WO2021109467A1 - 生产l-精氨酸的基因工程菌及其构建方法与应用 - Google Patents
生产l-精氨酸的基因工程菌及其构建方法与应用 Download PDFInfo
- Publication number
- WO2021109467A1 WO2021109467A1 PCT/CN2020/090626 CN2020090626W WO2021109467A1 WO 2021109467 A1 WO2021109467 A1 WO 2021109467A1 CN 2020090626 W CN2020090626 W CN 2020090626W WO 2021109467 A1 WO2021109467 A1 WO 2021109467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- arginine
- fragment
- encoding
- coli
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 106
- 241000894006 Bacteria Species 0.000 title claims abstract description 56
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 title claims abstract description 52
- 238000010276 construction Methods 0.000 title claims abstract description 48
- 239000004475 Arginine Substances 0.000 claims abstract description 59
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims abstract description 58
- 235000009697 arginine Nutrition 0.000 claims abstract description 58
- 241000588724 Escherichia coli Species 0.000 claims abstract description 56
- 229930064664 L-arginine Natural products 0.000 claims abstract description 50
- 235000014852 L-arginine Nutrition 0.000 claims abstract description 50
- 239000013612 plasmid Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 38
- 108090000790 Enzymes Proteins 0.000 claims abstract description 17
- 102000004190 Enzymes Human genes 0.000 claims abstract description 14
- 230000006696 biosynthetic metabolic pathway Effects 0.000 claims abstract description 12
- 239000012634 fragment Substances 0.000 claims description 181
- 238000011144 upstream manufacturing Methods 0.000 claims description 84
- 238000000855 fermentation Methods 0.000 claims description 68
- 230000004151 fermentation Effects 0.000 claims description 68
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 108020004414 DNA Proteins 0.000 claims description 26
- 230000010354 integration Effects 0.000 claims description 25
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 24
- 239000008103 glucose Substances 0.000 claims description 24
- 101150029940 argJ gene Proteins 0.000 claims description 21
- 241000186226 Corynebacterium glutamicum Species 0.000 claims description 19
- 241001302584 Escherichia coli str. K-12 substr. W3110 Species 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 17
- 238000013461 design Methods 0.000 claims description 17
- 101150019517 pyrAB gene Proteins 0.000 claims description 17
- 101150070764 carB gene Proteins 0.000 claims description 16
- 101150068782 pyrAA gene Proteins 0.000 claims description 16
- 101150014229 carA gene Proteins 0.000 claims description 15
- 101100434436 Escherichia coli (strain K12) adiA gene Proteins 0.000 claims description 14
- 241001103870 Adia Species 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 241001132374 Asta Species 0.000 claims description 12
- 108030006759 Acetylornithine deacetylases Proteins 0.000 claims description 11
- 102100032252 Antizyme inhibitor 2 Human genes 0.000 claims description 11
- 101000798222 Homo sapiens Antizyme inhibitor 2 Proteins 0.000 claims description 11
- 241001415395 Spea Species 0.000 claims description 11
- 101150118463 argG gene Proteins 0.000 claims description 11
- 101150008194 argB gene Proteins 0.000 claims description 10
- 101150070427 argC gene Proteins 0.000 claims description 10
- 101150050866 argD gene Proteins 0.000 claims description 10
- 101150056313 argF gene Proteins 0.000 claims description 10
- 101150054318 argH gene Proteins 0.000 claims description 10
- 241000370685 Arge Species 0.000 claims description 9
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 9
- 101100096227 Bacteroides fragilis (strain 638R) argF' gene Proteins 0.000 claims description 9
- 101100295959 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) arcB gene Proteins 0.000 claims description 9
- 101100354186 Mycoplasma capricolum subsp. capricolum (strain California kid / ATCC 27343 / NCTC 10154) ptcA gene Proteins 0.000 claims description 9
- 101100217185 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) aruC gene Proteins 0.000 claims description 9
- 101100022072 Sulfolobus acidocaldarius (strain ATCC 33909 / DSM 639 / JCM 8929 / NBRC 15157 / NCIMB 11770) lysJ gene Proteins 0.000 claims description 9
- 101150089042 argC2 gene Proteins 0.000 claims description 9
- 108010061206 arginine succinyltransferase Proteins 0.000 claims description 9
- 101150044424 lysE gene Proteins 0.000 claims description 9
- 101150094164 lysY gene Proteins 0.000 claims description 9
- 101150039489 lysZ gene Proteins 0.000 claims description 9
- 238000003209 gene knockout Methods 0.000 claims description 8
- 108091033409 CRISPR Proteins 0.000 claims description 7
- 101710113083 Carbamoyl-phosphate synthase Proteins 0.000 claims description 7
- 108010078791 Carrier Proteins Proteins 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000010362 genome editing Methods 0.000 claims description 7
- 239000013598 vector Substances 0.000 claims description 7
- 230000008030 elimination Effects 0.000 claims description 5
- 238000003379 elimination reaction Methods 0.000 claims description 5
- 101150063727 yjiT gene Proteins 0.000 claims description 5
- 244000063299 Bacillus subtilis Species 0.000 claims description 4
- 101150020087 ilvG gene Proteins 0.000 claims description 4
- 101150103191 yghX gene Proteins 0.000 claims description 4
- 238000010354 CRISPR gene editing Methods 0.000 claims description 3
- 241000149010 Thespea Species 0.000 claims description 3
- 108091008053 gene clusters Proteins 0.000 claims description 3
- 239000002773 nucleotide Substances 0.000 claims description 3
- 125000003729 nucleotide group Chemical group 0.000 claims description 3
- 241000660147 Escherichia coli str. K-12 substr. MG1655 Species 0.000 claims description 2
- 108010050322 glutamate acetyltransferase Proteins 0.000 claims description 2
- 230000001404 mediated effect Effects 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 claims description 2
- 241000894007 species Species 0.000 claims 1
- 230000002503 metabolic effect Effects 0.000 abstract description 6
- 230000002068 genetic effect Effects 0.000 abstract description 5
- 230000004907 flux Effects 0.000 abstract description 4
- 235000001014 amino acid Nutrition 0.000 abstract description 3
- 150000001413 amino acids Chemical class 0.000 abstract description 3
- 230000037361 pathway Effects 0.000 abstract description 3
- 102000003960 Ligases Human genes 0.000 abstract 1
- 108090000364 Ligases Proteins 0.000 abstract 1
- 101150010487 are gene Proteins 0.000 abstract 1
- 238000012795 verification Methods 0.000 description 25
- 238000001962 electrophoresis Methods 0.000 description 19
- 239000002609 medium Substances 0.000 description 18
- 238000012408 PCR amplification Methods 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 101150026435 astA gene Proteins 0.000 description 13
- 238000009825 accumulation Methods 0.000 description 10
- 239000003550 marker Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000000137 annealing Methods 0.000 description 9
- 238000009776 industrial production Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 229960000268 spectinomycin Drugs 0.000 description 8
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000002703 mutagenesis Methods 0.000 description 7
- 231100000350 mutagenesis Toxicity 0.000 description 7
- 101150059284 adiA gene Proteins 0.000 description 6
- 229960000723 ampicillin Drugs 0.000 description 6
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 238000011218 seed culture Methods 0.000 description 6
- 239000001888 Peptone Substances 0.000 description 5
- 108010080698 Peptones Proteins 0.000 description 5
- 101150105638 argE gene Proteins 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 235000019319 peptone Nutrition 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 101150038942 speA gene Proteins 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 229940041514 candida albicans extract Drugs 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000012269 metabolic engineering Methods 0.000 description 4
- 230000037353 metabolic pathway Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 239000012138 yeast extract Substances 0.000 description 4
- 241000424760 Corynebacterium crenatum Species 0.000 description 3
- 101100379627 Dictyostelium discoideum argJ gene Proteins 0.000 description 3
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 101150072425 arg7 gene Proteins 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 101150005709 ARG4 gene Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 102100021723 Arginase-1 Human genes 0.000 description 2
- 102100030356 Arginase-2, mitochondrial Human genes 0.000 description 2
- 241000186216 Corynebacterium Species 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 108020005004 Guide RNA Proteins 0.000 description 2
- 101000752037 Homo sapiens Arginase-1 Proteins 0.000 description 2
- 101000792835 Homo sapiens Arginase-2, mitochondrial Proteins 0.000 description 2
- 101000800287 Homo sapiens Tubulointerstitial nephritis antigen-like Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 101100109397 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) arg-8 gene Proteins 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 102000018120 Recombinases Human genes 0.000 description 2
- 108010091086 Recombinases Proteins 0.000 description 2
- IDIDJDIHTAOVLG-VKHMYHEASA-N S-methylcysteine Chemical compound CSC[C@H](N)C(O)=O IDIDJDIHTAOVLG-VKHMYHEASA-N 0.000 description 2
- 101100166068 Schizosaccharomyces pombe (strain 972 / ATCC 24843) arg5 gene Proteins 0.000 description 2
- 101100404032 Schizosaccharomyces pombe (strain 972 / ATCC 24843) arg6 gene Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 101100004044 Vigna radiata var. radiata AUX22B gene Proteins 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- FFQKYPRQEYGKAF-UHFFFAOYSA-N carbamoyl phosphate Chemical compound NC(=O)OP(O)(O)=O FFQKYPRQEYGKAF-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009123 feedback regulation Effects 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000012257 pre-denaturation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000007065 protein hydrolysis Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 230000008521 reorganization Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- -1 ArgB Proteins 0.000 description 1
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 description 1
- 238000010356 CRISPR-Cas9 genome editing Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100163308 Clostridium perfringens (strain 13 / Type A) argR1 gene Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241001485655 Corynebacterium glutamicum ATCC 13032 Species 0.000 description 1
- ODKSFYDXXFIFQN-SCSAIBSYSA-N D-arginine Chemical compound OC(=O)[C@H](N)CCCNC(N)=N ODKSFYDXXFIFQN-SCSAIBSYSA-N 0.000 description 1
- 229930028154 D-arginine Natural products 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- QUOGESRFPZDMMT-UHFFFAOYSA-N L-Homoarginine Natural products OC(=O)C(N)CCCCNC(N)=N QUOGESRFPZDMMT-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- QUOGESRFPZDMMT-YFKPBYRVSA-N L-homoarginine Chemical compound OC(=O)[C@@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-YFKPBYRVSA-N 0.000 description 1
- ACFIXJIJDZMPPO-NNYOXOHSSA-N NADPH Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](OP(O)(O)=O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 ACFIXJIJDZMPPO-NNYOXOHSSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- IDIDJDIHTAOVLG-UHFFFAOYSA-N S-methyl-L-cysteine Natural products CSCC(N)C(O)=O IDIDJDIHTAOVLG-UHFFFAOYSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 241000319304 [Brevibacterium] flavum Species 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000037354 amino acid metabolism Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 101150089004 argR gene Proteins 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007849 functional defect Effects 0.000 description 1
- 238000012226 gene silencing method Methods 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002718 pyrimidine nucleoside Substances 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 102220091420 rs149941106 Human genes 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 101150022778 speF gene Proteins 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- BRBKOPJOKNSWSG-UHFFFAOYSA-N sulfaguanidine Chemical compound NC(=N)NS(=O)(=O)C1=CC=C(N)C=C1 BRBKOPJOKNSWSG-UHFFFAOYSA-N 0.000 description 1
- 229960004257 sulfaguanidine Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 101150079095 yjhX gene Proteins 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/10—Citrulline; Arginine; Ornithine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/77—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/78—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
- C12N9/80—Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/93—Ligases (6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/01—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
- C12Y203/01109—Arginine N-succinyltransferase (2.3.1.109)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y305/00—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
- C12Y305/01—Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
- C12Y305/01016—Acetylornithine deacetylase (3.5.1.16)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01019—Arginine decarboxylase (4.1.1.19)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y603/00—Ligases forming carbon-nitrogen bonds (6.3)
- C12Y603/04—Other carbon-nitrogen ligases (6.3.4)
- C12Y603/04016—Carbamoyl-phosphate synthase (ammonia) (6.3.4.16)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y603/00—Ligases forming carbon-nitrogen bonds (6.3)
- C12Y603/05—Carbon-nitrogen ligases with glutamine as amido-N-donor (6.3.5)
- C12Y603/05005—Carbamoyl-phosphate synthase (glutamine-hydrolysing) (6.3.5.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/101—Plasmid DNA for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/15—Corynebacterium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/185—Escherichia
- C12R2001/19—Escherichia coli
Definitions
- the invention belongs to the technical field of genetic engineering, and specifically relates to a genetically engineered bacterium for stably and efficiently producing L-arginine, and a construction method and application thereof.
- L-arginine is a semi-essential basic amino acid or conditionally essential amino acid in humans and animals, and has important biochemical and physiological functions. At present, L-arginine has been widely used in medicine, industry, food, cosmetics, animal husbandry and other fields, and has important economic and social value.
- L-arginine mainly include protein hydrolysis and microbial fermentation. Compared with protein hydrolysis extraction, microbial fermentation has the advantages of relatively simple production process, relatively small impact on the environment, and high product purity. It is suitable for large-scale production. Industrial production.
- the main strain of arginine production is Corynebacterium glutamicum.
- the existing fermentation process of Corynebacterium glutamicum is subject to auxiliary materials such as The quality of corn steep liquor has a greater impact and production fluctuates easily.
- the gene editing of Corynebacterium glutamicum is difficult, so that in the existing arginine strains, plasmid expression vectors are often used to enhance the key genes related to arginine synthesis.
- multiple copies of the plasmid cause certain effects on the growth of the bacteria during the fermentation process.
- arginine synthesis metabolic pathway Since there are many feedback controls in the arginine synthesis metabolic pathway, and there are many arginine metabolic pathways, the metabolic network involved in the precursors required for the synthesis of arginine is complex, so the initial research and development of arginine industrial production strains mainly used traditional Mutagenesis combined with arginine structural analogue resistance screening method.
- the selected starting strains are mainly Brevibacterium flavum, Corynebacterium crenatum, and Corynebacterium glutamicum.
- the research strategy focuses on screening arginine structural analogue mutants to relieve feedback regulation during arginine synthesis and improve intracellular The accumulation of L-arginine.
- Li Shaoping was screened by NTG stepwise mutagenesis and found a strain with histidine deficiency, sulfaguanidine resistance, D-arginine resistance, homoarginine resistance, and S-methylcysteine
- the resistant Corynebacterium crenatum (CN201010610917.5) was verified by fermentation experiments, and the accumulation of L-arginine was 32.8g/L when it was cultured in a 5L fermentor for 96h.
- the production strains obtained through mutagenesis and structural analog screening are difficult to be put into mass industrial production due to the disadvantages of poor genetic stability and easy back mutation.
- Corynebacterium glutamicum has no genes involved in the degradation of arginine; and glutamic acid is one of the main precursors of arginine synthesis, and the intracellular glucose taken up by Corynebacterium glutamicum undergoes the glycolytic pathway
- the metabolic flux for producing glutamic acid is relatively strong, so Corynebacterium glutamicum is the main choice for constructing L-arginine producing strains.
- the above-mentioned production strains generally have the problems of long production cycle and low production intensity, and the key arginine synthesis gene is connected to the expression vector during the strain construction process to increase the transcription amount of key enzymes, thereby enhancing the metabolism of arginine synthesis pathway
- the expression vector is easy to lose or need to add a certain selective pressure, and it is difficult to put into industrial production.
- the gene argA214 (H15Y) is used to relieve the feedback inhibition of arginine to ArgA, knock out the arginine degradation related gene adiA, knock out the ornithine degradation related genes speC and speF, so that the carbon flux of the intermediate metabolites flows more to L -Arginine.
- the accumulation of L-arginine reached 11.64g/L.
- the conversion rate is 0.44g arginine/g glucose, and the production intensity is 0.29g arginine/L/h.
- the purpose of the present invention is to provide a genetically engineered bacterium for the stable and efficient production of L-arginine and its construction method and application.
- the engineered bacterium has a good industrial application prospect.
- the present invention provides a genetically engineered strain for producing L-arginine, which contains the genes pyrAA and pyrAB encoding carbamoyl phosphate synthase.
- the genetically engineered strain uses Escherichia coli or Corynebacterium glutamicum as the starting strain; for example, E. coli W3110 or E. coli MG1655 as the starting strain.
- the pyrAA and pyrAB genes are integrated into the yjiT gene locus of Escherichia coli.
- the pyrAA and pyrAB are derived from Bacillus subtilis, specifically, the pyrAA and pyrAB are derived from the gene encoding carbamoyl phosphate synthase in B. subtilis A260.
- the genetically engineered strain further contains genes encoding L-arginine biosynthetic pathway enzymes, and the -arginine biosynthetic pathway enzymes are selected from one or more of the following enzymes: argC, argJ , ArgB, argD, argF, argG, argH; the gene encoding the L-arginine biosynthetic pathway enzyme is derived from Corynebacterium glutamicum (Corynebacterium glutamicum ATCC13032); in one embodiment, the encoding L-arginine The gene for the enzyme of the amino acid biosynthetic pathway is initiated by the P trc promoter; in one embodiment, the gene encoding the enzyme of the L-arginine biosynthetic pathway is integrated into the yghX gene locus of Escherichia coli.
- the genetically engineered strain further contains a gene lysE (NCBI Reference Sequence: WP_143758438.1) encoding an arginine transporter, and the transporter gene is derived from Corynebacterium efficiency; in one implementation In the scheme, the lysE gene is integrated into the ilvG gene locus of Escherichia coli.
- lysE NCBI Reference Sequence: WP_143758438.1
- the genetically engineered strain does not contain a gene encoding L-arginine, such as knocking out one or more of the following genes: a gene encoding arginine decarboxylase, a gene encoding arginine succinyl transfer Enzyme gene, gene encoding acetylornithine deacetylase.
- the gene encoding arginine decarboxylase includes at least one of speA (NCBI-GeneID: 12933352) and adiA (NCBI-GeneID: 12934085); the gene encoding arginine succinyltransferase is astA (NCBI -GeneID: 12933241); the gene encoding acetylornithine deacetylase is argE (NCBI-GeneID: 12930574).
- the genetically engineered strain is Escherichia coli with speA, adiA, and astA genes knocked out at the same time.
- the genetically engineered strain contains pyrAA, pyrAB, argC, argJ, argB, argD, argF, argG, argH, and lysE genes. In one embodiment, the genetically engineered strain does not contain speA, adiA, astA and argE genes.
- the pyrAA, pyrAB, argC, argJ, argB, argD, argF, argG, argH, lysE, speA, adiA, astA and argE genes are not limited to wild-type genes, and may also be mutants or mutants encoding corresponding proteins.
- the artificially modified gene includes substitution, deletion or insertion of one or more amino acid residues at one or more sites, as long as the protein encoded by the mutant or the artificially modified gene has the corresponding activity and has no functional defects. These genes have been registered in GenBank, and those skilled in the art can obtain these genes by PCR.
- the pyrAA gene is NCBI-GeneID: 937368
- the pyrAB gene is NCBI-GeneID: 936608
- the argC gene is NCBI-GeneID: 1019370
- the argJ gene is NCBI-GeneID: 1019371
- the argB gene is NCBI-GeneID: 1019372
- the argD gene is NCBI-GeneID: 1019372.
- the argF gene is NCBI-GeneID: 1019374
- the argG gene is NCBI-GeneID: 1019376
- the argH gene is NCBI-GeneID: 1019377
- the lysE gene is the nucleotide sequence shown in SEQ ID NO: 68 ( NCBI Sequence ID: WP_143758438.1);
- speA gene is NCBI-GeneID: 12933352
- adiA gene is NCBI-GeneID: 12934085
- astA gene is NCBI-GeneID: 12933241;
- argE gene is NCBI-GeneID: 12930574.
- the present invention provides a method for constructing the above genetically engineered strain, which includes the following steps: (1) pyrAA and pyrAB genes are integrated into the genome of the starting strain.
- the starting strain is Escherichia coli, such as E. coli W3110 (ATCC27325).
- the construction method further includes optionally one or more of the following steps:
- Integrating arginine biosynthetic pathway enzyme genes including one or more of argC, argJ, argB, argD, argF, argG, and argH; and/or integrating the gene lysE encoding arginine transporter;
- the gene includes at least one of speA and adiA; the gene encoding arginine succinyltransferase is astA; the gene encoding acetylornithine deacetylase is argE.
- the construction method includes the following steps:
- steps (1) to (5) of the above construction method of the present invention is not limited, and can be carried out in any order that can be implemented by a person skilled in the art.
- steps (1) to (5) are carried out in sequence.
- gene knockout or gene silencing method known in the art can be used to achieve the above-mentioned gene knockout, and any method known in the art can also be used to achieve gene integration, such as homologous recombination, overlap PCR, mutagenesis screening or Gene editing and other technologies.
- gene knockout can be done by removing a specific region in the gene so that it does not have the function of expressing the target protein, or by introducing site-specific mutations in the coding region or promoter region of one or more nucleotide sequence substitutions, Deletions, insertions, etc., chemical reagents can also be used to decrease or disappear the transcription of the specific gene.
- the construction method includes using CRISPR/Cas9-mediated gene editing technology for gene integration and knockout.
- the construction method includes constructing a recombinant fragment and a pGRB plasmid.
- the construction of the pGRB plasmid includes: designing a target sequence, preparing a DNA fragment containing the target sequence, and recombining the DNA fragment containing the target sequence with a linearized vector fragment; in a specific embodiment, the The target sequence is 5'-NGG-3'.
- constructing a recombinant fragment in the construction method includes constructing a gene-integrated recombinant fragment or constructing a gene knock-out recombinant fragment.
- the steps of constructing a recombinant fragment of gene integration include: using the genome of the starting strain as a template, designing upstream and downstream homology arm primers according to the upstream and downstream sequences of the target gene to be inserted into the site, and designing primers according to the target genome to amplify the target gene Fragments, and then recombined fragments are obtained by PCR overlap technology.
- the steps of constructing a knock-out recombinant fragment include: using the upstream and downstream sequences of the gene to be knocked out as a template, designing primers for the upstream and downstream homology arms; respectively amplifying the upstream and downstream homology arms by PCR, and then preparing the recombination by overlapping PCR Fragment.
- the construction method includes the steps of simultaneously transforming the pGRB plasmid and the above-mentioned recombinant fragment into electrocompetent cells containing pREDCas9, and removing the plasmid to obtain a recombinant genetically engineered strain.
- the present invention provides the application of the above genetically engineered bacteria in the preparation of L-arginine.
- the present invention also provides a method for fermentation and production of L-arginine by using the above-mentioned genetically engineered bacteria, which includes: contacting the above-mentioned genetically engineered strain of Escherichia coli with a fermentation medium, performing fermentation and cultivation, and preparing L-arginine.
- the fermentation culture includes shake flask fermentation or fermentor fermentation.
- the inoculation amount of shake flask fermentation is 10-15%
- the fermentation conditions are 37° C., 200 r/min shaking culture
- the pH is maintained at 7.0-7.2 during the fermentation process
- the pH can be adjusted by adding ammonia water.
- a glucose solution can also be added to maintain the fermentation.
- the mass volume concentration of the glucose solution is 60% (m/v).
- the fermentation time of the shake flask fermentation is 26-30h.
- the supplementary amount of the glucose solution is not particularly limited, and the glucose concentration in the fermentation broth can be maintained at 5 g/L or less, for example, 1-5 g/L.
- the shake flask fermentation uses a 500m L Erlenmeyer flask for fermentation.
- the concentration of L-arginine in the fermentation broth can reach 30-32g/L.
- the inoculum during fermentation in the fermentor is 15-20%, the fermentation temperature is 35°C, and the dissolved oxygen is between 25-35%.
- the pH is controlled to stabilize at 7.0-7.2, and the pH can be adjusted by adding ammonia; when the glucose in the medium is consumed, 80% (m/v) glucose solution is added to maintain the glucose concentration in the fermentation medium In 0.1-5g/L.
- the fermentor fermentation adopts a 5L fermentor for fermentation. After culturing in a 5L fermentor for 50-55h, the accumulation of L-arginine reached 130-135g/L. The conversion rate reaches 0.48g arginine/g glucose, and the production intensity reaches 2.5g arginine/L/h.
- the fermentation medium of Escherichia coli known in the art can be used for fermentation.
- the fermentation medium composition of shake flask fermentation is: glucose 20-40g/L, yeast extract 1-3g/L, peptone 2-3g/L, K 2 HPO 4 3-6g/L, MgSO 4 ⁇ 7H 2 O 1-2g/L, FeSO 4 ⁇ 7H 2 O 15-20mg/L, MnSO 4 ⁇ 7H 2 O 15-20mg/L, V B1 , V B3 , V B5 , V B12 , V H each 1 -3mg/L, the balance is water, pH 7.0-7.2.
- the composition of the fermentation medium for fermentation in the fermentor is: glucose 10-25g/L, yeast extract 1-5g/L, peptone 1-5g/L, K 2 HPO 4 1-5g/L, MgSO 4 ⁇ 7H 2 O 1-3g/L, FeSO 4 ⁇ 7H 2 O 10-30mg/L, MnSO 4 ⁇ H 2 O 10-30mg/L, V B1 , V B3 , V B5 , V B12 , V H each 1-3mg/L, the balance is water, pH 7.0-7.2.
- the present invention selects Escherichia coli with short growth cycle, clear metabolic pathway and convenient molecular operation as the starting strain.
- the arginine in E. coli The synthesis pathway and the metabolic flow related to arginine in the entire amino acid metabolism network were analyzed and reconstructed to obtain a genetically engineered strain with a clear genetic background, no plasmid, no mutagenesis, and stable and efficient production of L-arginine .
- the Escherichia coli obtained by the present invention constructs the circulation path of L-arginine, improves the flux of L-arginine and the supply of precursors, reduces the degradation of L-arginine, and promotes the accumulation and accumulation of L-arginine. Transport, thereby effectively increasing the production of L-arginine.
- the genetically engineered bacteria for producing L-arginine of the present invention can accumulate 130-135 g/L of L-arginine after being cultured in a 5L fermentor for 50-55 hours.
- the conversion rate can reach 0.48g arginine/g glucose, and the production intensity can reach 2.5g arginine/L/h.
- the accumulation of L-arginine is 92.5g/L, the conversion rate is 0.35g arginine/g glucose, the maximum production intensity is 0.9g arginine/L/h)
- the L-arginine production capacity of this strain is stronger, and it has not undergone mutagenesis. It has the advantages of processing, no plasmid carrier, short fermentation cycle, clear genetic background, stable metabolism, high production intensity, etc., and has good industrial application prospects.
- Figure 1 (a) pREDCas9 plasmid map, (b) pGRB plasmid map.
- Figure 2 Construction and verification electrophoresis of speA gene knockout fragment. Among them: M: 1kb DNA marker; 1: upstream homology arm; 2: downstream homology arm; 3: overlapping fragments; 4: original bacteria control; 5: positive bacteria identification fragments.
- Figure 3 Construction and verification electropherogram of adiA gene knockout fragment. Among them: M: 1kb DNA marker; 1: upstream homology arm; 2: downstream homology arm; 3: overlapping fragments; 4: original bacteria control; 5: positive bacteria identification fragments.
- Figure 4 Construction and verification electropherogram of astA gene knockout fragment. Among them: M: 1kb DNA marker; 1: upstream homology arm; 2: downstream homology arm; 3: overlapping fragments; 4: original bacteria control; 5: positive bacteria identification fragments.
- Figure 5 Construction and verification electropherogram of argJ gene integration fragment. Among them: M: 1kb DNA marker; 1: upstream homology arm; 2: argJ fragment; 3: downstream homology arm; 4: overlapping fragment; 5: original bacteria control; 6: positive bacteria identification fragment.
- Figure 6 Construction and verification electropherogram of argC-argJ integration fragment.
- M 1kb DNA marker
- 1 upstream homology arm
- 2 argC-argJ fragment
- 3 downstream homology arm
- 4 overlapping fragment
- 5 original bacteria control
- 6 positive bacteria identification fragment.
- Figure 7 Construction and verification electropherogram of argB-argD-argF integration fragment.
- M 1kb DNA marker
- 1 argB-argD-argF upstream fragment-argB-argD-argF gene fragment
- 2 downstream homology arm
- 3 overlapping fragment
- 4 original bacteria control
- 5 positive bacteria identification fragment .
- Figure 8 Construction and verification electropherogram of argG-argH integration fragment.
- M 1kb DNA marker
- 1 upstream homology arm
- 2 argG-argH fragment
- 3 downstream homology arm
- 4 overlapping fragment
- 5 original bacteria control
- 6 positive bacteria identification fragment.
- Figure 9 Construction and verification electropherogram of the first integrated fragment of pyrAA-pyrAB.
- M 1kb DNA marker
- 1 upstream homology arm
- 2 1-pyrAA-pyrAB fragment
- 3 downstream homology arm
- 4 overlapping fragment
- 5 original bacteria control
- 6 positive bacteria identification fragment.
- Figure 10 Construction and verification electropherogram of the second integration fragment of pyrAA-pyrAB.
- M 1kb DNA marker
- 1 upstream fragment of pyrAA-pyrAA-pyrAB-downstream homology arm
- 2 downstream homology arm
- 3 overlapping fragment
- 4 original bacteria control
- 5 positive bacteria identification fragment.
- Figure 11 lysE integration fragment construction and verification electropherogram.
- M 1kb DNA marker
- 1 upstream homology arm
- 2 lysE fragment
- 3 downstream homology arm
- 4 overlapping fragment
- 5 original bacteria control
- 6 positive bacteria identification fragment.
- Figure 12 Fed-batch fermentation process curve of strain E.coli W3110 ARG10 in a 5L fermentor.
- the gene editing method used in the present invention is carried out with reference to the literature (Li Y, Lin Z, Huang C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated gene editing. Metabolic engineering, 2015, 31: 13-21.), The two plasmid maps used in this method are shown in Figure 1.
- pREDCas9 carries gRNA expression plasmid pGRB elimination system, lambda phage Red recombination system and Cas9 protein expression system, spectinomycin resistance (working concentration: 100mg/L), cultured at 32°C;
- pGRB uses pUC18 as the backbone, including the promoter J23100, gRNA-Cas9 binding region sequence and terminator sequence, ampicillin resistance (working concentration: 100mg/L), cultured at 37°C.
- the purpose of constructing the plasmid pGRB is to transcribe the corresponding gRNA to form a complex with the Cas9 protein, and to recognize the target gene target site through base pairing and PAM to achieve the target DNA double-strand break.
- the pGRB plasmid was constructed by recombining the DNA fragment containing the target sequence with the linearized vector fragment.
- Design primers 5'-linearized vector end sequence (15bp)-restriction site-target sequence (not including PAM sequence)-linearized vector end sequence (15bp)-3' and its reverse complementary primer, through a single
- the annealing of stranded DNA produces a DNA fragment containing the target sequence.
- Reaction conditions pre-denaturation 95°C, 5min; annealing 30-50°C, 1min.
- the annealing system is as follows:
- the linearization of the vector adopts the method of inverse PCR amplification.
- the reorganization system is shown in Table 2. All recombinases used are One Step Cloning Kit series of enzymes, recombination conditions: 37°C, 30min.
- the PCR-positive colonies were inoculated into LB medium containing 100mg/L ampicillin and cultured overnight to preserve the bacteria.
- the plasmids were extracted and identified by restriction enzyme digestion.
- the recombination fragment used for knockout consists of the upstream and downstream homology arms of the gene to be knocked out (upstream homology arm-downstream homology arm); the recombination fragment used for integration is the upstream and downstream homology arms of the integration site and the homology arms to be integrated
- the composition of the gene fragments (upstream homology arm-target gene-downstream homology arm).
- primer design software primer5 use the upstream and downstream sequences of the gene to be knocked out or the site to be integrated as a template to design the upstream and downstream homology arm primers (amplification length is about 400-500bp); use the gene to be integrated as a template to design the integrated gene
- the amplification primers After amplifying the upstream and downstream homology arms and the target gene fragments by PCR, the recombinant fragments are prepared by overlapping PCR.
- Table 3 The PCR system and method are shown in Table 3:
- PCR reaction conditions (PrimeSTAR HS enzyme): pre-denaturation (95°C) for 5min; then 30 cycles of denaturation (98°C) for 10s, annealing ((Tm-3/5)°C) for 15s, 72°C for extension; 72 Continue to extend for 10 min at °C; maintain (4 °C).
- the pREDCas9 plasmid was electrotransformed into the electrotransformation competence of W3110 by the method of electroporation, the bacteria were resuscitated and cultured and spread on the LB plate containing spectinomycin, and cultured overnight at 32°C. A single colony grown on the resistant plate was subjected to colony PCR with identification primers to screen positive recombinants.
- IPTG IPTG
- a final concentration of 0.1 mM 0.1 mM
- the pGRB and recombinant DNA fragments were simultaneously electrotransformed into electrocompetent cells containing pREDCas9. After electrotransformation, the resuscitated cells were spread on LB plates containing ampicillin and spectinomycin, and cultured overnight at 32°C.
- the positive recombinants were cultured overnight in an LB medium containing 0.2% arabinose, diluted appropriately and spread on an LB plate containing spectinomycin resistance, and cultured overnight at 32°C. Transfer single colonies to the LB plates containing ampicillin and spectinomycin resistance respectively, and select the single colonies that did not grow on the ampicillin plate and the spectinomycin resistant plates to protect the bacteria.
- the positive recombinants were transferred to non-resistant LB liquid medium and cultured at 42°C overnight, diluted appropriately and spread on a non-resistant LB plate, and cultured overnight at 37°C.
- upstream homology arm primers UP-speA-S, UP-speA-A
- downstream homology based on the upstream and downstream sequences of its speA gene (NCBI-GeneID: 12933352) Arm primers (DN-speA-S, DN-speA-A), and PCR amplification of its upstream and downstream homology arm fragments.
- the above fragments were fused by overlapping PCR to obtain knock-out fragments of the speA gene (upstream homology arm-downstream homology arm).
- the DNA fragments obtained by annealing the primers gRNA-speA-S and gRNA-speA-A were connected to the plasmid pGRB to construct the recombinant plasmid pGRB-speA.
- Prepare competent cells of E. coli W3110 operate according to the methods shown in 1.3 and 1.4, and simultaneously electrotransform plasmid pGRB-speA and speA knock-out fragments into competent cells, and finally obtain the strain E. coli W3110 ARG1. See Figure 2 for the construction of the speA knockout fragment and the PCR verification of the positive strain.
- the length of the upstream homology arm should be 397 bp
- the length of the downstream homology arm should be 468 bp
- the total length of overlapping fragments should be 865 bp.
- the length of the PCR amplified fragment of the positive bacteria should be 2752 bp
- the original bacteria PCR amplification The fragment length should be 865bp.
- upstream homology arm primers UP-adiA-S, UP-adiA-A
- downstream homology based on the upstream and downstream sequences of its adiA gene (NCBI-GeneID: 12934085) Arm primers (DN-adiA-S, DN-adiA-A), and PCR amplification of its upstream and downstream homology arm fragments.
- the above fragments were fused by overlapping PCR to obtain knock-out fragments of the adiA gene (upstream homology arm-downstream homology arm).
- the DNA fragments obtained by annealing the primers gRNA-adiA-S and gRNA-adiA-A are connected to the plasmid pGRB to construct pGRB-adiA.
- Figure 3 shows the electropherogram of the construction of the adiA knockout fragment and the PCR verification of the positive strain.
- the length of the upstream homology arm should be 806bp
- the length of the downstream homology arm should be 402bp
- the total length of overlapping fragments should be 1208bp.
- the length of the PCR amplified fragment of positive bacteria should be 2124bp
- the original bacteria should be amplified by PCR.
- the fragment length should be 1208bp.
- upstream homology arm primers UP-astA-S, UP-astA-A
- downstream homology based on the upstream and downstream sequences of its adiA gene (NCBI-GeneID: 12933241)
- Arm primers DN-astA-S, DN-astA-A
- PCR amplification of its upstream and downstream homology arm fragments were fused by overlapping PCR to obtain knock-out fragments of the astA gene (upstream homology arm-downstream homology arm).
- the DNA fragments prepared by annealing the primers gRNA-astA-S and gRNA-astA-A were connected to the plasmid pGRB to construct pGRB-astA.
- Figure 4 shows the construction of the astA knockout fragment and the electrophoresis diagram of the PCR verification of the positive strain.
- the length of the upstream homology arm should be 443bp
- the length of the downstream homology arm should be 523bp
- the total length of overlapping fragments should be 965bp.
- the length of the PCR amplified fragment of the positive bacteria should be 1869bp
- the original bacteria PCR amplification The fragment length should be 965bp.
- E.coli W3110 (ATCC27325) genome as template, design the upstream homology arm primers (UP-argE-S, UP-argE-A) and downstream homology according to the upstream and downstream sequences of its argE gene (NCBI-GeneID: 12930574) Arm primers (DN-argE-S, DN-argE-A), PCR amplification of its upstream and downstream homology arm fragments; using the Corynebacterium glutamicum (ATCC13032) genome as a template, according to its argJ gene sequence (NCBI-GeneID: 1019371) Design primers (argJ-S, argJ-A), PCR amplify the argJ fragment; the promoter P trc is designed in the downstream primer of the upstream homology arm and the upstream primer of the argJ gene.
- the above fragments were fused by overlapping PCR to obtain an integrated fragment (upstream homology arm-P trc- argJ-downstream homology arm) that knocked out the argE gene and integrated the argJ gene.
- the primers gRNA-argE-S and gRNA-argE- A DNA fragment prepared by annealing was ligated with plasmid pGRB to construct pGRB-argE.
- Prepare competent cells of E. coli W3110 ARG3 operate according to the methods shown in 1.3 and 1.4, transform plasmid pGRB-argE and knock-out argE gene and integrate the integrated fragment of argJ gene at the same time into competent cells, and finally obtain strain E .coli W3110 ARG4.
- the construction of the integrated fragment and the electrophoresis diagram of the PCR verification of the positive strains are shown in Figure 5.
- the length of the upstream homology arm is 510bp
- the length of the argJ gene fragment is 1206bp
- the length of the downstream homology arm is 668bp
- the length of the overlapping fragment is 2458bp.
- the length of the fragment amplified by the positive recombinant should be 2458bp.
- the length of the amplified fragment from the original bacteria should be 2154bp.
- arginine synthesis operating genes including argC, argJ, argB, argD, argF, argG, and argH
- the transcriptional expression of the foreign operon was initiated, and the strain E.coli W3110 ARG7 was constructed.
- E.coli W3110 (ATCC27325) genome as template, design the upstream homology arm primers (UP-yghX-S, UP-yghX-A) and downstream homology arm primers (DN-yghX- S1, DN-yghX-A), PCR amplification of its upstream and downstream homology arm fragments; using the Corynebacterium glutamicum (ATCC 13032) genome as a template, according to its argC-argJ gene sequence (NCBI-GeneID: 1019370, 1019371) The primers (argC-argJ-S, argC-argJ-A) were designed to amplify the argC-argJ fragment by PCR; the promoter P trc was designed in the downstream primer of the upstream homology arm and the upstream primer of the argC-argJ gene.
- UP-yghX-S, UP-yghX-A downstream homology arm primers
- the above fragments were fused by overlapping PCR to obtain an integrated fragment of the argC-argJ gene (upstream homology arm-P trc- argC-argJ-downstream homology arm), and the primers gRNA-yghX-S and gRNA-yghX-A were annealed
- the DNA sequence containing the target sequence is prepared, and the plasmid pGRB is connected to construct pGRB-yghX.
- the upstream homology arm primers (UP-argB-argD-argF-S) were designed according to argB-argD-argF (NCBI-GeneID: 1019372, 1019373, 1019374) and its upstream sequence.
- UP-argB-argD-argF-A PCR amplifies the upstream homology arm fragment; using E. coli W3110 (ATCC27325) genome as a template, the downstream homology arm primer (DN- yghX-S2, DN-yghX-A), PCR amplification of its downstream homology arm fragments.
- the above fragments were fused by overlapping PCR to obtain an integrated fragment of argB-argD-argF (upstream fragment of argB-argB-argD-argF-downstream homology arm).
- the primers gRNA-argBDF-S and gRNA-argBDF-A were annealed to prepare a DNA fragment containing the target sequence, which was ligated with plasmid pGRB to construct pGRB-argBDF.
- Prepare E. coli W3110 ARG5 competent cells operate according to the methods shown in 1.3 and 1.4, and simultaneously electrotransform the integrated fragments of plasmid pGRB-argBDF and argB-argD-argF into competent cells, and finally obtain the strain E.
- the upstream homology arm primers (UP-argG-argH-S, UP-argG-argH) were designed according to argG-argH (NCBI-GeneID: 1019376, 1019377) and its upstream sequence.
- -A) and argG-argH fragment primers (argG-argH-S, argG-argH-A), PCR amplification of the upstream homology arm fragment and argG-argH fragment; using E.
- the downstream homology arm primers (DN-yghX-S3, DN-yghX-A) were designed according to the downstream sequence of the yghX gene, and the downstream homology arm fragments were amplified by PCR. The above fragments were fused by overlapping PCR to obtain an integrated fragment of argG-argH (upstream fragment of argG-argG-argH-downstream homology arm).
- the primers gRNA-argG-argH-S and gRNA-argG-argH-A were degraded to prepare a DNA sequence containing the target sequence, which was connected with the plasmid pGRB to construct pGRB-argG-argH. Prepare E.
- coli W3110 ARG6 competent cells operate according to the methods shown in 1.3 and 1.4, and simultaneously electrotransform the integrated fragments of plasmid pGRB-argG-argH and argG-argH into competent cells, and finally obtain the strain E. coli W3110 ARG7.
- the construction of the integrated fragment and the electrophoresis diagram of the PCR verification of the positive strains are shown in Figure 8.
- the total length of the upstream fragment of argG is 405bp
- the total length of the argG-argH fragment is 2826bp
- the length of the downstream homology arm is 561bp
- the total length of overlapping fragments should be 3875bp
- the length of the fragment amplified by the identification primer should be 1521bp.
- the bacteria should have no bands.
- B.subtilis A260 is the starting strain of Bacillus subtilis 168 strain, which is selected by the method of combining ARTP mutagenesis and high-throughput screening (this strain was deposited in the Chinese Microbial Culture Collection on December 2, 2015 General Microbiology Center of the Management Committee, Address: No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, Zip Code: 100101, Culture Collection Number: CGMCC No.11775).
- the pyrAA-pyrAB gene of Bacillus subtilis is 4292bp integrated into E. coli in two segments, the first segment is 2651bp in length and the second segment is 1641bp in length.
- upstream homology arm primers UP-yjiT-S, UP-yjiT-A
- downstream homology arm primers DN-yjiT-A
- 11775 genome as a template, according to the gene pyrAA (NCBI-GeneID: 937368), pyrAB (NCBI- GeneID: 936608) design primers (1-pyrAA-pyrAB-S, 1-pyrAA-pyrAB-A) to amplify the first pyrAA-pyrAB gene fragment.
- the promoter P trc is designed in the downstream primer of the upstream homology arm and the upstream primer of the pyrAA-pyrAB gene.
- the above fragments were fused by overlapping PCR to obtain the integrated fragment of the first pyrAA-pyrAB gene (upstream homology arm-P trc- pyrAA-pyrAB-downstream homology arm), and the primers gRNA-yjiT-S and gRNA-yjiT- A is annealed to prepare a DNA fragment containing the target sequence, which is ligated with plasmid pGRB to construct pGRB-yjiT.
- Prepare competent cells of E.coli W3110 ARG7 operate according to the methods shown in 1.3 and 1.4, and simultaneously electrotransform the plasmid pGRB-yjiT and the integrated fragment of the first pyrAA-pyrAB gene into competent cells, and finally obtain strain E.
- Figure 9 shows the construction of the first P trc -pyrAA-pyrAB integration fragment and the electrophoresis diagram of the PCR verification of the positive strains.
- the length of the upstream homology arm should be 316bp
- the length of the first pyrAA-pyrAB gene fragment should be 2651bp
- the length of the downstream homology arm should be 667bp
- the total length of the integrated fragment should be 3634bp.
- the length of the fragment amplified by the identification primer It should be 1100bp, and the original bacteria should have no bands.
- PCR amplification of the upstream homology arm fragments including the first pyrAA-pyrAB downstream sequence 266bp and the integrated second pyrAA-pyrAB sequence 1641bp total 1907bp; using the E.coli W3110 (ATCC27325) genome as a template, according to its The downstream sequence of yjiT gene was designed with downstream homology arm primers (DN-yjiT-S1, DN-yjiT-A), and the downstream homology arm fragment was amplified by PCR. The above fragments were fused by overlapping PCR to obtain the second pyrAA-pyrAB integrated fragment (the second pyrAA-pyrAB-downstream homology arm).
- the primers gRNA-pyrAA-pyrAB-S and gRNA-pyrAA-pyrAB-A are annealed to prepare a DNA fragment containing the target sequence, which is connected with the plasmid pGRB to construct pGRB-pyrAA-pyrAB.
- E.coli W3110 (ATCC27325) genome as template, design the upstream homology arm primers (UP-ilvG-S, UP-ilvG-A) and downstream homology arm primers (DN-ilvG- S, DN-ilvG-A), PCR amplification of its upstream and downstream homology arm fragments; according to the lysE gene (NCBI Reference Sequence: WP_143758438.1) sequence (SEQ ID NO: 68) design primers (lysE-S, lysE-A) ), amplify the lysE gene fragment.
- the promoter P trc is designed in the downstream primer of the upstream homology arm and the upstream primer of the lysE gene.
- the above fragments were fused by overlapping PCR to obtain the integrated fragment of the lysE gene (upstream homology arm-P trc- lysE-downstream homology arm), and the ilvG primers gRNA-ilvG-S and gRNA-ilvG-A were annealed to obtain the target containing
- the DNA fragment of the sequence was ligated with plasmid pGRB to construct pGRB-ilvG.
- Prepare competent cells of E.coli W3110 ARG9 operate according to the methods shown in 1.3 and 1.4, and simultaneously electrotransform the integrated fragments of plasmid pGRB-ilvG and lysE genes into competent cells, and finally obtain the strain E.coli W3110 ARG10.
- the length of the upstream homology arm should be 412 bp
- the length of the P trc -lysE gene fragment should be 806 bp
- the length of the downstream homology arm should be 481 bp
- the total length of the integrated fragment should be 1699 bp.
- the positive bacteria PCR amplification The fragment length should be 1699bp
- the original bacteria PCR amplified fragment length should be 1426bp.
- Slant culture streak inoculate the preserved strains on the activated slant at -80°C, culture for 12h at 37°C, and pass them once;
- Shake flask seed culture Use an inoculating loop to scrape a loop of slant seeds and inoculate them in a 500mL Erlenmeyer flask containing 30mL seed culture medium, seal with nine layers of gauze, cultivate for 7-10h at 37°C, 200rpm;
- Shake flask fermentation culture inoculate 15% of the seed culture solution volume into a 500mL Erlenmeyer flask containing fermentation medium (final volume 30mL), seal with nine layers of gauze, 37°C, 200r/min shaking culture, fermentation process
- the pH is maintained at 7.0-7.2 by adding ammonia water; the fermentation is maintained by adding 60% (m/v) glucose solution; the fermentation period is 26-30h;
- composition of the slant medium is: glucose 1g/L, peptone 10g/L, beef extract 10g/L, yeast powder 5g/L, NaCl 2.5g/L, agar 20g/L, the rest is water, pH 7.0-7.2;
- the composition of the seed culture medium is: glucose 25g/L, yeast extract 5g/L, peptone 3g/L, K 2 HPO 4 1g/L, MgSO 4 ⁇ 7H 2 O 1g/L, FeSO 4 ⁇ 7H 2 O 10mg/L , MnSO 4 ⁇ 7H 2 O 10mg/L, V B1 , V B3 , V B5 , V B12 , V H each 1 mg/L, the rest is water, pH 7.0-7.2.
- the composition of the fermentation medium is: glucose 25g/L, yeast extract 3g/L, peptone 2g/L, K 2 HPO 4 3g/L, MgSO 4 ⁇ 7H 2 O 2g/L, FeSO 4 ⁇ 7H 2 O 10mg/L , MnSO 4 ⁇ 7H 2 O 10mg/L, V B1 , V B3 , V B5 , V B12 , V H each 1 mg/L, the rest is water, pH 7.0-7.2.
- the yield of L-arginine in the fermentation broth of E.coli W3110 ARG10 strain is 30-32g/L.
- Slope activation culture scrape a ring of bacteria from the -80°C refrigerator preservation tube, spread it evenly on the activation slope, incubate at 37°C for 12-16h, transfer to eggplant-shaped flask and continue culturing for 12-16h;
- Seed culture Take an appropriate amount of sterile water in an eggplant-shaped bottle, and connect the bacterial suspension to the seed culture medium.
- the pH is stabilized at about 7.0, the temperature is constant at 37°C, and the dissolved oxygen is between 25-35%, and cultivate until the cells Dry weight reaches 5-6g/L;
- Fermentation culture Connect fresh fermentation medium according to 15% inoculum to start fermentation. During the fermentation process, control pH to stabilize at about 7.0, maintain temperature at 35°C, and dissolved oxygen between 25-35%; After the glucose is consumed, add 80% (m/v) glucose solution to maintain the glucose concentration in the fermentation medium at 0.1-5g/L;
- Slant medium, seed medium and fermentation medium are the same as shake flask fermentation.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
Claims (10)
- 一种生产L-精氨酸的基因工程菌株,含有编码氨甲酰磷酸合成酶的基因pyrAA和pyrAB。
- 根据权利要求1所述的基因工程菌株,以大肠杆菌或谷氨酸棒杆菌为出发菌株;例如以E.coli W3110或者E.coli MG1655为出发菌株;优选地,所述pyrAA和pyrAB基因整合于大肠杆菌的yjiT基因位点;优选地,所述pyrAA和pyrAB来源于枯草芽孢杆菌。
- 根据权利要求1或2所述的基因工程菌株,所述基因工程菌株还含有编码L-精氨酸生物合成途径酶的基因,所述精氨酸生物合成途径酶选自以下的一种或多种:argC、argJ、argB、argD、argF、argG、argH;优选地,所述编码L-精氨酸生物合成途径酶的基因由P trc启动子启动;优选地,所述编码L-精氨酸生物合成途径酶的基因整合于大肠杆菌的yghX基因位点。
- 根据权利要求1-3任一项所述的基因工程菌株,所述基因工程菌株进一步含有编码精氨酸转运蛋白的基因lysE;优选地,所述lysE基因整合于大肠杆菌的ilvG基因位点;优选地,所述lysE基因为SEQ ID NO:68所示的核苷酸序列。
- 根据权利要求1-4任一项所述的基因工程菌株,所述基因工程菌株不含有分解L-精氨酸的编码基因,例如敲除如下一种或多种基因:编码精氨酸脱羧酶的基因、编码精氨酸琥珀酰转移酶的基因、编码乙酰鸟氨酸脱乙酰基酶的基因;优选地,所述编码精氨酸脱羧酶的基因包括speA、adiA中的至少一种;所述编码精氨酸琥珀酰转移酶的基因为astA;所述编码乙酰鸟氨酸脱乙酰基酶的基因为argE;优选地,所述基因工程菌株是同时敲除speA、adiA、astA和argE基因的大肠杆菌。
- 一种基因工程菌株的构建方法,包括如下步骤:(1)出发菌株的基因组中整合pyrAA和pyrAB基因;优选地,所述构建方法还包括任选地如下一个或多个步骤:(2)整合精氨酸生物合成途径酶基因,包括argC、argJ、argB、argD、argF、argG、argH中的一种或多种;和/或整合编码精氨酸转运蛋白的基因lysE;(3)敲除编码精氨酸脱羧酶的基因、编码精氨酸琥珀酰转移酶的基因、编码乙酰鸟氨酸脱乙酰基酶的基因;例如,所述编码乙酰鸟氨酸脱乙酰基酶的基因包括speA、adiA中的至少一种;所述编码精氨酸琥珀酰转移酶的基因为astA;所述编码乙酰鸟氨酸脱乙 酰基酶的基因为argE。
- 根据权利要求6所述的构建方法,包括如下步骤:(1)将大肠杆菌上编码精氨酸脱羧酶的基因speA、编码精氨酸脱羧酶的基因adiA和编码精氨酸琥珀酰转移酶的基因astA三个基因敲除;(2)敲除大肠杆菌中编码乙酰鸟氨酸脱乙酰基酶的基因argE,任选地将编码谷氨酸乙酰基转移酶的基因argJ整合到大肠杆菌中;(3)整合精氨酸生物合成相关基因簇,argC、argJ、argB、argD、argF、argG和argH;(4)整合编码氨甲酰磷酸合成酶的基因pyrAA和pyrAB;(5)将编码精氨酸转运蛋白的基因lysE整合到大肠杆菌基因组上。
- 根据权利要求6或7所述的构建方法,包括采用CRISPR/Cas9介导的基因编辑技术进行基因整合和敲除。
- 根据权利要求6-8任一项所述的构建方法,包括构建重组片段和pGRB质粒;优选地,所述pGRB质粒的构建包括:设计靶序列,制备包含靶序列的DNA片段,将包含靶序列的DNA片段与线性化的载体片段重组;优选地,所述构建方法中构建重组片段包括构建基因整合的重组片段或者构建基因敲除的重组片段;优选地,构建基因整合的重组片段的步骤包括:以出发菌株的基因组为模板,根据目的基因拟插入位点的上下游序列设计上下游同源臂引物,并根据目的基因组设计引物,扩增目的基因片段,再通过PCR重叠技术获得重组片段;优选地,构建基因敲除的重组片段的步骤包括:以待敲除基因的上下游序列为模板,设计上下游同源臂引物;通过PCR的方法分别扩增上下游同源臂,再经过重叠PCR制备重组片段;优选地,所述构建方法包括将pGRB质粒和上述重组片段同时转化至含有pREDCas9的电转感受态细胞中,还包括质粒消除的步骤,获得重组的基因工程菌株。
- 权利要求1-5任一项所述的基因工程菌发酵生产L-精氨酸的方法,包括:将上述大肠杆菌基因工程菌株与发酵培养基接触,进行发酵培养,制备得到L-精氨酸;优选地,所述发酵培养包括摇瓶发酵或者发酵罐发酵;优选地,L-精氨酸的积累量达到130-135g/L。转化率达到0.48g精氨酸/g葡萄糖,生产强度达到2.5g精氨酸/L/h。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022525726A JP7373661B2 (ja) | 2019-12-02 | 2020-05-15 | L-アルギニンを生産する遺伝子組換え菌、その構築方法及び使用 |
BR112022009979A BR112022009979A2 (pt) | 2019-12-02 | 2020-05-15 | Cepa bacteriana geneticamente modificada e métodos para construir uma cepa bacteriana geneticamente modificada e para produzir l-arginina |
EP20896807.3A EP4056676A4 (en) | 2019-12-02 | 2020-05-15 | GENICALLY ENGINEERED BACTERIA FOR THE PRODUCTION OF L-ARGININE AND CONSTRUCTION METHOD AND APPLICATION OF GENICALLY ENGINEERED BACTERIA |
US17/781,124 US20220411833A1 (en) | 2019-12-02 | 2020-05-15 | Gene engineering bacteria for producing l-arginine and construction method and application of gene engineering bacteria |
CA3161765A CA3161765A1 (en) | 2019-12-02 | 2020-05-15 | Gene engineering bacteria for producing l-arginine and construction method and application of gene engineering bacteria |
KR1020227016823A KR20220088451A (ko) | 2019-12-02 | 2020-05-15 | L-아르기닌을 생산하는 유전자 조작 박테리아 및 이의 구축 방법과 응용 |
ZA2022/05587A ZA202205587B (en) | 2019-12-02 | 2022-05-20 | Gene engineering bacteria for producing l-arginine and construction method and application of gene engineering bacteria |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911211097.X | 2019-12-02 | ||
CN201911211097.XA CN110964683B (zh) | 2019-12-02 | 2019-12-02 | 生产l-精氨酸的基因工程菌及其构建方法与应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021109467A1 true WO2021109467A1 (zh) | 2021-06-10 |
Family
ID=70032425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/090626 WO2021109467A1 (zh) | 2019-12-02 | 2020-05-15 | 生产l-精氨酸的基因工程菌及其构建方法与应用 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20220411833A1 (zh) |
EP (1) | EP4056676A4 (zh) |
JP (1) | JP7373661B2 (zh) |
KR (1) | KR20220088451A (zh) |
CN (1) | CN110964683B (zh) |
BR (1) | BR112022009979A2 (zh) |
CA (1) | CA3161765A1 (zh) |
WO (1) | WO2021109467A1 (zh) |
ZA (1) | ZA202205587B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112877271A (zh) * | 2021-02-05 | 2021-06-01 | 江西师范大学 | 一种提高钝齿棒杆菌厌氧发酵产l-精氨酸的方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108893438B (zh) * | 2018-06-25 | 2022-09-06 | 江南大学 | 一种提高钝齿棒杆菌合成l-鸟氨酸产量的方法 |
CN110964683B (zh) * | 2019-12-02 | 2021-08-13 | 天津科技大学 | 生产l-精氨酸的基因工程菌及其构建方法与应用 |
CN112280728B (zh) * | 2020-11-16 | 2022-04-08 | 天津科技大学 | 一种生产l-瓜氨酸的基因工程菌株及其应用 |
CN112501095B (zh) * | 2020-12-08 | 2023-05-26 | 南开大学 | 一种合成3-岩藻乳糖的重组大肠杆菌构建方法及其应用 |
CN114854658A (zh) * | 2022-05-17 | 2022-08-05 | 江南大学 | 一种增强乙酸利用提高大肠杆菌发酵产l-精氨酸的方法 |
CN115011538B (zh) * | 2022-06-14 | 2023-10-27 | 江南大学 | 一种生产l-瓜氨酸的大肠杆菌及其构建方法和应用 |
CN114921435B (zh) * | 2022-06-24 | 2023-08-29 | 南通紫琅生物医药科技有限公司 | 鸟氨酸乙酰转移酶突变体、编码基因、质粒、基因工程菌及应用 |
CN116121160A (zh) * | 2022-10-28 | 2023-05-16 | 天津科技大学 | 过表达pyrB基因的基因工程菌及其生产L-精氨酸的方法 |
CN116355814B (zh) * | 2023-05-18 | 2023-07-25 | 欧铭庄生物科技(天津)有限公司滨海新区分公司 | 一株大肠埃希氏菌及其在发酵生产l-精氨酸中的应用 |
CN117947075B (zh) * | 2024-03-26 | 2024-06-11 | 天津科技大学 | 一种精氨酸生产菌株及其构建方法与应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4086137A (en) * | 1976-02-18 | 1978-04-25 | Kyowa Hakko Kogyo Co., Ltd. | Process for the production of L-arginine by fermentation |
CN1270223A (zh) * | 1999-02-01 | 2000-10-18 | 味之素株式会社 | 棒杆菌的氨甲酰磷酸合成酶基因和生产l-精氨酸的方法 |
CN1405302A (zh) * | 2001-08-03 | 2003-03-26 | 味之素株式会社 | 新突变型氨甲酰磷酸合成酶以及生产由氨甲酰磷酸衍生的化合物的方法 |
CN105062941A (zh) * | 2015-08-25 | 2015-11-18 | 江南大学 | 一种利用重组枯草芽孢杆菌全细胞转化生产l-鸟氨酸的方法 |
CN105671007A (zh) | 2015-12-31 | 2016-06-15 | 天津科技大学 | 高产嘧啶核苷的菌株及其氨甲酰磷酸合成酶调节位点 |
CN109234220A (zh) * | 2018-11-02 | 2019-01-18 | 南京工业大学 | 一株枯草芽孢杆菌基因重组菌及其构建方法与应用 |
CN109266675A (zh) * | 2018-08-17 | 2019-01-25 | 江苏龙蟠科技股份有限公司 | 一种生产脂肽的枯草芽孢杆菌基因工程菌及其构建方法和应用 |
CN110511899A (zh) * | 2018-05-22 | 2019-11-29 | 中国科学院上海生命科学研究院 | 一种提高l-精氨酸产量的方法 |
CN110964683A (zh) * | 2019-12-02 | 2020-04-07 | 天津科技大学 | 生产l-精氨酸的基因工程菌及其构建方法与应用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4196603B2 (ja) | 2001-07-25 | 2008-12-17 | 味の素株式会社 | L−アルギニンの製造法 |
JP2008529485A (ja) * | 2005-02-07 | 2008-08-07 | メタボリック エクスプローラー | 低いγ脱離活性を有する発現酵素を含む微生物 |
JP2012223092A (ja) * | 2009-08-28 | 2012-11-15 | Ajinomoto Co Inc | L−アミノ酸の製造法 |
TW201329067A (zh) * | 2011-12-08 | 2013-07-16 | Amgen Inc | 作為gka活化劑之脲化合物 |
RU2550269C2 (ru) * | 2012-08-17 | 2015-05-10 | Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") | СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, СОДЕРЖАЩЕЙ N-АЦЕТИЛОРНИТИНДЕАЦЕТИЛАЗУ С НАРУШЕННОЙ АКТИВНОСТЬЮ |
CN105062943A (zh) * | 2015-08-27 | 2015-11-18 | 江南大学 | 一种利用高产精氨酸脱羧酶的重组菌生产胍基丁胺的方法 |
JP2019062742A (ja) * | 2016-02-24 | 2019-04-25 | 味の素株式会社 | L−アミノ酸の製造法 |
JP2019165635A (ja) * | 2016-08-10 | 2019-10-03 | 味の素株式会社 | L−アミノ酸の製造法 |
KR101937569B1 (ko) * | 2017-06-14 | 2019-01-11 | 씨제이제일제당 (주) | 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법 |
CN108130306B (zh) * | 2018-01-10 | 2019-03-05 | 天津科技大学 | 高产尿苷的基因工程菌及其构建方法与应用 |
CN109777763B (zh) * | 2019-03-29 | 2020-06-30 | 天津科技大学 | 一株用于l-茶氨酸生产的基因工程菌及其构建与应用 |
CN110184230A (zh) * | 2019-05-30 | 2019-08-30 | 天津科技大学 | 一株高产l-组氨酸的基因工程菌及其构建方法与应用 |
-
2019
- 2019-12-02 CN CN201911211097.XA patent/CN110964683B/zh active Active
-
2020
- 2020-05-15 US US17/781,124 patent/US20220411833A1/en active Pending
- 2020-05-15 WO PCT/CN2020/090626 patent/WO2021109467A1/zh unknown
- 2020-05-15 BR BR112022009979A patent/BR112022009979A2/pt unknown
- 2020-05-15 JP JP2022525726A patent/JP7373661B2/ja active Active
- 2020-05-15 KR KR1020227016823A patent/KR20220088451A/ko not_active Application Discontinuation
- 2020-05-15 EP EP20896807.3A patent/EP4056676A4/en active Pending
- 2020-05-15 CA CA3161765A patent/CA3161765A1/en active Pending
-
2022
- 2022-05-20 ZA ZA2022/05587A patent/ZA202205587B/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4086137A (en) * | 1976-02-18 | 1978-04-25 | Kyowa Hakko Kogyo Co., Ltd. | Process for the production of L-arginine by fermentation |
CN1270223A (zh) * | 1999-02-01 | 2000-10-18 | 味之素株式会社 | 棒杆菌的氨甲酰磷酸合成酶基因和生产l-精氨酸的方法 |
CN1405302A (zh) * | 2001-08-03 | 2003-03-26 | 味之素株式会社 | 新突变型氨甲酰磷酸合成酶以及生产由氨甲酰磷酸衍生的化合物的方法 |
CN105062941A (zh) * | 2015-08-25 | 2015-11-18 | 江南大学 | 一种利用重组枯草芽孢杆菌全细胞转化生产l-鸟氨酸的方法 |
CN105671007A (zh) | 2015-12-31 | 2016-06-15 | 天津科技大学 | 高产嘧啶核苷的菌株及其氨甲酰磷酸合成酶调节位点 |
CN110511899A (zh) * | 2018-05-22 | 2019-11-29 | 中国科学院上海生命科学研究院 | 一种提高l-精氨酸产量的方法 |
CN109266675A (zh) * | 2018-08-17 | 2019-01-25 | 江苏龙蟠科技股份有限公司 | 一种生产脂肽的枯草芽孢杆菌基因工程菌及其构建方法和应用 |
CN109234220A (zh) * | 2018-11-02 | 2019-01-18 | 南京工业大学 | 一株枯草芽孢杆菌基因重组菌及其构建方法与应用 |
CN110964683A (zh) * | 2019-12-02 | 2020-04-07 | 天津科技大学 | 生产l-精氨酸的基因工程菌及其构建方法与应用 |
Non-Patent Citations (3)
Title |
---|
MIREILLE GINESY;JAROSLAV BELOTSERKOVSKY;JOSEFINE ENMAN;LEIF ISAKSSON;ULRIKA ROVA: "Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis", MICROBIAL CELL FACTORIES , vol. 14, no. 1, 7 March 2015 (2015-03-07), pages 1 - 11, XP021219510, ISSN: 1475-2859, DOI: 10.1186/s12934-015-0211-y * |
See also references of EP4056676A4 |
XU MRAO ZYANG J ET AL., J IND MICROBIOL BIOTECHNOL, vol. 39, no. 3, 2012, pages 495 - 502 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112877271A (zh) * | 2021-02-05 | 2021-06-01 | 江西师范大学 | 一种提高钝齿棒杆菌厌氧发酵产l-精氨酸的方法 |
CN112877271B (zh) * | 2021-02-05 | 2023-03-14 | 江西师范大学 | 一种提高钝齿棒杆菌厌氧发酵产l-精氨酸的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110964683B (zh) | 2021-08-13 |
EP4056676A1 (en) | 2022-09-14 |
JP2023504236A (ja) | 2023-02-02 |
JP7373661B2 (ja) | 2023-11-02 |
ZA202205587B (en) | 2023-01-25 |
CA3161765A1 (en) | 2021-06-10 |
BR112022009979A2 (pt) | 2022-08-16 |
EP4056676A4 (en) | 2024-01-03 |
KR20220088451A (ko) | 2022-06-27 |
US20220411833A1 (en) | 2022-12-29 |
CN110964683A (zh) | 2020-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021109467A1 (zh) | 生产l-精氨酸的基因工程菌及其构建方法与应用 | |
CN110468092B (zh) | 一株高产l-缬氨酸的基因工程菌及其构建方法与应用 | |
JP6219168B2 (ja) | プトレシンを生産する微生物、及びそれを用いてプトレシンを生産する方法 | |
WO2020237701A1 (zh) | 一株高产l-组氨酸的基因工程菌及其构建方法与应用 | |
CN110241061B (zh) | 提高短乳杆菌γ-氨基丁酸合成能力的方法及其应用 | |
WO2021042460A1 (zh) | 提高l-色氨酸生产效率的转运载体基因在大肠杆菌中的应用 | |
WO2021162189A1 (ko) | L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법 | |
WO2019136618A1 (zh) | 高产尿苷的基因工程菌及其构建方法与应用 | |
EP2824186B1 (en) | L-lysine generation method by fermenting bacteria having modified aconitase gene and/or regulatory element | |
WO2021227500A1 (zh) | 生产l-缬氨酸的重组微生物及构建方法、应用 | |
WO2022174597A1 (zh) | 一种用于l-肌氨酸生产的基因工程菌及构建方法与应用 | |
RU2668830C2 (ru) | Микроорганизм рода Corynebacterium для продуцирования L-лизина и способ получения L-лизина с его помощью | |
CN115806929A (zh) | 一种生产l-精氨酸的基因工程菌及其应用 | |
CN105980544B (zh) | 生产l-氨基酸的微生物及使用所述微生物生产l-氨基酸的方法 | |
CN112280728B (zh) | 一种生产l-瓜氨酸的基因工程菌株及其应用 | |
JP2016516435A (ja) | L−アルギニン産生能が向上したコリネバクテリウム属微生物およびこれを用いたl−アルギニンの産生方法 | |
CN116731946A (zh) | 利用具有过表达cynT基因的大肠杆菌生产L-精氨酸的方法及其所用重组菌 | |
CN116121160A (zh) | 过表达pyrB基因的基因工程菌及其生产L-精氨酸的方法 | |
RU2820627C1 (ru) | Генно-инженерные бактерии для продуцирования l-аргинина и способ конструирования и применения генно-инженерных бактерий | |
KR101687474B1 (ko) | L-아르기닌 생산능이 향상된 코리네박테리움속 미생물 및 이를 이용한 l-아르기닌의 생산 방법 | |
CN115948318B (zh) | 利用弱化了rhaB基因的大肠杆菌提高细胞内ATP水平的方法 | |
US11479795B2 (en) | Genetically engineered bacterium for sarcosine production as well as construction method and application | |
CN118515736A (zh) | 支链氨基酸转运蛋白突变体及其应用 | |
WO2024197704A1 (zh) | 一种产泛解酸的重组微生物及其应用 | |
CN116731947A (zh) | 利用具有过表达cynX基因的大肠杆菌生产L-精氨酸的方法及其所用重组菌 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20896807 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022525726 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3161765 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20227016823 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022009979 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2020896807 Country of ref document: EP Effective date: 20220610 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112022009979 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220523 |