。
第2塗工液は、炭素繊維2aと第2バインダと第2溶剤とを混合して得られる。
第2塗工液を第2金属箔15上に塗工する方法は限定されない。好ましくは、第2塗工液の塗工は、特開2015−25158号公報、特開2015−217655号公報等に開示されているようなロールtoロール方式により行われる。第2塗工液の塗工方法は、好ましくは、グラビア印刷法、バーコート法、ナイフコート法、ドクターブレード法などから選択される。
炭素繊維塗工箔16を得る工程S2では、第2塗工液は、詳述すると、第2金属箔15上として、第2金属箔15の厚さ方向の片側の表面15aにその略全体に亘って塗工される。そして、第2塗工液は所定の乾燥手段(例:乾燥炉)によって乾燥されて第2塗工液中の溶剤が除去される。これにより、図3に示した炭素繊維塗工箔16が得られる。
本第1実施形態では、第2塗工液が塗工される第2金属箔15の表面15aは、第2金属箔15が水平状に配置された状態における第2金属箔15の上表面である。したがって、炭素繊維層14は詳述すると第2金属箔15の上表面15a上にその略全体に亘って形成されている。
積層体20を形成する工程S5において、図4に示すように、積層体20は、上述したように、複数の鱗片状黒鉛粒子塗工箔13と複数の炭素繊維塗工箔16とが積層された状態のものである。詳述すると、積層体20は、複数の鱗片状黒鉛粒子塗工箔13と複数の炭素繊維塗工箔16とが、各炭素粒子層(鱗片状黒鉛粒子層11、炭素繊維層14)間に第1金属箔12又は第2金属箔15が必ず介在するように上下方向に積層された状態のものである。したがって、積層体20の全体において、複数の鱗片状黒鉛粒子塗工箔13と複数の炭素繊維塗工箔16は、炭素粒子層同士が重ね合わされないように積層されている。
積層体20を形成する工程S4では、積層体20は、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16が積層体20の上下各部分21、22において規則的な積層順序で積層された状態になるように形成される。
さらに、積層体20は、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16が積層体20の上下各部分21、22毎に異なる規則的な積層順序で積層された状態になるように形成される。すなわち、積層体20の上部分21におけるこれらの塗工箔13、16についての積層順序と積層体20の下部分22におけるこれらの塗工箔13、16についての積層順序は互いに相異している。
本第1実施形態では、積層体20の上部分21における鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16についての積層順序の単位17は、鱗片状黒鉛粒子塗工箔13/鱗片状黒鉛粒子塗工箔13/炭素繊維塗工箔16という単位である。そして、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16は、この積層順序単位17が積層体20の上部分21において繰り返されるという積層規則に従って積層され、これにより、積層体20の上部分21が形成される。
積層体20の上部分21において、積層順序単位17中に存在する鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16との枚数比は2:1である。そして、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16はこの枚数比で積層体20の上部分21において配列している。
積層体20の下部分22における鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16についての積層順序の単位18は、炭素繊維塗工箔16/炭素繊維塗工箔16/鱗片状黒鉛粒子塗工箔13という単位である。そして、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16は、この積層順序単位18が積層体20の下部分22において繰り返されるという積層規則に従って積層され、これにより、積層体20の下部分22が形成される。
積層体20の下部分22において、積層順序単位18中に存在する鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16との枚数比は1:2である。そして、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16はこの枚数比で積層体20の下部分22において配列している。
したがって、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16との枚数比は、積層体20の上部分21と下部分22で相異している。
接合一体化する工程S4では、積層体20は所定の焼結雰囲気(例:非酸化雰囲気)中にて加熱されることにより焼結され、これにより、積層体20の全体に存在する複数の鱗片状黒鉛粒子塗工箔13と複数の炭素繊維塗工箔16が一括して接合一体化(詳述すると焼結一体化)される。これにより、上述した複合材30が得られる。
積層体20の焼結方法は、真空ホットプレス法、パルス通電焼結法(SPS法)、熱間静水圧焼結法(HIP法)、押出法、圧延法などから選択される。
積層体20を加熱する際においては、積層体20をその厚さ方向(即ち、鱗片状黒鉛粒子塗工箔13及び炭素繊維塗工箔16の積層方向)に加圧しながら加熱することが望ましい。その理由は積層体20を強固に焼結できるからである。
積層体20を焼結するための積層体20の加熱温度(即ち積層体20の焼結温度)は限定されるものではなく、通常、第1及び第2金属箔12、15の金属材料の融点以下であり、特に、金属材料の融点と当該融点よりも約50℃低い温度との間の温度に設定されることが望ましい。その理由は積層体20を確実に焼結できるからである。具体的には、金属材料が例えばアルミニウムである場合、積層体20の加熱温度(焼結温度)は550〜620℃の範囲に設定されることが望ましい。
積層体20中に存在する第1及び第2バインダは、接合一体化する工程S4において積層体20の温度が略室温から積層体20を焼結する温度まで上昇するように積層体20を加熱する途中で昇華又は分解等により消失して積層体20から除去される。
接合一体化する工程S4においては、積層体20が加熱されることによって、第1及び第2金属箔12、15の金属材料の一部が炭素粒子層(鱗片状黒鉛粒子層11、炭素繊維層14)中に浸入して炭素粒子層(11、14)内に存在する微細な空隙(例:鱗片状黒鉛粒子層11中の鱗片状黒鉛粒子1a間の隙間、炭素繊維層14中の炭素繊維2a間の隙間)に充填されて、当該空隙が略消滅する。これにより、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16との接合強度(焼結強度)が向上するとともに複合材30の密度が上昇する。
また、第1及び第2金属箔12、15の金属材料の一部が鱗片状黒鉛粒子層11中に浸入することによって、鱗片状黒鉛粒子層11中の鱗片状黒鉛粒子1aは複合材30の金属マトリックス9中に分散した状態になり、すなわち鱗片状黒鉛粒子層11は複合材30の鱗片状黒鉛粒子分散層1になる。
また、第1及び第2金属箔12、15の金属材料の一部が炭素繊維層14中に浸入することによって、炭素繊維層14中の炭素繊維2aは複合材30の金属マトリックス9中に分散した状態になり、すなわち炭素繊維層14は複合材30の炭素繊維分散層2になる。
また、第1及び第2金属箔12、15は複合材30の金属層になる。
したがって、複合材30においては、図1に示すように、鱗片状黒鉛粒子分散層1及び炭素繊維分散層2のうち一方と金属層3とは交互に積層された状態に配列する。さらに、鱗片状黒鉛粒子分散層1及び炭素繊維分散層2の全ては金属層3と隣接した状態に配列する。
さらに、鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16との枚数比が積層体20の上部分21と下部分22で相異していることにより、複合材30の上部分31と下部分32で金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合が異なるようになる。
具体的には、積層体20の上部分21における鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16との枚数比が2:1であることにより、上述したように、複合材30の上部分31における金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合については鱗片状黒鉛粒子1aが炭素繊維2aよりもリッチになる。また、積層体20の下部分22における鱗片状黒鉛粒子塗工箔13と炭素繊維塗工箔16との枚数比が1:2であることにより、上述したように、複合材30の下部分32における金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合については炭素繊維2aが鱗片状黒鉛粒子1aよりもリッチになる。
本第1実施形態の複合材30は、図1に示すように、金属マトリックス9中に鱗片状黒鉛粒子1aが分散しているので、高い熱伝導率を有しており、また金属マトリックス9中に炭素繊維2aが分散しているので、低い線膨張率を有している。
さらに、鱗片状黒鉛粒子分散層1及び炭素繊維分散層2のうち一方と金属層3とが交互に積層された状態に配列するとともに、鱗片状黒鉛粒子分散層1及び炭素繊維分散層2の全てが金属層3と隣接した状態に配列しているので、複数の炭素粒子分散層(鱗片状黒鉛粒子分散層1、炭素繊維分散層2)が各炭素粒子分散層(1、2)間に金属層3を介在しないで積層された状態に配列している場合に比べて、複合材30は高い接合強度(高い焼結強度)を有している。
しかも、複合材30の上部分31と下部分32で金属マトリックス9中に含有されている鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合が異なっているので、複合材30の熱特性(熱伝導性、線膨張性)は複合材30の上部分31と下部分32で異なっている。そのため、複合材30を、熱特性が複合材30の上部分31と下部分32で変化している傾斜機能材料として使用することができる。
さらに、鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3が複合材30の上下各部分31、32毎に異なる規則的な積層順序で積層された状態に配列している。これにより、複合材30の熱特性を複合材30の上下各部位31、32によって確実に異ならせることができる。
さらに、複合材30を製造する前に複合材30の上下各部分31、32における金属マトリックス9中に含有される鱗片状黒鉛粒子1aと炭素繊維2aとの体積割合を予め設計し、鱗片状黒鉛粒子分散層1と炭素繊維分散層2と金属層3を複合材30の上下各部分31、32毎に異なる規則的な積層順序で積層した状態にして複合材30を製造することにより、複合材30の上下各部分31、32における熱伝導率と線膨張率を設計値に近づけることができる。
本第1実施形態の複合材30の製造方法は、次のような利点がある。
すなわち、鱗片状黒鉛粒子1aと炭素繊維2aとの混合層を金属箔上に形成することは技術的に困難である。そこで本第1実施形態では、鱗片状黒鉛粒子層11を第1金属箔12上に形成し、炭素繊維層14を第1金属箔12とは別の金属箔である第2金属箔15上に形成している。こうすることにより、複合材30を容易に製造できる。
さらに、金属マトリックス9の金属材料として金属箔が使用されているので、金属粉末を使用する場合よりも取り扱いが容易であるし製造コストが易くなる。さらに、複合材30の厚さの制御が容易であり、薄い複合材を製造し易い。
また、パワーモジュール用冷却器40(図8参照)において、複数の冷却器構成層41〜44のうち少なくとも一つが本第1実施形態の複合材30製であるから、冷却器40は高い放熱性及び高い冷熱信頼性を有している。
特に、冷却器40の配線層41が本第1実施形態の複合材30製である場合には、発熱性素子47の熱を下方向に迅速に伝導できて冷却器40の放熱性を更に高めることができるし、冷熱サイクル負荷に対する冷却器40の冷熱信頼性を更に高めることができる。
図6及び7は、本発明の第2実施形態に係る金属−炭素粒子複合材130及びその製造方法を説明するための図である。これらの図において、上記第1実施形態の複合材30の要素と同じ作用を奏する要素には、上記第1実施形態の複合材30の要素に付された符号に100を加算した符号が付されている。以下、本第2実施形態について上記第1実施形態との相異点を中心に説明する。
図6に示すように、本第2実施形態では、複合材130の上部分131における鱗片状黒鉛粒子分散層101と炭素繊維分散層102と金属層103についての積層順序の単位107は、炭素繊維分散層102/金属層103/炭素繊維分散層102/金属層103/鱗片状黒鉛粒子分散層101/金属層103という単位である。そして、鱗片状黒鉛粒子分散層101と炭素繊維分散層102と金属層103は、この積層順序単位107が複合材130の上部分131において繰り返されるという積層規則に従って積層された状態に配列している。
複合材130の上部分131において、積層順序単位107中に存在する鱗片状黒鉛粒子分散層101と炭素繊維分散層102との層数比は1:2である。そして、鱗片状黒鉛粒子分散層101と炭素繊維分散層102はこの層数比で複合材130の上部分131において配列している。
複合材130の下部分132における鱗片状黒鉛粒子分散層101と炭素繊維分散層102と金属層103についての積層順序の単位108は、鱗片状黒鉛粒子分散層101/金属層103/鱗片状黒鉛粒子分散層101/金属層103/炭素繊維分散層102/金属層103という単位である。そして、鱗片状黒鉛粒子分散層101と炭素繊維分散層102と金属層103は、この積層順序単位108が複合材130の下部分132において繰り返されるという積層規則に従って積層された状態に配列している。
複合材130の下部分132において、積層順序単位108中に存在する鱗片状黒鉛粒子分散層101と炭素繊維分散層102との層数比は2:1である。そして、鱗片状黒鉛粒子分散層101と炭素繊維分散層102はこの層数比で複合材130の下部分132において配列している。
したがって、鱗片状黒鉛粒子分散層101と炭素繊維分散層102との層数比は、複合材130の上部分131と下部分132で相異している。
そのため、複合材130は、複合材130の上下各部分131、132によって金属マトリックス109中に含有されている鱗片状黒鉛粒子101aと炭素繊維102bとの体積割合が異なっている。
具体的には、複合材130の上部分131における金属マトリックス109中に含有されている鱗片状黒鉛粒子101aと炭素繊維102aとの体積割合については炭素繊維102aが鱗片状黒鉛粒子101aよりもリッチである。また、複合材130の下部分132における金属マトリックス9中に含有されている鱗片状黒鉛粒子101aと炭素繊維102aとの体積割合については鱗片状黒鉛粒子101aが炭素繊維102aよりもリッチである。
したがって、複合材130の上部分131の線膨張率は複合材130の下部分132のそれよりも低く、複合材130の下部分132の熱伝導率は複合材130の上部分131のそれよりも高い。
図7に示すように、本第2実施形態における積層体120を形成する工程S3(図5参照)では、積層体120は、鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116が積層体120の上下各部分121、122において規則的な積層順序で積層された状態になるように形成される。
さらに、積層体120の上部分121におけるこれらの塗工箔113、116についての積層順序と積層体120の下部分122におけるこれらの塗工箔113、116についての積層順序は互いに相異している。
本第2実施形態では、積層体120の上部分121における鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116についての積層順序の単位117は、炭素繊維塗工箔116/炭素繊維塗工箔116/鱗片状黒鉛粒子塗工箔113という単位である。そして、鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116は、この積層順序単位117が積層体120の上部分121において繰り返されるという積層規則に従って積層され、これにより、積層体120の上部分121が形成される。
積層体120の上部分121において、積層順序単位117中に存在する鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116との枚数比は1:2である。そして、鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116はこの枚数比で積層体120の上部分121において配列している。
積層体120の下部分122における鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116についての積層順序の単位118は、鱗片状黒鉛粒子塗工箔113/鱗片状黒鉛粒子塗工箔113/炭素繊維塗工箔116という単位である。そして、鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116は、この積層順序単位118が積層体120の下部分122において繰り返されるという積層規則に従って積層され、これにより、積層体120の下部分122が形成される。
積層体120の下部分122において、積層順序単位118中に存在する鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116との枚数比は2:1である。そして、鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116はこの枚数比で積層体120の下部分122において配列している。
したがって、鱗片状黒鉛粒子塗工箔113と炭素繊維塗工箔116との枚数比は、積層体120の上部分121と下部分122で相異している。
本第2実施形態の複合材130は、上記第1実施形態の複合材30と同様に、図8に示したパワーモジュール用冷却器40を構成する複数の冷却器構成層41〜44のうち少なくとも一つの構成層の材料として好適に使用可能である。特に、緩衝層43が本第2実施形態の複合材130製であることが望ましい。その理由は次のとおりである。
緩衝層43の上面は絶縁層42に接合されることから、緩衝層43の上部は、緩衝層43の線膨張率と絶縁層の線膨張率との差を小さくて冷却器40の冷熱信頼性を高くするため、なるべく低い線膨張率を有していることが望ましい。緩衝層43の下面は冷却層(例:ヒートシンク)44に接合されることから、緩衝層43の下部は、発熱性素子47の熱を下方向に迅速に伝導させるため、なるべく高い熱伝導率を有していることが望ましい。
したがって、緩衝層43が本第2実施形態の複合材130製である(即ち、緩衝層43が本第2実施形態の複合材130で形成されている)ことにより、発熱性素子47の熱を下方向に迅速に伝導できるし、冷熱サイクル負荷に対する冷却器40の冷熱信頼性を高めることができる。
以上で本発明の幾つかの実施形態を説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で様々に変更可能である。
本発明では、複合材の上部分における積層順序単位中に存在する鱗片状黒鉛粒子分散層と炭素繊維分散層との層数比は、2:1(第1実施形態)、1:2(第2実施形態)に限定されるものではなく、その他の層数比であっても良く、通常1〜5:1〜5の範囲に設定される。また本発明では、複合材の下部分における積層順序単位中に存在する鱗片状黒鉛粒子分散層と炭素繊維分散層との層数比は、1:2(第1実施形態)、2:1(第2実施形態)に限定されるものではなく、その他の層数比であっても良く、通常1〜10:1〜10の範囲に設定される。
さらに本発明では、複合材における金属マトリックス中に含有されている鱗片状黒鉛粒子と炭素繊維との体積割合が異なる部位(即ち、複合材の熱特性が異なる部位)は、上記実施形態のように複合材の上部分と下部分との二部位であることに限定されるものではなく、その他に例えば、複合材の上端部と中間部と下端部との三部位であっても良いし、複合材の厚さ方向(即ち複合材の上下方向)における四部位以上であっても良い。すなわち本発明では、複合材における金属マトリックス中に含有されている鱗片状黒鉛粒子と炭素繊維との体積割合が異なる部位は、複合材の厚さ方向における複数の部位であれば良い。
また本発明では、積層体を形成する工程において、積層体は、長尺な鱗片状黒鉛粒子塗工箔(例えば、鱗片状黒鉛粒子塗工箔の条材)と長尺な炭素繊維塗工箔(例えば、炭素繊維塗工箔の条材)が積層された状態でロール状に複数回巻かれることにより、形成されたものであっても良い。
また本発明に係る金属−炭素粒子複合材は、上記第1実施形態(上記第2実施形態を含む)で示した製造方法により製造されたものであることが、複合材の接合強度(焼結強度)を容易に確実に高めることができる点で望ましいが、次のような製造方法により製造されたものであっても良い。
すなわち、鱗片状黒鉛粒子塗工箔を得る工程において、第1塗工液を第1金属箔の厚さ方向の両側の表面にそれぞれ塗工し乾燥することにより、第1金属箔の厚さ方向の両側の表面にそれぞれ鱗片状黒鉛粒子層が形成された鱗片状黒鉛粒子塗工箔(これを便宜上「鱗片状黒鉛粒子両面塗工箔」という)を得る。また、炭素繊維塗工箔を得る工程において、第2塗工液を第2金属箔の厚さ方向の両側の表面にそれぞれ塗工し乾燥することにより、第2金属箔の厚さ方向の両側の表面にそれぞれ炭素繊維層が形成された炭素繊維塗工箔(これを便宜上「炭素繊維両面塗工箔」という)を得る。
さらに、金属箔の厚さ方向の両側の表面のうち一方の表面に第1塗工液を他方の表面に第2塗工液をそれぞれ塗工し乾燥することにより、金属箔の厚さ方向の両側の表面のうち一方の表面に鱗片状黒鉛粒子層が他方の表面に炭素繊維層がそれぞれ形成された塗工箔(これを便宜上「鱗片状黒鉛粒子/炭素繊維両面塗工箔」という)を得ても良い。
上述した両面塗工箔(即ち、「鱗片状黒鉛粒子両面塗工箔」、「炭素繊維両面塗工箔」、「鱗片状黒鉛粒子/炭素繊維両面塗工箔」)を用いて複合材を製造する場合、積層体を形成する工程において炭素粒子層(鱗片状黒鉛粒子層、炭素繊維層)同士が重ね合わされた状態で複数の両面塗工箔が積層されると、接合一体化する工程において炭素粒子層同士の重ね合わせ界面にて接合不良(焼結不良)が発生する虞がある。そこで、この接合不良を抑制するため、複数の両面塗工箔を積層する際に各両面塗工箔間に金属箔を介在させることが望ましい。こうすることにより、接合一体化する工程において金属箔の金属材料の一部がその厚さ方向の両側に配置された炭素粒子層にそれぞれ浸入し、そのため、得られる複合材の接合強度(焼結強度)を確実に高めることができる。
しかしながら、上記第1実施形態(上記第2実施形態を含む)で示したように、第1塗工液を第1金属箔12の厚さ方向の片側の表面12aに塗工し乾燥することにより、第1金属箔12の厚さ方向の片側の表面12aに鱗片状黒鉛粒子層11が形成された鱗片状黒鉛粒子塗工箔13(これを便宜上「鱗片状黒鉛粒子片面塗工箔13」という)を得るとともに、第2塗工液を第2金属箔15の厚さ方向の片側の表面15aに塗工し乾燥することにより、第2金属箔15の厚さ方向の片側の表面15aに炭素繊維層14が形成された炭素繊維塗工箔16(これを便宜上「炭素繊維片面塗工箔16」という)を得ることが望ましい。その理由は次のとおりである。
すなわち、上記第1実施形態(上記第2実施形態を含む)で示したように、上述した片面塗工箔(即ち、「鱗片状黒鉛粒子片面塗工箔13」、「炭素繊維片面塗工箔16」)を用いて複合材30を製造する場合では、積層体20を形成する工程S3において炭素粒子層(鱗片状黒鉛粒子層11、炭素繊維層14)同士が重ね合わされないように複数の片面塗工箔13、16を積層できるので、複数の片面塗工箔13、16を積層する際に各片面塗工箔13、16間に金属箔を介在させる必要がない。そのため、得られる複合材30の接合強度(焼結強度)を容易に確実に高めることができる。
また、本発明に係る金属−炭素粒子複合材は、パワーモジュール用冷却器の材料だけではなくそれ以外の用途の材料としても使用可能である。
本発明は、金属マトリックスと金属マトリックス中に分散した炭素粒子(鱗片状黒鉛粒子及び炭素繊維)とを含む金属−炭素粒子複合材、その製造方法、及び、パワーモジュール用冷却器に利用可能である。
1、101:鱗片状黒鉛粒子分散層
1a、101a:鱗片状黒鉛粒子
2、102:炭素繊維分散層
2a、102a:炭素繊維
3、103:金属層
9、109:金属マトリックス
11:鱗片状黒鉛粒子層
12:第1金属箔
13、113:鱗片状黒鉛粒子塗工箔
14:炭素繊維層
15:第2金属箔
16、116:炭素繊維塗工箔
20、120:積層体
30、130:金属−炭素粒子複合材
40:パワーモジュール用冷却器

Claims (5)

  1. 金属マトリックス中に炭素粒子としての鱗片状黒鉛粒子が分散した複数の鱗片状黒鉛粒子分散層と、前記金属マトリックス中に炭素粒子としての炭素繊維が分散した複数の炭素繊維分散層と、前記金属マトリックスで形成された複数の金属層と、を積層状に備えるとともに、
    前記複数の鱗片状黒鉛粒子分散層と前記複数の炭素繊維分散層と前記複数の金属層とが接合一体化されており、
    前記鱗片状黒鉛粒子分散層及び前記炭素繊維分散層のうち一方と前記金属層とは複合材の厚さ方向の体に亘って交互に積層された状態に配列しており、
    さらに、前記鱗片状黒鉛粒子分散層及び前記炭素繊維分散層の全ては複合材の厚さ方向に前記金属層と隣接した状態に配列しており、
    複合材の厚さ方向の各部位によって前記金属マトリックス中に含有されている前記鱗片状黒鉛粒子と前記炭素繊維との体積割合が異なっている金属−炭素粒子複合材。
  2. さらに、前記鱗片状黒鉛粒子分散層と前記炭素繊維分散層と前記金属層は、複合材の厚さ方向の各部位毎に異なる規則的な積層順序で積層された状態に配列している請求項1記載の金属−炭素粒子複合材。
  3. 積層状に接合一体化された複数の冷却器構成層を備え、
    前記複数の構成層のうち少なくとも一つが請求項1又は2記載の金属−炭素粒子複合材製であるパワーモジュール用冷却器。
  4. 炭素粒子としての鱗片状黒鉛粒子と第1バインダとを含有する第1塗工液を第1金属箔上に塗工し乾燥することにより、前記第1金属箔上に鱗片状黒鉛粒子層が形成された鱗片状黒鉛粒子塗工箔を得る工程と、
    炭素粒子としての炭素繊維と第2バインダとを含有する第2塗工液を第2金属箔上に塗工し乾燥することにより、前記第2金属箔上に炭素繊維層が形成された炭素繊維塗工箔を得る工程と、
    複数の前記鱗片状黒鉛粒子塗工箔と複数の前記炭素繊維塗工箔とが積層された状態の積層体を形成する工程と、
    前記積層体を加熱することにより前記複数の前記鱗片状黒鉛粒子塗工箔と前記複数の前記炭素繊維塗工箔を一括して接合一体化する工程と、
    を含み、
    前記積層体を形成する工程では、前記積層体を、前記積層体の厚さ方向の各部位によって前記鱗片状黒鉛粒子塗工箔と前記炭素繊維塗工箔との枚数比が異なるように形成する金属−炭素粒子複合材の製造方法。
  5. さらに、前記積層体を形成する工程では、前記積層体を、前記鱗片状黒鉛粒子塗工箔と前記炭素繊維塗工箔が前記積層体の厚さ方向の各部位において規則的な積層順序で積層された状態になるように形成する請求項4記載の金属−炭素粒子複合材の製造方法。
JP2016220275A 2016-11-11 2016-11-11 金属−炭素粒子複合材及びその製造方法 Active JP6829584B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220275A JP6829584B2 (ja) 2016-11-11 2016-11-11 金属−炭素粒子複合材及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220275A JP6829584B2 (ja) 2016-11-11 2016-11-11 金属−炭素粒子複合材及びその製造方法

Publications (2)

Publication Number Publication Date
JP2018075617A JP2018075617A (ja) 2018-05-17
JP6829584B2 true JP6829584B2 (ja) 2021-02-10

Family

ID=62149646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220275A Active JP6829584B2 (ja) 2016-11-11 2016-11-11 金属−炭素粒子複合材及びその製造方法

Country Status (1)

Country Link
JP (1) JP6829584B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273378B2 (ja) * 2018-12-04 2023-05-15 株式会社レゾナック 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
JP7109348B2 (ja) * 2018-12-04 2022-07-29 昭和電工株式会社 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
CN113183565B (zh) * 2021-06-03 2023-02-07 河南工业大学 一种高速列车用碳纤维增强型滑动集电材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011925A (ja) * 1973-06-08 1975-02-06
JPH0651894B2 (ja) * 1986-12-02 1994-07-06 日立化成工業株式会社 金属黒鉛質ブラシの製造法
JP2000129413A (ja) * 1998-08-21 2000-05-09 Osaka Gas Co Ltd 炭素繊維含有金属材料およびその製造方法
JP4214034B2 (ja) * 2003-10-30 2009-01-28 庄治郎 落合 金属基炭素繊維強化複合材料およびその製造方法
WO2006051782A1 (ja) * 2004-11-09 2006-05-18 Shimane Prefectural Government 金属基炭素繊維複合材料およびその製造方法

Also Published As

Publication number Publication date
JP2018075617A (ja) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6755779B2 (ja) 金属−炭素粒子複合材及びその製造方法
JP4711165B2 (ja) 高熱伝導・低熱膨脹複合体およびその製造方法
JP5488619B2 (ja) パワーモジュール用基板及びパワーモジュール
JP6064886B2 (ja) 熱伝導性応力緩和構造体
JP6829584B2 (ja) 金属−炭素粒子複合材及びその製造方法
JP2017007172A (ja) アルミニウムと炭素粒子との複合体及びその製造方法
WO2011065457A1 (ja) 積層材およびその製造方法
WO2021149802A1 (ja) 銅/グラフェン接合体とその製造方法、および銅/グラフェン接合構造
JPWO2017110140A1 (ja) 金属と炭素繊維との複合材の製造方法
JP6821409B2 (ja) 金属−炭素粒子複合材の製造方法
JP6383670B2 (ja) アルミニウムと炭素粒子との複合材の製造方法及び絶縁基板の製造方法
JP6482980B2 (ja) アルミニウムと炭素粒子との複合体及び絶縁基板
JP6619178B2 (ja) アルミニウムと炭素粒子との複合体及び絶縁基板
JP6498040B2 (ja) アルミニウムと炭素粒子との複合体及び絶縁基板
JP7328941B2 (ja) グラファイト積層体、グラファイトプレート、およびグラファイト積層体の製造方法
JP2020191347A (ja) 冷却装置
JP6670605B2 (ja) 絶縁基板の製造方法
JP2021088502A (ja) セラミックス/銅/グラフェン接合体とその製造方法、およびセラミックス/銅/グラフェン接合構造
JP6875211B2 (ja) 金属−炭素粒子複合材の製造方法
JP7302446B2 (ja) 放熱装置
WO2019106874A1 (ja) 絶縁基板及び放熱装置
JP7273378B2 (ja) 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
JP7109348B2 (ja) 粒子塗工箔の製造方法及び金属-粒子複合材の製造方法
JP6947318B2 (ja) 銅/グラフェン接合体とその製造方法、および銅/グラフェン接合構造
JP2016152241A (ja) 絶縁基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210122

R150 Certificate of patent or registration of utility model

Ref document number: 6829584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350