WO2021108944A1 - 用于锂离子电池的各向异性的集电极及其制造方法与应用 - Google Patents

用于锂离子电池的各向异性的集电极及其制造方法与应用 Download PDF

Info

Publication number
WO2021108944A1
WO2021108944A1 PCT/CN2019/122331 CN2019122331W WO2021108944A1 WO 2021108944 A1 WO2021108944 A1 WO 2021108944A1 CN 2019122331 W CN2019122331 W CN 2019122331W WO 2021108944 A1 WO2021108944 A1 WO 2021108944A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical metal
metal particles
collector electrode
collector
electrode according
Prior art date
Application number
PCT/CN2019/122331
Other languages
English (en)
French (fr)
Inventor
张雅
程骞
蔡毅
李晨
Original Assignee
合肥国轩高科动力能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥国轩高科动力能源有限公司 filed Critical 合肥国轩高科动力能源有限公司
Priority to US17/780,994 priority Critical patent/US20220416253A1/en
Priority to PCT/CN2019/122331 priority patent/WO2021108944A1/zh
Priority to CN201980102526.1A priority patent/CN115136361A/zh
Priority to JP2022532633A priority patent/JP2023503695A/ja
Priority to EP19955258.9A priority patent/EP4071862A4/en
Publication of WO2021108944A1 publication Critical patent/WO2021108944A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to an anisotropic collector for high-density lithium ion batteries, and a manufacturing method and application thereof.
  • lithium-ion batteries have become the most important power source for new energy vehicles.
  • it is necessary to further reduce the cost of lithium-ion batteries while improving the performance of lithium-ion batteries.
  • the industry is constantly pursuing lithium-ion batteries with higher energy density.
  • increasing the energy density of the entire Pack can meet the requirements of electric vehicles for Pack design.
  • the current battery pack design is composed of Cell ⁇ Module ⁇ Pack, which further increases the design complexity and space utilization.
  • An object of the present invention is to provide a method that is simple to operate and can prepare anisotropic collector electrodes in a large area.
  • Another object of the present invention is to provide an anisotropic collector prepared by the above method.
  • Another object of the present invention is to provide the application of the above-mentioned collector.
  • the present invention provides a collector electrode, which is made of resin material added with spherical metal particles, wherein the spherical metal particles form a conductive path, the width of the conductive path is 500nm-20 ⁇ m, and the distance between adjacent conductive paths is 500nm-20 ⁇ m, the diameter of the spherical metal particles is 500nm-20 ⁇ m.
  • the spherical metal particles and the resin material in the collector of the present invention are distributed at intervals, wherein the conductive spherical metal particles form a conductive path; in the X-Y direction, the number of conductive particles forming the conductive path does not exceed 20% of the total number of conductive particles.
  • a single spherical metal particle is arranged in a row to form a conductive path, that is, the width of the conductive path needs to be equal to the diameter of the metal particle.
  • conduction is performed through conductive particles, and the number of conductive particles forming a conductive path is not less than 60% of the total number of conductive particles.
  • the spherical metal particles used in the current collector of the present invention are metals that do not undergo alloying reaction with lithium ions.
  • the spherical metal particles used can be one or a combination of two or more of nickel, gold, silver, platinum, titanium, and copper.
  • the spherical metal particles used can be solid, hollow or spherical metal particles with a core-shell structure.
  • the spherical metal particles with a core-shell structure may be formed of one type of metal, or may be formed of a variety of metals with a core-shell structure.
  • a polyolefin-based material can be used as a resin material (organic substrate).
  • a resin material organic substrate
  • high-density polyethylene low-density polyethylene, polypropylene, polybutene, polymethylpentene, etc., a copolymer or a mixture formed by a combination of one or two or more.
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • the density of LDPE is 0.91-0.925g/cm 3
  • the density of HDPE is> 0.94g/cm 3 .
  • the above-mentioned resin material is more stable with respect to the potential of the positive electrode and the negative electrode, and has a lower density than metal, which is beneficial to increase the weight energy density of the battery.
  • the charge and discharge voltage range 2.5-3.8V (LFP); 2.5-4.2V (NCM); positive electrode compaction density: 2.3-2.6g/cc (LFP); 3.5-3.8g/cc (NCM); negative electrode voltage Solid density: 1.3-1.7g/cc (graphite).
  • the volume percentage of the spherical metal particles in the collector is 30 wt% to 70 wt%.
  • the thickness of the anisotropic resin collector of the present invention is preferably 5-30 ⁇ m. More preferably, the thickness of the collector is less than 20 ⁇ m, preferably less than 15 ⁇ m, and more preferably less than 10 ⁇ m.
  • the surface impedance of the collector of the present invention is lower than 15 mohm/sq, or lower than 10 mohm/sq.
  • the collector of the present invention uses resin filled with spherical metal particles as the collector. Most of the spherical metal particles in the XY direction are not connected, and only have low conductivity.
  • the Z direction conducts electricity through the spherical metal particles, which has high conductivity. When a short circuit occurs, only a few active materials can be activated in the XY direction, and thermal runaway will not occur in the end.
  • the X-Y direction is the horizontal direction of the collector
  • the Z direction is the thickness direction (vertical axis direction) of the collector.
  • the density of the collector of the present invention is less than that of metal, and a higher weight energy density can be achieved.
  • the density of the collector is 0.3g/cc-0.8g/cc
  • the energy density of LFP lithium iron phosphate battery
  • the energy density of NCM nickel cobalt manganese acid battery
  • the present invention also provides a method for preparing the anisotropic current collector.
  • the method mainly uses the melt stretching method to prepare the anisotropic resin current collector including:
  • the molten mixture with spherical metal particles is extruded into the cooling chamber, and the viscosity of the mixture is rapidly increased to form a film when cold, and then the film is stretched to the corresponding thickness and internal structure through a set of stretching rods.
  • the thickness and degree of orientation of the collector of the present invention depend on the ratio of resin to spherical metal particles, the preheating temperature of the melting furnace and the stretching rate of the mechanical drum.
  • the preheating temperature of the melting furnace may be 80°C.
  • the stretching speed of the mechanical drum may be 10m/min-40m/min, and the stretching tension may be 5N-25N.
  • the particle spacing can be controlled, thereby controlling the width of the conductive path.
  • the width of the conductive path is controlled to be the diameter of the spherical metal particles.
  • the present invention also provides the application of the collector.
  • the collector electrode of the present invention can be used to prepare lithium ion batteries.
  • a single battery cell is stacked in series, which can save connection pole pieces between individual batteries, improve volume efficiency, and is suitable for vehicle-mounted use.
  • spherical metal particles are used as filler resin to make the collector.
  • the collector electrode is characterized in that the conductive particles in the XY direction do not form a sufficient conductive network, but a better conductive network is formed in the Z direction.
  • the collector electrode is not easy to activate most of the active materials in the XY direction, so that thermal runaway is not easy to occur, but it can fully conduct electricity in the Z direction, so that the battery can be charged and discharged normally. Thereby improving battery safety.
  • FIG. 1 is a flow chart of the manufacturing process of the collector electrode of Embodiment 1.
  • FIG. 1 is a flow chart of the manufacturing process of the collector electrode of Embodiment 1.
  • FIG. 2 is a schematic diagram of a process of forming an anisotropic collector with a conductive via structure.
  • Negative electrode artificial graphite (20 ⁇ m)
  • Positive electrode Al, 12 ⁇ m thick
  • negative electrode Cu, 8 ⁇ m thick
  • Negative electrode artificial graphite (20 ⁇ m)
  • collector positive electrode (50wt% nickel ball (diameter 5um) + 50wt% PP, 5um thickness); negative electrode ((50wt% nickel ball (diameter 5um) + 50wt% PP, 5um thickness).
  • spherical metal particles form a conductive path
  • the width of the conductive path is 5 ⁇ m
  • the distance between adjacent conductive paths is 3 ⁇ m
  • the diameter of the spherical metal particles is 5 ⁇ m.
  • the number of spherical metal particles forming the conductive path is 20% of the total number of conductive particles.
  • the preheating temperature of the melting furnace is 80°C;
  • the molten mixture with spherical metal particles is extruded into the cooling chamber.
  • the viscosity will quickly increase to form a film, and then the film will be passed through a set of stretching rods (stretching speed: 15m/min, stretching tension of 15N) Stretched to obtain a thickness of 5 ⁇ m and a surface resistance of 13 mohm/sq.
  • Negative electrode artificial graphite (20 ⁇ m)
  • Collector electrode positive electrode (50wt% nickel ball (diameter 10um) + 50wt% PP, 10um thickness); negative electrode (50wt% nickel ball (diameter 10um) + 50wt% PP, 10um thickness).
  • the spherical metal particles form a conductive path, the width of the conductive path is 10 ⁇ m, the distance between adjacent conductive paths is 5 ⁇ m, and the diameter of the spherical metal particle is 10 ⁇ m.
  • the number of spherical metal particles forming the conductive path is 20% of the total number of conductive particles.
  • the collector is prepared according to the following steps:
  • the preheating temperature of the melting furnace is 80°C;
  • the molten mixture with spherical metal particles is extruded into the cooling chamber, the viscosity of the mixture increases rapidly when cold to form a film, and then the film is passed through a set of stretching rods (stretching speed: 10m/min, stretching tension of 15N) Stretched to obtain a thickness of 10 ⁇ m and a surface resistance of 12 mohm/sq.
  • Negative electrode artificial graphite (20 ⁇ m)
  • collector positive electrode (50wt% hollow nickel ball (diameter 10um) + 50wt% PP, 10um thick, the thickness of the guest is 1um); negative electrode (50wt% hollow nickel ball (diameter 10um) + 50wt% PP, 10um thick, the guest The thickness is 1um).
  • the spherical metal particles form a conductive path, the width of the conductive path is 10 ⁇ m, the distance between adjacent conductive paths is 5 ⁇ m, and the diameter of the spherical metal particle is 10 ⁇ m. In the X-Y direction, the number of spherical metal particles forming the conductive path is 20% of the total number of conductive particles.
  • the collector is prepared according to the following steps:
  • the preheating temperature of the melting furnace is 80°C;
  • the melted mixture with spherical metal particles is extruded into the cooling chamber, and the viscosity of the mixture is rapidly increased to form a film when it is cold, and then the film is passed through a set of stretching rods (stretching speed: 15m/min, stretching tension of 10N) Stretched to obtain a thickness of 10 ⁇ m and a surface resistance of 15 mohm/sq.
  • Negative electrode artificial graphite (20 ⁇ m)
  • collector positive electrode (50wt% nickel-coated aluminum (core-shell) result spherical particles (diameter 10um) + 50wt% PP, 10um thick; coating layer is 1um); negative electrode (50wt% nickel-coated copper (core-shell) result Spherical particles (diameter 10um, coating layer 1um) + 50wt% PP, 10um thick).
  • the spherical metal particles form a conductive path, the width of the conductive path is 10 ⁇ m, the distance between adjacent conductive paths is 5 ⁇ m, and the diameter of the spherical metal particle is 10 ⁇ m.
  • the number of spherical metal particles forming the conductive path is 20% of the total number of conductive particles.
  • the collector is prepared according to the following steps:
  • the preheating temperature of the melting furnace is 80°C;
  • the molten mixture with spherical metal particles is extruded into the cooling chamber.
  • the viscosity increases rapidly to form a film, and then the film is passed through a set of stretching rods (stretching speed: 10m/min, stretching tension of 10N) Stretched to obtain a thickness of 10 ⁇ m and a surface resistance of 15 mohm/sq.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于锂离子电池的各向异性的集电极及其制造方法与应用,所述的集电极是由添加球形金属颗粒的树脂材料制成。所述集电极在X-Y方向导电粒子未形成充分导电网络,但是在Z方向形成了较好的导电网络,在发生短路时,集电极在X-Y方向上不容易激活多数的活性物质从而不易发生热失控,但是在Z方向上又可以充分的导电,使得电池可以正常的充放电,从而提高了电池安全性。

Description

用于锂离子电池的各向异性的集电极及其制造方法与应用 技术领域
本发明是关于一种用于高密度锂离子电池的各向异性集电极及其制造方法与应用。
背景技术
在过去的二十年中,锂离子电池已成为新能源汽车最重要的动力源。为了使其广泛普及,在提高锂离子电池性能的同时需要进一步降低其成本。另外,为了提高电动汽车的续航里程,行业内部还在不断追求锂离子电池具备更高的能量密度。对于电动车的设计而言,相较于提高单个电芯的能量密度,在保证安全的情况下,提高整个Pack的能量密度才符合电动车对Pack设计的要求。另外,现在电池Pack的设计是由Cell→Module→Pack来组成,进一步增加了设计的复杂性和空间利用率。
发明内容
本发明的一个目的在于提供一种操作简单、可大面积制备各向异性的集电极的方法。
本发明的另一个目的在于提供上述方法制备得到的各向异性集电极。
本发明的再一个目的在于提供上述集电极的应用。
本发明通过以下技术方案实现:
一方面,本发明提供了一种集电极,其是由添加球形金属颗粒的树脂材料制成,其中,球形金属颗粒形成导电通路,导电通路的宽度为500nm-20μm,相邻导电通路的距离为500nm-20μm,球形金属颗粒的直径为500nm-20μm。
本发明的集电极中球形金属颗粒与树脂材料间隔分布,其中,导球形金属颗粒形成导电通路;在X-Y方向,形成导电通路的导电粒子的个数不超过导电粒子总数的20%。
在本发明的一具体实施方式中,单独一个球形金属颗粒排成一列形成导电通路,即,导电通路的宽度需要等于金属颗粒的直径。
在本发明的一具体实施方式中,在Z方向,通过导电颗粒进行导电,形成导电通路的导电粒子的个数不低于导电颗粒总数60%。
根据本发明的具体实施方案,本发明的集电极中,采用的球形金属颗粒球为不与 锂离子发生合金化反应的金属。比如,采用的球形金属颗粒可以为镍、金、银、铂、钛、铜中的一种或两种以上的组合。采用的球形金属颗粒可以为实心、空心或具有核壳结构的球形金属颗粒。比如,核壳结构的球形金属颗粒可以是一种金属形成的,也可以是多种金属形成的具有核壳结构的球形金属颗粒。
本发明的集电极中,树脂材料(有机物基质)可以采用聚烯烃类的材料。比如高密度聚乙烯、低密度聚乙烯、聚丙烯、聚丁烯、聚甲基戊烯等的一种或两种以上的组合形成的共聚物或混合体。按相对密度分为低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE),LDPE的密度为0.91-0.925g/cm 3,HDPE的密度为>0.94g/cm 3
上述树脂材料相对于正极和负极的电位更稳定,且密度比金属低,有利于提高电池的重量能量密度。比如,充放电电压范围:2.5-3.8V(LFP);2.5-4.2V(NCM);正极压实密度:2.3-2.6g/cc(LFP);3.5-3.8g/cc(NCM);负极压实密度:1.3-1.7g/cc(石墨)。
本发明的集电极中,球形金属颗粒占集电极的体积百分比为30wt%-70wt%。
本发明的各向异性树脂集电极的厚度优选为5-30μm。更优选地,集电极的厚度小于20μm,优选的小于15μm,更优选的小于10μm。
根据本发明的具体实施方案,本发明的集电极的表面阻抗低于15mohm/sq,或者低于10mohm/sq。
本发明的集电极采用球形金属颗粒填充的树脂作为集电极,X-Y方向球形金属颗粒大部分不连通,只有较低的导电性,Z方向通过球形金属颗粒进行导电,有较高的导电性,在发生短路时X-Y方向只能激活极少的活性物质,最终不会发生热失控。本发明中,X-Y方向为集电极的水平方向,Z方向为集电极的厚度方向(纵轴方向)。
本发明的集电极的密度小于金属,可以实现较高的重量能量密度。集电极的密度0.3g/cc-0.8g/cc,LFP(磷酸铁锂电池)的能量密度可以170Wh/kg-190Wh/kg,NCM(镍钴锰酸锂电池)能量密度可以_200Wh/kg-280Wh/kg。
另一方面,本发明还提供了所述的各向异性集电极的制备方法,该方法主要是用熔融拉伸法制备各向异性的树脂集电极包括:
将树脂加热到熔化温度以上,与球形金属颗粒均匀混合;
将融化的添加有球形金属颗粒的混合物挤出到冷却仓中,混合物遇冷粘度迅速提高成膜,随后通过一组拉伸棍将膜拉伸至相应的厚度和内部结构。
本发明的集电极的厚度和取向度均取决于树脂与球形金属颗粒的比例、熔融炉的预热温度和机械滚筒的拉伸速率。
通过熔融拉伸法,形成具有特定导电通路结构的各向异性树脂集电极(图2)。
根据本发明的具体实施方式,熔融炉的预热温度可以为80℃。
根据本发明的具体实施方式,机械滚筒的拉伸速度可以为10m/min-40m/min,拉伸张力可以为5N-25N。
在本发明的制备方法中,通过控制机械滚筒拉伸,使集电极横向拉伸,可控制颗粒间距,从而控制导电通路宽度。在本发明的一具体实施方式中,控制导电通路的宽度为球形金属颗粒的直径。
另一方面,本发明还提供了所述的集电极的应用。
本发明的集电极可以用于制备锂离子电池。制备锂离子电池时,采用单个电芯串联叠层的设计,可以节省用于单个电池之间的连接极片,提高体积效率并且适合于车载使用。
本发明中,采用球形金属颗粒作为填充物的树脂制作集电极,该集电极的特点是X-Y方向导电粒子未形成充分导电网络,但是在Z方向形成了较好的导电网络,在发生短路时,集电极在X-Y方向上不容易激活多数的活性物质从而不易发生热失控,但是在Z方向上又可以充分的导电,使得电池可以正常的充放电。从而提高了电池安全性。
附图说明
图1为实施例1的集电极的制作工艺流程图。
图2为形成具有导电通路结构的各向异性集电极的工艺示意图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现结合附图及具体实施例对本发明的技术方案进行以下详细说明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围。实施例中,未注明具体条件的实验方法为所属领域熟知的常规方法和常规条件,或按照仪器制造商所建议的条件操作。
比较例1
正极:LFP(10μm)
负极:人造石墨(20μm)
隔膜:12μmPE+2μmAl 2O 3
尺寸:600L×300W×1Tmm单电芯结构
集电极:正极(Al、12μm厚);负极(Cu、8μm厚)
针刺实验:20±5℃的温度下,电池满点状态(SOC100),采用直径3mm的钢针垂直于极板的方向迅速贯穿,钢针停留在其中。
实施例1
正极:LFP(10μm)
负极:人造石墨(20μm)
隔膜:12μmPE+2μmAl 2O 3
尺寸:600L*300W*1Tmm单电芯结构
集电极:正极(50wt%镍球(直径5um)+50wt%PP、5um厚);负极((50wt%镍球(直径5um)+50wt%PP、5μm厚)。其中,球形金属颗粒形成导电通路,导电通路的宽度为5μm,相邻导电通路的距离为3μm,球形金属颗粒的直径为5μm。在X-Y方向,形成导电通路的球形金属颗粒的个数为导电粒子总数的20%。该集电极按照以下步骤制备得到,如图1所示:
将树脂加热到熔化温度以上,与球形金属颗粒均匀混合,熔融炉的预热温度为80℃;
将融化的添加有球形金属颗粒的混合物挤出到冷却仓中,混合物遇冷粘度迅速提高成膜,随后通过一组拉伸棍(拉伸速度:15m/min,拉伸张力为15N)将膜拉伸,得到厚度为5μm,表面阻抗为13mohm/sq。
针刺实验:20±5℃的温度下,电池满点状态(SOC100),采用直径3mm的钢针垂直于极板的方向迅速贯穿,钢针停留在其中。
实施例2
正极:LFP(10μm)
负极:人造石墨(20μm)
隔膜:12μmPE+2μmAl 2O 3
尺寸:600L×300W×1Tmm单电芯结构
集电极:正极(50wt%镍球(直径10um)+50wt%PP、10um厚);负极(50wt%镍球(直径10um)+50wt%PP、10um厚)。其中,球形金属颗粒形成导电通路,导电通路的宽度为10μm,相邻导电通路的距离为5μm,球形金属颗粒的直径为10μm。在X-Y方向,形成导电通路的球形金属颗粒的个数为导电粒子总数的20%。该集电极按照以下步骤制备得到:
将树脂加热到熔化温度以上,与球形金属颗粒均匀混合,熔融炉的预热温度为 80℃;
将融化的添加有球形金属颗粒的混合物挤出到冷却仓中,混合物遇冷粘度迅速提高成膜,随后通过一组拉伸棍(拉伸速度:10m/min,拉伸张力为15N)将膜拉伸,得到厚度为10μm,表面阻抗为12mohm/sq。
针刺实验:20±5℃的温度下,电池满点状态(SOC100),采用直径3mm的钢针垂直于极板的方向迅速贯穿,钢针停留在其中。
实施例3
正极:LFP(10μm)
负极:人造石墨(20μm)
隔膜:12μmPE+2μmAl 2O 3
尺寸:600L×300W×1Tmm单电芯结构
集电极:正极(50wt%空心镍球(直径10um)+50wt%PP、10um厚,客体的厚度为1um);负极(50wt%空心镍球(直径10um)+50wt%PP、10um厚,客体的厚度为1um)。其中,球形金属颗粒形成导电通路,导电通路的宽度为10μm,相邻导电通路的距离为5μm,球形金属颗粒的直径为10μm。在X-Y方向,形成导电通路的球形金属颗粒的个数为导电粒子总数的20%。该集电极按照以下步骤制备得到:
将树脂加热到熔化温度以上,与球形金属颗粒均匀混合,熔融炉的预热温度为80℃;
将融化的添加有球形金属颗粒的混合物挤出到冷却仓中,混合物遇冷粘度迅速提高成膜,随后通过一组拉伸棍(拉伸速度:15m/min,拉伸张力为10N)将膜拉伸,得到厚度为10μm,表面阻抗为15mohm/sq。
针刺实验:20±5℃的温度下,电池满点状态(SOC100),采用直径3mm的钢针垂直于极板的方向迅速贯穿,钢针停留在其中。
实施例4
正极:LFP(10μm)
负极:人造石墨(20μm)
隔膜:12μmPE+2μmAl 2O 3
尺寸:600L×300W×1Tmm单电芯结构
集电极:正极(50wt%镍包铝(core-shell)结果球形颗粒(直径10um)+50wt%PP、10um厚;包覆层为1um);负极(50wt%镍包铜(core-shell)结果球形颗粒 (直径10um,包覆层为1um)+50wt%PP、10um厚)。其中,球形金属颗粒形成导电通路,导电通路的宽度为10μm,相邻导电通路的距离为5μm,球形金属颗粒的直径为10μm。在X-Y方向,形成导电通路的球形金属颗粒的个数为导电粒子总数的20%。该集电极按照以下步骤制备得到:
将树脂加热到熔化温度以上,与球形金属颗粒均匀混合,熔融炉的预热温度为80℃;
将融化的添加有球形金属颗粒的混合物挤出到冷却仓中,混合物遇冷粘度迅速提高成膜,随后通过一组拉伸棍(拉伸速度:10m/min,拉伸张力为10N)将膜拉伸,得到厚度为10μm,表面阻抗为15mohm/sq。
针刺实验:20±5℃的温度下,电池满点状态(SOC100),采用直径3mm的钢针垂直于极板的方向迅速贯穿,钢针停留在其中。
将比较例1和实施例1-实施例4的电池进行了如表1的测试,结果如表1所示。
表1
Figure PCTCN2019122331-appb-000001
Figure PCTCN2019122331-appb-000002
通过表1可以看出,采用了本发明的树脂基集电极,Pack的体积能量密度和电池的安全性能均有大大提高(针刺实验)。

Claims (12)

  1. 一种集电极,该集电极是由添加球形金属颗粒的树脂材料制成,其中,球形金属颗粒形成导电通路,所述导电通路的宽度为500nm-20μm,相邻导电通路的距离为500nm-20μm,所述球形金属颗粒的直径为500nm-20μm。
  2. 根据权利要求1所述的集电极,其中,所述球形金属颗粒球为不与锂离子发生合金化反应的金属;
    优选地,所述球形金属颗粒为镍、金、银、铂、钛、铜中的一种或两种以上的组合。
  3. 根据权利要求1或2所述的集电极,其中,所述球形金属颗粒为实心、空心或具有核壳结构的球形金属颗粒。
  4. 根据权利要求1所述的集电极,其中,所述球形金属颗粒占集电极体积百分比为30wt%-70wt%。
  5. 根据权利要求1所述的集电极,其中,树脂材料为聚烯烃类的材料,例如高密度聚乙烯、低密度聚乙烯、聚丙烯、聚丁烯、聚甲基戊烯的一种或两种以上的组合的共聚物或混合体。
  6. 根据权利要求1所述的集电极,其中,球形金属颗粒与树脂材料间隔分布,在X-Y方向,形成导电通路的球形金属颗粒的个数不超过导电粒子总数的20%。
  7. 根据权利要求1所述的集电极,其厚度为5-20μm;优选地,集电极的厚度小于20μm,进一步优选小于15μm,更优选小于10μm。
  8. 根据权利要求1所述的集电极,其表面阻抗低于15mohm/sq,优选低于10mohm/sq。
  9. 根据权利要求1所述的集电极,其密度0.3g/cc-0.8g/cc。
  10. 一种制备权利要求1-9任一项所述的集电极的方法,该方法包括:
    将树脂材料加热到熔化温度以上,与球形金属颗粒均匀混合;
    将融化的添加有球形金属颗粒的混合物挤出到冷却仓中,混合物遇冷粘度迅速提高成膜,随后通过一组拉伸棍将膜拉伸至相应的厚度和内部结构。
  11. 根据权利要求10所述的方法,其中,熔融炉的预热温度为80℃;
    优选地,机械滚筒的拉伸速度为10m/min-40m/min,拉伸张力为5N-25N。
  12. 权利要求1-9任一项所述的集电极在制备锂离子电池中的应用。
PCT/CN2019/122331 2019-12-02 2019-12-02 用于锂离子电池的各向异性的集电极及其制造方法与应用 WO2021108944A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/780,994 US20220416253A1 (en) 2019-12-02 2019-12-02 Anisotropic collector for lithium-ion battery, and manufacturing method therefor and application thereof
PCT/CN2019/122331 WO2021108944A1 (zh) 2019-12-02 2019-12-02 用于锂离子电池的各向异性的集电极及其制造方法与应用
CN201980102526.1A CN115136361A (zh) 2019-12-02 2019-12-02 用于锂离子电池的各向异性的集电极及其制造方法与应用
JP2022532633A JP2023503695A (ja) 2019-12-02 2019-12-02 リチウムイオン電池用の異方性コレクタならびにその製造方法および使用
EP19955258.9A EP4071862A4 (en) 2019-12-02 2019-12-02 ANISOTROPIC COLLECTOR FOR LITHIUM-ION BATTERY AND PRODUCTION PROCESS AND USE THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122331 WO2021108944A1 (zh) 2019-12-02 2019-12-02 用于锂离子电池的各向异性的集电极及其制造方法与应用

Publications (1)

Publication Number Publication Date
WO2021108944A1 true WO2021108944A1 (zh) 2021-06-10

Family

ID=76221323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122331 WO2021108944A1 (zh) 2019-12-02 2019-12-02 用于锂离子电池的各向异性的集电极及其制造方法与应用

Country Status (5)

Country Link
US (1) US20220416253A1 (zh)
EP (1) EP4071862A4 (zh)
JP (1) JP2023503695A (zh)
CN (1) CN115136361A (zh)
WO (1) WO2021108944A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121980A1 (en) * 2010-04-09 2012-05-17 Kimihiro Imamura Alkaline storage battery electrode and alkaline storage battery
CN103443333A (zh) * 2011-04-08 2013-12-11 三井金属矿业株式会社 复合金属箔及其制造方法
CN104078686A (zh) * 2013-03-26 2014-10-01 Sk新技术株式会社 用于二次电池的集电器以及包含其的二次电池
CN105098194A (zh) * 2015-06-12 2015-11-25 宁德时代新能源科技有限公司 集流体及使用该集流体的锂离子电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124953B2 (ja) * 2006-02-08 2013-01-23 日産自動車株式会社 バイポーラ電池、組電池およびこれらを搭載した車両
JP5386900B2 (ja) * 2008-09-18 2014-01-15 日産自動車株式会社 有機構造体を含む双極型リチウムイオン二次電池用集電体
JP5369863B2 (ja) * 2009-04-23 2013-12-18 日産自動車株式会社 双極型電池用集電体
US9601780B2 (en) * 2011-05-23 2017-03-21 Kaneka Corporation Multilayer conductive film, current collector using same, battery and bipolar battery
EP2851982A4 (en) * 2012-05-15 2016-01-13 Uacj Corp COLLECTOR, ELECTRODE STRUCTURE, NONAQUEOUS ELECTROLYTE BATTERY, AND ENERGY STORAGE COMPONENT, AND MANUFACTURER PRODUCTION METHOD
FR2993098B1 (fr) * 2012-07-09 2019-11-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Collecteur de courant pour batterie lithium
CN105378990B (zh) * 2013-07-08 2017-12-08 三洋化成工业株式会社 树脂集电体用分散剂、树脂集电体用材料和树脂集电体
CN108701811B (zh) * 2016-02-24 2022-01-04 日产自动车株式会社 锂离子二次电池用电极及其制造方法
JP7055059B2 (ja) * 2017-05-23 2022-04-15 三洋化成工業株式会社 樹脂集電体の製造方法、リチウムイオン電池用電極の製造方法、及び、リチウムイオン電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120121980A1 (en) * 2010-04-09 2012-05-17 Kimihiro Imamura Alkaline storage battery electrode and alkaline storage battery
CN103443333A (zh) * 2011-04-08 2013-12-11 三井金属矿业株式会社 复合金属箔及其制造方法
CN104078686A (zh) * 2013-03-26 2014-10-01 Sk新技术株式会社 用于二次电池的集电器以及包含其的二次电池
CN105098194A (zh) * 2015-06-12 2015-11-25 宁德时代新能源科技有限公司 集流体及使用该集流体的锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071862A4 *

Also Published As

Publication number Publication date
CN115136361A (zh) 2022-09-30
EP4071862A1 (en) 2022-10-12
EP4071862A4 (en) 2024-01-10
JP2023503695A (ja) 2023-01-31
US20220416253A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
TWI591889B (zh) Current Collector, Electrode Structure, Nonaqueous Electrolyte Battery, Conductivity Packing and storage components
CN105814718B (zh) 电极用导电材料糊、正极用浆料的制造方法、正极的制造方法以及二次电池
WO2022037092A1 (zh) 一种集流体、极片和电池
CN106165163B (zh) 表面涂布的正极活性材料、其制备方法以及包含其的锂二次电池
CN110085869B (zh) 导电集流体及其制备方法、电池极片及锂电池
TW201238127A (en) Negative electrode active material for electrical device, and electrical device
JP6413242B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
JP6398191B2 (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
CN108134044B (zh) 一种高安全性锂离子电池负极材料及其制备方法
CN114221045B (zh) 一种多孔炭补锂负极极片锂离子电池的制备方法
WO2022151734A1 (zh) 一种固态电解质及其制备方法和应用
CN109088033A (zh) 高安全高能量长循环的磷酸铁锂型18650锂电池及其制备方法
JP2012014866A (ja) リチウム二次電池用負極活物質およびその製造方法
JP2018174150A (ja) 二次電池正極用スラリーの製造方法、二次電池用正極の製造方法、及び二次電池の製造方法
CN110649313A (zh) 一种无隔膜的锂离子电池及其制备方法
CN110380057A (zh) 一种耐过充锂离子电池
CN206134813U (zh) 一种快速导热的锂离子电池正极极片
WO2021108944A1 (zh) 用于锂离子电池的各向异性的集电极及其制造方法与应用
CN112259723A (zh) 一种锂离子电池正极的制备方法
WO2019198453A1 (ja) 電池の製造方法
CN116376280A (zh) 聚对苯撑苯并二噁唑多孔膜及其制备方法和应用、复合隔膜及电池
JP2015015074A (ja) 複合集電体、およびそれを用いた電極と二次電池
WO2022267504A1 (zh) 负极极片的处理方法、钠金属负极极片及相关装置
CN104916815A (zh) 一种电化学储能器件的电极及其制备方法
WO2021108946A1 (zh) 用于锂离子电池的高取向集电极及其制造方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19955258

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019955258

Country of ref document: EP

Effective date: 20220704