WO2022151734A1 - 一种固态电解质及其制备方法和应用 - Google Patents

一种固态电解质及其制备方法和应用 Download PDF

Info

Publication number
WO2022151734A1
WO2022151734A1 PCT/CN2021/113408 CN2021113408W WO2022151734A1 WO 2022151734 A1 WO2022151734 A1 WO 2022151734A1 CN 2021113408 W CN2021113408 W CN 2021113408W WO 2022151734 A1 WO2022151734 A1 WO 2022151734A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
polymer
solid
electrolyte
group
Prior art date
Application number
PCT/CN2021/113408
Other languages
English (en)
French (fr)
Inventor
杨凡
左连勇
晁流
Original Assignee
南京博驰新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京博驰新能源股份有限公司 filed Critical 南京博驰新能源股份有限公司
Publication of WO2022151734A1 publication Critical patent/WO2022151734A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures

Definitions

  • the invention relates to the field of electrochemical energy storage, and particularly relates to a solid electrolyte, a preparation method thereof and an application comprising the solid electrolyte.
  • lithium-ion batteries have developed rapidly and have achieved great success in commercialization in the consumer electronics industry due to their high energy density, good cycle performance and rate performance.
  • lithium-ion batteries With the rise of electric vehicles, lithium-ion batteries are continuously improving the energy density and cycle life of batteries due to the pursuit of vehicle cruising range and service life, but at the same time, the safety hazards of lithium-ion batteries are also more prominent.
  • Lithium-ion batteries may suffer from short circuits, internal short circuits, or other causes of temperature rise under harsh conditions or abuse, resulting in thermal runaway and eventually fire or even explosion.
  • the main reason is that the lithium-ion battery uses a low-boiling flammable organic electrolyte as a medium for ion conduction. When the temperature of the battery rises to the ignition point of the electrolyte for some reason, it will cause the entire battery to catch fire or even explode. The higher the energy density of the battery, the greater the risk of explosion.
  • the use of non-flowing, non-flammable solid-state electrolytes instead of liquid electrolytes as ion-conducting media in batteries is considered an important route to solve the safety problem of lithium batteries.
  • Solid-state electrolyte materials that can be used commercially must have the following conditions:
  • solid electrolytes are classified into sulfides, oxides, polymers, etc.
  • Sulfide solid electrolytes have high room temperature conductivity, but the material stability is poor, and the production and use conditions are harsh, resulting in high cost.
  • Oxide solid electrolytes have good ionic conductivity, but the materials are hard and brittle, not suitable for film formation and have large interfacial impedance.
  • the polymer solid electrolyte is easy to process and has low interface impedance, but the conductivity of the polymer solid electrolyte at room temperature is generally low, which requires the battery to be used under heating conditions, which increases the cost of use. Therefore, it is a very important research and development direction to develop a solid electrolyte material that can meet the above requirements of lithium batteries, has high room temperature conductivity, is easy to process and form, and has low interfacial impedance.
  • the present invention provides a solid electrolyte to meet the needs of lithium batteries.
  • the present invention provides a solid electrolyte, comprising at least one polymer, at least one electrolyte salt, and an inorganic particle filler; wherein the polymer structure contains polar groups, and the electrolyte salt and Polar group interactions.
  • the mass ratio of polymer, electrolyte salt and inorganic particle filler in the solid electrolyte is 20%-93%: 3%-15%: 0%-77%.
  • the ionic conductivity of the solid electrolyte at room temperature is greater than or equal to 1 ⁇ 10 -4 S/cm, preferably, (1 ⁇ 10 -4 -1 ⁇ 10 -2 ) S/cm.
  • the volume ratio of the polymer to each component is greater than 50%.
  • the polymer is a polymer with repeating units, the number-average molecular weight is greater than 1000, and the repeating units include, but are not limited to, O, N, P, S, F, Cl, Br and/or Si heteroatoms in addition to carbon and hydrogen atoms;
  • the polymer contains polar groups that interact with anions and cations in the electrolyte salt
  • the polymer structure includes, but is not limited to, ether groups, carbonyl groups, amine groups, amide groups, fluorine, chlorine, bromine, ester, cyano, sulfone, sulfonyl and/or thioether groups.
  • the polymer is solid at room temperature and has a glass transition temperature higher than 50°C; alternatively, the polymer is a crystalline polymer and has a crystallization temperature higher than 100°C.
  • the polymer forms a powder with a particle size D90 of less than 5 ⁇ m and a specific surface area greater than 1 m 2 /g; preferably, the polymer particles are formed into fibers with an average diameter of less than 1 ⁇ m through a melt-blown extrusion drawing process, and the specific surface area is greater than 1 m 2 /g .
  • the electrolyte salt uses metal ions of Group 1, Group 2 and Group 3 of the periodic table as cations; preferably, the electrolyte salt is a lithium salt, a sodium salt, a potassium salt, a magnesium salt and/or an aluminum salt;
  • the inorganic particle filler is one or more of oxide, sulfide, nitride, fluoride and chloride particles; preferably, the particle size D90 of the inorganic particle filler is less than 1 ⁇ m.
  • the density of the components of the solid electrolyte after mixing is greater than 70% of the true density of each mixed component; preferably, greater than 85% of the true density of each mixed component.
  • the electrolyte salt is distributed between polymer molecules, particles or fibers.
  • the present invention provides a method for preparing the above-mentioned solid electrolyte, wherein the solid electrolyte is prepared by any of the following methods:
  • Method a After mixing all the components, heat and press to form a sheet;
  • At least one of the polymers is insoluble in the solution used in the electrolyte salt solution during processing.
  • the present invention also provides the application of the above-mentioned solid electrolyte in the preparation of electrochemical devices.
  • the polymer itself has polar groups or can be obtained by surface treatment, and the polar groups interact with electrolyte salts to accelerate the movement of electrolyte ions at the interface, and a large number of three-dimensional interfaces provide A channel for the transport of anions and cations in electrolyte salts.
  • the solid-state electrolyte has extremely high ionic conductivity, can reach more than 1 ⁇ 10 -4 S/cm at room temperature, and can conduct various ionic systems. It can be formed alone to prepare solid-state ion conductive membranes, or mixed with positive and negative active materials and conductive agents to prepare dry electrodes, and can also be used to prepare solid-state batteries.
  • the all-solid-state lithium battery prepared by using the solid electrolyte of the present invention with the ternary material as the positive electrode and the graphite as the negative electrode can achieve a cycle performance of 2000 cycles and keep the capacity above 80%, and has good electrical performance and safety performance. It can perfectly pass safety performance tests such as acupuncture and heavy impact.
  • solid-state batteries of other ionic systems can be produced at the same time, including but not limited to magnesium-ion batteries, sodium-ion batteries, alkaline batteries, and the like. It also shows good safety, and the cycle electrical performance is also greatly improved.
  • Example 1 is an electrochemical impedance diagram of a solid electrolyte sheet prepared by using ultrafine polyacrylonitrile powder in Example 1-1 of the present invention
  • Example 2 is an electrochemical impedance diagram of a solid electrolyte sheet prepared by using ultrafine polymethyl methacrylate powder in Example 1-2 of the present invention
  • Fig. 3 is the change trend diagram of the electric conductivity of the solid electrolyte prepared in the embodiment of the present invention 1-6 along with the content of lithium salt;
  • Fig. 4 is the macroscopic picture of the solid electrolyte film prepared by the typical embodiment 1-8 of the present invention.
  • Fig. 5 is the scanning electron microscope picture of the solid electrolyte film prepared by the typical embodiment 1-8 of the present invention.
  • Fig. 6 is the scanning electron microscope picture of the solid electrolyte film prepared by the typical embodiment 1-9 of the present invention.
  • Fig. 7 is the variation trend diagram of the electrical conductivity of the solid electrolyte prepared in the embodiment of the present invention 1-10 with the content of lithium salt;
  • Fig. 9 is the variation trend diagram of the conductivity of the solid electrolyte prepared in the embodiment of the present invention 1-13 with the concentration of lithium salt;
  • Figure 10 is a macro photo of the flexible solid-state cathode composite material prepared in Example 2-1 of the present invention.
  • Example 11 is a scanning electron microscope image of the flexible solid-state cathode composite material prepared in Example 2-1 of the present invention.
  • Fig. 12 is the charge-discharge curve of the flexible solid-state positive electrode composite material prepared in Example 2-5 of the present invention.
  • Figure 13 is a macro photo of the flexible solid-state negative electrode composite material prepared in Example 3-1 of the present invention.
  • Example 14 is a scanning electron microscope image of the flexible solid-state negative electrode composite material prepared in Example 3-1 of the present invention.
  • Example 16 is a schematic structural diagram of a battery assembled with a solid electrolyte in Example 4-1 of the present invention.
  • Example 17 is a cycle performance diagram of the solid-state battery assembled in Example 4-1 of the present invention.
  • a hot press at 130°C and 10MPa pressure for 2 minutes a solid electrolyte sheet with a thickness of 200 ⁇ m and a mass ratio of polymer and lithium salt of 100:8 can be prepared, and the measured density is 1.5 g/cm 3 .
  • the specific surface area of the solid electrolyte material was measured by a particle size analyzer to be 2.80cm 2 /cm 3 , and the conductivity of the tested solid electrolyte was 5.0 ⁇ 10 -4 S/cm.
  • the electrochemical impedance of the solid electrolyte was tested, and the results are shown in Figure 1.
  • Polyacrylonitrile (PAN) with a molecular weight of 60,000 and lithium perchlorate were dissolved in 500 g of DMF solvent according to a mass ratio of 100:8, stirred for a long time, and then prepared by scraping to obtain a thickness of 40 ⁇ m.
  • Solid electrolyte membrane The conductivity of the tested solid electrolyte is 1.2 ⁇ 10 -7 S/cm.
  • a hot press at 130 °C and 10 MPa pressure for 2 min a solid electrolyte sheet with a thickness of 50 ⁇ m and a mass ratio of polymer and lithium salt of 100:8 can be prepared, and the measured density is 1.3 g/cm 3 .
  • the specific surface area of the solid electrolyte material measured by particle size analyzer is 1.95cm 2 /cm 3 , and the conductivity of the tested solid electrolyte is 1.1 ⁇ 10 -3 S/cm.
  • the electrochemical impedance of the solid electrolyte was tested, and the results are shown in Figure 2.
  • a hot press at 130 °C and 10 MPa pressure for 2 min a solid electrolyte sheet with a thickness of 250 ⁇ m and a mass ratio of polymer and lithium salt of 100:12 can be prepared, and the measured density is 1.48 g/cm 3 .
  • the specific surface area of the solid electrolyte material was measured by particle size analyzer to be 1.1cm 2 /cm 3 , and the conductivity of the tested solid electrolyte was 1.5 ⁇ 10 -4 S/cm.
  • Electrolyte sheet with a measured density of 1.5 g/cm 3 The conductivity of the tested solid electrolyte is 1.1 ⁇ 10 -3 S/cm.
  • PAN polyacrylonitrile
  • the flat press was pressed for 2 min under the pressure of 4 MPa, and a thick sheet with a thickness of 200 ⁇ m could be prepared. After that, the thick sheet was soaked in a 1 mol/L LiFSI DMC solution for 10 min, and then the solvent was removed by vacuum drying.
  • the obtained solid electrolyte sheet was measured for its conductance. The rate is 7 ⁇ 10 -4 S/cm.
  • a hot press at 130° C. and 10 MPa pressure for 2 min several solid electrolyte sheets with a thickness of 200 ⁇ m and different quality (0%-10%) of polymer and lithium salt can be prepared.
  • the conductivity of the solid electrolyte corresponding to different lithium salt ratios was tested, and a curve was drawn according to the results, as shown in Figure 3.
  • the ionic conductivity has a maximum value with the change of lithium salt concentration. It can be seen that the ratio of lithium salt is an important factor to adjust the conductivity.
  • PAN polyacrylonitrile
  • PTFE polytetrafluoroethylene
  • a polymer film with a thickness of 40 ⁇ m can be prepared.
  • the polymer film is immersed in a 1 mol/L lithium hexafluorophosphate/ethanol solution for 10 min, and the ethanol solvent is evaporated in vacuum to obtain a soft solid electrolyte film. Its appearance is shown in Figure 4, and its electron microscope photo is shown in Figure 5.
  • the conductivity of the solid electrolyte membrane material was measured to be 7 ⁇ 10 -4 S/cm.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • a 100 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing at 130 °C and 8 MPa pressure for 2 min using a hot press.
  • the content of LLZTO is about 73wt%
  • the content of lithium salt is 6wt%
  • the content of polymer is 21wt%.
  • the ionic conductivity of the solid electrolyte is about 7.0 ⁇ 10 -4 S/cm. Keeping other conditions unchanged, changing the content of lithium salts, solid electrolytes with different lithium salt contents were obtained, and the conductivity was tested and a curve was drawn according to the results, as shown in Figure 7.
  • the highest conductivity is 2.5 ⁇ 10 -3 S/cm
  • 21g polyacrylonitrile (PAN) with a molecular weight of 60000 and lithium perchlorate in a mass ratio of 21:6, and 73g inorganic solid ceramic particles LiLaZrTaO (LLZTO) powder with a particle size of about 100nm were uniformly mixed for a long time using a high-speed mixer. , and then use a twin-screw extruder to melt and extrude the mixed material into a film at 160 °C to obtain a solid electrolyte membrane with a thickness of 30 ⁇ m.
  • the prepared solid electrolyte membrane has a low specific surface area and an ionic conductivity of only 1.3 ⁇ 10 -5 S/cm.
  • 21g polyacrylonitrile (PAN) with a molecular weight of 60000 and lithium perchlorate in a mass ratio of 21:6, and about 73g of inorganic solid ceramic particles LiLaZrTaO (LLZTO) powder with a particle size of about 100nm were dispersed into 300g of DMF, After stirring for a long time, the slurry was coated and dried with a scraper to obtain a solid electrolyte membrane with a thickness of 50 ⁇ m.
  • the prepared solid electrolyte membrane has a low specific surface area and an ionic conductivity of only 5 ⁇ 10 -6 S/cm.
  • LDPE low-density polyethylene
  • a 200 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing at 130 °C and 8 MPa pressure for 2 min using a hot press.
  • the content of LLZTO is about 73wt%
  • the content of lithium salt is 6wt%
  • the content of polymer is 21wt%.
  • the ionic conductivity of the solid electrolyte is about 3 ⁇ 10 -6 S/cm.
  • a 200 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing at 130 °C and 8 MPa pressure for 2 min using a hot press.
  • the content of LLZTO is about 73wt%, the content of lithium salt is 6wt%, and the content of polymer is 21wt%.
  • the ionic conductivity of the solid electrolyte is about 5 ⁇ 10 -7 S/cm.
  • a 200 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing for 2 min under a pressure of 8 MPa. Subsequently, the sheet was soaked in a 1 mol/L lithium perchlorate/ethanol solution for 10 min, and then the solvent was removed by vacuum drying to obtain a solid electrolyte sheet.
  • the ionic conductivity of the solid electrolyte is about 4.0 ⁇ 10 -4 S/cm, in which the polymer accounts for 53% by volume.
  • a 200 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing for 2 min under a pressure of 8 MPa. Subsequently, the sheet was soaked in a 1 mol/L lithium perchlorate/ethanol solution for 10 min, and then the solvent was removed by vacuum drying to obtain a solid electrolyte sheet.
  • the ionic conductivity of the solid electrolyte is about 1.4 ⁇ 10 -4 S/cm, in which the polymer accounts for 55% by volume. Keep other conditions unchanged, change the content of lithium salt, obtain solid electrolyte with different content of lithium salt, test the conductivity and draw a curve according to the result, as shown in Figure 8. The highest conductivity is 7.5 ⁇ 10 -4 S/cm
  • a 100 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing for 2 min under a pressure of 5 MPa. Subsequently, the sheet was soaked in a 1 mol/L lithium perchlorate/ethanol solution for 10 min, and then the solvent was removed by vacuum drying to obtain a solid electrolyte sheet.
  • the ionic conductivity of the solid electrolyte is about 6 ⁇ 10 -4 S/cm, in which the polymer accounts for 60% by volume. Keep other conditions unchanged, change the content of lithium salt, obtain solid electrolyte with different content of lithium salt, test the conductivity and draw a curve according to the result, as shown in Figure 9. Among them, the highest conductivity is 1.0 ⁇ 10 -3 S/cm.
  • the plasma-treated polypropylene was mixed with LLZTO powder and lithium perchlorate powder in a mass ratio (21:73:6), and mixed uniformly with an ultra-high-speed mixer.
  • a 200 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing at 130 °C and 8 MPa pressure for 2 min using a hot press.
  • the content of LLZTO is about 73wt%, the content of lithium salt is 6wt%, and the content of polymer is 21wt%.
  • the ionic conductivity of the solid electrolyte is about 4.2 ⁇ 10 -4 S/cm.
  • the plasma-treated polyacrylonitrile powder and the nano-zirconia powder with a particle size of 20 nm were mixed in a mass ratio (20:70), and were mixed uniformly using an ultra-high-speed mixer.
  • a 200 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing for 2 min under a pressure of 8 MPa.
  • the sheet was soaked in a 1 mol/L lithium perchlorate/ethanol solution for 10 min, and then the solvent was removed by vacuum drying to obtain a solid electrolyte sheet.
  • the ionic conductivity of the solid electrolyte is about 4.5 ⁇ 10 -4 S/cm, in which the polymer accounts for 55% by volume.
  • a solid electrolyte sheet with a thickness of 150 ⁇ m can be prepared by flat pressing under a pressure of 10 MPa for 2 min. Subsequently, the sheet was soaked in a 1 mol/L magnesium nitrate/ethanol solution for 10 min, and then the solvent was removed by vacuum drying to obtain a solid electrolyte sheet.
  • the ionic conductivity of the solid electrolyte is about 1.1 ⁇ 10 -3 S/cm, in which the polymer accounts for 64% by volume.
  • a 200 ⁇ m thick solid electrolyte sheet can be prepared by flat pressing for 2 min under a pressure of 8 MPa. Subsequently, the sheet was finely polished in a 1 mol/L aluminum nitrate/ethanol solution for 10 min, and then the solvent was removed by vacuum drying to obtain a solid electrolyte sheet.
  • the ionic conductivity of the solid electrolyte is about 5.2 ⁇ 10 -4 S/cm, in which the polymer accounts for 64% by volume.
  • Example 1-1 From Examples 1-1, 1-2, 1-3 and Comparative Example 1-1, it can be seen that the manufacturing process using the solid electrolyte of the present invention is suitable for a variety of different polymer materials, and can obtain higher than the blade coating method. the conductivity. It can be seen from Examples 1-1, 1-4 and 1-5 that all three preparation methods provided by the present invention can be used to prepare solid electrolytes, and the preparation conductivity is close. It can be seen from Examples 1-6 and 1-7 that the solid electrolyte produced by the solid electrolyte process of the present invention can obtain the maximum value of the electrical conductivity by adjusting the ratio of lithium salt, and this rule is applicable to different lithium salts.
  • the solid electrolyte manufacturing process of the present invention can simultaneously use a variety of polymers, including polymer materials in the form of nanoparticles and fibers, to obtain thin film materials with high electrical conductivity. It can be seen from the above Examples 1-10 and Comparative Examples 1-2, 1-3 that the manufacturing method of the solid electrolyte provided by the present invention has much higher electrical conductivity than the solid electrolyte manufactured by the blade coating method and the melt extrusion method. Examples 1-10 and Comparative Examples 1-4, 1-5 show that it is very important to use polymer materials containing heteroatoms and polarities. Electrolyte materials prepared from atomic and polar polymers have much higher electrical conductivity.
  • the solid electrolyte films prepared in Examples 1-8 and 1-9 have high ionic conductivity and practical mechanical properties (tensile strength of more than 5MPa). Good processability can be used for the production of secondary batteries.
  • PAN polyacrylonitrile
  • PTFE polytetrafluoroethylene
  • a polymer film with a thickness of 30 ⁇ m can be prepared by rolling multiple times at 130 °C and a pressure of 10 MPa. The polymer film is soaked in a 1.5 mol/L lithium hexafluorophosphate/ethanol solution for 10 min, and then the ethanol solvent is evaporated in vacuum to obtain a soft solid electrolyte film. .
  • the specific surface area measured by particle size analyzer was 2.8cm 2 /cm 3 , and the conductivity of the solid electrolyte membrane material was measured to be 5.6 ⁇ 10 -4 S/cm.
  • the preparation method of the solid electrolyte provided by the present invention is suitable for the lithium ion electronic system and also for other ion battery systems, including but not limited to the Mg/Al/Na/alkaline battery system, which provides a good solution for the research and development of solid-state batteries. platform.
  • Polyvinylidene fluoride powder, polytetrafluoroethylene (PTFE) and lithium iron phosphate with an average particle size of 700 nm were prepared The powder and acetylene black are uniformly mixed for a long time in a high-speed dry mixer according to the mass ratio (10:10:75:5).
  • the mixture was calendered at 130°C and 7MPa pressure multiple times on a calender to form a positive electrode material film with a thickness of 100 ⁇ m, with a density of about 2.4 g/cm 3 , and the proportion of positive active material reached 75wt%.
  • the appearance of the flexible solid-state cathode film prepared in this example is shown in FIG. 10 .
  • the scanning electron microscope of the flexible solid-state cathode film prepared in this example is shown in FIG. 11 .
  • the LiFSI was heated and melted and then dropped into the cathode film, so that the mass ratio of electrolyte salt and polymer in the solid cathode composite material was 1:6, and a solid cathode composite material could be obtained. Good capacity play and cycle performance.
  • Polyacrylonitrile powder, polytetrafluoroethylene (PTFE) and lithium nickel manganate with an average particle size of 5 ⁇ m were mixed
  • the powder and Ketjen Black are uniformly mixed for a long time in a high-speed dry mixer according to the mass ratio (10:10:75:5).
  • the mixture was rolled on a calender at 130° C. and under a pressure of 7 MPa for several times to form a cathode material film with a thickness of 100 ⁇ m, in which the proportion of cathode active material reached 75 wt %.
  • the film is soaked in a lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid cathode composite material is 1:6, and a solid cathode composite material can be obtained.
  • the piano black is uniformly mixed for a long time in a high-speed dry mixer according to the mass ratio (10:10:75:5).
  • the mixture was calendered at 130°C and 7MPa pressure multiple times on a calender to form a positive electrode material film with a thickness of 100 ⁇ m with a density of about 4.0 g/cm 3 , and the proportion of positive active material reached 75wt%.
  • the film is soaked in lithium hexafluorophosphate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid cathode composite material is 1:6, and a solid cathode composite material can be obtained.
  • PPS polyphenylene sulfide
  • D90 4 ⁇ m
  • PTFE polytetrafluoroethylene
  • nickel cobalt lithium manganate powder with an average particle size of 5 ⁇ m.
  • Ketjen Black with a particle size of about 30-45 ⁇ m in a high-speed dry mixer for a long time according to the mass ratio (10:10:75:5).
  • the mixture was calendered at 130°C and 7MPa pressure on a calender for several times to form a positive electrode material film with a thickness of 100 ⁇ m, with a density of about 3.7 g/cm 3 , and the proportion of positive active material reached 75wt%.
  • the film is soaked in a lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid cathode composite material is 1:6, and a solid cathode composite material can be obtained.
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • Ketjen black with a particle size of about 30-45 ⁇ m
  • the mixture was calendered at 130°C and 7MPa pressure on a calender for several times to form a positive electrode material film with a thickness of 100 ⁇ m, the density was about 3.1 g/cm 3 , and the proportion of positive active material reached 75wt%.
  • the film was soaked in a lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material was 1:6, and a solid positive electrode composite material was obtained.
  • the first charge-discharge diagram of the solid-state cathode is shown in Figure 12.
  • the mixture was rolled on a calender at 130° C. and under a pressure of 7 MPa for several times to form a cathode material film with a thickness of 100 ⁇ m, in which the proportion of cathode active material reached 75 wt %.
  • the film was soaked in a lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid cathode composite material was 1:6, and a solid cathode composite material was obtained.
  • the rate is 3 ⁇ 10 -4 S/cm.
  • PVDF polyvinylidene fluoride
  • DMF N,N dimethylformamide
  • the flexible solid-state cathode composite material obtained by the above technical solution of the present invention has high ionic conductivity, good mechanical properties, bending No breakage, good workability, and good performance in secondary battery applications.
  • Ketjen black of ⁇ 45 ⁇ m is uniformly mixed for a long time in a high-speed dry mixer according to the mass ratio (10:5:80:5).
  • the mixture was calendered at 130°C and 7MPa pressure multiple times on a calender to form a negative electrode material film with a thickness of 120 ⁇ m, the density was about 1.7g/cm 3 , and the ratio of negative electrode active material reached 80wt%.
  • the appearance of the flexible solid-state negative film prepared by this example is shown in FIG. 13 , and the scanning electron microscope image is shown in FIG.
  • the film was soaked in a lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material was 1:6, and a solid negative electrode composite material was obtained.
  • the rate is 2.0 ⁇ 10 -3 S/cm.
  • the mixture was rolled on a calender at 130 degrees and 7MPa for several times to form a negative electrode material film with a thickness of 120 ⁇ m, the density was about 4.4 g/cm 3 , and the proportion of negative active material reached 80wt%.
  • the film is soaked in lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material is 1:6, and a solid negative electrode composite material can be obtained, and its ionic conductivity is 1.5 ⁇ 10 -3 S/cm.
  • the ratio (10:5:80:5) is uniformly mixed for a long time in a high-speed dry mixer.
  • the mixture was calendered several times on a calender at 130° C. and a pressure of 7 MPa to form a negative electrode material film with a thickness of 120 ⁇ m, wherein the negative electrode active material ratio reached 80 wt %.
  • the film is soaked in a lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material is 1:6, and a solid negative electrode composite material can be obtained.
  • the mixture was calendered several times on a calender at 130°C and a pressure of 7MPa to form a negative electrode material film with a thickness of 120 ⁇ m, in which the ratio of negative electrode active material reached 80wt%.
  • the film was soaked in a lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material was 1:6, and a solid negative electrode composite material was obtained. rate.
  • PAN polyacrylonitrile
  • PTFE polytetrafluoroethylene
  • LLZTO is uniformly mixed for a long time in a high-speed dry mixer according to the mass ratio (10:5:75:10).
  • the mixture was calendered at 130°C and 7MPa pressure on a calender for several times to form a negative electrode material film with a thickness of 120 ⁇ m, in which the negative electrode active material ratio reached 75wt%.
  • the film was soaked in a lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material was 1:6, and a solid negative electrode composite material was obtained. rate.
  • PAN polyacrylonitrile
  • PTFE polytetrafluoroethylene
  • Ketjen black with a particle size of about 30 to 45 ⁇ m.
  • the mixture was calendered at 130° C. on a calender for several times under a pressure of 7 MPa to form a negative electrode material film with a thickness of 120 ⁇ m, in which the negative electrode active material ratio reached 80 wt %.
  • the film is soaked in lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material is 1:6, and the solid negative electrode composite material can be obtained, and its ionic conductivity is 1.3 ⁇ 10 -3 S/cm.
  • the film is soaked in lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material is 1:6, and a solid negative electrode composite material can be obtained, and its ionic conductivity is 2.2 ⁇ 10 -3 S/cm.
  • the first charge-discharge diagram of the prepared solid-state cathode is shown in Figure 15.
  • the mixture was calendered at 130° C. on a calender for several times under a pressure of 7 MPa to form a negative electrode material film with a thickness of 120 ⁇ m, in which the negative electrode active material ratio reached 80 wt %.
  • the film is soaked in lithium perchlorate/ethanol solution for a period of time and then dried, so that the mass ratio of electrolyte salt and polymer in the solid positive electrode composite material is 1:6, and the solid negative electrode composite material can be obtained, and its ionic conductivity is 1 ⁇ 10 -3 S/cm.
  • PVDF polyvinylidene fluoride
  • MMF N,N dimethylformamide
  • the flexible solid-state negative electrode composite material obtained by the above-mentioned technical solution of the present invention has high ionic conductivity, good mechanical properties, bending It does not break, has good workability, and has good performance in secondary battery applications.
  • This embodiment provides an all-solid-state lithium battery, which includes a positive electrode, a negative electrode, and a solid-state electrolyte film.
  • the positive electrode is composed of the solid electrolyte positive electrode composite material in Example 2-1 on the positive electrode current collector
  • the negative electrode is composed of the solid negative electrode in Example 3-1 on the negative electrode current collector
  • the solid electrolyte is in Example 1.
  • the solid electrolyte film prepared.
  • the solid-state lithium battery prepared by the three composites has good electrochemical and mechanical properties. Its structure diagram is shown in Figure 16. The cycle performance of the assembled battery is shown in Figure 17.
  • This embodiment provides an all-solid-state lithium battery, which includes a positive electrode, a negative electrode, and a solid-state electrolyte film.
  • the positive electrode is composed of a positive electrode current collector coated with a positive electrode active material and a solid electrolyte composite.
  • the negative electrode is composed of a negative electrode current collector coated with a negative electrode active material and a solid electrolyte composite.
  • the positive electrode active material and the solid electrolyte composite, the negative electrode active material and the solid electrolyte composite are prepared according to the prior art solutions.
  • the solid electrolyte films were prepared according to the solid electrolytes of Examples 1-6.
  • the thickness of the positive electrode active material and solid electrolyte composite coating is 50-200 ⁇ m.
  • the composition and coating process are as follows: the positive electrode active material, polyethylene oxide lithium salt composite electrolyte, conductive carbon black, and binder are in a mass ratio of 6:3:0.5 : The ratio of 0.5 is mixed evenly in the solvent, and then coated on the aluminum foil current collector, and the solvent is evaporated by heating at high temperature to form a positive electrode.
  • the thickness of the negative electrode active material and solid electrolyte composite coating is 50-200 ⁇ m, and the composition and coating process are as follows: the negative electrode active material, polyethylene oxide lithium salt composite electrolyte, conductive carbon black, and binder are in a mass ratio of 6:3:0.5 : The ratio of 0.5 is mixed evenly in the solvent, then coated on the copper foil current collector, heated at high temperature to volatilize the solvent to form a negative electrode.
  • the solid-state lithium battery prepared by the three composites has good electrochemical and mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种固态电解质及其制备方法及应用,该固态电解质由电解质盐、聚合物和无机颗粒填料制得。聚合物本身具有极性基团或可通过表面处理获得极性基团,该极性基团与电解质盐相互作用,加速电解质离子在界面的运动,而大量的三维界面提供了电解质盐阴阳离子传输的通道。该固态电解质具有极高的离子电导率,室温可以达到1×10-4S/cm以上,且可以传导各种离子体系。可以单独成型用于制备固态离子导电膜,也可与正负极活性材料以及导电剂混合制备干电极,也可用于制备固态电池。

Description

一种固态电解质及其制备方法和应用 技术领域:
本发明涉及电化学储能领域,具有涉及一种固态电解质,其制备方法及包含该固态电解质的应用。
背景技术:
近年来,锂离子电池飞速发展,由于其能量密度高,循环性能和倍率性能良好,在消费电子产业商业化取得了巨大的成功。随着电动力汽车的兴起,因为车辆续航里程和使用寿命的追求使得锂离子电池不断在提高电池的能量密度和循环寿命,但同时锂离子电池的安全隐患也更加凸显出来。
锂离子电池在恶劣条件下或者滥用情况下会出现短路、内部短路或者其他原因导致的温度升高,出现热失控最终起火甚至爆炸。最主要原因是锂离子电池使用了低沸点易燃的有机电解液作为离子传导的媒介。当电池的温度由于某种原因升温到电解液的燃点,则会导致整个电池的起火甚至爆炸。电池的能量密度越高,爆炸的危害越大。使用不流动的,不易燃的固态电解质替代液态电解质作为电池中的离子传导媒介被认为是锂电池安全问题解决的重要路线。
可以商业化使用的固态电解质材料必须具有以下几个条件:
1)室温下良好的离子电导率;
2)高的电化学窗口;
3)与活性材料低界面电阻;
4)易于加工成型;
5)良好的热稳定性和化学稳定性;
6)生产及使用成本低廉。
目前固态电解质有硫化物、氧化物、聚合物等分类,硫化物固态电解质具有很高的室温电导率,但材料稳定性差,且生产和使用条件要求苛刻,导致成本过高。氧化物固态电解质具有良好的离子电导率,但材料硬度高且脆,不宜制备成膜且具有很大的界面阻抗。聚合物固态电解质容易加工成型,具有较低的界面阻抗,但室温下的聚合物固态电解质的电导率普遍较低,要求电池在加热条件下使用,增加了使用成本。因此,开发一种可以满足以上锂电池要求的,室温电导率高且易于加工成型,具有低界面阻抗的固 态电解质材料是非常重要的研发方向。
发明内容:
针对现有固态电解质存在的上述问题,本发明提供了一种固态电解质以满足锂电池使用的需求。
根据本发明的发明目的之一,本发明提供了一种固态电解质,包含至少一种聚合物,至少一种电解质盐,和无机颗粒填料;其中聚合物结构中含有极性基团,电解质盐与极性基团相互作用。
所述的固态电解质中聚合物、电解质盐和无机颗粒填料的质量比例为20%-93%:3%-15%:0%-77%。
所述固态电解质室温下离子电导率大于等于1×10 -4S/cm,优选地,为(1×10 -4-1×10 -2)S/cm。
所述聚合物占各组分的体积比大于50%。
聚合物为具有重复单元的聚合物,数均分子量大于1000,重复单元中除碳氢原子外,还包括但不限于O、N、P、S、F、Cl、Br和/或Si杂原子;
或者,聚合物含有与所述电解质盐中的阴阳离子相互作用的极性基团;
或者,聚合物结构中包括但不限于醚基、羰基、胺基、酰胺基、氟、氯、溴、酯基、氰基,砜基、磺酰基和/或硫醚基。
所述聚合物室温下为固体,玻璃转化温度高于50℃;或者,聚合物为结晶聚合物,结晶温度高于100℃。
所述聚合物形成粒径D90小于5μm的粉末,比表面积大于1m 2/g;优选地,聚合物颗粒通过熔喷挤压拉伸工艺形成平均直径小于1μm的纤维,比表面积大于1m 2/g。
所述电解质盐以元素周期表第1族,第2族和第3族金属离子为阳离子;优选地,电解质盐为锂盐、钠盐、钾盐、镁盐和/或铝盐;
所述无机颗粒填料为氧化物、硫化物、氮化物、氟化物、氯化物颗粒中的一种或多种;优选地,无机颗粒填料的粒径D90小于1μm。
所述固态电解质的组分混合后密度大于各混合组分真实密度的70%;优选地,大于各混合组分真实密度的85%。
所述电解质盐分布于聚合物分子、颗粒或纤维之间。
作为本发明的另一项发明目的,本发明提供了上述固态电解质的制备方法,所述固态电解质通过以下任一方法制备得到:
方法a):将所有组分混合后加热加压形成片材;
方法b):将所述聚合物与电解质盐溶液混合后挥发溶剂,加压形成片材;
方法c):将所述聚合物与无机颗粒填料加压形成片材后浸润电解质盐溶液,挥发溶剂后形成。
优选地,至少一种所述聚合物不溶于加工过程中电解质盐溶液所用的溶液。
作为本发明的另一项发明目的,本发明还提供了上述固态电解质在制备电化学器件中的应用。
在本发明中,聚合物本身具有极性基团或可通过表面处理获得极性基团,该极性基团与电解质盐相互作用,加速电解质离子在界面的运动,而大量的三维界面提供了电解质盐阴阳离子传输的通道。该固态电解质具有极高的离子电导率,室温可以达到1×10 -4S/cm以上,且可以传导各种离子体系。可以单独成型用于制备固态离子导电膜,也可与正负极活性材料以及导电剂混合制备干电极,也可用于制备固态电池。
使用本发明的固态电解质制作的以三元材料为正极,石墨为负极制备的全固态锂电池循环性能可以达到循环2000圈容量保持在80%以上,具有良好的电性能和安全性能。可以完美通过针刺、重物冲击等安全性能测试。
使用本发明的固态电解质同时可以制作其他离子体系的固态电池,包括但不限于镁离子电池、钠离子电池、碱性电池等。同样也表现出良好的安全性,循环电性能也都有大幅度提高。
附图说明:
图1是本发明实施例1-1中使用超细聚丙烯腈粉末制备的固态电解质片的电化学阻抗图;
图2是本发明实施例1-2中使用超细聚甲基丙烯酸甲酯粉末制备的固态电解质片的电化学阻抗图;
图3是本发明实施例1-6中制备的固态电解质的电导率随着锂盐含量的变化趋势图;
图4是本发明典型实施例1-8制备的固态电解质薄膜的宏观图片;
图5是本发明典型实施例1-8制备的固态电解质薄膜的扫描电镜图片;
图6是本发明典型实施例1-9制备的固态电解质薄膜的扫描电镜图片;
图7是本发明实施例1-10中制备的固态电解质的电导率随锂盐含量的变化趋势图;
图8是本发明实施例1-12中制备的固态电解质的电导率随锂盐浓度的变化趋势图;
图9是本发明实施例1-13中制备的固态电解质的电导率随锂盐浓度的变化趋势图;
图10本发明实施例2-1中制备的柔性固态正极复合材料的宏观照片;
图11是本发明实施例2-1中制备的柔性固态正极复合材料的扫描电镜图;
图12是本发明实施例2-5中制备的柔性固态正极复合材料的充放电曲线;
图13是本发明实施例3-1中制备的柔性固态负极复合材料的宏观照片;
图14是本发明实施例3-1中制备的柔性固态负极复合材料的扫描电镜图;
图15是本发明实施例3-7中制备的柔性固态负极复合材料的充放电曲线;
图16是本发明实施例4-1采用固态电解质组装的电池结构示意图;
图17是本发明实施例4-1组装的固态电池循环性能图;
图中,1-负极集流体,2-负极复合物,3-固态电解质,4-正极复合物,5-正极集流体。
具体实施方式:
以下为本发明固态电解质材料的制备实施例
实施例1-1
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将100g聚丙烯腈粉末和8g LiFSI粉末使用超高速混合机混合均匀。使用热压机在130℃,10MPa压力下平压2min,可制备200μm厚,聚合物和锂盐质量比为100:8的固态电解质片,测量密度为1.5g/cm 3。使用粒度分析仪测量该固态电解质材料的比表面积为2.80cm 2/cm 3,测试固态电解质的电导率为5.0╳10 -4S/cm。对固态电解质的电化学阻抗进行测试,结果如图1所示。
对比例1-1
将分子量为60000的聚丙烯腈(PAN)和高氯酸锂按照质量比100:8的比例溶解到500g的DMF溶剂中,长时间搅拌均匀,随后用刮涂的方法来制备,得到厚度40μm的固 态电解质薄膜。测试固态电解质的电导率为1.2╳10 -7S/cm。
实施例1-2
将分子量100000的聚甲基丙烯酸甲酯(PMMA)使用靶式气流粉碎机粉碎后得到D90=5μm的聚甲基丙烯酸甲酯粉末,将100g聚甲基丙烯酸甲酯和8g LiFSI粉末使用超高速混合机混合均匀。使用热压机在130℃,10MPa压力下平压2min,可制备50μm厚,聚合物和锂盐质量比为100:8的固态电解质片,测量密度为1.3g/cm 3。使用粒度分析仪测量该固态电解质材料的比表面积为1.95cm 2/cm 3,测试固态电解质的电导率为1.1╳10 -3S/cm。对固态电解质的电化学阻抗进行测试,结果如图2所示。
实施例1-3
将分子量300000的聚偏氟乙烯(PVDF)使用靶式气流粉碎机粉碎后得到D90=6μm的聚偏氟乙烯粉末,将100g聚聚偏氟乙烯和12g LiFSI粉末使用超高速混合机混合均匀。使用热压机在130℃,10MPa压力下平压2min,可制备250μm厚,聚合物和锂盐质量比为100:12的固态电解质片,测量密度为1.48g/cm 3。使用粒度分析仪测量该固态电解质材料的比表面积为1.1cm 2/cm 3,测试固态电解质的电导率为1.5╳10 -4S/cm。
实施例1-4
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将100g聚丙烯腈粉末和6g 1mol/L的高氯酸锂的DMC溶液长时间混合均匀。使用真空干燥箱除去溶剂得到含有高氯酸锂的聚丙烯腈粉末,使用平压机在130℃,10MPa压力下平压2min,可制备200μm厚,聚合物和锂盐质量比为100:6的固态电解质片,测量密度为1.5g/cm 3。测试固态电解质的电导率为1.1╳10 -3S/cm。
实施例1-5
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将100g聚丙烯腈粉末和30g颗粒平均粒径500nm的氧化锆粉末长时间搅拌混合均匀,使用平压机在4MPa压力下平压2min,可制备200μm厚的厚片,再将厚片泡入1mol/L的LiFSI DMC溶液中10min后,真空干燥除去其中溶剂,得到的固态电解质片,测量其电导率为7╳10 -4S/cm。
实施例1-6
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将100g聚丙烯腈粉末与不同比例的LiFSI粉末使用超高速混合机混合均匀。使用热压机在130℃,10MPa压力下平压2min,可制备200μm厚,聚合物和锂盐质量不同(0%-10%)的几种固态电解质片。测试不同锂盐比例对应的固态电解质的电导率,根据结果绘制曲线,如图3所示。如图3可见,离子电导率随着锂盐浓度的变化有一个极大值,可见锂盐比例是调节电导率的重要因素。
实施例1-7
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将100g聚丙烯腈粉末与不同比例高氯酸锂乙醇溶液使用超高速混合机混合均匀。再真空挥发溶剂获得含有锂盐的聚丙烯腈粉末材料,使用压片机,8MPa压力下平压2min,可制备200μm厚,聚合物和锂盐质量不同(0%-10%)的几种固态电解质片。测试不同锂盐浓度对应的固态电解质的电导率,得到的电导率分布与图3类似。
实施例1-8
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈和10%的聚四氟乙烯(PTFE)颗粒长时间混合均匀,使用压延机在120℃,10MPa压力下多次辊压,可制备40μm厚的聚合物膜,将此聚合物膜在1mol/L六氟磷酸锂/乙醇溶液中浸泡10min后真空挥发乙醇溶剂,得到柔软的固态电解质膜。其外观如图4所示,测试其电子显微镜照片如图5所示。测得该固态电解质膜材料电导率为7╳10 -4S/cm。
实施例1-9
将分子量300000的聚偏氟乙烯(PVDF)使用靶式气流粉碎机粉碎后得到D90=6μm的聚偏氟乙烯粉末,将聚偏氟乙烯和6%的聚四氟乙烯(PTFE)颗粒长时间混合均匀,使用压延机在120℃,10MPa压力下多次辊压,可制备20μm厚的聚合物膜,将此聚合物膜在1mol/L六氟磷酸锂/乙醇溶液中浸泡10min后真空挥发乙醇溶剂,得到柔软的固态电解质膜。测得该固态电解质膜材料电导率为3╳10 -4S/cm。测试其电子显微镜照片如图6所示。
实施例1-10
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈粉末与LiLaZrTaO(LLZTO)粉末以及高氯酸锂粉末以质量比(21:73:6)进行混合,并使用超高速混合机混合均匀。使用热压机在130℃,8MPa压力下平压2min,可制备100μm厚固态电解质片。其中LLZTO的含量达到约73wt%,锂盐含量6wt%,聚合物含量21wt%,该固态电解质的离子电导率为约7.0╳10 -4S/cm。保持其他条件不变,改变锂盐的含量,得到不同锂盐含量的固态电解质,测试电导率并根据结果绘制曲线,如图7所示。最高电导率为2.5╳10 -3S/cm
对比例1-2(熔融挤出)
将21g分子量60000的聚丙烯腈(PAN)和高氯酸锂按照质量比21:6的比例,和73g颗粒大小为约100nm的无机固体陶瓷颗粒LiLaZrTaO(LLZTO)粉末使用高速混合机均匀长时间混合,随后使用双螺杆挤出机在160℃将混合材料熔融挤出流延成膜,得到厚度30μm的固态电解质膜,制备的固态电解质膜比表面积较低,离子电导率仅为1.3╳10 -5S/cm。
对比例1-3(溶解涂布)
将21g分子量为60000的聚丙烯腈(PAN)和高氯酸锂按照质量比21:6的比例,和约73g颗粒大小为约100nm的无机固体陶瓷颗粒LiLaZrTaO(LLZTO)粉末分散到300g的DMF中,长时间搅拌均匀,随后使用刮刀将浆料涂布后烘干,得到厚度50μm的固态电解质膜,制备的固态电解质膜比表面积较低,离子电导率仅为5╳10 -6S/cm。
对比例1-4(无极性基团聚合物)
将21g分子量100000的低密度聚乙烯(LDPE)使用气流粉碎机粉碎后得到D90=4μm的低密度聚乙烯粉末,将低密度聚乙烯与LLZTO粉末以及高氯酸锂粉末以质量比(21:73:6)进行混合,并使用超高速混合机混合均匀。使用热压机在130℃,8MPa压力下平压2min,可制备200μm厚固态电解质片。其中LLZTO的含量达到约73wt%,锂盐含量6wt%,聚合物含量21wt%,该固态电解质的离子电导率为约3╳10 -6S/cm。
对比例1-5(无杂原子聚合物)
将200000分子量的聚丙烯(PP)使用气流粉碎机粉碎后得到D90=6μm的聚丙烯粉末,将聚丙烯与LLZTO粉末以及高氯酸锂粉末以质量比(21:73:6)进行混合,并使用超 高速混合机混合均匀。使用热压机在130℃,8MPa压力下平压2min,可制备200μm厚固态电解质片。其中LLZTO的含量达到约73wt%,锂盐含量6wt%,聚合物含量21wt%,该固态电解质的离子电导率为约5╳10 -7S/cm。
表1:各实施例与对比例固态电解质膜参数
Figure PCTCN2021113408-appb-000001
实施例1-11
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈粉末与颗粒大小为20nm的纳米氧化锌粉末以质量比(20:70)进行混合,并使用超高速混合机混合均匀。使用8MPa压力下平压2min,可制备200μm厚固态电解质片。随后将片在1mol/L高氯酸锂/乙醇溶液中浸泡10min,继而真空干燥除去其中的溶剂,得到固态电解质片。该固态电解质的离子电导率为约4.0╳10 -4S/cm,其中聚合物占体积比53%。
实施例1-12
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈粉末与颗粒大小为20nm的纳米氧化锆粉末以质量比(20:70)进行混合,并使用超高速混合机混合均匀。使用8MPa压力下平压2min,可制备200μm厚固态电解质片。随后将片在1mol/L高氯酸锂/乙醇溶液中浸泡10min,继而真空干燥除去其中的溶剂,得到固态电解质片。该固态电解质的离子电导率为约1.4╳10 -4S/cm,其中聚合物占体积比55%。保持其他条件不变,改变锂盐的含量,得到不同锂盐含量的固态电解质,测试电导率并根据结果绘制曲线,如图8所示。其中最高电导率为7.5╳10 -4S/cm
实施例1-13
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈粉末与颗粒大小为100nm的硫化镉粉末以质量比(17:70)进行混合,并使用超高速混合机混合均匀。使用5MPa压力下平压2min,可制备100μm厚固态电解质片。随后将片在1mol/L高氯酸锂/乙醇溶液中浸泡10min,继而真空干燥除去其中的溶剂,得到固态电解质片。该固态电解质的离子电导率为约6╳10 -4S/cm,其中聚合物占体积比60%。保持其他条件不变,改变锂盐的含量,得到不同锂盐含量的固态电解质,测试电导率并根据结果绘制曲线,如图9所示。其中最高电导率为1.0╳10 -3S/cm。
实施例1-14
将200000分子量的聚丙烯(PP)使用气流粉碎机粉碎后得到D90=6μm的聚丙烯粉末,使用NH 3气体等离子体对聚丙烯粉末处理得到表面极性增强的聚丙烯粉末。将等离子体处理后的聚丙烯与LLZTO粉末以及高氯酸锂粉末以质量比(21:73:6)进行混合,并使用超高速混合机混合均匀。使用热压机在130℃,8MPa压力下平压2min,可制备200μm厚固态电解质片。其中LLZTO的含量达到约73wt%,锂盐含量6wt%,聚合物含量21wt%,该固态电解质的离子电导率为约4.2╳10 -4S/cm。
实施例1-15
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,使用O 2气体等离子体对聚丙烯粉末处理得到表面极性增强的聚丙烯腈粉末。将等离子体处理后的聚丙烯腈粉末与颗粒大小为20nm的纳米氧化锆粉末以质量比(20:70)进行混合,并使用超高速混合机混合均匀。使用8MPa压力下平压2min,可制备200μm厚固态电解质片。随后将片在1mol/L高氯酸锂/乙醇溶液中浸泡10min,继而真空干燥除去其中的溶剂,得到固态电解质片。该固态电解质的离子电导率为约4.5╳10 -4S/cm,其中聚合物占体积比55%。
实施例1-16
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈粉末与颗粒大小为20nm的纳米氧化锌粉末以质量比(15:70)进行混合,并使用超高速混合机混合均匀。使用10MPa压力下平压2min,可制备150μm厚固态电解质片。随后将片在1mol/L硝酸镁/乙醇溶液中浸泡10min,继而真空干燥除去 其中的溶剂,得到固态电解质片。该固态电解质的离子电导率为约1.1╳10 -3S/cm,其中聚合物占体积比64%。
实施例1-17
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈粉末与颗粒大小为20nm的纳米氧化锌粉末以质量比(15:70)进行混合,并使用超高速混合机混合均匀。使用8MPa压力下平压2min,可制备200μm厚固态电解质片。随后将片在1mol/L硝酸铝/乙醇溶液中精抛10min,继而真空干燥除去其中的溶剂,得到固态电解质片。该固态电解质的离子电导率为约5.2╳10 -4S/cm,其中聚合物占体积比64%。
通过实施例1-1,1-2,1-3以及对比例1-1可知,使用本发明的固态电解质的制作工艺适用于多种不同的聚合物材料,并且可以得到比刮涂方法更高的电导率。通过实施例1-1,1-4和1-5可知,本发明提供的三种制备方法都可以用于制备固态电解质,并且制备电导率接近。通过实施例1-6,1-7可知,本发明的固态电解质工艺制作的固态电解质可以通过调整锂盐比例来获得电导率的最大值,且此规律适用于不同锂盐。通过以上实施例1-8和1-9可知,本发明的固态电解质制作工艺可以同时使用多种聚合物,包括纳米颗粒和纤维形态的聚合物材料,获得具有高电导率的薄膜材料。通过以上实施例1-10及对比例1-2,1-3可知,本发明提供的固态电解质的制造方法比适用刮涂法和熔融挤出法制造的固态电解质电导率高的多,通过实施例1-10和对比例1-4,1-5可知,使用含有杂原子和含有极性的聚合物材料非常重要,使用具有杂原子和含有极性的聚合物制备的电解质材料比不含有杂原子和极性的聚合物制备的电解质材料的电导率高的多。通过实施例1-11,1-12,1-13可知,使用非导体的无机陶瓷材料作为填充颗粒的固态电解质材料的电导率和使用导体类无机颗粒的电解质材料接近。通过实施例1-14,1-15和对比例1-5可知,使用等离子体处理、化学处理等手段提高极性或非极性聚合物材料表面的极性,可以提高固态电解质材料的电导率。通过实施例1-16和1-17可知,本发明的固态电解质制作工艺适合于制备不同类型的电解质,如镁离子固态电解质,铝离子固态电解质。
实施例1-8和1-9制备的固态电解质薄膜离子电导率高,同时具有实用的力学性能(拉伸强度达到5MPa以上),在做成20μm左右的薄膜时,仍然有良好的完整性,加工性能良好可以利用于二次电池的制作。
实施例1-18
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈和4%的聚四氟乙烯(PTFE)颗粒长时间混合均匀,使用压延机在130℃,10MPa压力下多次辊压,可制备30μm厚的聚合物膜,将此聚合物膜在1.5mol/L六氟磷酸锂/乙醇溶液中浸泡10min后真空挥发乙醇溶剂,得到柔软的固态电解质膜。使用粒度分析仪测量其比表面积为2.8cm 2/cm 3,测得该固态电解质膜材料电导率为5.6╳10 -4S/cm。
实施例1-19
基于实施例16的方法,使用不同的气流粉碎机获得不同颗粒细度的聚合物材料颗粒,从而可以获得不同比表面积的固态电解质材料,并测试固态电解质的离子电导率。结果如下表。
表2不同比表面积的固态电解质材料的离子电导率
粒径D90(μm) 比表面积(cm 2/cm 3) 离子电导率mS/cm
2 10.5 0.87
4 2.8 0.56
6 1.2 0.5
8 0.7 0.41
10 0.5 0.35
根据表1可见,其他条件不变时,固态电解质的离子电导率随着极性聚合物的比表面积的增加而提高。
同时,本发明提供的固态电解质的制备方法适用于锂离子电子体系,也适用于其他离子电池体系,包括但不限于Mg/Al/Na/碱性电池体系,为固态电池的研发提供了良好的平台。
实施例2-1
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚偏氟乙烯粉末、聚四氟乙烯(PTFE)和平均粒径为700nm的磷酸铁锂粉末和乙炔黑按照质量比(10:10:75:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度100μm的正极材料薄膜,密度约2.4g/cm 3,其中正极活性物质比例达到75wt%。由本实施例制备的柔性固态正极 薄膜的外观如图10所示。由本实施例制备的柔性固态正极薄膜的扫描电镜参见图11所示。此外,将LiFSI加热熔融后滴入该正极薄膜中,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态正极复合材料,将其应用于全固态锂电池中具有良好的容量发挥和循环性能。
实施例2-2
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈粉末、聚四氟乙烯(PTFE)和平均粒径为5μm的镍锰酸锂粉末和科琴黑按照质量比(10:10:75:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度100μm的正极材料薄膜,其中正极活性物质比例达到75wt%。此外,将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态正极复合材料。
实施例2-3
将聚丙烯酸甲酯(PMMA)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚丙烯酸甲酯粉末、聚四氟乙烯(PTFE)和平均粒径为700nm的钴酸锂粉末和科琴黑按照质量比(10:10:75:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度100μm的正极材料薄膜,密度约4.0g/cm 3,其中正极活性物质比例达到75wt%。此外,将该薄膜在六氟磷酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态正极复合材料。
实施例2-4
将聚苯硫醚(PPS)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚苯硫醚粉末、聚四氟乙烯(PTFE)和平均粒径为5μm的镍钴锰酸锂粉末和颗粒大小约30~45μm的科琴黑按照质量比(10:10:75:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度100μm的正极材料薄膜,密度约3.7g/cm 3,其中正极活性物质比例达到75wt%。此外,将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态正极复合材料。
实施例2-5
将聚对苯二甲酸乙二醇酯(PET)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚对苯二甲酸乙二醇酯粉末、聚四氟乙烯(PTFE)和平均粒径为700nm的锰酸锂粉末和颗粒大小约30~45μm的科琴黑按照质量比(10:10:75:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度100μm的正极材料薄膜,密度约3.1g/cm 3,其中正极活性物质比例达到75wt%。此外,将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态正极复合材料,其制备的固态正极的首次充放电图如图12所示。
实施例2-6
将聚氯乙烯(PVC)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚氯乙烯粉末、聚四氟乙烯(PTFE)和平均粒径为700nm的钴酸钠粉末和颗粒大小约30~45μm的科琴黑按照质量比(10:10:75:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度100μm的正极材料薄膜,其中正极活性物质比例达到75wt%。此外,将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态正极复合材料,其离子电导率为3╳10 -4S/cm。
对比例2-1
将聚偏氟乙烯(PVDF)粉末和颗粒大小约0.5μm的镍钴锰算例粉末分散到N,N二甲基甲酰胺(DMF)中,长时间搅拌均匀,随后使用刮涂的方法制备正极薄膜,该方法制备的正极薄膜材料分散不均匀且极片电导率较低。
通过实施例2-1至2-6以及对比例2-1,可以发现,借由本发明的上述技术方案所获得的柔性固态正极复合材料的离子导电性高,同时具有良好的力学性能,弯折不断裂,可加工性良好,在二次电池应用中有良好性能。
此外,按照实施例2-1至2-6的方式,以本说明书列出的其他原料和条件进行了试验,并同样制得了离子和电子电导率都高,力学性能和电化学性能优良的柔性固态复合正极材料。
实施例3-1
将分子量60000的聚丙烯腈(PAN)使用气流粉碎机粉碎后得到D90=4μm的聚丙烯腈粉末,将聚丙烯腈粉末、聚四氟乙烯(PTFE)和纳米氧化亚硅粉末和颗粒大小约30~45μm的科琴黑按照质量比(10:5:80:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度120μm的负极材料薄膜,密度约1.7g/cm 3,其中负极活性物质比例达到80wt%。由本实施例制备的柔性固态负极薄膜的外观如图13所示,扫描电镜图如图14所示。此外,将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态负极复合材料,其离子电导率为2.0╳10 -3S/cm。
实施例3-2
将聚偏氟乙烯(PVDF)使用气流粉碎机粉粹成粒径D90=5μm的颗粒,将聚偏氟乙烯粉末、聚四氟乙烯(PTFE)和颗粒大小约400nm的氧化锰粉末和颗粒大小约30~45μm的科琴黑按照质量比(10:5:80:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130度,7MPa压力下多次压延形成厚度120μm的负极材料薄膜,密度约4.4g/cm 3,其中负极活性物质比例达到80wt%。将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态负极复合材料,其离子电导率为1.5╳10 -3S/cm。
实施例3-3
将聚丙烯腈(PAN)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚丙烯腈粉末、聚四氟乙烯(PTFE)和颗粒大小约700nm的钛酸锂粉末和石墨烯按照质量比(10:5:80:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度120μm的负极材料薄膜,其中负极活性物质比例达到80wt%。此外,将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态负极复合材料。
实施例3-4
将聚偏氟乙烯(PVDF)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚偏氟乙烯粉末、聚四氟乙烯(PTFE)和颗粒直径0.2μm氧化钼粉末按照质量比(10:5:80:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下 多次压延形成厚度120μm的负极材料薄膜,其中负极活性物质比例达到80wt%。此外,将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态负极复合材料,其离子电导率为。
实施例3-5
将聚丙烯腈(PAN)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚丙烯腈粉末、聚四氟乙烯(PTFE)和纳米氧化亚硅粉末和颗粒大小为300nm的快离子导体LLZTO按照质量比(10:5:75:10)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度120μm的负极材料薄膜,其中负极活性物质比例达到75wt%。此外,将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态负极复合材料,其离子电导率为。
实施例3-6
将聚丙烯腈(PAN)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚丙烯腈粉末、聚四氟乙烯(PTFE)和纳米硅粉末和颗粒大小约30~45μm的科琴黑按照质量比(10:5:80:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度120μm的负极材料薄膜,其中负极活性物质比例达到80wt%。将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态负极复合材料,其离子电导率为1.3╳10 -3S/cm。
实施例3-7
将聚甲基丙烯酸甲酯(PMMA)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚甲基丙烯酸甲酯粉末、聚四氟乙烯(PTFE)和石墨FSNC-1和颗粒大小约30~45μm的科琴黑按照质量比(10:5:80:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度120μm的负极材料薄膜,其中负极活性物质比例达到80wt%。将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态负极复合材料,其离子电导率为2.2╳10 -3S/cm。其制备的固态正极的首次充放电图如图15所示。
实施例3-8
将聚甲基丙烯酸甲酯(PMMA)使用气流粉碎机粉粹成粒径D90=4μm的颗粒,将聚甲基丙烯酸甲酯粉末、聚四氟乙烯(PTFE)和颗粒直径0.2μm氧化钼粉末和颗粒大小约30~45μm的科琴黑按照质量比(10:5:80:5)的比例在高速干混机中长时间混合均匀。将混合物在压延机上使用130℃,7MPa压力下多次压延形成厚度120μm的负极材料薄膜,其中负极活性物质比例达到80wt%。将该薄膜在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得固态正极复合材料内的电解质盐和聚合物质量比为1:6,可得到固态负极复合材料,其离子电导率为1╳10 -3S/cm。
对比例3-1
将聚偏氟乙烯(PVDF)粉末和颗粒大小约400nm的氧化钼粉末分散到N,N二甲基甲酰胺(DMF)中,长时间搅拌均匀,随后使用刮涂的方法制备正极薄膜,该方法制备的正极薄膜材料分散不均匀且极片电导率较低。
通过实施例3-1至3-8以及对比例3-1,可以发现,借由本发明的上述技术方案所获得的的柔性固态负极复合材料的离子导电性高,同时具有良好的力学性能,弯折不断裂,可加工性良好,在二次电池应用中有良好性能。
此外,按照实施例3-1至3-8的方式,以本说明书列出的其他原料和条件进行了试验,并同样制得了离子和电子电导率都高,力学性能和电化学性能优良的柔性固态复合正极材料。
实施例4-1
本实施例提供一种全固态锂电池,其中包括正极、负极、固态电解质薄膜。其中,正极是由正极集流体上贴合实施例2-1中的固态电解质正极复合材料构成,负极是负极集流体上贴合实施例3-1中的固态负极构成,固态电解质为实施例1-7制备的固态电解质薄膜。三者复合制备的固态锂电池具有良好的电化学性能和力学性能。其结构图如图16所示。组装电池循环性能如图17所示。
实施例4-2
本实施例提供一种全固态锂电池,其包括正极、负极、固态电解质薄膜。其中,正极是正极集流体上涂布正极活性材料和固态电解质复合物构成。负极是负极集流体上涂布负极活性材料与固态电解质复合物构成。正极活性材料与固态电解质复合物、负极活 性物质和固态电解质复合物是按照现有技术方案制备。其中固态电解质薄膜按照实施例1-6制备的固态电解质。
正极活性材料与固态电解质复合物涂层厚度50-200μm,组成及涂布过程如下:将正极活性物质,聚氧化乙烯锂盐复合电解质、导电炭黑、粘结剂按照质量比6:3:0.5:0.5的比例在溶剂中混合均匀,随后在铝箔集流体上涂布,高温加热挥发溶剂,形成正极。
负极活性材料与固态电解质复合物涂层厚度50-200μm,组成及涂布过程如下:将负极活性物质,聚氧化乙烯锂盐复合电解质、导电炭黑、粘结剂按照质量比6:3:0.5:0.5的比例在溶剂中混合均匀,随后在铜箔集流体上涂布,高温加热挥发溶剂,形成负极。
三者复合制备的固态锂电池具有良好的电化学性能和力学性能。

Claims (16)

  1. 一种固态电解质,由至少一种聚合物、至少一种电解质盐和无机颗粒填料混合组成,其特征在于,所述聚合物占总重量的20%-93%,电解质盐占重量的3%-15%,无机颗粒填料占重量的0%-77%。
  2. 根据权利要求1所述的固态电解质,其特征在于,所述固态电解质室温下离子电导率大于等于1×10 -4S/cm,优选地,为(1×10 -4-1×10 -2)S/cm。
  3. 根据权利要求2所述的固态电解质,其特征在于,所述聚合物占各组分的体积比大于50%。
  4. 根据权利要求3所述的固态电解质,其特征在于,聚合物为具有重复单元的聚合物,数均分子量大于1000,重复单元中除碳氢原子外,还包括但不限于O、N、P、S、F、Cl、Br和/或Si杂原子。
  5. 根据权利要求4所述的固态电解质,其特征在于,聚合物含有与所述电解质盐中的阴阳离子相互作用的极性基团;
  6. 根据权利要求5所述的固态电解质,其特征在于,聚合物结构中包括但不限于醚基、羰基、胺基、酰胺基、氟、氯、溴、酯基、氰基,砜基、磺酰基和/或硫醚基。
  7. 根据权利要求6所述的固态电解质,其特征在于,聚合物可以通过化学处理、电化学处理、等离子体处理等方式获得表面极性。
  8. 根据权利要求7所述的固态电解质,其特征在于,室温下为固体,玻璃转化温度高于50摄氏度;聚合物若能够结晶,结晶温度高于100摄氏度。
  9. 根据权利要求8所述的固态电解质,其特征在于,聚合物形成粒径D90小于10μm的粉末,比表面积大于1.0m 2/g;优选地,聚合物颗粒可通过熔喷挤压拉伸工艺形成平均直径小于1μm的纤维,比表面积大于1.0m 2/g。
  10. 根据权利要求3所述的固态电解质,其特征在于,所述电解质盐以元素周期表第1族,第2族和第3族金属离子为阳离子;优选地,电解质盐为锂盐、钠盐、钾盐、镁盐和/或铝盐。
  11. 根据权利要求3所述的固态电解质,其特征在于,所述无机颗粒填料为氧化物、硫化物、氮化物、氟化物、氯化物颗粒中的一种或多种;优选地,无机颗粒填料的粒径D90小于1μm。
  12. 根据权利要求3所述的固态电解质,其特征在于,所述固态电解质的组分混合 后密度大于各混合组分真实密度的70%;优选地,大于各混合组分真实密度的85%。
  13. 根据权利要求3所述的固态电解质,其特征在于,电解质盐分布于聚合物分子、颗粒或纤维之间。
  14. 根据权利要求3所述的固态电解质,其特征在于,至少一种所述聚合物不溶于加工过程中电解质盐溶液所用的溶液。
  15. 权利要求1-14任一项所述的固态电解质的制备方法,其特征在于,所述固态电解质通过以下任一方法制备得到:
    方法a):将所有组分混合后加热加压形成片材;
    方法b):将所述聚合物与电解质盐溶液混合后挥发溶剂,加压形成片材;
    方法c):将所述聚合物与无机颗粒填料加压形成片材后浸润电解质盐溶液,挥发溶剂后形成。
  16. 权利要求1-14中任一项所述的固态电解质在制备电化学器件中的应用。
PCT/CN2021/113408 2021-01-12 2021-08-19 一种固态电解质及其制备方法和应用 WO2022151734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110037009.X 2021-01-12
CN202110037009.XA CN114759256A (zh) 2021-01-12 2021-01-12 一种固态电解质及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022151734A1 true WO2022151734A1 (zh) 2022-07-21

Family

ID=82324746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113408 WO2022151734A1 (zh) 2021-01-12 2021-08-19 一种固态电解质及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114759256A (zh)
WO (1) WO2022151734A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395090A (zh) * 2022-10-10 2022-11-25 蜂巢能源科技(无锡)有限公司 一种固态电解质膜及其制备方法和应用
CN117558976A (zh) * 2024-01-11 2024-02-13 安徽盟维新能源科技有限公司 全浓度梯度复合固态电解质膜及其制备方法和应用
CN117577930A (zh) * 2023-12-29 2024-02-20 国联汽车动力电池研究院有限责任公司 一种固态电解质膜及其制备方法
CN117895090A (zh) * 2024-02-04 2024-04-16 南京博驰新能源股份有限公司 一种制备固态电池电极和固态电解质膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1372705A (zh) * 1999-09-02 2002-10-02 锂能技术公司 固体聚合物电解质
US20090029250A1 (en) * 2005-03-24 2009-01-29 Polymaterials Ag Polymer Electrolyte The Use Thereof And An Electrochemical Device Containing Said Polymer Electrolyte
CN110071327A (zh) * 2019-04-10 2019-07-30 深圳新宙邦科技股份有限公司 一种固态电解质及聚合物锂离子电池
CN110165291A (zh) * 2018-02-11 2019-08-23 中国科学院苏州纳米技术与纳米仿生研究所 固态电解质及其制备方法与应用
CN112086678A (zh) * 2020-09-30 2020-12-15 合肥国轩高科动力能源有限公司 一种固态电解质及其制备方法、以及固态电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1372705A (zh) * 1999-09-02 2002-10-02 锂能技术公司 固体聚合物电解质
US20090029250A1 (en) * 2005-03-24 2009-01-29 Polymaterials Ag Polymer Electrolyte The Use Thereof And An Electrochemical Device Containing Said Polymer Electrolyte
CN110165291A (zh) * 2018-02-11 2019-08-23 中国科学院苏州纳米技术与纳米仿生研究所 固态电解质及其制备方法与应用
CN110071327A (zh) * 2019-04-10 2019-07-30 深圳新宙邦科技股份有限公司 一种固态电解质及聚合物锂离子电池
CN112086678A (zh) * 2020-09-30 2020-12-15 合肥国轩高科动力能源有限公司 一种固态电解质及其制备方法、以及固态电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395090A (zh) * 2022-10-10 2022-11-25 蜂巢能源科技(无锡)有限公司 一种固态电解质膜及其制备方法和应用
CN117577930A (zh) * 2023-12-29 2024-02-20 国联汽车动力电池研究院有限责任公司 一种固态电解质膜及其制备方法
CN117558976A (zh) * 2024-01-11 2024-02-13 安徽盟维新能源科技有限公司 全浓度梯度复合固态电解质膜及其制备方法和应用
CN117558976B (zh) * 2024-01-11 2024-04-09 安徽盟维新能源科技有限公司 全浓度梯度复合固态电解质膜及其制备方法和应用
CN117895090A (zh) * 2024-02-04 2024-04-16 南京博驰新能源股份有限公司 一种制备固态电池电极和固态电解质膜的方法

Also Published As

Publication number Publication date
CN114759256A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2022151734A1 (zh) 一种固态电解质及其制备方法和应用
KR102135603B1 (ko) 전지 전극의 제조 방법
CN112420986B (zh) 一种干法制备锂电池正负极片方法
CN109004265B (zh) 固态电解质正极及包含其的固态电池
Li et al. Materials processing for lithium-ion batteries
CN107240718B (zh) 固态电池及其制备方法
KR102256479B1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
CN112397682A (zh) 一种补锂的负极极片及其锂离子电池
CN104091937A (zh) 钛酸锂包覆经表面处理石墨的负极材料、制法及其应用
JP6805374B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
CN111477841A (zh) 锂电池极片及其制备方法
Li et al. Approaching high performance PVDF‐HFP based solid composite electrolytes with LLTO nanorods for solid‐state lithium‐ion batteries
CN113140731B (zh) 一种全固态锂电池及其制备方法
JP5752584B2 (ja) セパレータ
CN111370760B (zh) 一种宽电化学窗口复合固体电解质及其制备方法
CN114050271A (zh) 一种具有核壳结构的正极活性材料及其制备方法以及包含它的全固态锂电池
WO2022179064A1 (zh) 一种固态电解质及其应用
CN116387509A (zh) 一种锂金属电池用复合正极及其制备方法
CN114300648A (zh) 一种正极极片及其制备方法与正极极板、固态电池
US20200227750A1 (en) Electrode active material slurry and lithium secondary battery including the same
JP7301082B2 (ja) 二次電池用電極の製造方法および二次電池の製造方法
KR20190108429A (ko) 양극의 제조 방법
CN114464770A (zh) 一种电极片及包含该电极片的电池
KR102515311B1 (ko) 이차전지용 분리막 및 이를 포함하는 이차전지
US20230155115A1 (en) Electrode manufacturing method and electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918926

Country of ref document: EP

Kind code of ref document: A1