WO2021162189A1 - L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법 - Google Patents

L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법 Download PDF

Info

Publication number
WO2021162189A1
WO2021162189A1 PCT/KR2020/011406 KR2020011406W WO2021162189A1 WO 2021162189 A1 WO2021162189 A1 WO 2021162189A1 KR 2020011406 W KR2020011406 W KR 2020011406W WO 2021162189 A1 WO2021162189 A1 WO 2021162189A1
Authority
WO
WIPO (PCT)
Prior art keywords
corynebacterium
glutamic acid
strain
corynebacterium glutamicum
mutant
Prior art date
Application number
PCT/KR2020/011406
Other languages
English (en)
French (fr)
Inventor
이영주
김봉기
최민진
박석현
한재춘
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to US17/798,792 priority Critical patent/US20230136217A1/en
Priority to JP2022548767A priority patent/JP2023514216A/ja
Priority to CN202080096445.8A priority patent/CN115135767B/zh
Priority to EP20918924.0A priority patent/EP4105331A4/en
Publication of WO2021162189A1 publication Critical patent/WO2021162189A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a Corynebacterium glutamicum mutant having improved L-glutamic acid production ability and a method for producing L-glutamic acid using the same, specifically, mechanosensory ions derived from Corynebacterium sp. It relates to a Corynebacterium glutamicum mutant having an increased ability to produce L-glutamic acid by introducing a channel gene, a method for producing the same, and a method for producing L-glutamic acid using the same.
  • L-glutamic acid is a representative amino acid produced by microbial fermentation, and sodium L-glutamate (monosodium L-glutamate, MSG) balances and harmonizes the overall taste of food, so that meat, fish, chicken, vegetables, sauces, soups, It is widely used as a seasoning for household and processed food production as it can increase the preference of foods such as seasonings and enhance the taste of low-salt foods with reduced salt by up to 30%.
  • MSG sodium L-glutamate
  • glucose mainly goes through the glycolytic pathway (EMP), but some goes through the hexose phosphate pathway (HMP) and is metabolized to two molecules of pyruvic acid.
  • EMP glycolytic pathway
  • HMP hexose phosphate pathway
  • one molecule fixes CO 2 to become oxaloacetic acid
  • the other molecule combines with acetyl CoA from pyruvic acid to form citric acid.
  • oxaloacetic acid and citric acid enter the citric acid cycle (TCA cycle) to become ⁇ -ketoglutaric acid.
  • the oxidative metabolic pathway for oxidation from alpha-ketoglutaric acid to succinic acid is lacking, and isocitrate dehydrogenase and glutamate dehydrogenase are closely involved. Therefore, the reductive amino acidation reaction of alpha-ketoglutaric acid proceeds efficiently to produce L-glutamic acid.
  • L-glutamic acid When producing L-glutamic acid, it is usually produced through fermentation using Brevibacterium or Corynebacterium sp. strains and mutants thereof. In order to increase the production of L-glutamic acid by culturing microorganisms, a method of regulating the expression of genes involved in L-glutamic acid biosynthesis has been used. Mainly, by increasing the copy number of the gene or by modifying the promoter of the gene, the enzyme activity on the biosynthetic pathway can be regulated. Specifically, by amplifying a specific gene such as pyc gene or fasR (US Patent No.
  • the present inventors discovered a new gene that helps the release of L-glutamic acid, and introduced the gene into an L-glutamic acid producing strain to produce a mutant strain, thereby confirming that the L-glutamic acid producing ability of the mutant was improved, and completed the present invention.
  • the present invention includes a Corynebacterium sp. strain-derived mechanosensitive ion channel gene, and an object of the present invention is to provide a Corynebacterium glutamicum mutant with improved L-glutamic acid production ability.
  • an object of the present invention is to provide a method for producing the Corynebacterium glutamicum mutant, comprising the step of introducing a mechanosensory ion channel gene derived from the Corynebacterium sp.
  • the present invention comprises the steps of i) culturing the Corynebacterium glutamicum mutant in an L-glutamic acid production medium; and ii) recovering L-glutamic acid from the culture medium in which the mutant or mutant strain is cultured.
  • An aspect of the present invention includes a Corynebacterium sp. strain-derived mechanosensitive ion channel gene, and provides an improved L-glutamic acid production ability Corynebacterium glutamicum ( Corynebacterium glutamicum ) mutant strain.
  • Corynebacterium sp. strain is a strain derived from a mechanosensory ion channel gene to be introduced into a Corynebacterium glutamicum strain, and may include all Corynebacterium genus microorganisms.
  • Corynebacterium glutamicum Corynebacterium glutamicum
  • Corynebacterium crudilactis Corynebacterium crudilactis
  • Corynebacterium deserti Corynebacterium deserti
  • Corynebacterium callunae Corynebacterium callunae
  • Corynebacterium suranareeae Corynebacterium lubricantis
  • Corynebacterium doosanense Corynebacterium efficiens , Corynebacterium efficiens, Nebacterium utereki ( Corynebacterium uterequi ), Corynebacterium stationis ), Corynebacterium pacaense ( Corynebacterium pacaense ), Corynebacterium singulare ( Corynebacterium singulare ), Corynebacterium Hugh Myreducens ( Corynebacterium humireducens)
  • the "mechanosensory ion channel” is a channel present in the cell membrane of eukaryotes as well as bacteria, and is involved in osmotic homeostasis.
  • the gene encoding this mechanosensory ion channel may be derived from a Corynebacterium sp.
  • the nucleotide sequence of SEQ ID NO: 1 derived from Corynebacterium deserti, Corynebacterium Rium crudilactis ( Corynebacterium crudilactis ) It may be derived from SEQ ID NO: 2 or Corynebacterium callunae ( Corynebacterium callunae ) derived from the nucleotide sequence of SEQ ID NO: 3 .
  • a base having a homology with the nucleotide sequence of SEQ ID NOs: 1 to 3 is 60% or more, preferably 70% or more, more preferably 80% or more, even more preferably 90% or more, and most preferably 95% or more. sequence may be included.
  • % homology is identified by comparing two optimally aligned sequences with a comparison region, and a portion of the polynucleotide sequence in the comparison region is a reference sequence (including additions or deletions) to the optimal alignment of the two sequences. additions or deletions (ie, gaps) compared to not).
  • genes encoding mechanosensory ion channels may have mutations that occur naturally or non-naturally (eg, genetic manipulation, radiation, chemical treatment, etc.), and such mutations may weaken or enhance the function of the gene. have.
  • the mechanosensory ion channel gene may be encoded by any one of the nucleotide sequences of SEQ ID NOs: 1 to 5.
  • the nucleotide sequence of SEQ ID NO: 1 may be a mechanosensory ion channel gene derived from Corynebacterium deserti
  • the nucleotide sequence of SEQ ID NO: 2 may be a mechanosensory ion channel gene derived from Corynebacterium crudylactis
  • the base sequence of 3 to 5 may be a mechanosensory ion channel gene derived from Corynebacterium caluna.
  • nucleotide sequence of SEQ ID NOs: 4 and 5 is that the 107th amino acid among the amino acid sequence of the mechanosensory ion channel gene derived from Corynebacterium calunae is substituted from leucine (LEU) to alanine (ALA) or valine (VAL) It could be encryption.
  • the present inventors found that the homology with the mechanosensory ion channel gene involved in glutamic acid release of Corynebacterium glutamicum is 70% or more (Corynebacterium deserti 74%, Corynebacterium crudylactis 72%, Coryne Bacterium calunae 70%) was estimated to perform the same glutamic acid excretion role through the nucleotide sequence, and the glutamic acid productivity of the mutant containing the mechanosensory ion channel gene in the present invention was significantly improved compared to other glutamic acid production strains. confirmed that.
  • the "improved production capacity" strain means that the productivity of L- glutamic acid is increased compared to the parent strain.
  • the parent strain means a wild-type or mutant strain to be mutated, and includes a target to be directly mutated or transformed with a recombinant vector.
  • the parent strain may be a wild-type Corynebacterium glutamicum strain or a strain mutated from the wild-type.
  • it may be a Corynebacterium glutamicum KCTC 11558BP strain.
  • Corynebacterium glutamicum mutant with improved L-glutamic acid production ability has increased L-glutamic acid production by 5% or more, specifically 5 to 20% compared to the parent strain, per 1 liter of strain culture medium 36 to 50 g of L-glutamic acid can be produced, and preferably 38 to 45 g of L-glutamic acid can be produced.
  • Another aspect of the present invention provides a method for producing the Corynebacterium glutamicum mutant, comprising the step of introducing a mechanosensory ion channel gene derived from the Corynebacterium sp. strain.
  • the above step is a process of transforming the parent strain with a vector containing a polynucleotide encoding a mechanosensory ion channel gene.
  • vector refers to any medium for cloning and/or transfer of a base to a host cell.
  • a vector may be a replicator capable of binding other DNA fragments to bring about replication of the bound fragment.
  • replication unit refers to any genetic unit (eg, plasmid, phage, cosmid, chromosome, virus) that functions as a self-unit of DNA replication in vivo, that is, is capable of replication by its own regulation.
  • the vector is not particularly limited as long as it can replicate in a host, and any vector known in the art may be used.
  • the vector used for the construction of the recombinant vector may be a plasmid, a cosmid, a virus, or a bacteriophage in a natural state or a recombinant state.
  • pWE15, M13, ⁇ EMBL3, ⁇ EMBL4, ⁇ FIXII, ⁇ DASHII, ⁇ ZAPII, ⁇ gt10, ⁇ gt11, Charon4A, and Charon21A may be used as phage vectors or cosmid vectors, and pDZ vectors, pBR-based, pUC-based plasmid vectors may be used.
  • pBluescript II-based pGEM-based
  • pTZ-based pCL-based
  • pET-based pET-based
  • the usable vector is not particularly limited and a known expression vector may be used, but is not limited thereto.
  • transformation refers to introducing a gene into a host cell so that it can be expressed in the host cell, and if the transformed gene can be expressed in the host cell, it is inserted into the chromosome of the host cell or located outside the chromosome Anything may be included without limitation.
  • an example of the transformation method may be an electroporation method (van der Rest et al., Appl. Microbiol. Biotechnol., 52, 541-545, 1999) and the like.
  • Another aspect of the present invention comprises the steps of i) culturing the Corynebacterium glutamicum mutant in L-glutamic acid production medium; and ii) recovering L-glutamic acid from the culture medium in which the mutant or mutant strain is cultured.
  • the culture may be made according to an appropriate medium and culture conditions known in the art, and those skilled in the art can easily adjust the medium and culture conditions for use.
  • the medium may be a liquid medium, but is not limited thereto.
  • the culture method may include, for example, batch culture, continuous culture, fed-batch culture, or a combination culture thereof, but is not limited thereto.
  • the medium should meet the requirements of a specific strain in an appropriate manner, and may be appropriately modified by a person skilled in the art.
  • the culture medium for the Corynebacterium sp. strain may refer to the known literature (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981), but is not limited thereto.
  • the medium may include various carbon sources, nitrogen sources and trace element components.
  • Carbon sources that can be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid, fatty acids such as linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture, but are not limited thereto.
  • Nitrogen sources that can be used include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean wheat and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate.
  • the nitrogen source may also be used individually or as a mixture, but is not limited thereto.
  • Sources of phosphorus that may be used include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt. or the corresponding sodium-containing salt.
  • the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate necessary for growth, but is not limited thereto.
  • essential growth substances such as amino acids and vitamins may be included.
  • precursors suitable for the culture medium may be used. The medium or individual components may be added batchwise or continuously by an appropriate method to the culture medium during the culturing process, but is not limited thereto.
  • the pH of the culture medium by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the microorganism culture medium in an appropriate manner during culture.
  • an antifoaming agent such as fatty acid polyglycol ester during culture can suppress the formation of bubbles.
  • oxygen or oxygen-containing gas eg, air
  • the temperature of the culture medium may be usually 20 °C to 45 °C, for example, 25 °C to 40 °C.
  • the incubation period may be continued until a useful substance is obtained in a desired yield, for example, it may be 10 to 160 hours.
  • the step of recovering L-glutamic acid from the cultured mutant strain and the culture medium is to collect L-glutamic acid produced from the medium using a suitable method known in the art according to the culture method.
  • a suitable method known in the art can be recovered e.g. centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractional dissolution (e.g. ammonium sulfate precipitation), chromatography (e.g. ion exchange, affinity, hydrophobicity and size exclusion ) can be used, but is not limited thereto.
  • biomass is removed by centrifuging the culture at low speed, and the obtained supernatant may be separated through ion exchange chromatography.
  • the step of recovering L-glutamic acid may include a step of purifying L-glutamic acid.
  • Corynebacterium glutamicum mutant according to an embodiment of the present invention is introduced by the mechanosensory ion channel gene derived from the Corynebacterium sp. strain, thereby enhancing the release of glutamic acid to improve the production yield of L-glutamic acid, so the mutation By using the strain, it is possible to more effectively produce L-glutamic acid.
  • FIG. 1 shows the structure of a pKmscS1 vector including a mechanosensory ion channel gene derived from a Corynebacterium deserti strain.
  • FIG. 2 shows the structure of a pKmscS3-L107A vector derived from a Corynebacterium callunae strain and containing a mechanosensory ion channel gene in which the 107th amino acid residue is substituted from leucine (LEU) to alanine (ALA). it has been shown
  • chromosomal DNA from Corynebacterium deserti (C. deserti GIMN1.010) was isolated and purified and then used as a template and PCR using primers 3 and 4 in Table 1 below (95 °C for 30 sec, 58 °C for 30 sec, 72 °C for 2 min, repeated 30 times).
  • PCR (95 ° C for 30 seconds, 58 ° C for 30 seconds, 72 ° C for 2 minutes, 30 repeated times).
  • bands of about 1,500 bp, 1,600 bp, and 1,500 bp were identified by electrophoresis, respectively.
  • primer base sequence (5' > 3') SEQ ID NO: Primer 1 CGC GGATCC TCTGCCTTGCTTGCCTTGGT 6 Primer 2 CGGCAGTCCTAAAATCATGAGCCAAGATTAGCGCTG 7 Primer 3 CAGCGCTAATCTTGGCTCATGATTTTAGGACTGCCG 8 Primer 4 ACGTCTGTAATCAGCGTCTTATGGGATGGACGTTGG 9 Primer 5 CCAACGTCCATCCCATAAGACGCTGATTACAGACGT 10 Primer 6 CGC GGATCC CCGTTGCCTGGGAGAGAAAG 11 Primer 7 GGTGGTGAGTTCCTGGTT 12 Primer 8 GTCAACTTCGCCTTCCTG 13
  • primer base sequence (5' > 3') SEQ ID NO: Primer 1 CGC GGATCC TCTGCCTTGCTTGCCTTGGT 6 Primer 2 GCGTTCACCTAAAATCATGAGCCAAGATTAGCGCTG 14 Primer 3 CAGCGCTAATCTTGGCTCATGATTTTAGGTGAACGC 15 Primer 4 ACGTCTGTAATCAGCGTCTTATGGGGTGGACATTGG 16 Primer 5 CCAATGTCCACCCCATAAGACGCTGATTACAGACGT 17 Primer 6 CGC GGATCC CCGTTGCCTGGGAGAGAAAG 11 Primer 7 GGTGGTGAGTTCCTGGTT 12 Primer 8 GTCAACTTCGCCTTCCTG 13
  • primer base sequence (5' > 3') SEQ ID NO: Primer 1 CGC GGATCC TCTGCCTTGCTTGCCTTGGT 6 Primer 2 ACCTCTCTATGACCTCTAGAGAGCCAAGATTAGCGCTGAA 18 Primer 3 TTCAGCGCTAATCTTGGCTCTCTAGAGGTCATAGAGAGGT 19 Primer 4 ACACGTCTGTAATCAGCGTCATCCCTACTGGGTGGACGTA 20 Primer 5 TACGTCCACCCAGTAGGGATGACGCTGATTACAGACGTGT 21 Primer 6 CGC GGATCC CCGTTGCCTGGGAGAGAAAG 11 Primer 7 GGTGGTGAGTTCCTGGTT 12 Primer 8 GTCAACTTCGCCTTCCTG 13
  • Corynebacterium calunae ( C. callunae ) Preparation of vector into which amino acid residue mutation of derived mechanosensory ion channel gene is introduced
  • chromosomal DNA from Corynebacterium callunae (C. callunae DSM 20147) was isolated and purified and then used as a template and the primers shown in Table 4 below 1 and 2, and primers 3 and 4 were amplified by PCR (30 sec at 95°C, 30 sec at 58°C, 2 min at 72°C, repeat 30 times).
  • PCR crossover polymerase chain reaction
  • crossover PCR technique Bacteriol., 179: 6228-6237, 1997) was amplified again. Thereafter, the 718 bp PCR product was purified and digested with BamHI restriction enzyme (Takara, Japan), and cloned into the pK19mobSacB vector (Gene, 145: 69-73, 1994) digested with the same restriction enzyme, 107th of the mscS3 gene.
  • primer base sequence (5' > 3') SEQ ID NO: Primer 1 CGC GGATCC GGCAGCTCTCAAAGT 22 Primer 2 GCGATGATGGATTGCGCGCC tgc ACCAATGGCCGCAGAGGCAA 23 Primer 3 TTGCCTCTGCGGCCATTGGT gca GGCGCGCAATCCATCATCGC 24 Primer 4 CGC GGATCC CAGCGATATCTTCTTGGGC 25 Primer 5 GGTGGTGAGTTCCTGGTT 12 Primer 6 GTCAACTTCGCCTTCCTG 13
  • Corynebacterium calunae ( C. callunae ) Preparation of vector into which amino acid residue mutation of derived mechanosensory ion channel gene is introduced
  • a pKmscS3-L107V vector for introducing a mutation in which the 107th leucine residue of the mscS3 gene was substituted with valine was prepared in the same manner except that the primers of Table 5 were used instead of the primers of 1-4.
  • primer base sequence (5' > 3') SEQ ID NO: Primer 1 CGC GGATCC GGCAGCTCTCAAAGT 22 Primer 2 TTGCCTCTGCGGCCATTGGT gtt GGCGCGCAATCCATCATCGC 26 Primer 3 GCGATGATGGATTGCGCGCC aac ACCAATGGCCGCAGAGGCAA 27 Primer 4 CGC GGATCC CAGCGATATCTTCTTGGGC 25 Primer 5 GGTGGTGAGTTCCTGGTT 12 Primer 6 GTCAACTTCGCCTTCCTG 13
  • the Corynebacterium glutamicum KCTC 11558BP strain was first cultured in 100 ml of 2YT medium (trypton 16 g / l, yeast extract 10 g / l, sodium chloride 5 g / l) with 2% glucose added, In the same medium except for glucose, isonicotinic acid hydrazine and 2.5% glycine at a concentration of 1 mg/ml were added. Then, the seed culture solution was inoculated so that the OD 610 value was 0.3, and then incubated at 18° C. and 180 rpm for 12 to 16 hours so that the OD 610 value was 1.2 to 1.4.
  • 2YT medium trypton 16 g / l, yeast extract 10 g / l, sodium chloride 5 g / l
  • isonicotinic acid hydrazine and 2.5% glycine at a concentration of 1 mg/ml were added.
  • the seed culture solution was inoculated so that the
  • electroshock was performed under conditions of 2.5 kV, 200 ⁇ and 12.5 ⁇ F. added.
  • 1 ml of a regeneration medium containing 18.5 g/L of Brain Heart infusion and 0.5 M of sorbitol was added and heat-treated at 46° C. for 6 minutes.
  • Corynebacterium glutamicum mutants (IS1, IS2, IS3) into which the mscS1, mscS2, and mscS3 genes were introduced were identified using the obtained colonies, respectively, primers 7 and 8 of Tables 1 to 3, and Table 4 and Corynebacterium glutamicum mutants (IS3-A, IS3-V) into which mscS3-L107A and mscS3-L107V genes were introduced were identified using each of primers 5 and 6 of 5.
  • the mutant and parent strains were respectively plated on an active plate medium (pH 7.5) having the composition shown in Table 6, and cultured at 30° C. for 24 hours. After that, 10 mL of flask medium (pH 7.6) having the composition shown in Table 7 below is put into a 100 mL flask, and 1 loop of each strain cultured in a plate medium is inoculated here, and cultured at 30 °C, 200 rpm for 48 hours. did. After the culture was completed, the amount of L-glutamic acid in the culture was measured, and the results are shown in Table 8 below.
  • Glutamic acid production g/L
  • Parent strain KCTC 11558BP
  • Variant IS1
  • IS2 Variant
  • IS3 Variant
  • Corynebacterium glutamicum mutants IS1, IS2, IS3 Corynebacterium deserti (C. deserti ) derived mscS1, Corynebacterium crudilactis (C. crudilactis ) derived mscS2 , Corynebacterium callunae ( C. callunae )
  • the productivity of L-glutamic acid is about 8%, 7%, 9, respectively, compared to the parent strain Corynebacterium glutamicum KCTC 11558BP strain in which the mscS3 gene is not introduced, respectively. was found to increase by %.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이의 제조 방법, 이를 이용한 L-글루탐산의 생산 방법에 관한 것으로, 상기 코리네박테리움 글루타미쿰 변이주는 코리네박테리움 속( Corynebacterium sp.) 유래 기계감각적 이온 채널 유전자가 도입됨으로써 글루탐산의 배출을 강화시켜 L-글루탐산의 생산 수율이 향상되므로, 상기 변이 균주를 이용하면 보다 효과적으로 L-글루탐산을 제조할 수 있다.

Description

L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 L-글루탐산의 생산 방법
본 발명은 L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 L-글루탐산의 생산 방법에 관한 것으로, 구체적으로는 코리네박테리움 속( Corynebacterium sp.) 균주로부터 유래된 기계감각적 이온 채널 유전자가 도입되어 L-글루탐산의 생산능이 증가된 코리네박테리움 글루타미쿰 변이주 및 이의 제조 방법, 이를 이용한 L-글루탐산의 생산 방법에 관한 것이다.
L-글루탐산은 미생물 발효에 의해 생산되는 대표적인 아미노산으로, L-글루탐산 나트륨(monosodium L-glutamate, MSG)은 음식의 전체적인 맛에 균형과 조화를 이루도록 하여 고기, 생선, 닭, 야채, 소스, 수프, 양념 등 식품의 선호도를 높여주고 소금을 30%까지 줄인 저염 식품의 맛을 증진시켜줄 수 있어 가정용 및 가공식품 생산을 위한 조미료로 널리 이용되고 있다.
L-글루탐산의 발효경로를 간단하게 살펴보면, 포도당은 주로 해당경로(EMP)를 거치게 되나 일부는 6탄당 인산경로(HMP)를 거쳐서 2분자의 피루브산(pyruvic acid)으로 대사된다. 그 중 1분자는 CO 2를 고정하여 옥살로아세트산(oxaloacetic acid)으로 되고 다른 1분자는 피루브산으로부터 아세틸코에이(acetyl CoA)와 결합하여 구연산(citric acid)으로 된다. 다시 옥살로아세트산과 구연산은 시트르산 회로(TCA cycle)로 들어가 알파-케토글루타르산(α-ketoglutaric acid)이 된다. 여기서, 알파-케토글루타르산으로부터 호박산(succinic acid)으로 산화되는 산화대사 경로가 결여되어 있고 또 이소시트레이트 디히드로겐아제(isocitrate dehydrogenase)와 글루타메이트 디히드로겐아제(glutamate dehydrogenase)가 밀접하게 관여하기 때문에 알파-케토글루타르산의 환원적 아미노산화 반응이 능률적으로 진행되어 L-글루탐산이 생성된다.
L-글루탐산 생산 시, 통상적으로 브레비박테리움( Brevibacterium)이나 코리네박테리움( Corynebacterium) 속 균주 및 그 변이주를 이용하여 발효를 통해 생산한다. 미생물 배양에 의한 L-글루탐산의 생산량을 증가시키기 위해서는 L-글루탐산 생합성에 관여하는 유전자의 발현을 조절하는 방법이 이용되어 왔다. 주로, 해당 유전자의 복사수를 증가시키거나 유전자의 프로모터를 변형시켜 생합성 경로 상의 효소 활성을 조절할 수 있다. 구체적으로, pyc 유전자나 fasR과 같은 특정 유전자의 증폭이나 (미국등록특허 제6,852,516호), gdh, gltA, icd, pdh 및 argG 유전자의 프로모터(promoter) 부위를 조작하여 (미국등록특허 제6,962,805호) L-글루탐산 생산량을 증가시킨 바 있다. 이와 같이 글루탐산의 생합성 경로에 관여하는 유전자에 대해서는 대부분이 이미 알려져 있어, 글루탐산의 생산량을 높일 수 있는 새로운 유전자를 발굴하고, 이를 반영한 새로운 글루탐산 생산 균주를 개발하는 것이 요구되고 있다.
이에, 본 발명자들은 L-글루탐산의 배출을 돕는 새로운 유전자를 발굴하고, 그 유전자를 L-글루탐산 생산 균주에 도입하여 변이주를 제작함으로써 변이주의 L-글루탐산 생산능이 향상된 것을 확인하여 본 발명을 완성하였다.
본 발명은 코리네박테리움 속 균주 유래 기계감각적 이온 채널(mechanosensitive ion channel) 유전자를 포함하며, L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주를 제공하는 것을 목적으로 한다.
또한, 본 발명은 코리네박테리움 속 균주 유래 기계감각적 이온 채널 유전자를 도입하는 단계를 포함하는, 상기 코리네박테리움 글루타미쿰 변이주의 제조 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 i) 상기 코리네박테리움 글루타미쿰 변이주를 L-글루탐산 생산 배지에서 배양하는 단계; 및 ii) 상기 변이주 또는 변이주가 배양된 배양액으로부터 L-글루탐산을 회수하는 단계를 포함하는 L-글루탐산의 생산 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 코리네박테리움 속 균주 유래 기계감각적 이온 채널(mechanosensitive ion channel) 유전자를 포함하며, L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰( Corynebacterium glutamicum) 변이주를 제공한다.
본 발명자들은 L-글루탐산의 생산능을 향상시킬 수 있는 새로운 코리네박테리움 글루타미쿰 변이주를 개발하고자 노력한 결과, L-글루탐산을 생산하는 코리네박테리움 글루타미쿰 균주에 코리네박테리움 속 균주( Corynebacterium species)에서 유래된 기계감각적 이온 채널 관련 유전자를 도입함으로써 L-글루탐산의 배출을 도와 변이주의 L-글루탐산 생산성이 현저하게 향상되는 것을 확인하였다.
본 발명에서, "코리네박테리움 속 균주"는 코리네박테리움 글루타미쿰 균주에 도입하고자 하는 기계감각적 이온 채널 유전자의 유래 균주로, 모든 코리네박테리움 속 미생물을 포함할 수 있다. 구체적으로는, 코리네박테리움 글루타미쿰( Corynebacterium glutamicum), 코리네박테리움 크루디락티스( Corynebacterium crudilactis), 코리네박테리움 데저티( Corynebacterium deserti), 코리네박테리움 칼루나에( Corynebacterium callunae), 코리네박테리움 수라나래에( Corynebacterium suranareeae), 코리네박테리움 루브리칸티스( Corynebacterium lubricantis), 코리네박테리움 두사넨세( Corynebacterium doosanense), 코리네박테리움 이피시엔스( Corynebacterium efficiens), 코리네박테리움 우테레키( Corynebacterium uterequi), 코리네박테리움 스테셔니스( Corynebacterium stationis), 코리네박테리움 파캔세( Corynebacterium pacaense), 코리네박테리움 싱굴라레( Corynebacterium singulare), 코리네박테리움 휴미레듀센스( Corynebacterium humireducens), 코리네박테리움 마리눔( Corynebacterium marinum), 코리네박테리움 할로톨레란스( Corynebacterium halotolerans), 코리네박테리움 스페니스코룸( Corynebacterium spheniscorum), 코리네박테리움 프레이부르겐세( Corynebacterium freiburgense), 코리네박테리움 스트리아툼( Corynebacterium striatum), 코리네박테리움 카니스( Corynebacterium canis), 코리네박테리움 암모니아게네스( Corynebacterium ammoniagenes), 코리네박테리움 레날레( Corynebacterium renale), 코리네박테리움 폴루티솔리( Corynebacterium pollutisoli), 코리네박테리움 이미탄스( Corynebacterium imitans), 코리네박테리움 카스피움( Corynebacterium caspium), 코리네박테리움 테스투디노리스( Corynebacterium testudinoris), 코리네박테리움 슈도펠라지( Corynebacaterium pseudopelargi) 또는 코리네박테리움 플라베스센스( Corynebacterium flavescens)일 수 있다.
본 발명에서, “기계감각적 이온 채널”은 박테리아뿐만 아니라 진핵생물의 세포막에 존재하는 채널로, 삼투 항상성(osmotic homeostasis)에 관여한다. 이러한 기계감각적 이온 채널을 암호화하는 유전자는 코리네박테리움 속 균주에서 유래된 것일 수 있으며, 바람직하게는 코리네박테리움 데저티( Corynebacterium deserti) 유래인 것인 서열번호 1의 염기서열, 코리네박테리움 크루디락티스( Corynebacterium crudilactis) 유래인 것인 서열번호 2 또는 코리네박테리움 칼루나에( Corynebacterium callunae) 유래인 것인 서열번호 3의 염기서열일 수 있다. 이때, 서열번호 1 내지 3의 염기서열과 상동성이 60% 이상, 바람직하게는 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상인 염기서열을 포함할 수 있다. 상기 "상동성이 % 이상"은 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열 (추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제 (즉, 갭)를 포함할 수 있다. 또한, 기계감각적 이온 채널을 암호화하는 유전자는 자연적으로 또는 비자연적으로 (예컨대, 유전자 조작, 방사능, 화학적 처리 등) 발생된 변이가 있을 수 있으며, 이러한 변이를 통해 유전자의 기능이 약화되거나 강화될 수 있다.
본 발명의 일 구체예에 따르면, 상기 기계감각적 이온 채널 유전자는 서열번호 1 내지 5의 염기서열 중 어느 하나로 암호화된 것일 수 있다.
상기 서열번호 1의 염기서열은 코리네박테리움 데저티 유래 기계감각적 이온 채널 유전자일 수 있고, 서열번호 2의 염기서열은 코리네박테리움 크루디락티스 유래 기계감각적 이온 채널 유전자일 수 있으며, 서열번호 3 내지 5의 염기서열은 코리네박테리움 칼루나에 유래 기계감각적 이온 채널 유전자일 수 있다. 여기서, 서열번호 4 및 5의 염기서열은 코리네박테리움 칼루나에 유래 기계감각적 이온 채널 유전자의 아미노산 서열 중 107번째 아미노산이 류신(LEU)에서 알라닌(ALA) 또는 발린(VAL)으로 치환된 것을 암호화하는 것일 수 있다.
본 발명자들은 코리네박테리움 글루타미쿰의 글루탐산 배출에 관여하는 기계감각적 이온 채널 유전자와 상동성이 70% 이상 (코리네박테리움 데저티 74%, 코리네박테리움 크루디락티스 72%, 코리네박테리움 칼루나에 70%)인 염기서열을 통해 동일한 글루탐산 배출 역할을 수행할 것으로 추정하였고, 다른 글루탐산 생산용 균주에 비해 본 발명에서의 기계감각적 이온 채널 유전자가 포함된 변이주의 글루탐산 생산성이 현저히 향상된 것을 확인하였다.
본 발명에서, "생산능이 향상된" 균주는 모균주에 비해 L-글루탐산의 생산성이 증가된 것을 의미한다. 상기 모균주는 변이의 대상이 되는 야생형 또는 변이주를 의미하며, 직접 변이의 대상이 되거나 재조합된 벡터 등으로 형질전환되는 대상을 포함한다. 본 발명에 있어서, 모균주는 야생형 코리네박테리움 글루타미쿰 균주 또는 야생형으로부터 변이된 균주일 수 있다. 바람직하게는 코리네박테리움 글루타미쿰 KCTC 11558BP 균주일 수 있다.
본 발명의 일 구체예에 따른 L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주는 모균주에 비해 L-글루탐산 생산량이 5% 이상, 구체적으로는 5 내지 20% 증가되어 균주 배양액 1 ℓ 당 36 ~ 50 g의 L-글루탐산을 생산할 수 있으며, 바람직하게는 38 ~ 45 g의 L-글루탐산을 생산할 수 있다.
본 발명의 다른 일 양상은 코리네박테리움 속 균주 유래 기계감각적 이온 채널 유전자를 도입하는 단계를 포함하는, 상기 코리네박테리움 글루타미쿰 변이주의 제조 방법을 제공한다.
상기 단계는 기계감각적 이온 채널 유전자를 암호화하는 폴리뉴클레오티드를 포함하는 벡터를 모균주에 형질전환 시키는 과정이다.
본 발명에서, "벡터"는 숙주 세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위(replicon)일 수 있다. 상기 "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제가능한, 임의의 유전적 단위 (예를 들면, 플라스미드, 파지, 코스미드, 염색체, 바이러스)를 말한다. 본 발명에 있어서, 벡터는 숙주 중에서 복제 가능한 것이면 특별히 한정되지 않으며 당업계에 알려진 임의의 벡터를 이용할 수 있다. 상기 재조합 벡터의 제작에 사용된 벡터는 천연 상태이거나 재조합 된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지일 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λEMBL3, λEMBL4, λFIXII, λDASHII, λZAPII, λgt10, λgt11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pDZ 벡터, pBR계, pUC계, pBluescriptⅡ계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있으나, 이에 한정되지 않는다.
본 발명에서, "형질전환"은 유전자를 숙주세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것이며, 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함될 수 있다. 본 발명에 있어서, 형질전환 방법의 일례로는 전기 천공 방법 (van der Rest et al., Appl. Microbiol. Biotechnol., 52, 541-545, 1999) 등일 수 있다.
본 발명의 다른 일 양상은 i) 상기 코리네박테리움 글루타미쿰 변이주를 L-글루탐산 생산 배지에서 배양하는 단계; 및 ii) 상기 변이주 또는 변이주가 배양된 배양액으로부터 L-글루탐산을 회수하는 단계를 포함하는 L-글루탐산의 생산 방법을 제공한다.
상기 배양은 당업계에 알려진 적절한 배지와 배양조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다. 구체적으로, 상기 배지는 액체 배지일 수 있으나 이에 한정되는 것은 아니다. 배양 방법은 예를 들면, 회분식 배양(batch culture), 연속식 배양(continuous culture), 유가식 배양(fed-batch culture) 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 상기 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 통상의 기술자에 의해 적절하게 변형될 수 있다. 코리네박테리아 속 균주에 대한 배양 배지는 공지된 문헌 (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981)을 참조할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 배지에 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. 사용될 수 있는 탄소원으로는 글루코스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으나 이에 한정되는 것은 아니다. 사용될 수 있는 인의 공급원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있으며, 이에 한정되는 것은 아니다. 그 외에, 아미노산 및 비타민과 같은 필수 성장 물질이 포함될 수 있다. 또한 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기 배지 또는 개별 성분은 배양과정에서 배양액에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양액의 온도는 통상 20℃ 내지 45℃, 예를 들면 25℃ 내지 40℃일 수 있다. 배양기간은 유용물질이 원하는 생산량으로 수득될 때까지 계속될 수 있으며, 예를 들면 10 내지 160 시간일 수 있다.
본 발명의 일 구체예에 따르면, 상기 배양된 변이 균주 및 배양 배지에서 L-글루탐산을 회수하는 단계는 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지로부터 생산된 L-글루탐산을 수집 또는 회수할 수 있다. 예를 들면 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별용해 (예를 들면 암모늄 설페이트 침전), 크로마토그래피 (예를 들면 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으나 이에 제한되지 않는다.
본 발명의 일 구체예에 따르면, 글루탐산을 회수하는 단계는 배양물을 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을 이온교환 크로마토그래피를 통하여 분리할 수 있다.
본 발명의 일 구체예에 따르면, 상기 L-글루탐산을 회수하는 단계는 L-글루탐산을 정제하는 공정을 포함할 수 있다.
본 발명의 일 구체예에 따른 코리네박테리움 글루타미쿰 변이주는 코리네박테리움 속 균주 유래 기계감각적 이온 채널 유전자가 도입됨으로써 글루탐산의 배출을 강화시켜 L-글루탐산의 생산 수율이 향상되므로, 상기 변이 균주를 이용하면 보다 효과적으로 L-글루탐산을 제조할 수 있다.
도 1은 코리네박테리움 데저티( Corynebacterium deserti) 균주로부터 유래된 기계감각적 이온 채널 유전자를 포함하는 pKmscS1 벡터의 구조를 나타낸 것이다.
도 2는 코리네박테리움 칼루나에( Corynebacterium callunae) 균주로부터 유래되어 107번째 아미노산 잔기가 류신(LEU)에서 알라닌(ALA)으로 치환된 기계감각적 이온 채널 유전자를 포함하는 pKmscS3-L107A 벡터의 구조를 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.
실시예 1. 코리네박테리움 글루타미쿰 변이주의 제조
1-1. 코리네박테리움 데저티( C. deserti ) 유래 기계감각적 이온 채널 유전자가 도입된 벡터의 제조
기계감각적 이온 채널 유전자 mscS1를 도입하기 위해, 코리네박테리움 데저티( C. deserti GIMN1.010)로부터 염색체 DNA를 분리, 정제한 후 주형으로 사용하여 하기 표 1의 프라이머 3 및 4를 이용하여 PCR (95℃에서 30초, 58℃에서 30초, 72℃에서 2분, 30회 반복)로 증폭하였다.
증폭된 유전자를 삽입하고자 하는 벡터의 위치를 인식하는 하기 표 1의 프라이머 1 및 2, 프라이머 5 및 6을 이용하여 PCR (95℃에서 30초, 58℃에서 30초, 72℃에서 2분, 30회 반복)로 증폭하였다. PCR 산물은 전기영동으로 각각 약 1,500 bp, 1,600 bp, 1,500 bp의 밴드를 확인하였다.
정제된 각각의 PCR 산물 (mscS1 유전자 및 벡터)은 다시 크로스오버 중합효소연쇄반응(crossover polymerase chain reaction, PCR)을 위한 주형으로 사용하여 하기 표 1의 프라이머 1 및 6을 이용하여 크로스오버 PCR 기법(Bacteriol., 179: 6228-6237,1997)으로 다시 한 번 증폭시켰다. 이후, 4.6 kb의 PCR 산물은 정제한 뒤 BamHI 제한효소 (Takara, 일본)로 절단하였고, 동일한 제한효소로 절단한 pK19mobSacB 벡터 (Gene, 145: 69-73, 1994)에 클로닝하여 mscS1 유전자 도입용 pKmscS1 벡터를 제조하였다 (도 1).
프라이머 염기서열 (5' > 3') 서열번호
프라이머 1 CGC GGATCCTCTGCCTTGCTTGCCTTGGT 6
프라이머 2 CGGCAGTCCTAAAATCATGAGCCAAGATTAGCGCTG 7
프라이머 3 CAGCGCTAATCTTGGCTCATGATTTTAGGACTGCCG 8
프라이머 4 ACGTCTGTAATCAGCGTCTTATGGGATGGACGTTGG 9
프라이머 5 CCAACGTCCATCCCATAAGACGCTGATTACAGACGT 10
프라이머 6 CGC GGATCCCCGTTGCCTGGGAGAGAAAG 11
프라이머 7 GGTGGTGAGTTCCTGGTT 12
프라이머 8 GTCAACTTCGCCTTCCTG 13
1-2. 코리네박테리움 크루디락티스( C. crudilactis ) 유래 기계감각적 이온 채널 유전자가 도입된 벡터의 제조
상기 1-1의 코리네박테리움 데저티 대신 코리네박테리움 크루디락티스( C. crudilactis strain JZ16)를 사용하고, 하기 표 2의 프라이머를 사용한 것을 제외하고는, 동일하게 제조하여 mscS2 유전자 도입용 pKmscS2 벡터를 제조하였다.
프라이머 염기서열 (5' > 3') 서열번호
프라이머 1 CGC GGATCCTCTGCCTTGCTTGCCTTGGT 6
프라이머 2 GCGTTCACCTAAAATCATGAGCCAAGATTAGCGCTG 14
프라이머 3 CAGCGCTAATCTTGGCTCATGATTTTAGGTGAACGC 15
프라이머 4 ACGTCTGTAATCAGCGTCTTATGGGGTGGACATTGG 16
프라이머 5 CCAATGTCCACCCCATAAGACGCTGATTACAGACGT 17
프라이머 6 CGC GGATCCCCGTTGCCTGGGAGAGAAAG 11
프라이머 7 GGTGGTGAGTTCCTGGTT 12
프라이머 8 GTCAACTTCGCCTTCCTG 13
1-3. 코리네박테리움 칼루나에( C. callunae ) 유래 기계감각적 이온 채널 유전자가 도입된 벡터의 제조
상기 1-1의 코리네박테리움 데저티 대신 코리네박테리움 칼루나에( C. callunae DSM 20147)를 사용하고, 하기 표 3의 프라이머를 사용한 것을 제외하고는, 동일하게 제조하여 mscS3 유전자 도입용 pKmscS3 벡터를 제조하였다.
프라이머 염기서열 (5' > 3') 서열번호
프라이머 1 CGC GGATCCTCTGCCTTGCTTGCCTTGGT 6
프라이머 2 ACCTCTCTATGACCTCTAGAGAGCCAAGATTAGCGCTGAA 18
프라이머 3 TTCAGCGCTAATCTTGGCTCTCTAGAGGTCATAGAGAGGT 19
프라이머 4 ACACGTCTGTAATCAGCGTCATCCCTACTGGGTGGACGTA 20
프라이머 5 TACGTCCACCCAGTAGGGATGACGCTGATTACAGACGTGT 21
프라이머 6 CGC GGATCCCCGTTGCCTGGGAGAGAAAG 11
프라이머 7 GGTGGTGAGTTCCTGGTT 12
프라이머 8 GTCAACTTCGCCTTCCTG 13
1-4. 코리네박테리움 칼루나에( C. callunae ) 유래 기계감각적 이온 채널 유전자의 아미노산 잔기 변이가 도입된 벡터의 제조
기계감각적 이온 채널 유전자 mscS3의 107번째 아미노산 잔기를 치환하여 도입하기 위해, 코리네박테리움 칼루나에( C. callunae DSM 20147)로부터 염색체 DNA를 분리, 정제한 후 주형으로 사용하여 하기 표 4의 프라이머 1 및 2, 프라이머 3 및 4를 이용하여 PCR (95℃에서 30초, 58℃에서 30초, 72℃에서 2분, 30회 반복)로 증폭하였다.
정제된 각각의 PCR 산물 (mscS3 유전자 및 벡터)은 다시 크로스오버 중합효소연쇄반응(crossover polymerase chain reaction, PCR)을 위한 주형으로 사용하여 하기 표 4의 프라이머 1 및 4를 이용하여 크로스오버 PCR 기법 (Bacteriol., 179: 6228-6237,1997)으로 다시 한 번 증폭시켰다. 이후, 718 bp의 PCR 산물은 정제한 뒤 BamHI 제한효소 (Takara, 일본)로 절단하였고, 동일한 제한효소로 절단한 pK19mobSacB 벡터 (Gene, 145: 69-73, 1994)에 클로닝하여 mscS3 유전자의 107번째 류신 잔기를 알라닌으로 치환하는 변이 도입용 pKmscS3-L107A 벡터를 제조하였다 (도 2).
프라이머 염기서열 (5' > 3') 서열번호
프라이머 1 CGC GGATCCGGCAGCTCTCAAAGT 22
프라이머 2 GCGATGATGGATTGCGCGCC tgcACCAATGGCCGCAGAGGCAA 23
프라이머 3 TTGCCTCTGCGGCCATTGGT gcaGGCGCGCAATCCATCATCGC 24
프라이머 4 CGC GGATCCCAGCGATATCTTCTTGGGC 25
프라이머 5 GGTGGTGAGTTCCTGGTT 12
프라이머 6 GTCAACTTCGCCTTCCTG 13
1-5. 코리네박테리움 칼루나에( C. callunae ) 유래 기계감각적 이온 채널 유전자의 아미노산 잔기 변이가 도입된 벡터의 제조
상기 1-4의 프라이머 대신 하기 표 5의 프라이머를 사용한 것을 제외하고는, 동일하게 제조하여 mscS3 유전자의 107번째 류신 잔기를 발린으로 치환하는 변이 도입용 pKmscS3-L107V 벡터를 제조하였다.
프라이머 염기서열 (5' > 3') 서열번호
프라이머 1 CGC GGATCCGGCAGCTCTCAAAGT 22
프라이머 2 TTGCCTCTGCGGCCATTGGT gttGGCGCGCAATCCATCATCGC 26
프라이머 3 GCGATGATGGATTGCGCGCC aacACCAATGGCCGCAGAGGCAA 27
프라이머 4 CGC GGATCCCAGCGATATCTTCTTGGGC 25
프라이머 5 GGTGGTGAGTTCCTGGTT 12
프라이머 6 GTCAACTTCGCCTTCCTG 13
1-6. 코리네박테리움 글루타미쿰 KCTC11558BP 균주의 형질전환 및 변이주 제조
코리네박테리움 글루타미쿰 KCTC 11558BP 균주의 형질전환을 위한 방법으로 van der Rest 등의 방법을 기본으로 수식한 일렉트로컴피턴트 셀(electrocompetent cell) 제조법을 사용하였다.
먼저, 2% 포도당이 첨가된 2YT 배지 (트립톤 16 g/ℓ, 효모추출물 10 g/ℓ, 염화나트륨 5 g/ℓ) 100 ㎖에서 코리네박테리움 글루타미쿰 KCTC 11558BP 균주를 1차 배양하고, 포도당을 제외한 동일 배지에 1 mg/㎖ 농도의 이소니코틴산 히드라진(isonicotinic acid hydrazine) 및 2.5% 글라이신(glycine)을 첨가하였다. 그 다음, OD 610 값이 0.3이 되도록 종배양액을 접종한 후, 18℃, 180 rpm으로 12 ~ 16시간 배양하여 OD 610 값이 1.2 ~ 1.4가 되도록 하였다. 얼음에서 30분간 방치한 후, 4℃, 4000 rpm으로 15분간 원심분리하였다. 그 뒤 상등액을 버리고 침전된 코리네박테리움 글루타미쿰 KCTC 11558BP 균주를 10% 글리세롤 용액으로 4회 세척하고, 최종적으로 10% 글리세롤 용액 0.5 ㎖에 재현탁하여 컴피턴트 셀(competent cell)을 준비하였다. 전기천공(Electroporation)은 바이오-라드(Bio-Rad)사의 전기천공기(electroporator)를 사용하였다. 전기천공 큐벳 (0.2 mm)에 준비된 컴피턴트 셀과 제조된 각각의 pKmscS1, pKmscS2, pKmscS3, pKmscS3-L107A, pKmscS3-L107V 벡터를 첨가한 후, 2.5 kV, 200 Ω 및 12.5 ㎌의 조건으로 전기충격을 가하였다. 전기충격이 끝난 즉시 재생(regeneration) 배지(Brain Heart infusion 18.5 g/ℓ 및 소비톨 0.5 M 함유) 1 ㎖을 첨가하고 46℃에서 6분간 열처리하였다. 그 후 실온에서 식힌 뒤 15 ㎖ 캡 튜브로 옮겨 30℃에서 2시간 배양하고 선별 배지 (트립톤 5 g/ℓ, NaCl 5 g/ℓ, 효모추출물 2.5 g/ℓ, Brain Heart infusion powder 18.5 g/ℓ, 아가 15 g/ℓ, 소비톨 91 g/ℓ 및 카나마이신(kanamycine) 20 ㎍/ℓ 함유)에 도말하였다. 30℃에서 72시간 배양해 생성된 콜로니는 BHI 배지에서 정지기까지 배양하여 2차 재조합을 유도했으며 10 -5 ~ 10 -7까지 희석하여 항생제가 없는 평판 (10% sucrose 함유)에 도말하여 카나마이신 내성도가 없고 10% 수크로오스가 포함된 배지에서 성장성이 있는 균주를 선별하였다. 얻어진 콜로니를 상기 표 1 내지 3의 각 프라이머 7 및 8을 이용하여 mscS1, mscS2, mscS3 유전자가 각각 도입된 코리네박테리움 글루타미쿰 변이주 (IS1, IS2, IS3)를 확인하였고, 상기 표 4 및 5의 각 프라이머 5 및 6을 이용하여 mscS3-L107A, mscS3-L107V 유전자가 각각 도입된 코리네박테리움 글루타미쿰 변이주 (IS3-A, IS3-V)를 확인하였다.
실험예 1. 변이주의 L-글루탐산 생산성 비교
실시예 1에서 제조된 mscS1, mscS2, mscS3 유전자 도입 변이주 (IS1, IS2, IS3)와 모균주인 코리네박테리움 글루타미쿰 KCTC 11558BP 균주에 대해 L-글루탐산 생산성을 비교하였다.
하기 표 6과 같은 조성을 갖는 활성 평판배지(pH 7.5)에 변이주와 모균주를 각각 도말하여 30℃에서 24시간 배양하였다. 이후, 100 mL 플라스크에 하기 표 7과 같은 조성을 갖는 플라스크 배지(pH 7.6) 10 mL를 넣고, 여기에 평판배지에서 배양된 균주를 각각 1 루프(loop) 접종하여 30℃, 200 rpm으로 48시간 배양하였다. 배양이 완료된 후 배양액 중에서 L-글루탐산의 양을 측정하였고, 그 결과는 하기 표 8과 같다.
조성 함량
포도당 5 g/L
효모추출물 10 g/L
요소(urea) 3 g/L
KH 2PO 4 1 g/L
비오틴(biotin) 2 ug/L
대두가수분해물 0.1% v/v
류신(leucine) 50 mg/L
아가(agar) 20 g/L
조성 함량
포도당 70 g/L
MgSO 4. 7H 2O 0.4 g/L
요소(urea) 2 g/L
KH 2PO 4 1 g/L
대두가수분해물 1.5% v/v
(NH 4) 2SO 4 5 g/L
FeSO 4. 7H 2O 10 mg/L
MnSO 4. 5H 2O 10 mg/L
티아민(thiamin)-HCl 200 ug/L
비오틴(biotin) 2 ug/L
탄산칼슘 50 g/L
글루탐산 생산량 (g/L)
모균주 (KCTC 11558BP) 35.3
변이주 (IS1) 38.2
변이주 (IS2) 37.9
변이주 (IS3) 38.4
상기 표 8에 나타낸 바와 같이, 코리네박테리움 글루타미쿰 변이주 IS1, IS2, IS3는 코리네박테리움 데저티 (C. deserti) 유래 mscS1, 코리네박테리움 크루디락티스 (C. crudilactis) 유래 mscS2, 코리네박테리움 칼루나에( C. callunae) 유래 mscS3 유전자가 각각 도입되지 않은 모균주 코리네박테리움 글루타미쿰 KCTC 11558BP 균주에 비해 L-글루탐산의 생산성이 각각 약 8%, 7%, 9%씩 증가한 것으로 확인되었다.
실험예 2. 아미노산 잔기의 치환 여부에 따른 변이주의 L-글루탐산 생산성 비교
실시예 1에서 제조된 mscS3, mscS3-L107A, mscS3-L107V 유전자 도입 변이주 (IS3, IS3-A, IS3-V)와 모균주인 코리네박테리움 글루타미쿰 KCTC 11558BP 균주에 대해 L-글루탐산 생산성을 비교하였다.
실험예 1과 동일한 방법으로 균주를 배양하여 L-글루탐산의 양을 측정하였고, 그 결과는 하기 표 9와 같다.
글루탐산 생산량 (g/L)
모균주 (KCTC 11558BP) 35.3
변이주 (IS3) 38.4
변이주 (IS3-A) 39.7
변이주 (IS3-V) 36.8
상기 표 9에 나타낸 바와 같이, 코리네박테리움 글루타미쿰 변이주 IS3, IS3-A, IS3-V는 모균주 코리네박테리움 글루타미쿰 KCTC 11558BP 균주에 비해 L-글루탐산의 생산성이 각각 약 9%, 12%, 4%씩 증가한 것으로 확인되었다.
특히, 107번째 아미노산 잔기가 류신에서 알라닌으로 치환된 경우 (IS3-A)에는 아미노산 잔기가 치환되지 않은 경우 (IS3), 류신에서 발린으로 치환된 경우 (IS3-V)에 비해 L-글루탐산의 생산성이 증가한 것으로 나타나, 코리네박테리움 칼루나에( C. callunae) 유래 mscS3 유전자의 107번째 아미노산 잔기가 글루탐산 생산능에 관여하는 중요한 위치임을 알 수 있었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (5)

  1. 코리네박테리움 속( Corynebacterium sp.) 균주 유래 기계감각적 이온 채널 유전자(mechanosensitive ion channel)를 포함하며, L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰( Corynebacterium glutamicum) 변이주.
  2. 청구항 1에 있어서,
    상기 코리네박테리움 속 균주는 코리네박테리움 데저티( Corynebacterium deserti), 코리네박테리움 크루디락티스( Corynebacterium crudilactis) 및 코리네박테리움 칼루나에( Corynebacterium callunae)로 이루어진 군에서 선택된 1종 이상인 것인 코리네박테리움 글루타미쿰 변이주.
  3. 청구항 1에 있어서,
    상기 기계감각적 이온 채널 유전자는 서열번호 1 내지 5의 염기서열 중 어느 하나로 암호화된 것인 코리네박테리움 글루타미쿰 변이주.
  4. 코리네박테리움 속( Corynebacterium sp.) 균주 유래 기계감각적 이온 채널 유전자를 도입하는 단계를 포함하는, 청구항 1의 코리네박테리움 글루타미쿰 변이주의 제조 방법.
  5. i) 청구항 1의 코리네박테리움 글루타미쿰 변이주를 L-글루탐산 생산 배지에서 배양하는 단계; 및
    ii) 상기 변이주 또는 변이주가 배양된 배양액으로부터 L-글루탐산을 회수하는 단계
    를 포함하는 L-글루탐산의 생산 방법.
PCT/KR2020/011406 2020-02-12 2020-08-26 L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법 WO2021162189A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/798,792 US20230136217A1 (en) 2020-02-12 2020-08-26 Mutant of corynebacterium glutamicum with enhanced l-glutamic acid productivity and method for preparing l-glutamic acid using the same
JP2022548767A JP2023514216A (ja) 2020-02-12 2020-08-26 L-グルタミン酸の生産能が向上したコリネバクテリウムグルタミクム変異株およびこれを用いたl-グルタミン酸の生産方法
CN202080096445.8A CN115135767B (zh) 2020-02-12 2020-08-26 具有提高的l-谷氨酸生产能力的谷氨酸棒状杆菌突变体菌株,以及用于使用其生产l-谷氨酸的方法
EP20918924.0A EP4105331A4 (en) 2020-02-12 2020-08-26 MUTANT STRAIN OF CORYNEBACTERIUM GLUTAMICUM HAVING IMPROVED PRODUCTION CAPACITY OF L-GLUTAMIC ACID AND METHOD FOR PRODUCING L-GLUTAMIC ACID USING SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0017264 2020-02-12
KR20200017264 2020-02-12
KR10-2020-0105435 2020-08-21
KR1020200105435A KR102269639B1 (ko) 2020-02-12 2020-08-21 L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법

Publications (1)

Publication Number Publication Date
WO2021162189A1 true WO2021162189A1 (ko) 2021-08-19

Family

ID=76629368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011406 WO2021162189A1 (ko) 2020-02-12 2020-08-26 L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법

Country Status (6)

Country Link
US (1) US20230136217A1 (ko)
EP (1) EP4105331A4 (ko)
JP (1) JP2023514216A (ko)
KR (1) KR102269639B1 (ko)
CN (1) CN115135767B (ko)
WO (1) WO2021162189A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227381A (zh) * 2018-12-13 2021-08-06 大象株式会社 L-谷氨酸生产能力得到提高的突变株及利用其的l-谷氨酸的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021432764A1 (en) * 2021-03-09 2023-09-28 Cj Cheiljedang Corporation Corynebacterium glutamicum variant having improved l-lysine production ability, and method for producing l-lysine by using same
CN113755374B (zh) * 2021-09-08 2022-05-03 山东省神农生态科技股份有限公司 一种降解2,4-二氯酚的停滞棒杆菌及其应用
KR20240008454A (ko) * 2022-07-11 2024-01-19 대상 주식회사 L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
KR102572850B1 (ko) * 2022-07-11 2023-08-31 대상 주식회사 L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852516B2 (en) 1999-01-13 2005-02-08 Ajinomoto Co., Inc. Method for producing L-glutamic acid by fermentation
US6962805B2 (en) 1998-09-25 2005-11-08 Ajinomoto Co., Inc. Method of constructing amino acid producing bacterial strains, and method of preparing amino acids by fermentation with the constructed amino acid producing bacterial strains
WO2006070944A2 (en) * 2004-12-28 2006-07-06 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
KR100824457B1 (ko) * 2006-10-16 2008-04-22 씨제이제일제당 (주) 고농도의 글루탐산을 생산하는 미생물 및 이를 이용한글루탐산의 제조 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143591A (ja) * 1983-02-04 1984-08-17 Ajinomoto Co Inc プラスミド
JP5343303B2 (ja) * 2004-12-28 2013-11-13 味の素株式会社 L−グルタミン酸生産菌及びl−グルタミン酸の製造方法
WO2008086595A1 (en) * 2007-01-18 2008-07-24 Alternate Energy Corporation Process for manufacturing hydrogen and monosodium glutamate
CN102753692A (zh) * 2010-06-15 2012-10-24 白光产业株式会社 使用微生物生产天冬氨酸族氨基酸的方法
MY185322A (en) * 2013-05-13 2021-05-04 Ajinomoto Kk Method for producing l-amino acid
JP6623690B2 (ja) * 2015-10-30 2019-12-25 味の素株式会社 グルタミン酸系l−アミノ酸の製造法
CN105950524A (zh) * 2016-04-27 2016-09-21 齐鲁工业大学 一种高产l-赖氨酸的谷氨酸棒状杆菌工程菌的构建方法
JP6852516B2 (ja) 2017-03-31 2021-03-31 横浜ゴム株式会社 2液硬化型ウレタン塗膜防水材組成物
KR102075160B1 (ko) * 2018-12-13 2020-02-10 대상 주식회사 L-글루탐산 생산능이 향상된 변이 균주 및 이를 이용한 l-글루탐산의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962805B2 (en) 1998-09-25 2005-11-08 Ajinomoto Co., Inc. Method of constructing amino acid producing bacterial strains, and method of preparing amino acids by fermentation with the constructed amino acid producing bacterial strains
US6852516B2 (en) 1999-01-13 2005-02-08 Ajinomoto Co., Inc. Method for producing L-glutamic acid by fermentation
WO2006070944A2 (en) * 2004-12-28 2006-07-06 Ajinomoto Co., Inc. L-glutamic acid-producing microorganism and a method for producing l-glutamic acid
KR100824457B1 (ko) * 2006-10-16 2008-04-22 씨제이제일제당 (주) 고농도의 글루탐산을 생산하는 미생물 및 이를 이용한글루탐산의 제조 방법

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Manual of Methods for General Bacteriology", 1981, AMERICAN SOCIETY FOR BACTERIOLOGY
BACTERIOL., vol. 179, 1997, pages 6228 - 6237
DATABASE Nucleotide Genbank; ANONYMOUS: "Corynebacterium callunae DSM 20147, complete genome", XP055836860, retrieved from NCBI *
GENE, vol. 145, 1994, pages 69 - 73
NAKAMURA J, HIRANO S, ITO H, WACHI M.: "Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 73, no. 14, 1 July 2007 (2007-07-01), US, pages 4491 - 4498, XP002691368, ISSN: 0099-2240, DOI: 10.1128/AEM.02446-06 *
NAKAYAMA YOSHITAKA; HASHIMOTO KEN-ICHI; SAWADA YASUYUKI; SOKABE MASAHIRO; KAWASAKI HISASHI; MARTINAC BORIS: "Corynebacterium glutamicummechanosensitive channels: towards unpuzzling "glutamate efflux" for amino acid production", BIOPHYSICAL REVIEWS, SPRINGER, DE, vol. 10, no. 5, 12 September 2018 (2018-09-12), DE, pages 1359 - 1369, XP036634180, ISSN: 1867-2450, DOI: 10.1007/s12551-018-0452-1 *
See also references of EP4105331A4
VAN DER REST ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 52, 1999, pages 541 - 545

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227381A (zh) * 2018-12-13 2021-08-06 大象株式会社 L-谷氨酸生产能力得到提高的突变株及利用其的l-谷氨酸的制造方法
CN113227381B (zh) * 2018-12-13 2024-05-24 大象株式会社 L-谷氨酸生产能力得到提高的突变株及利用其的l-谷氨酸的制造方法

Also Published As

Publication number Publication date
EP4105331A1 (en) 2022-12-21
US20230136217A1 (en) 2023-05-04
CN115135767B (zh) 2024-03-15
JP2023514216A (ja) 2023-04-05
EP4105331A4 (en) 2024-03-06
CN115135767A (zh) 2022-09-30
KR102269639B1 (ko) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2021162189A1 (ko) L-글루탐산 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-글루탐산의 생산 방법
EP0332234B1 (en) Process for preparing l-tyrosine
KR100838038B1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및그를 이용한 l-라이신 생산 방법
EP0197335B1 (en) Process for producing l-lysine
JP2023504236A (ja) L-アルギニンを生産する遺伝子組換え菌、その構築方法及び使用
KR20120046522A (ko) L?글루탐산 고생산능 코리네박테리움 글루타미쿰 변이 균주
WO2017034164A1 (ko) L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2012161522A2 (ko) L-오르니틴 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-오르니틴의 제조방법
WO2022191357A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022050527A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2022071638A1 (ko) L-시트룰린 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-시트룰린의 생산 방법
KR101377097B1 (ko) L―글루탐산 고생산능 코리네박테리움 글루타미쿰 변이 균주
WO2024014699A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024096218A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024014697A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024014698A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024014696A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024096219A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024096217A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2023106543A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2023063547A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2024014700A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2022191358A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
JP2020504598A (ja) L−アルギニンを生産するコリネバクテリウム属微生物及びこれを用いたl−アルギニン生産方法
WO2017065457A1 (ko) L-쓰레오닌 생산능을 가지는 미생물 및 그를 이용하여 l-쓰레오닌을 생산하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020918924

Country of ref document: EP

Effective date: 20220912