WO2021106813A1 - アルカン化合物の製造方法 - Google Patents

アルカン化合物の製造方法 Download PDF

Info

Publication number
WO2021106813A1
WO2021106813A1 PCT/JP2020/043536 JP2020043536W WO2021106813A1 WO 2021106813 A1 WO2021106813 A1 WO 2021106813A1 JP 2020043536 W JP2020043536 W JP 2020043536W WO 2021106813 A1 WO2021106813 A1 WO 2021106813A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound represented
same
mol
alkane
Prior art date
Application number
PCT/JP2020/043536
Other languages
English (en)
French (fr)
Inventor
友亮 江藤
中村 新吾
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020227019285A priority Critical patent/KR20220097494A/ko
Priority to CN202080082301.7A priority patent/CN114746384B/zh
Priority to EP20893616.1A priority patent/EP4067327A4/en
Publication of WO2021106813A1 publication Critical patent/WO2021106813A1/ja
Priority to US17/825,504 priority patent/US20220289649A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • C07C17/281Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons of only one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • This disclosure relates to a method for producing an alkane compound.
  • Non-Patent Document 1 knows that a hydrogenation reaction of perfluoro-2-butene is carried out.
  • CF 3 CHFCHFCF 3 has the following three types of isomers (S), (R), (R), (R) and (S), (S). According to this, most of the obtained CF 3 CHFCHFCF 3 are (S) and (R) isomers.
  • the alkane compound represented by R 1 CHX 1 CHX 2 R 2 is co-produced with (S), (R) form, (R), (R) form and (S), (S) form. It is intended to provide a method of synthesizing in form.
  • This disclosure includes the following configurations.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 indicate the same or different halogen atoms, alkyl groups or fluoroalkyl groups.
  • a production method comprising a step of reacting an alkene compound represented by the above formula with a gas containing hydrogen to hydrogenate the alkene compound represented by the general formula (2).
  • Item 2. The amount of the cycloalkane compound represented by the general formula (3) used in the hydrogenation step is 0.5 to 20 mol with respect to 1 mol of the alkene compound represented by the general formula (2). Manufacturing method.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are the same as above. However, when R 1 and R 2 in the general formula (1) are all alkyl groups, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are the same or different. , Halogen atom or fluoroalkyl group. ] Cycloalkane compound represented by and general formula (4):
  • Item 2 The production method according to Item 1 or 2, which comprises a step of obtaining an alkene compound represented by.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 indicate the same or different halogen atoms, alkyl groups or fluoroalkyl groups. However, when R 1 and R 2 in the general formula (1) are all alkyl groups, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are the same or different. , Halogen atom or fluoroalkyl group. ] Cycloalkane compound represented by and general formula (4):
  • (IIB) In the presence of a catalyst, the mixture obtained in the above step (IB) is reacted with a gas containing hydrogen to hydrogenate the cycloalkene compound represented by the general formula (2). ,Production method.
  • Item 5 the content of the cycloalkane compound represented by the general formula (3) in the mixture used as a raw material is 0.5 to 20 mol with respect to 1 mol of the alkene compound represented by the general formula (2).
  • Item 4. The production method according to Item 4.
  • Item 6. The production method according to any one of Items 1 to 5, wherein the hydrogenation step is carried out in the gas phase.
  • the produced alkane compound represented by the general formula (1) is the general formulas (1A), (1B) and (1C):
  • Item 8 The production method according to any one of Items 1 to 6, which comprises three kinds of alkane compounds represented by.
  • Item 8 Assuming that the total amount of products obtained by the hydrogenation step is 100 mol%, the alkane compound represented by the general formula (1A) is 20 to 80 mol%, and the alkane compound represented by the general formula (1B) is 10. Item 7. The production method according to Item 7, wherein 10 to 40 mol% of the alkane compound represented by the general formula (1C) can be obtained in an amount of 10 to 40 mol%.
  • X 1 and X 2 are the same or different and represent halogen atoms.
  • R 1 and R 2 are the same or different and indicate an alkyl group or a fluoroalkyl group.
  • the content of the alkane compound represented by the general formula (1A) is 20 to 80 mol%, assuming that the total amount of the composition is 100 mol%, which contains the three types of alkane compounds represented by the above general formula (1A).
  • a composition in which the content of the alkane compound represented by 1B) is 10 to 40 mol%, and the content of the alkane compound represented by the general formula (1C) is 10 to 40 mol%.
  • Item 10 The composition according to Item 9, which is used as an intermediate for organic synthesis, an etching gas, and a deposit gas.
  • the alkane compound represented by R 1 CHX 1 CHX 2 R 2 is a combination of (S), (R) form, (R), (R) form and (S), (S) form. It can be synthesized in the form of production.
  • the "selectivity" means the ratio (mol%) of the total molar amount of the target compound contained in the effluent gas to the total molar amount of the compound other than the raw material compound in the effluent gas from the reactor outlet. To do.
  • Non-Patent Document 1 CF 3 CHFCHFCF 3 is synthesized by hydrogenating 1,1,1,4,4,4-hexafluoro-2-butene, but an isomer that can be synthesized Most of them were only (S) and (R) isomers. This is because the hydrogenation reaction using a catalyst is known to be syn-addition, and the anti-addition reaction in which two hydrogen atoms are added from opposite directions is unlikely to occur. That is, according to the conventional method, isomers other than the (S) and (R) isomers could hardly be synthesized.
  • the alkane compound represented by 2 can be synthesized.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 indicate the same or different halogen atoms, alkyl groups or fluoroalkyl groups. However, when R 1 and R 2 in the general formula (1) are all alkyl groups, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are the same or different. , Halogen atom or fluoroalkyl group.
  • the general formula (2) In the presence of the cycloalkane compound represented by and the catalyst, the general formula (2):
  • the present invention comprises a step of reacting the alkene compound represented by the above formula with a gas containing hydrogen to hydrogenate the alkene compound represented by the general formula (2).
  • a syn addition reaction in which a cycloalkane compound represented by the general formula (3) described above adds two hydrogen atoms from the same direction to an alkene compound represented by the general formula (2).
  • an anti-addition reaction in which two hydrogen atoms are added from opposite directions is likely to occur by inhibiting a part of the (S), (R) form, (R), (R) form and (S),
  • the alkane compound represented by the general formula (1) can be synthesized in the form of coexisting the S) form.
  • X 1 and X 2 are the same or different and represent halogen atoms.
  • R 1 and R 2 are the same or different and indicate an alkyl group or a fluoroalkyl group.
  • It is an alkene compound represented by.
  • the alkene compound represented by this general formula (2) includes the general formulas (2A) and (2B):
  • examples of the halogen atom represented by X 1 and X 2 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • examples of the alkyl group represented by R 1 and R 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms. , More preferably an alkyl group having 1 to 6 carbon atoms, and even more preferably an alkyl group having 1 to 3 carbon atoms.
  • the fluoroalkyl group represented by R 1 and R 2 has, for example, a trifluoromethyl group, a pentafluoroethyl group, or the like having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably.
  • X 1 and X 2 include the conversion rate of the reaction and the target alkane compound ((S), (R) form, (R), (R) form and (S), (S) form). Fluorine atoms are preferred from the standpoint of selectivity and yield.
  • R 1 and R 2 the conversion rate of the reaction and the selection of the target alkane compound ((S), (R) form, (R), (R) form and (S), (S) form) From the viewpoint of rate and yield, a fluoroalkyl group is preferable, and a perfluoroalkyl group is more preferable.
  • X 1 , X 2 , R 1 and R 2 may be the same or different from each other.
  • alkene compounds represented by the general formula (2) can be used alone or in combination of two or more.
  • an alkene compound represented by the general formula (2) a known or commercially available product can be adopted. It can also be synthesized and used. The production method for synthesizing the alkene compound represented by the above general formula (2) will be described later.
  • (1-1-2) Hydrogen addition reaction In the method for producing an alkane compound from the alkane compound in the present disclosure, for example, in the alkane compound represented by the general formula (2) as a raw material compound, the conversion rate and purpose of the reaction are From the viewpoint of selectivity and yield of alkane compounds ((S), (R), (R), (R) and (S), (S)), X 1 and X 2 have fluorine atoms.
  • R 1 and R 2 are preferably a fluoroalkyl group, more preferably a perfluoroalkyl group, and particularly preferably a trifluoromethyl group.
  • the hydrogenation reaction (syn addition reaction and anti-addition reaction) is performed.
  • the step of obtaining an alkane compound represented by the general formula (1) by hydrogenation reaction from the alkene compound represented by the general formula (2) in the present disclosure will be described later.
  • the hydrogenation reaction is continuously carried out from the production method, or from the viewpoint of productivity, it is preferable to carry out the hydrogenation reaction in the gas phase.
  • the step of obtaining an alkane compound represented by the general formula (1) by hydrogenation reaction from the alkene compound represented by the general formula (2) in the present disclosure is carried out in the gas phase, it is represented by the general formula (2).
  • the hydrogenation reaction can be continuously carried out from the method for producing an alkene compound described later, and there is an advantage that no solvent is required, no industrial waste is generated, and the productivity is excellent.
  • the step of hydrogenating the alkene compound represented by the general formula (2) in the present disclosure to obtain the alkane compound represented by the general formula (1) is a gas phase, particularly a gas phase continuation using a fixed bed reactor. It is preferable to use a distribution method. When the gas phase continuous flow system is used, the equipment, operation, etc. can be simplified and it is economically advantageous.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 indicate the same or different halogen atoms, alkyl groups or fluoroalkyl groups. ] This is performed in the presence of the cycloalkane compound represented by.
  • the cycloalkane compound represented by the general formula (3) inhibits a part of the syn addition reaction in which two hydrogen atoms are added from the same direction to the alkene compound represented by the general formula (2).
  • (S), (R) compounds, (R), (R) compounds and (S), (S) compounds coexist. It is possible to synthesize an alkane compound represented by the general formula (1) in the form.
  • R 1 and R 2 are both alkyl groups
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are preferably halogen atoms or fluoroalkyl groups.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 the conversion rate of the reaction, the target alkane compound ((S), (R) form, (R) ), (R) and (S), (S)) from the viewpoint of selectivity and yield, a halogen atom or a fluoroalkyl group is preferable, a halogen atom is more preferable, and a fluorine atom is further preferable.
  • the general formula (3) is used in the hydrogenation reaction of the cycloalkane compound represented by the general formula (3) and the alkene compound represented by the general formula (2) in the presence of a catalyst.
  • the general formula (3) is used in the hydrogenation reaction of the cycloalkane compound represented by the general formula (3) and the alkene compound represented by the general formula (2) in the presence of a catalyst.
  • a cycloalkane compound represented by the general formula (3) and an alkene compound represented by the general formula (2) are subjected to a hydrogenation reaction in the presence of a catalyst, and are represented by the general formula (3).
  • the amount of the cycloalkane compound to be used is not particularly limited, and the conversion rate of the reaction, the target alkane compound ((S), (R) form, (R), (R) form and (S), (S)) From the viewpoint of selectivity and yield of the body), 0.5 to 20 mol is preferable, 0.7 to 15 mol is more preferable, and 0.8 to 10 mol is preferable with respect to 1 mol of the alkene compound represented by the general formula (2) which is a raw material compound. Mol is more preferred.
  • transition metal elements belonging to the 8th to 11th groups of the periodic table are preferable, and transition metal elements belonging to the 9th to 10th groups of the periodic table are more preferable.
  • Specific examples of such metal species include platinum, palladium, rhodium, nickel and the like.
  • the catalyst of the present disclosure may contain the above-mentioned metal as a simple substance, may be a porous metal catalyst, or may contain a compound with another element.
  • an alloy of a catalytic metal species such as platinum, palladium, rhodium, nickel and non-catalytic aluminum, silicon, magnesium, zinc, etc., or an acid or alkaline solution from these alloys, which does not have the catalytic activity of the latter.
  • a catalyst in which a metal species is eluted (Raney catalyst), Pt (PtO 2 ), Adams' catalyst (PtO 2- H 2 O), colloidal palladium, colloidal platinum, platinum black, etc. can also be adopted. These may be used alone or in combination of two or more.
  • the above-mentioned metal species can be used as they are as a catalyst, or the above-mentioned metal species can be supported on a carrier and used.
  • the carrier that can be used at this time is not particularly limited, and examples thereof include carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica (SiO 2 ), and titania (TiO 2).
  • the selectivity and yield of the target alkane compound ((S), (R) form, (R), (R) form and (S), (S) form).
  • Carbon, alumina and the like are preferable, and carbon is more preferable.
  • As the carbon activated carbon, amorphous carbon, graphite, diamond and the like can be used.
  • the catalyst in the hydrogenation reaction of the cycloalkane compound represented by the general formula (3) and the alkene compound represented by the general formula (2) in the presence of the catalyst, for example, the catalyst is a solid. In the state (solid phase), it is preferable to contact the alkene compound represented by the general formula (2).
  • the shape of the catalyst may be powder, but the pellet shape is preferable when it is used for the gas phase continuous flow type reaction.
  • the specific surface area measured by the BET method of the catalyst is the conversion rate of the reaction and the target alcan compound ((S), (R) form, (R), (R) form and (S), from the viewpoint of selectivity and yield of the (S) form), it is usually preferably 10 ⁇ 3000m 2 / g, more preferably 10 ⁇ 2500m 2 / g, 20 ⁇ 2000m 2 / g Is more preferable, and 30 to 1500 m 2 / g is particularly preferable.
  • Gas containing hydrogen in addition to hydrogen gas, a mixed gas of hydrogen gas and other gas (for example, hydrogen and an inert gas such as nitrogen or argon is used at an arbitrary ratio. It also includes mixed gas (mixed gas, hydrogen acid, which is a mixed gas of oxygen and hydrogen, etc.). However, since the production method of the present disclosure employs a hydrogen addition reaction, hydrogen halide (hydrogen fluoride) or the like is not contained as a gas containing hydrogen, or a very small amount (for example, 5 with respect to the total amount of gas containing hydrogen). Volume% or less) is preferable.
  • hydrogen halide hydrogen fluoride
  • Hydrogen gas is preferably used. These hydrogen-containing gases can be used alone or in combination of two or more.
  • the gas containing hydrogen is usually preferably supplied to the reactor in a vapor phase state together with the alkene compound (raw material compound) represented by the general formula (2).
  • the supply amount of the gas containing hydrogen is the conversion rate of the reaction and the selectivity of the target alkane compound ((S), (R) form, (R), (R) form and (S), (S) form). From the viewpoint of yield, 0.7 to 10 mol is preferable, 0.8 to 5 mol is more preferable, and 0.9 to 3 mol is further preferable with respect to 1 mol of the alkene compound (raw material compound) represented by the general formula (2). ..
  • reaction temperature is the conversion rate of the reaction and the target alkane compound (1-1-6).
  • the reaction temperature is the conversion rate of the reaction and the target alkane compound (1-1-6).
  • selectivity and yield of (S), (R), (R), (R) and (S), (S) usually 20 to 400 ° C or higher is preferable, and 30 to 300 ° C is preferable. The above is more preferable, and 40 to 200 ° C. or higher is further preferable.
  • the contact time with the catalyst (W / F) [W: weight of catalyst (g), F: flow rate of raw material compound (cc / sec)] is the conversion rate of the reaction and the target alkane compound ((S), (R). ), (R), (R) and (S), (S)) from the viewpoint of selectivity and yield, 0.5 to 50 g ⁇ sec./cc is preferable, and 1 to 40 g ⁇ sec./cc Is more preferable, and 1.5 to 30 g ⁇ sec./cc is further preferable.
  • the contact time means the contact time between the raw material compound and the catalyst, that is, the reaction time.
  • reaction pressure is the conversion rate of the reaction and the target alkane compound (1-1-8). From the viewpoint of selectivity and yield of (S), (R), (R), (R) and (S), (S)), 0 kPa or more is preferable, 10 kPa or more is more preferable, and 20 kPa or more is preferable. Is more preferable, and 30 kPa or more is particularly preferable.
  • the upper limit of the reaction pressure is not particularly limited and is usually about 2 MPa. In this disclosure, the pressure is a gauge pressure unless otherwise specified.
  • the alkene compound (raw material compound) represented by the general formula (2) In the step of hydrogenating the alkene compound (raw material compound) represented by the general formula (2) in the present disclosure, it is represented by the alkene compound (raw material compound) represented by the general formula (2) and the general formula (3).
  • the shape and structure of the reactor in which the cycloalkane compound and the catalyst are charged and reacted are not particularly limited as long as they can withstand the above temperature and pressure.
  • the reactor include a vertical reactor, a horizontal reactor, a multi-tube reactor and the like.
  • the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
  • Example of hydrogen addition reaction In the step of hydrogenating the alkene compound (raw material compound) represented by the general formula (2) in the present disclosure, the general formula (2) which is the raw material compound is applied to the reactor.
  • the alkene compound represented by (1) is continuously charged, and the alken compound represented by the general formula (1), which is the target compound, is continuously extracted from the reactor by either a distribution method or a batch method. Can be done.
  • the step of hydrogenating the alkene compound (raw material compound) represented by the general formula (2) in the present disclosure is preferably carried out in the gas phase, and particularly preferably in the gas phase continuous flow method using a fixed bed reactor. When the gas phase continuous flow system is used, the equipment, operation, etc. can be simplified and it is economically advantageous.
  • the atmosphere when the alkene compound (raw material compound) represented by the general formula (2) in the present disclosure is subjected to the hydrogenation reaction, from the viewpoint of suppressing the deterioration of the catalyst, the atmosphere may be an inert gas atmosphere, a hydrogen gas atmosphere, or the like.
  • the inert gas include nitrogen, helium, argon and the like. Among these inert gases, nitrogen is preferable from the viewpoint of cost reduction.
  • the concentration of the inert gas is preferably 0 to 50 mol% of the gas component introduced into the reactor.
  • Target compound (alkane compound)
  • the target compound of the present disclosure is the general formula (1) :.
  • X 1 and X 2 are the same or different and represent halogen atoms.
  • R 1 and R 2 are the same or different and indicate an alkyl group or a fluoroalkyl group.
  • X 1, X 2, R 1 and R 2 in the general formula (2A) correspond with the X 1, X 2, R 1 and R 2 in the general formula (2). Therefore, examples of the alkane compound represented by the general formula (1) to be produced include CHF 2 CHF 2 , CF 3 CHFCHFCF 3 , C 2 F 5 CHFCHFC 2 F 5 .
  • the target products obtained were only (S) and (R) isomers, but according to the production method of the present disclosure, the (S) and (R) isomers are obtained.
  • (R), (R) form and (S), (S) form can be co-produced to obtain an alkane compound represented by the general formula (1). That is, these target compounds include all of the (S), (R) -form, (R), (R) -form and (S), (S) -form. Therefore, as the target compound obtained, for example,
  • each isomer is analyzed by gas chromatography (content) and NMR (structure determination) using a chiral column.
  • the alkane compound represented by the general formula (1) thus obtained can be effectively used in various applications such as an intermediate for organic synthesis, an etching gas, and a deposit gas.
  • various applications such as etching gas, cleaning gas, deposit gas, refrigerant, heat transfer medium, building block for organic synthesis, etc.
  • an alkyne compound (CF 3 C ⁇ C CF 3, etc.) that can be effectively used.
  • the alkene compound represented by the general formula (2) used as a raw material compound may be a known or commercially available product as described above. It can also be synthesized. When synthesizing an alkene compound represented by the general formula (2), for example, it can be synthesized according to the method described in Journal of the Chemical Society, 1953, p. 2082-2084, US Pat. No. 2,404,374, etc. it can.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are the same as above. However, when R 1 and R 2 in the general formula (1) are all alkyl groups, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are the same or different. , Halogen atom or fluoroalkyl group. ] Cycloalkane compound represented by and general formula (4):
  • X 1 , X 2 , X 3 and X 4 are the same or different and represent halogen atoms.
  • It is an alkene compound represented by.
  • the above-mentioned halogen atoms can be adopted as the halogen atoms represented by X 1 , X 2 , X 3 and X 4.
  • a fluorine atom is preferable from the viewpoint of the conversion rate of the reaction, the selectivity of the target alkene compound represented by the general formula (2), and the yield.
  • X 1 , X 2 , X 3 and X 4 may be the same or different from each other.
  • alkene compounds represented by the general formula (4) can be used alone or in combination of two or more.
  • alkene compound represented by the general formula (4) a known or commercially available product can be adopted.
  • the step of obtaining the alkene compound represented by the general formula (2) from the alkene compound represented by the general formula (4) is followed by the alkane compound represented by the general formula (1) by the hydrogenation reaction described above. It is preferable to carry out the production in the gas phase from the viewpoint of productivity.
  • the step of obtaining the alkene compound represented by the general formula (2) from the alkene compound represented by the general formula (4) is carried out in the gas phase, the general formula (1) is subsequently carried out continuously by the hydrogenation reaction described above.
  • the alkane compound represented by (1) can be produced, and there is no need to use a solvent, no industrial waste is generated, and there is an advantage that the productivity is excellent.
  • the step of obtaining the alkene compound represented by the general formula (2) from the alkene compound represented by the general formula (4) is preferably carried out by a gas phase, particularly a gas phase continuous flow system using a fixed bed reactor.
  • a gas phase continuous flow system is used, the equipment, operation, etc. can be simplified and it is economically advantageous.
  • reaction temperature is the conversion rate of the reaction and the target general. From the viewpoint of the selectivity and yield of the alkene compound represented by the formula (2), usually 400 to 1000 ° C. or higher is preferable, 500 to 900 ° C. or higher is more preferable, and 600 to 800 ° C. or higher is further preferable.
  • reaction pressure is the conversion rate of the reaction and the target general. From the viewpoint of the selectivity and yield of the alkene compound represented by the formula (2), 0 kPa or more is preferable, 10 kPa or more is more preferable, 20 kPa or more is further preferable, and 30 kPa or more is particularly preferable.
  • the upper limit of the reaction pressure is not particularly limited and is usually about 2 MPa. In this disclosure, the pressure is a gauge pressure unless otherwise specified.
  • the alkene compound (raw material compound) represented by the general formula (4) and the general formula (3) are used.
  • the shape and structure of the reactor to which the represented cycloalkane compound is charged and reacted is not particularly limited as long as it can withstand the above temperature and pressure.
  • the reactor include a vertical reactor, a horizontal reactor, a multi-tube reactor and the like.
  • the material of the reactor include glass, stainless steel, iron, nickel, iron-nickel alloy and the like.
  • the step of obtaining the alkene compound represented by the general formula (2) from the alkene compound represented by the general formula (4) may be carried out in the gas phase, and in particular, in the gas phase continuous flow method using a fixed bed reactor. preferable.
  • the gas phase continuous flow system is used, the equipment, operation, etc. can be simplified and it is economically advantageous.
  • the atmosphere for obtaining the alkene compound represented by the general formula (2) from the alkene compound represented by the general formula (4) is preferably an inert gas atmosphere from the viewpoint of suppressing impurities.
  • the inert gas include nitrogen, helium, argon and the like. Among these inert gases, nitrogen is preferable from the viewpoint of cost reduction.
  • the concentration of the inert gas is preferably 0 to 50 mol% of the gas component introduced into the reactor.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 indicate the same or different halogen atoms, alkyl groups or fluoroalkyl groups. However, when R 1 and R 2 in the general formula (1) are all alkyl groups, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are the same or different. , Halogen atom or fluoroalkyl group. ] Cycloalkane compound represented by and general formula (4):
  • (IIB) In the presence of a catalyst, the mixture obtained in the above step (IB) is reacted with a gas containing hydrogen to hydrogenate the cycloalkene compound represented by the general formula (2). ..
  • the alkene compound represented by the general formula (2) and the cycloalkane compound represented by the general formula (3) can be isolated and used in the step (IIB), but the composition When it is difficult to isolate the alkene compound represented by the general formula (2) and the cycloalkane compound represented by the general formula (3) because the formulas are the same or the molecular weights are close to each other. There are also many.
  • composition formula is C 4 F 8 and the boiling point is close.
  • the mixture containing the alkene compound represented by the general formula (2) and the cycloalkane compound represented by the general formula (3) obtained after the step (IB) is not isolated. It can be used as it is as a raw material for the process (IIB).
  • the alkene compound represented by the general formula (2) and the general formula (3) instead of separately inputting the alkene compound represented by the general formula (2) and the cycloalkane compound represented by the general formula (3), the alkene compound represented by the general formula (2) and the general formula (3).
  • the reaction can proceed in the same manner as in the above-mentioned method for producing an alkene compound from an alkene compound, except that a mixture containing the cycloalkane compound represented by) (preferably a mixed gas) is used.
  • the alkene compound represented by the general formula (2) and the cycloalkane compound represented by the general formula (3) instead of separately inputting the alkene compound represented by the general formula (2) and the cycloalkane compound represented by the general formula (3), the alkene compound represented by the general formula (2) and the general formula ( Other than using the mixture containing the cycloalkane compound represented by 3) (preferably a mixed gas), the above description of the method for producing an alkene compound from an alkene compound can be adopted as it is.
  • the alkane compound represented by the general formula (1) can be obtained, but as described above, according to the production method of the present disclosure, the (S), (R) form, ( An alkane compound represented by the general formula (1) can be obtained in the form of coexisting R), (R) form and (S), (S) form. Therefore, according to the manufacturing method of the present disclosure, the general formulas (1A), (1B) and (1C):
  • X 1 and X 2 are the same or different and represent halogen atoms.
  • R 1 and R 2 are the same or different and indicate an alkyl group or a fluoroalkyl group.
  • an alkane compound represented by the general formula (1) can be obtained.
  • the alkane compound represented by the general formula (1A) is in the (S), (R) form, and the alkane compound represented by the general formula (1B) is in the (R), (R) form, the general formula (1C).
  • the represented alkane compound means (S), (S) form.
  • the alkane represented by the general formula (1A) in the composition of the present disclosure since the hydrogen addition reaction proceeds to the same extent as the syn addition reaction and the anti-addition reaction, the alkane represented by the general formula (1A) in the composition of the present disclosure.
  • the content of the compound tends to be about the same as the total amount of the alkane compound represented by the general formula (1B) and the alkane compound represented by the general formula (1C).
  • the anti-addition reaction proceeds, almost the same (R), (R) -form and (S), (S) -form are formed, so that the alkane compound represented by the general formula (1B) is formed.
  • the content tends to be about the same as the content of the alkane compound represented by the general formula (1C).
  • the content of the alkane compound represented by the general formula (1A) is preferably 20 to 80 mol%, more preferably 30 to 75 mol%, and 40 to 40 to 70 mol% is more preferred.
  • the content of the alkane compound represented by the general formula (1B) is preferably 10 to 40 mol%, more preferably 12.5 to 35 mol%, and even more preferably 15 to 30 mol%.
  • the content of the alkane compound represented by the general formula (1C) is preferably 10 to 40 mol%, more preferably 12.5 to 35 mol%, and even more preferably 15 to 30 mol%.
  • Each isomer is analyzed by gas chromatography (content) and NMR (structure determination) using a chiral column.
  • the alkane compound represented by the general formula (1) can be obtained in a composition with a high conversion rate of the reaction, a high yield and a high selectivity. Since it is possible to reduce the components other than the alkane compound represented by the general formula (1), it is possible to reduce the purification labor for obtaining the alkane compound represented by the general formula (1).
  • the general formula Even if the cycloalkane compound represented by 3) remains, the composition formula is different between the alkane compound represented by the general formula (1) and the cycloalkane compound represented by the general formula (3). Can be easily isolated in.
  • Such a composition of the present disclosure can be effectively used in various applications such as an intermediate for organic synthesis, an etching gas, and a deposit gas.
  • an etching gas a cleaning gas
  • a deposit gas a refrigerant
  • a heat transfer medium a heat transfer medium
  • an organic synthesis It is also possible to synthesize an alkyne compound (CF 3 C ⁇ C CF 3, etc.) that can be effectively used for various purposes such as building blocks.
  • the starting compound is a halogenated butane compound represented by the general formula (2A), where X 1 and X 2 are fluorine atoms, R 1 and R 2 is a trifluoromethyl group, and the reaction formula is as follows:
  • Examples 1 to 5 and Comparative Examples 1 to 3 A Pd / C catalyst (N.E. Chemcata) in which palladium is supported on carbon as a catalyst in a SUS pipe (outer diameter: 1/2 inch) which is a gas phase reaction reaction tube. 5.0 g (manufactured by Echemcat Co., Ltd., containing 3% by mass of palladium with respect to the catalyst mass) was added. After drying at 200 ° C for 2 hours in a nitrogen atmosphere, the pressure is adjusted to normal pressure, and the contact time (W / F) between octafluoro-2-butane (raw material compound; mixed cis and trans) and Pd / C catalyst is determined.
  • W / F contact time
  • Octafluoro-2-butane (raw material compound) is circulated in the reaction tube so as to be 1.7 to 9.3 g ⁇ sec / cc, and the molar amount of octafluorocyclobutane (C318) and octafluoro-2-butene (raw material compound) is obtained.
  • Octafluorocyclobutane (C318) is circulated so that the ratio is 0, 1 or 4 (when the molar ratio is 0, it means that C318 is not circulated), and hydrogen gas to be reacted is circulated. It was.
  • the reaction proceeded in a gas phase continuous flow system.
  • the reaction tube was heated at 70-100 ° C to start the hydrogenation reaction.
  • the molar ratio (H 2 / octafluoro-2-butene ratio) of hydrogen gas to be brought into contact with octafluoro-2-butene (raw material compound) was adjusted to 1.1, and it passed through the abatement tower 1 hour after the start of the reaction. Collected the distillate.
  • a mixed gas diluted with nitrogen gas was used so that the molar ratio of nitrogen to hydrogen (N 2 / H 2) was 4, instead of hydrogen gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

(3) [式中、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子、アルキル基又はフルオロアルキル基を示す。] で表されるシクロアルカン化合物及び触媒の存在下に、 (2) [式中、X1、X2、R1及びR2は前記に同じである。] で表されるアルケン化合物と、水素を含む気体とを反応させて前記一般式(2)で表されるアルケン化合物を水素化することで、R1CHX1CHX2R2[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]で表されるアルカン化合物を、(S),(R)体、(R),(R)体及び(S),(S)体を併産する形で合成することができる。

Description

アルカン化合物の製造方法
 本開示は、アルカン化合物の製造方法に関する。
 ハロゲン化アルカン化合物の1種として、CF3CHFCHFCF3の合成方法としては、例えば、非特許文献1には、パーフルオロ-2-ブテンの水素化反応を行うことが知られている。CF3CHFCHFCF3には、以下の(S),(R)体、(R),(R)体及び(S),(S)体の3種類の異性体が存在するが、この合成方法によれば、得られるCF3CHFCHFCF3は、ほとんどが(S),(R)体である。
Figure JPOXMLDOC01-appb-C000011
Journal of Fruorine Chemistry, 1992 Vol. 59 p.9-14
 本開示は、R1CHX1CHX2R2で表されるアルカン化合物を、(S),(R)体、(R),(R)体及び(S),(S)体を併産する形で合成する方法を提供することを目的とする。
 本開示は、以下の構成を包含する。
 項1.(IIA)一般式(1):
R1CHX1CHX2R2   (1)
[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
で表されるアルカン化合物の製造方法であって、
一般式(3):
Figure JPOXMLDOC01-appb-C000012
[式中、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子、アルキル基又はフルオロアルキル基を示す。]
で表されるシクロアルカン化合物及び触媒の存在下に、一般式(2):
Figure JPOXMLDOC01-appb-C000013
[式中、X1、X2、R1及びR2は前記に同じである。]
で表されるアルケン化合物と、水素を含む気体とを反応させて前記一般式(2)で表されるアルケン化合物を水素化する工程
を備える、製造方法。
 項2.前記水素化工程において、一般式(3)で表されるシクロアルカン化合物の使用量が、一般式(2)で表されるアルケン化合物1モルに対して0.5~20モルである、項1に記載の製造方法。
 項3.前記水素化工程の前に、
(IA)一般式(3):
Figure JPOXMLDOC01-appb-C000014
[式中、R3、R4、R5、R6、R7、R8、R9及びR10は前記に同じである。ただし、一般式(1)におけるR1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子又はフルオロアルキル基を示す。]
で表されるシクロアルカン化合物と、一般式(4):
Figure JPOXMLDOC01-appb-C000015
[式中、X1及びX2は前記に同じである。X3及びX4は同一又は異なって、ハロゲン原子を示す。]
で表されるアルケン化合物とを反応させて、一般式(2):
Figure JPOXMLDOC01-appb-C000016
[式中、X1、X2、R1及びR2は前記に同じである。]
で表されるアルケン化合物を得る工程を備える、項1又は2に記載の製造方法。
 項4.一般式(1):
R1CHX1CHX2R2   (1)
[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
で表されるアルカン化合物の製造方法であって、
(IB)一般式(3):
Figure JPOXMLDOC01-appb-C000017
[式中、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子、アルキル基又はフルオロアルキル基を示す。ただし、一般式(1)におけるR1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子又はフルオロアルキル基を示す。]
で表されるシクロアルカン化合物と、一般式(4):
Figure JPOXMLDOC01-appb-C000018
[式中、X1及びX2は前記に同じである。X3及びX4は同一又は異なって、ハロゲン原子を示す。]
で表されるアルケン化合物とを反応させて、一般式(2):
Figure JPOXMLDOC01-appb-C000019
[式中、X1、X2、R1及びR2は前記に同じである。]
で表されるシクロアルケン化合物と前記一般式(3)で表されるシクロアルカン化合物を含む混合物を得る工程、
(IIB)触媒の存在下に、前記工程(IB)で得られた混合物と、水素を含む気体とを反応させて前記一般式(2)で表されるシクロアルケン化合物を水素化する工程
を備える、製造方法。
 項5.前記水素化工程において、原料として使用する混合物中の一般式(3)で表されるシクロアルカン化合物の含有量が、一般式(2)で表されるアルケン化合物1モルに対して0.5~20モルである、項4に記載の製造方法。
 項6.前記水素化工程を気相で行う、項1~5のいずれか1項に記載の製造方法。
 項7.製造される一般式(1)で表されるアルカン化合物が、一般式(1A)、(1B)及び(1C):
Figure JPOXMLDOC01-appb-C000020
[式中、X1、X2、R1及びR2は前記に同じである。]
で表される3種のアルカン化合物を含む、項1~6のいずれか1項に記載の製造方法。
 項8.前記水素化工程により得られる生成物の総量を100モル%として、前記一般式(1A)で表されるアルカン化合物が20~80モル%、前記一般式(1B)で表されるアルカン化合物が10~40モル%、前記一般式(1C)で表されるアルカン化合物が10~40モル%得られる、項7に記載の製造方法。
 項9.一般式(1A)、(1B)及び(1C):
Figure JPOXMLDOC01-appb-C000021
[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
で表される3種のアルカン化合物を含み、且つ、組成物の総量を100モル%として、前記一般式(1A)で表されるアルカン化合物の含有量が20~80モル%、前記一般式(1B)で表されるアルカン化合物の含有量が10~40モル%、前記一般式(1C)で表されるアルカン化合物の含有量が10~40モル%である、組成物。
 項10.有機合成用中間体、エッチングガス、デポジットガスとして用いられる、項9に記載の組成物。
 本開示によれば、R1CHX1CHX2R2で表されるアルカン化合物を、(S),(R)体、(R),(R)体及び(S),(S)体を併産する形で合成することができる。
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。
 本開示において、「選択率」とは、反応器出口からの流出ガスにおける原料化合物以外の化合物の合計モル量に対する、当該流出ガスに含まれる目的化合物の合計モル量の割合(モル%)を意味する。
 本開示において、「転化率」とは、反応器に供給される原料化合物のモル量に対する、反応器出口からの流出ガスに含まれる原料化合物以外の化合物の合計モル量の割合(モル%)を意味する。
 従来は、非特許文献1では、1,1,1,4,4,4-ヘキサフルオロ-2-ブテンの水素化反応を行うことでCF3CHFCHFCF3を合成しているが、合成できる異性体はほとんどが(S),(R)体のみであった。これは、触媒を用いた水素付加反応はsyn付加であることが知られており、2個の水素原子が反対方向から付加するanti付加反応はほとんど起こりにくいためである。つまり、従来の方法によれば、(S),(R)体以外の異性体はほとんど合成することができなかった。一方、本開示の製造方法によれば、(S),(R)体、(R),(R)体及び(S),(S)体を併産する形でR1CHX1CHX2R2で表されるアルカン化合物を合成することができる。(S),(R)体のみではなく(R,(R)体や(S),(S)体を併産できることで、所望の光学活性をもったビルディングブロックを手に入れることができる。
 1.アルカン化合物の製造方法
 [1-1]アルケン化合物からアルカン化合物への製造方法
 本開示のアルカン化合物の製造方法は、
(IIA)一般式(1):
R1CHX1CHX2R2   (1)
[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
で表されるアルカン化合物の製造方法であって、
一般式(3):
Figure JPOXMLDOC01-appb-C000022
[式中、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子、アルキル基又はフルオロアルキル基を示す。ただし、一般式(1)におけるR1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子又はフルオロアルキル基を示す。]
で表されるシクロアルカン化合物及び触媒の存在下に、一般式(2):
Figure JPOXMLDOC01-appb-C000023
[式中、X1、X2、R1及びR2は前記に同じである。]
で表されるアルケン化合物と、水素を含む気体とを反応させて前記一般式(2)で表されるアルケン化合物を水素化する工程
を備える。
 本開示によれば、上記した一般式(3)で表されるシクロアルカン化合物が、一般式(2)で表されるアルケン化合物に対して2個の水素原子が同一方向から付加するsyn付加反応の一部を阻害し、2個の水素原子が反対方向から付加するanti付加反応が起こりやすくなる結果、(S),(R)体、(R),(R)体及び(S),(S)体を併産する形で、一般式(1)で表されるアルカン化合物を合成することができる。
 (1-1-1)原料化合物(アルケン化合物)
 本開示の製造方法において使用できる原料化合物としてのアルケン化合物は、上記のとおり、一般式(2):
Figure JPOXMLDOC01-appb-C000024
[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
で表されるアルケン化合物である。
 この一般式(2)で表されるアルケン化合物には、一般式(2A)及び(2B):
Figure JPOXMLDOC01-appb-C000025
[式中、X1、X2、R1及びR2は前記に同じである。]
で表されるアルケン化合物のいずれも包含する。
 一般式(2)において、X1及びX2で示されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 一般式(2)において、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等の炭素数1~20、好ましくは炭素数1~12、より好ましくは炭素数1~6、さらに好ましくは炭素数1~3のアルキル基が挙げられる。
 一般式(2)において、R1及びR2で示されるフルオロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基等の炭素数1~20、好ましくは炭素数1~12、より好ましくは炭素数1~6、さらに好ましくは炭素数1~3のフルオロアルキル基(特にパーフルオロアルキル基)が挙げられる。
 なかでも、X1及びX2としては、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、フッ素原子が好ましい。
 また、R1及びR2としては、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、フルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましい。
 上記したX1、X2、R1及びR2は、それぞれ同一でもよいし、異なっていてもよい。
 上記のような条件を満たす原料化合物としての一般式(2)で表されるアルケン化合物としては、具体的には、
Figure JPOXMLDOC01-appb-C000026
等が挙げられる。これらの一般式(2)で表されるアルケン化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。このような一般式(2)で表されるアルケン化合物は、公知又は市販品を採用することができる。また、合成して用いることもできる。上記した一般式(2)で表されるアルケン化合物を合成する場合の製造方法は後述する。
 (1-1-2)水素付加反応
 本開示におけるアルケン化合物からアルカン化合物を製造する方法では、例えば、原料化合物として、一般式(2)で表されるアルケン化合物では、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、X1及びX2はフッ素原子が好ましく、R1及びR2はフルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましく、トリフルオロメチル基が特に好ましい。
 つまり、以下の反応式: 
Figure JPOXMLDOC01-appb-C000027
に従い、水素付加反応(syn付加反応及びanti付加反応)であることが好ましい。
 本開示における一般式(2)で表されるアルケン化合物から水素付加反応させて一般式(1)で表されるアルカン化合物を得る工程は、一般式(2)で表されるアルケン化合物の後述する製造方法から連続して水素付加反応を行う場合や、生産性の観点から、気相で行うことが好ましい。本開示における一般式(2)で表されるアルケン化合物から水素付加反応させて一般式(1)で表されるアルカン化合物を得る工程を気相で行う場合、一般式(2)で表されるアルケン化合物の後述する製造方法から連続して水素付加反応を行うことができ、溶媒を用いる必要がなく産廃が生じず、生産性に優れるという利点がある。
 本開示における一般式(2)で表されるアルケン化合物から水素付加反応させて一般式(1)で表されるアルカン化合物を得る工程は、気相、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
 (1-1-3)一般式(3)で表されるシクロアルカン化合物
 本開示における一般式(2)で表されるアルケン化合物から水素付加反応させて一般式(1)で表されるアルカン化合物を得る工程は、一般式(3):
Figure JPOXMLDOC01-appb-C000028
[式中、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子、アルキル基又はフルオロアルキル基を示す。]
で表されるシクロアルカン化合物の存在下に行う。
 この一般式(3)で表されるシクロアルカン化合物は、一般式(2)で表されるアルケン化合物に対して2個の水素原子が同一方向から付加するsyn付加反応の一部を阻害し、2個の水素原子が反対方向から付加するanti付加反応が起こりやすくなる結果、(S),(R)体、(R),(R)体及び(S),(S)体を併産する形で一般式(1)で表されるアルカン化合物を合成することができる。
 一般式(3)において、R3、R4、R5、R6、R7、R8、R9及びR10で示されるハロゲン原子、アルキル基及びフルオロアルキル基としては、上記したものを採用できる。好ましい具体例も同様である。
 ただし、後述の一般式(2)で表されるアルケン化合物の製造方法によれば、一般式(2)で表されるアルケン化合物と一般式(3)で表されるシクロアルカン化合物を含む混合物の形で製造され得るが、R1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10もアルキル基とすると一般式(2)で表されるアルケン化合物を得ることができない。このため、原料化合物である一般式(2)で表されるアルケン化合物の製造方法として、後述の製造方法を採用する場合であって、R1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10はハロゲン原子又はフルオロアルキル基が好ましい。
 なお、R3、R4、R5、R6、R7、R8、R9及びR10としては、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、ハロゲン原子又はフルオロアルキル基が好ましく、ハロゲン原子がより好ましく、フッ素原子がさらに好ましい。
 以上のような条件を満たす一般式(3)で表されるシクロアルカン化合物としては、具体的には、
Figure JPOXMLDOC01-appb-C000029
等が挙げられる。
 本開示の製造方法において、一般式(3)で表されるシクロアルカン化合物及び触媒の存在下に一般式(2)で表されるアルケン化合物を水素付加反応させるに当たっては、例えば、一般式(3)で表されるシクロアルカン化合物を気体の状態(気相)で一般式(2)で表されるアルケン化合物と接触させることが好ましい。
 本開示の製造方法において、一般式(3)で表されるシクロアルカン化合物及び触媒の存在下に一般式(2)で表されるアルケン化合物を水素付加反応させるに当たって、一般式(3)で表されるシクロアルカン化合物の使用量は特に制限はなく、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、原料化合物である一般式(2)で表されるアルケン化合物1モルに対して0.5~20モルが好ましく、0.7~15モルがより好ましく、0.8~10モルがさらに好ましい。
 (1-1-4)触媒
 本開示における一般式(2)で表されるアルケン化合物から水素付加反応させて一般式(1)で表されるアルカン化合物を得る工程は、触媒の存在下に行う。
 触媒を構成する金属種としては、周期表第8族~第11族に属する遷移金属元素が好ましく、周期表第9族~第10族に属する遷移金属元素がより好ましい。このような金属種としては、具体的には、白金、パラジウム、ロジウム、ニッケル等が挙げられる。本開示の触媒は、上記した金属を単体として含むこともできるし、多孔質の金属触媒であってもよいし、他の元素との化合物として含むこともできる。例えば、触媒作用のある白金、パラジウム、ロジウム、ニッケル等の金属種と触媒作用のないアルミニウム、ケイ素、マグネシウム、亜鉛等との合金や、これら合金から酸やアルカリ溶液等で後者の触媒作用のない金属種を溶出した触媒(ラネー触媒)や、Pt(PtO2)、アダムス触媒(PtO2-H2O)、コロイド状パラジウム、コロイド状白金、白金黒等を採用することもできる。これらは、単独で用いてもよいし、2種以上を組合せて用いてもよい。
 また、本開示では、上記した金属種をそのまま触媒として使用することもできるし、上記した金属種を担体上に担持させて使用することもできる。この際使用できる担体としては、特に制限はなく、炭素、アルミナ(Al2O3)、ジルコニア(ZrO2)、シリカ(SiO2)、チタニア(TiO2)等が挙げられる。なかでも、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、炭素、アルミナ等が好ましく、炭素がより好ましい。炭素としては、活性炭、不定形炭素、グラファイト、ダイヤモンド等を用いることができる。
 本開示の製造方法において、一般式(3)で表されるシクロアルカン化合物及び触媒の存在下に一般式(2)で表されるアルケン化合物を水素付加反応させるに当たっては、例えば、触媒を固体の状態(固相)で、一般式(2)で表されるアルケン化合物と接触させることが好ましい。この場合、触媒の形状は粉末状とすることもできるが、ペレット状のほうが気相連続流通式の反応に採用する場合には好ましい。
 触媒のBET法により測定した比表面積(以下、「BET比表面積」と言うこともある。)は、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、通常10~3000m2/gが好ましく、10~2500m2/gがより好ましく、20~2000m2/gがさらに好ましく、30~1500m2/gが特に好ましい。
 (1-1-5)水素を含む気体
 水素を含む気体としては、水素ガスの他、水素ガスと他のガスとの混合ガス(例えば水素と窒素、アルゴン等の不活性ガスを任意の割合で混合させた混合ガスや、酸素と水素との混合ガスである酸水素等)も包含する。ただし、本開示の製造方法は水素付加反応を採用していることから、水素を含む気体としてハロゲン化水素(フッ化水素)等は含まない又はごく微量(水素を含む気体総量に対して例えば5体積%以下)であることが好ましい。なお、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点からは、水素ガスを用いることが好ましい。これらの水素を含む気体は、単独で使用することもでき、2種以上を組合せて用いることもできる。
 水素を含む気体は、通常、一般式(2)で表されるアルケン化合物(原料化合物)とともに、気相状態で反応器に供給することが好ましい。水素を含む気体の供給量は、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、一般式(2)で表されるアルケン化合物(原料化合物)1モルに対して、0.7~10モルが好ましく、0.8~5モルがより好ましく、0.9~3モルがさらに好ましい。
 (1-1-6)反応温度
 本開示における一般式(2)で表されるアルケン化合物(原料化合物)を水素付加反応させる工程では、反応温度は、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、通常20~400℃以上が好ましく、30~300℃以上がより好ましく、40~200℃以上がさらに好ましい。
 (1-1-7)反応時間
 本開示における一般式(2)で表されるアルケン化合物(原料化合物)を水素付加反応させる工程では、例えば気相流通式を採用する場合には、原料化合物の触媒に対する接触時間(W/F)[W:触媒の重量(g)、F:原料化合物の流量(cc/sec)]は、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、0.5~50g・sec./ccが好ましく、1~40g・sec./ccがより好ましく、1.5~30g・sec./ccがさらに好ましい。なお、上記接触時間とは、原料化合物及び触媒が接触する時間、つまり、反応時間を意味する。
 (1-1-8)反応圧力
 本開示における一般式(2)で表されるアルケン化合物(原料化合物)を水素付加反応させる工程では、反応圧力は、反応の転化率、目的とするアルカン化合物((S),(R)体、(R),(R)体及び(S),(S)体)の選択率及び収率の観点から、0kPa以上が好ましく、10kPa以上がより好ましく、20kPa以上がさらに好ましく、30kPa以上が特に好ましい。反応圧力の上限は特に制限はなく、通常、2MPa程度である。なお、本開示において、圧力については特に表記が無い場合はゲージ圧とする。
 本開示における一般式(2)で表されるアルケン化合物(原料化合物)を水素付加反応させる工程では、一般式(2)で表されるアルケン化合物(原料化合物)と一般式(3)で表されるシクロアルカン化合物及び触媒とを投入して反応させる反応器としては、上記温度及び圧力に耐えうるものであれば、形状及び構造は特に限定されない。反応器としては、例えば、縦型反応器、横型反応器、多管型反応器等が挙げられる。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。
 (1-1-9)水素付加反応の例示
 本開示における一般式(2)で表されるアルケン化合物(原料化合物)を水素付加反応させる工程では、反応器に原料化合物である一般式(2)で表されるアルケン化合物を連続的に仕込み、当該反応器から目的化合物である一般式(1)で表されるアルカン化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。本開示における一般式(2)で表されるアルケン化合物(原料化合物)を水素付加反応させる工程では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
 本開示における一般式(2)で表されるアルケン化合物(原料化合物)を水素付加反応させる際の雰囲気については、触媒の劣化を抑制する点から、不活性ガス雰囲気下、水素ガス雰囲気下等が好ましい。当該不活性ガスは、窒素、ヘリウム、アルゴン等が挙げられる。これらの不活性ガスのなかでも、コストを抑える観点から、窒素が好ましい。当該不活性ガスの濃度は、反応器に導入される気体成分の0~50モル%とすることが好ましい。
 水素付加反応終了後は、必要に応じて常法にしたがって精製処理を行い、一般式(1)で表されるアルカン化合物を得ることができる。
 (1-1-10)目的化合物(アルカン化合物)
 このようにして得られる本開示の目的化合物は、一般式(1):
R1CHX1CHX2R2   (1)
[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
で表されるアルカン化合物である。
 一般式(2A)におけるX1、X2、R1及びR2は、上記した一般式(2)におけるX1、X2、R1及びR2と対応している。このため、製造しようとする一般式(1)で表されるアルカン化合物は、例えば、CHF2CHF2、CF3CHFCHFCF3、C2F5CHFCHFC2F5等が挙げられる。上記したように、従来の方法によれば、得られる目的物はほとんどが(S),(R)体のみであったが、本開示の製造方法によれば、(S),(R)体、(R),(R)体及び(S),(S)体を併産する形で一般式(1)で表されるアルカン化合物を得ることができる。つまり、これらの目的化合物には、(S),(R)体、(R),(R)体及び(S),(S)体をいずれも包含する。このため、得られる目的化合物としては、例えば、
Figure JPOXMLDOC01-appb-C000030
等が挙げられる。なお、各(S),(R)体、(R),(R)体及び(S),(S)体の含有量については後述する。また、それぞれの異性体については、キラルカラムを用いたガスクロマトグラフィー(含有量)及びNMR(構造決定)で分析する。
 このようにして得られた一般式(1)で表されるアルカン化合物は、有機合成用中間体、エッチングガス、デポジットガス等の各種用途に有効利用できる。特に、一般式(1)で表されるアルカン化合物に対して、既報の反応を採用することで、エッチングガス、クリーニングガス、デポジットガス、冷媒、熱移動媒体、有機合成用ビルディングブロック等の各種用途に有効利用可能なアルキン化合物(CF3C≡CCF3等)を合成することも可能である。
 [1-2]アルケン化合物の製造方法
 本開示の製造方法において、原料化合物として使用する一般式(2)で表されるアルケン化合物は、上記のとおり、公知又は市販品を用いることもできるし、合成することもできる。一般式(2)で表されるアルケン化合物を合成する場合は、例えば、Journal of the Chemical Society, 1953, p. 2082-2084、米国特許第2404374号等に記載の方法に準じて合成することができる。
 一般式(2)で表されるアルケン化合物を合成する場合、その製造方法としては、例えば、
(IA)一般式(3):
Figure JPOXMLDOC01-appb-C000031
[式中、R3、R4、R5、R6、R7、R8、R9及びR10は前記に同じである。ただし、一般式(1)におけるR1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子又はフルオロアルキル基を示す。]
で表されるシクロアルカン化合物と、一般式(4):
Figure JPOXMLDOC01-appb-C000032
[式中、X1及びX2は前記に同じである。X3及びX4は同一又は異なって、ハロゲン原子を示す。]
で表されるアルケン化合物とを反応させて、一般式(2):
Figure JPOXMLDOC01-appb-C000033
[式中、X1、X2、R1及びR2は前記に同じである。]
で表されるアルケン化合物を得る工程を備える。
 (1-2-1)原料化合物(アルケン化合物)
 使用できる原料化合物としての一般式(4)で表されるアルケン化合物は、上記のとおり、一般式(4):
Figure JPOXMLDOC01-appb-C000034
[式中、X1、X2、X3及びX4は同一又は異なって、ハロゲン原子を示す。]
で表されるアルケン化合物である。
 この一般式(2)で表されるアルケン化合物には、シス体及びトランス対が存在する場合は、一般式(4A)及び(4B):
Figure JPOXMLDOC01-appb-C000035
[式中、X1、X2、X3及びX4は前記に同じである。]
で表されるアルケン化合物のいずれも包含する。
 一般式(4)において、X1、X2、X3及びX4で示されるハロゲン原子としては、上記したものを採用できる。好ましい具体例も同様である。なかでも、反応の転化率、目的とする一般式(2)で表されるアルケン化合物の選択率及び収率の観点から、フッ素原子が好ましい。
 上記したX1、X2、X3及びX4は、それぞれ同一でもよいし、異なっていてもよい。
 上記のような条件を満たす原料化合物としての一般式(4)で表されるアルケン化合物としては、具体的には、
Figure JPOXMLDOC01-appb-C000036
等が挙げられる。これらの一般式(4)で表されるアルケン化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。このような一般式(4)で表されるアルケン化合物は、公知又は市販品を採用することができる。
 (1-2-2)一般式(3)で表されるシクロアルカン化合物
 一般式(3)で表されるシクロアルカン化合物については、上記した説明をそのまま採用できる。
 (1-2-3)熱分解反応
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルカン化合物を製造する方法では、例えば、原料化合物として、一般式(4)で表されるアルケン化合物では、反応の転化率、目的とする一般式(2)で表されるアルケン化合物の選択率及び収率の観点から、X1、X2、X3及びX4はフッ素原子が好ましく、R3、R4、R5、R6、R7、R8、R9及びR10もハロゲン原子が好ましく、フッ素原子がより好ましい。
 つまり、以下の反応式: 
Figure JPOXMLDOC01-appb-C000037
に従い、熱分解反応を進行することが好ましい。
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程は、その後に連続して前記した水素付加反応によって一般式(1)で表されるアルカン化合物を製造する場合や、生産性の観点から、気相で行うことが好ましい。一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程を気相で行う場合、その後、連続して、前記した水素付加反応によって一般式(1)で表されるアルカン化合物を製造することができ、溶媒を用いる必要がなく産廃が生じず、生産性に優れるという利点がある。
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程は、気相、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
 (1-2-4)反応温度
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程では、反応温度は、反応の転化率、目的とする一般式(2)で表されるアルケン化合物の選択率及び収率の観点から、通常400~1000℃以上が好ましく、500~900℃以上がより好ましく、600~800℃以上がさらに好ましい。
 (1-2-5)反応時間(流量)
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程では、例えば気相流通式を採用する場合には、原料化合物の流量は、反応の転化率、目的とする一般式(2)で表されるアルケン化合物の選択率及び収率の観点から、0.01~10g/sec.が好ましく、0.05~5g/sec. がより好ましく、0.1~1g/sec.がさらに好ましい。
 (1-2-6)反応圧力
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程では、反応圧力は、反応の転化率、目的とする一般式(2)で表されるアルケン化合物の選択率及び収率の観点から、0kPa以上が好ましく、10kPa以上がより好ましく、20kPa以上がさらに好ましく、30kPa以上が特に好ましい。反応圧力の上限は特に制限はなく、通常、2MPa程度である。なお、本開示において、圧力については特に表記が無い場合はゲージ圧とする。
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程では、一般式(4)で表されるアルケン化合物(原料化合物)と一般式(3)で表されるシクロアルカン化合物とを投入して反応させる反応器としては、上記温度及び圧力に耐えうるものであれば、形状及び構造は特に限定されない。反応器としては、例えば、縦型反応器、横型反応器、多管型反応器等が挙げられる。反応器の材質としては、例えば、ガラス、ステンレス、鉄、ニッケル、鉄ニッケル合金等が挙げられる。
 (1-2-7)熱分解反応の例示
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程では、反応器に原料化合物である一般式(4)で表されるアルケン化合物を連続的に仕込み、当該反応器から目的化合物である一般式(2)で表されるアルケン化合物を連続的に抜き出す流通式及びバッチ式のいずれの方式によっても実施することができる。目的化合物である一般式(2)で表されるアルケン化合物が反応器に留まると、さらに副反応が進行し得ることから、流通式で実施することが好ましい。一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る工程では、気相で行い、特に固定床反応器を用いた気相連続流通式で行うことが好ましい。気相連続流通式で行う場合は、装置、操作等を簡略化できるとともに、経済的に有利である。
 一般式(4)で表されるアルケン化合物から一般式(2)で表されるアルケン化合物を得る際の雰囲気については、不純物を抑制する点から、不活性ガス雰囲気下が好ましい。当該不活性ガスは、窒素、ヘリウム、アルゴン等が挙げられる。これらの不活性ガスのなかでも、コストを抑える観点から、窒素が好ましい。当該不活性ガスの濃度は、反応器に導入される気体成分の0~50モル%とすることが好ましい。
 付加反応終了後は、必要に応じて常法にしたがって精製処理を行い、一般式(2)で表されるアルケン化合物を得ることができる。
 (1-2-8)目的化合物(アルケン化合物)
 このようにして得られる一般式(2)で表されるアルケン化合物は、上記説明したものである。つまり、得られる一般式(2)で表されるアルケン化合物の説明も、上記説明したものを採用できる。
 [1-3]一般式(4)で表されるアルケン化合物から、一般式(2)で表されるアルケン化合物を経由して、一般式(1)で表されるアルカン化合物への製造方法
 本開示のアルカン化合物の製造方法は、
一般式(1):
R1CHX1CHX2R2   (1)
[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
で表されるアルカン化合物の製造方法であって、
(IB)一般式(3):
Figure JPOXMLDOC01-appb-C000038
[式中、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子、アルキル基又はフルオロアルキル基を示す。ただし、一般式(1)におけるR1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子又はフルオロアルキル基を示す。]
で表されるシクロアルカン化合物と、一般式(4):
Figure JPOXMLDOC01-appb-C000039
[式中、X1及びX2は前記に同じである。X3及びX4は同一又は異なって、ハロゲン原子を示す。]
で表されるアルケン化合物とを反応させて、一般式(2):
Figure JPOXMLDOC01-appb-C000040
[式中、X1、X2、R1及びR2は前記に同じである。]
で表されるシクロアルケン化合物と前記一般式(3)で表されるシクロアルカン化合物を含む混合物を得る工程、
(IIB)触媒の存在下に、前記工程(IB)で得られた混合物と、水素を含む気体とを反応させて前記一般式(2)で表されるシクロアルケン化合物を水素化する工程
を備える。
 (1-3-1)工程(IB)
 本開示のアルカン化合物の製造方法において、工程(IB)は、上記した[1-2]アルケン化合物の製造方法の説明をそのまま採用することができる。
 (1-3-2)工程(IIB)
 上記の工程(IB)により、一般式(2)で表されるアルケン化合物が得られるが、その際には、反応に使用した一般式(3)で表されるシクロアルカン化合物も残存しているため、工程(IB)を経ると、通常、一般式(2)で表されるアルケン化合物及び一般式(3)で表されるシクロアルカン化合物を含む混合物が得られる。
 工程(IB)を経た後に、一般式(2)で表されるアルケン化合物と一般式(3)で表されるシクロアルカン化合物とを単離して工程(IIB)に使用することもできるが、組成式が同じであったり、分子量が近い等の理由で、一般式(2)で表されるアルケン化合物と一般式(3)で表されるシクロアルカン化合物とを単離することが困難である場合も多い。
 例えば、一般式(2)においてX1及びX2がフッ素原子であり、R1及びR2がトリフルオロメチル基であるオクタフルオロ-2-ブテン:
Figure JPOXMLDOC01-appb-C000041
と、一般式(3)においてR3、R4、R5、R6、R7、R8、R9及びR10がフッ素原子であるオクタフルオロシクロブタン(C318):
Figure JPOXMLDOC01-appb-C000042
とは、いずれも組成式がC4F8であり、沸点も近いことから単離は困難である。
 このような場合には、工程(IB)を経た後に得られる、一般式(2)で表されるアルケン化合物及び一般式(3)で表されるシクロアルカン化合物を含む混合物を、単離せずにそのまま工程(IIB)の原料として使用することができる。
 つまり、一般式(2)で表されるアルケン化合物及び一般式(3)で表されるシクロアルカン化合物を別個に投入する代わりに、一般式(2)で表されるアルケン化合物及び一般式(3)で表されるシクロアルカン化合物を含む混合物(好ましくは混合ガス)を使用する他は、上記した[1-1]アルケン化合物からアルカン化合物への製造方法と同様に反応を進行することができる。このため、一般式(2)で表されるアルケン化合物及び一般式(3)で表されるシクロアルカン化合物を別個に投入する代わりに、一般式(2)で表されるアルケン化合物及び一般式(3)で表されるシクロアルカン化合物を含む混合物(好ましくは混合ガス)を使用する他は、上記した[1-1]アルケン化合物からアルカン化合物への製造方法の説明をそのまま採用することができる。
 2.組成物
 以上のようにして、一般式(1)で表されるアルカン化合物を得ることができるが、上記したように、本開示の製造方法によれば、(S),(R)体、(R),(R)体及び(S),(S)体を併産する形で一般式(1)で表されるアルカン化合物を得ることができる。このため、本開示の製造方法によれば、一般式(1A)、(1B)及び(1C):
Figure JPOXMLDOC01-appb-C000043
[式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
で表される3種のアルカン化合物を含む形の組成物として、一般式(1)で表されるアルカン化合物を得ることができる。なお、一般式(1A)で表されるアルカン化合物は(S),(R)体、一般式(1B)で表されるアルカン化合物は(R),(R)体、一般式(1C)で表されるアルカン化合物は(S),(S)体を意味している。
 一般式(1A)、(1B)及び(1C)において、X1、X2、R1及びR2は、上記説明したものを採用できる。
 なお、上記説明した本開示の製造方法によれば、水素付加反応は、syn付加反応とanti付加反応が同程度進行するため、本開示の組成物中の一般式(1A)で表されるアルカン化合物の含有量は、一般式(1B)で表されるアルカン化合物及び一般式(1C)で表されるアルカン化合物の合計量と同程度となりやすい。また、anti付加反応が進行した場合はほぼ同程度の(R),(R)体及び(S),(S)体が形成されることから、一般式(1B)で表されるアルカン化合物の含有量は、一般式(1C)で表されるアルカン化合物の含有量と同程度となりやすい。このため、本開示の組成物の総量を100モル%として、一般式(1A)で表されるアルカン化合物の含有量は20~80モル%が好ましく、30~75モル%がより好ましく、40~70モル%がさらに好ましい。また、一般式(1B)で表されるアルカン化合物の含有量は10~40モル%が好ましく、12.5~35モル%がより好ましく、15~30モル%がより好ましい。また、一般式(1C)で表されるアルカン化合物の含有量は10~40モル%が好ましく、12.5~35モル%がより好ましく、15~30モル%がより好ましい。なお、それぞれの異性体については、キラルカラムを用いたガスクロマトグラフィー(含有量)及びNMR(構造決定)で分析する。
 なお、本開示の製造方法によれば、一般式(1)で表されるアルカン化合物を、反応の転化率を高く、また、高収率且つ高選択率で得ることができるため、組成物中の一般式(1)で表されるアルカン化合物以外の成分を少なくすることが可能であるため、一般式(1)で表されるアルカン化合物を得るための精製の労力を削減することができる。また、工程(IB)において一般式(2)で表されるアルケン化合物と一般式(3)で表されるシクロアルカン化合物との単離が困難であった場合において、生成物中に一般式(3)で表されるシクロアルカン化合物が残存している場合でも、一般式(1)で表されるアルカン化合物と一般式(3)で表されるシクロアルカン化合物とは組成式が異なるため常法で容易に単離することができる。
 このような本開示の組成物は、有機合成用中間体、エッチングガス、デポジットガス等の各種用途に有効利用できる。特に、一般式(1)で表されるアルカン化合物を含む本開示の組成物に対して、既報の反応を採用することで、エッチングガス、クリーニングガス、デポジットガス、冷媒、熱移動媒体、有機合成用ビルディングブロック等の各種用途に有効利用可能なアルキン化合物(CF3C≡CCF3等)を合成することも可能である。
 以上、本開示の実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能である。
 以下に実施例を示し、本開示の特徴を明確にする。本開示はこれら実施例に限定されるものではない。
 実施例1~5及び比較例1~3のアルカン化合物の製造方法では、原料化合物は、一般式(2A)で表されるハロゲン化ブタン化合物において、X1及びX2はフッ素原子、R1及びR2はトリフルオロメチル基とし、以下の反応式:
Figure JPOXMLDOC01-appb-C000044
に従って、水素付加反応により、アルカン化合物を得た。
 実施例1~5及び比較例1~3:気相反応
 反応管であるSUS配管(外径:1/2インチ)に、触媒として炭素に対してパラジウムを担持させたPd/C触媒(エヌ・イーケムキャット(株)製、触媒質量に対して3質量%のパラジウムを含む)を5.0g加えた。窒素雰囲気下、200℃で2時間乾燥した後、圧力を常圧、オクタフルオロ-2-ブテン(原料化合物;シス体及びトランス体混在)とPd/C触媒との接触時間(W/F)が1.7~9.3g・sec/ccとなるように、反応管にオクタフルオロ-2-ブテン(原料化合物)を流通させ、オクタフルオロシクロブタン(C318)とオクタフルオロ-2-ブテン(原料化合物)とのモル比が0、1又は4となるようにオクタフルオロシクロブタン(C318)を流通させ(モル比が0の場合は、C318を流通させていないことを意味する)、さらに、反応させる水素ガスを流通させた。
 反応は、気相連続流通式で進行させた。
 反応管を70~100℃で加熱して水素付加反応を開始した。
 オクタフルオロ-2-ブテン(原料化合物)と接触させる水素ガスのモル比(H2/オクタフルオロ-2-ブテン比)が1.1となるように調整し、反応開始1時間後に除害塔を通った留出分を集めた。ただし、比較例3では、水素ガスではなく、窒素と水素のモル比(N2/H2)が4となるように窒素ガスで希釈した混合ガスを用いた。
 その後、ガスクロマトグラフィー((株)島津製作所製、商品名「GC-2014」)を用いてガスクロマトグラフィー/質量分析法(GC/MS)により質量分析を行い、NMR(JEOL社製、商品名「400YH」)を用いてNMRスペクトルによる構造解析を行った。質量分析及び構造解析の結果から、目的化合物としてCF3CHFCHFCF3が生成したことが確認された。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000045

Claims (10)

  1. (IIA)一般式(1):
    R1CHX1CHX2R2   (1)
    [式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
    で表されるアルカン化合物の製造方法であって、
    一般式(3):
    Figure JPOXMLDOC01-appb-C000001
    [式中、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子、アルキル基又はフルオロアルキル基を示す。]
    で表されるシクロアルカン化合物及び触媒の存在下に、一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、X1、X2、R1及びR2は前記に同じである。]
    で表されるアルケン化合物と、水素を含む気体とを反応させて前記一般式(2)で表されるアルケン化合物を水素化する工程
    を備える、製造方法。
  2. 前記水素化工程において、一般式(3)で表されるシクロアルカン化合物の使用量が、一般式(2)で表されるアルケン化合物1モルに対して0.5~20モルである、請求項1に記載の製造方法。
  3. 前記水素化工程の前に、
    (IA)一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R3、R4、R5、R6、R7、R8、R9及びR10は前記に同じである。ただし、一般式(1)におけるR1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子又はフルオロアルキル基を示す。]
    で表されるシクロアルカン化合物と、一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式中、X1及びX2は前記に同じである。X3及びX4は同一又は異なって、ハロゲン原子を示す。]
    で表されるアルケン化合物とを反応させて、一般式(2):
    Figure JPOXMLDOC01-appb-C000005
    [式中、X1、X2、R1及びR2は前記に同じである。]
    で表されるアルケン化合物を得る工程を備える、請求項1又は2に記載の製造方法。
  4. 一般式(1):
    R1CHX1CHX2R2   (1)
    [式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
    で表されるアルカン化合物の製造方法であって、
    (IB)一般式(3):
    Figure JPOXMLDOC01-appb-C000006
    [式中、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子、アルキル基又はフルオロアルキル基を示す。ただし、一般式(1)におけるR1及びR2がいずれもアルキル基の場合は、R3、R4、R5、R6、R7、R8、R9及びR10は同一又は異なって、ハロゲン原子又はフルオロアルキル基を示す。]
    で表されるシクロアルカン化合物と、一般式(4):
    Figure JPOXMLDOC01-appb-C000007
    [式中、X1及びX2は前記に同じである。X3及びX4は同一又は異なって、ハロゲン原子を示す。]
    で表されるアルケン化合物とを反応させて、一般式(2):
    Figure JPOXMLDOC01-appb-C000008
    [式中、X1、X2、R1及びR2は前記に同じである。]
    で表されるシクロアルケン化合物と前記一般式(3)で表されるシクロアルカン化合物を含む混合物を得る工程、
    (IIB)触媒の存在下に、前記工程(IB)で得られた混合物と、水素を含む気体とを反応させて前記一般式(2)で表されるシクロアルケン化合物を水素化する工程
    を備える、製造方法。
  5. 前記水素化工程において、原料として使用する混合物中の一般式(3)で表されるシクロアルカン化合物の含有量が、一般式(2)で表されるアルケン化合物1モルに対して0.5~20モルである、請求項4に記載の製造方法。
  6. 前記水素化工程を気相で行う、請求項1~5のいずれか1項に記載の製造方法。
  7. 製造される一般式(1)で表されるアルカン化合物が、一般式(1A)、(1B)及び(1C):
    Figure JPOXMLDOC01-appb-C000009
    [式中、X1、X2、R1及びR2は前記に同じである。]
    で表される3種のアルカン化合物を含む、請求項1~6のいずれか1項に記載の製造方法。
  8. 前記水素化工程により得られる生成物の総量を100モル%として、前記一般式(1A)で表されるアルカン化合物が20~80モル%、前記一般式(1B)で表されるアルカン化合物が10~40モル%、前記一般式(1C)で表されるアルカン化合物が10~40モル%得られる、請求項7に記載の製造方法。
  9. 一般式(1A)、(1B)及び(1C):
    Figure JPOXMLDOC01-appb-C000010
    [式中、X1及びX2は同一又は異なって、ハロゲン原子を示す。R1及びR2は同一又は異なって、アルキル基又はフルオロアルキル基を示す。]
    で表される3種のアルカン化合物を含み、且つ、組成物の総量を100モル%として、前記一般式(1A)で表されるアルカン化合物の含有量が20~80モル%、前記一般式(1B)で表されるアルカン化合物の含有量が10~40モル%、前記一般式(1C)で表されるアルカン化合物の含有量が10~40モル%である、組成物。
  10. 有機合成用中間体、エッチングガス又はデポジットガスとして用いられる、請求項9に記載の組成物。
PCT/JP2020/043536 2019-11-27 2020-11-24 アルカン化合物の製造方法 WO2021106813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227019285A KR20220097494A (ko) 2019-11-27 2020-11-24 알칸 화합물의 제조 방법
CN202080082301.7A CN114746384B (zh) 2019-11-27 2020-11-24 烷烃化合物的制造方法
EP20893616.1A EP4067327A4 (en) 2019-11-27 2020-11-24 METHOD FOR PRODUCING AN ALKANE COMPOUND
US17/825,504 US20220289649A1 (en) 2019-11-27 2022-05-26 Method for producing alkane compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019213925A JP6978700B2 (ja) 2019-11-27 2019-11-27 アルカン化合物の製造方法
JP2019-213925 2019-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/825,504 Continuation US20220289649A1 (en) 2019-11-27 2022-05-26 Method for producing alkane compound

Publications (1)

Publication Number Publication Date
WO2021106813A1 true WO2021106813A1 (ja) 2021-06-03

Family

ID=76086836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043536 WO2021106813A1 (ja) 2019-11-27 2020-11-24 アルカン化合物の製造方法

Country Status (7)

Country Link
US (1) US20220289649A1 (ja)
EP (1) EP4067327A4 (ja)
JP (1) JP6978700B2 (ja)
KR (1) KR20220097494A (ja)
CN (1) CN114746384B (ja)
TW (1) TWI841807B (ja)
WO (1) WO2021106813A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023009764A (ja) * 2021-07-08 2023-01-20 ダイキン工業株式会社 オクタフルオロシクロブタンの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404374A (en) 1943-04-23 1946-07-23 Du Pont Polyfluorinated cycloparaffins and process for producing them
JPH11106356A (ja) * 1997-08-05 1999-04-20 Toray Ind Inc 混合化合物の吸着分離方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029400B2 (ja) * 2012-09-21 2016-11-24 Agcセイミケミカル株式会社 液晶化合物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2404374A (en) 1943-04-23 1946-07-23 Du Pont Polyfluorinated cycloparaffins and process for producing them
JPH11106356A (ja) * 1997-08-05 1999-04-20 Toray Ind Inc 混合化合物の吸着分離方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ARAI, SHOJI: "Analysis of heterogeneous hydrogenation reaction by gas phase 19F-NMR", CATALYSTS & CATALYSIS, vol. 40, no. 3, 1998, pages 199 - 200, XP009529138, ISSN: 0559-8958 *
JOURNAL OF FLUORINE CHEMISTRY, vol. 59, 1992, pages 9 - 14
JOURNAL OF THE CHEMICAL SOCIETY, 1953, pages 2082 - 2084
KATING P. M., ET AL.: "HYDROGENATION OF FLUOROOLEFINS STUDIED BY GAS PHASE NMR: A NEW TECHNIQUE FOR HETEROGENOUS CATALYSIS.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, US, vol. 118., no. 41., 16 October 1996 (1996-10-16), US, pages 10000/10001., XP000627720, ISSN: 0002-7863, DOI: 10.1021/ja961918m *
See also references of EP4067327A4
TOMAS HUDLICKY, RULIN FAN, JOSEPHINE W. REED, DAVID R. CARVER, MILOS HUDLICKY, EDMOND I. EGER: "Practical preparation of some potentially anesthetic fluoroalkanes: regiocontrolled introduction of hydrogen atoms", JOURNAL OF FLUORINE CHEMISTRY, ELSEVIER, NL, vol. 59, no. 1, 1 October 1992 (1992-10-01), NL, pages 9 - 14, XP055325800, ISSN: 0022-1139, DOI: 10.1016/S0022-1139(00)80199-2 *

Also Published As

Publication number Publication date
US20220289649A1 (en) 2022-09-15
JP2021084868A (ja) 2021-06-03
TWI841807B (zh) 2024-05-11
TW202130609A (zh) 2021-08-16
KR20220097494A (ko) 2022-07-07
CN114746384B (zh) 2024-06-21
JP6978700B2 (ja) 2021-12-08
CN114746384A (zh) 2022-07-12
EP4067327A4 (en) 2024-01-10
EP4067327A1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JPH0267235A (ja) 1,1,1,2‐テトラフルオロエタンの製造方法
TW200938516A (en) Processes for the synthesis of 2-chloro-1,1,1,3,4,4,4-heptafluoro-2-butene and hexafluoro-2-butyne
JP6978700B2 (ja) アルカン化合物の製造方法
JPH06256235A (ja) 1,1,1,3,3−ペンタフルオロプロパンの製造方法
JP2023174809A (ja) フルオロオレフィン化合物の製造方法
JP7206501B2 (ja) ハロゲン化シクロアルカン化合物の製造方法
JP7553758B2 (ja) ビニル化合物の製造方法
RU2801356C9 (ru) Способ получения алканового соединения
JPH06228025A (ja) 1,3−ジフルオロベンゼンの製造方法
RU2801356C1 (ru) Способ получения алканового соединения
JP6753443B2 (ja) パーフルオロシクロアルケン化合物の製造方法
JP7348535B2 (ja) アルケンの製造方法
JP2983355B2 (ja) 弗素−および塩素−および/または臭素−含有芳香族化合物の脱塩素化および/または脱臭素化方法
RU2795578C9 (ru) Способ получения галогенированного соединения циклоалкана
JP2021011474A (ja) フッ化ビニル化合物の製造方法
JP2023009764A (ja) オクタフルオロシクロブタンの製造方法
JPH05148171A (ja) 1,1,1,2,2,3,4,5,5,5−デカフルオロペンタンの製造方法
FR2655982A1 (fr) Fabrication de chlorofluoroethanes par hydrogenolyse selective de derives perhalogenes de l'ethane.
JPH0688921B2 (ja) クロロトリフルオロエチレンを製造する方法
JP2003261477A (ja) (z)−1,2,3,3,4,4−ヘキサフルオロシクロブタンの製造方法
JPH04117334A (ja) 1―クロロ―1,2,2―トリフルオロエチレンまたは1,2,2―トリフルオロエチレンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227019285

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020893616

Country of ref document: EP

Effective date: 20220627