WO2021098091A1 - 一种柔性oled器件封装结构及其封装方法 - Google Patents

一种柔性oled器件封装结构及其封装方法 Download PDF

Info

Publication number
WO2021098091A1
WO2021098091A1 PCT/CN2020/079460 CN2020079460W WO2021098091A1 WO 2021098091 A1 WO2021098091 A1 WO 2021098091A1 CN 2020079460 W CN2020079460 W CN 2020079460W WO 2021098091 A1 WO2021098091 A1 WO 2021098091A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
oled device
flexible oled
plasma
Prior art date
Application number
PCT/CN2020/079460
Other languages
English (en)
French (fr)
Inventor
张文智
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/966,037 priority Critical patent/US11943954B2/en
Publication of WO2021098091A1 publication Critical patent/WO2021098091A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application relates to the technical field of process packaging and preparation, and in particular to a flexible OLED device packaging structure and packaging method thereof.
  • OLED Organic Light-Emitting Diode
  • the organic/inorganic thin film stack structure is generally used to realize the two functions of OLED device at the same time, namely, water and oxygen barrier and flexible bending.
  • the outermost layer of the thin film packaging structure is a dense inorganic film layer 152, which can block water and oxygen;
  • the inner layer of the thin film packaging structure is an organic polymer film layer 151, which can play a flat
  • the effect of encapsulating and encapsulating impurity particles also helps to release the stress between the layers of the film.
  • the present disclosure provides a flexible OLED device packaging structure and a packaging method thereof.
  • the present application provides an OLED device packaging structure, which includes an organic protective layer, at least one continuous organic flat layer, at least one inorganic barrier layer, and at least one organic layer prepared in sequence on the OLED device; wherein each The outermost surface of the organic layer undergoes plasma treatment to form a surface hardening layer, and the surface hardening layer is combined with the unhardened parts of the organic layer to form an organic barrier layer.
  • the present invention can also be improved as follows.
  • each layer of the organic layer is a continuous film, and the thickness of the film is 3 um-6 um.
  • the thickness of the surface hardening layer is 100 nm-200 nm.
  • each of the organic layers is a discontinuous film.
  • the organic layer is a plurality of independent bulk unit films, and each of the bulk unit films covers a single or multiple pixels adjacent to each other on the OLED device.
  • the organic layer is a plurality of independent strip-shaped unit films, and each of the strip-shaped unit films covers a single row or multiple rows of pixels adjacent to each other on the OLED device.
  • the material of the organic layer is an organic silicon material.
  • the plasma is O2 plasma or CO2 plasma.
  • the present invention also provides an OLED device packaging method, including: sequentially preparing an organic protective layer, at least one continuous organic flat layer, at least one organic barrier layer, and at least one organic layer on the OLED device; and The outermost surface of the organic layer is plasma treated to form a surface hardened layer, wherein the hardened surface layer and the unhardened part of the organic layer are combined to form an organic barrier layer.
  • the performing plasma treatment on the outermost surface of each layer of the organic layer to form a surface hardened layer specifically includes: treating the organic layer by adjusting the proportion of the plasma and using a plasma treatment process The length of time is such that the thickness of the surface hardened layer is 100um-200um.
  • the beneficial effects of the present invention are: an organic layer is prepared on the outermost layer of the LOED device, and the organic layer is treated by a plasma surface treatment process, so that a thin surface hardening layer is formed on the outermost surface of the organic layer, and the surface is hardened
  • the layer and the unhardened remaining part of the organic layer are combined to form an organic barrier layer.
  • the surface hardening layer can resist water vapor intrusion to prevent corrosion and prolong the life of the OLED device;
  • the unhardened part of the organic barrier layer also helps to fully relieve the inorganic film The tensile stress of the layer.
  • the flexible OLED device packaging structure can improve the water and oxygen barrier performance while reducing the risk of deterioration of the thin film packaging structure during the bending process.
  • FIG. 1 is a schematic diagram of the packaging structure of an OLED device in the prior art.
  • FIG. 2 is a schematic diagram of the structure of an OLED device after an organic protective layer is prepared according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure after preparing an organic flat layer on the organic protective layer according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure after preparing an inorganic barrier layer on an organic flat layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure after an organic layer is formed on the inorganic barrier layer according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the formation of an organic barrier layer according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of the organic barrier layer of an embodiment of the present invention is a plurality of independent block-shaped unit films.
  • FIG. 8 is a schematic diagram of pixel coverage of the block unit film in FIG. 7.
  • FIG. 9 is a schematic diagram of pixel coverage when the organic barrier layer is a plurality of independent strip-shaped unit films in an embodiment of the present invention.
  • the organic materials of OLED devices are susceptible to water and oxygen corrosion, which will affect the life of the OLED device. Isolating the contact between the OLED device and water and oxygen through the packaging process can extend the life of the OLED device.
  • the outermost layer of the TFE structure is a dense inorganic film layer. 152, it can play a role in blocking water and oxygen;
  • the inner layer of the TFE structure is an organic polymer film layer 151, which can flatten and wrap the magazine particles, and also help slow-release the interlayer stress.
  • Plasma process is a common surface treatment process. Studies have shown that O2, CO2 and air plasma can all oxidize organic polymers, thereby modifying the surface of organic polymers. O2 plasma can effectively increase the Si-to-O ratio on the surface of the polydimethylsiloxane (PDMS) film and reduce the corresponding Si-to-C ratio, thereby increasing the surface hardness of the PDMS film. There is also a similar related research. A thin SiOx-rich modified layer is formed on the surface of PDMS film that has undergone O2 plasma treatment. This modified layer has been proven to reduce the gas permeability of the PDMS film surface and play a role in isolating water and oxygen.
  • PDMS polydimethylsiloxane
  • the packaging structure includes an organic protective layer 30, at least one continuous organic flat layer 40, at least one inorganic barrier layer 50 and At least one organic layer 60.
  • the outermost surface of each organic layer 60 undergoes plasma treatment to form a surface hardened layer 602, and the surface hardened layer 602 is combined with the unhardened portion 601 in the organic layer 60 to form an organic barrier layer.
  • the material of the organic layer 60 is an organic silicon material.
  • a thin hardened layer is formed on the surface of the organic silicon film.
  • the plasma is O2 plasma or CO2 plasma
  • the composition of the surface hardening layer 602 is between organic silicon and inorganic silicon, and is combined with the remaining unhardened parts 601 to form an organic barrier layer.
  • the outermost organic barrier layer of the TFE structure can improve the water and oxygen barrier performance while reducing the risk of deterioration of the TFE structure during the bending process and prolong the life of the OLED device.
  • each organic layer may be a continuous film or a discontinuous film.
  • the thickness of the film is 3um-6um, and the thickness of the hardened surface layer is 100nm-200nm.
  • the organic layer can be multiple independent bulk unit films, each of which covers a single or multiple pixels adjacent to each other on the OLED device; the organic layer can also be multiple independent Strip-shaped unit films, each of the strip-shaped unit films covers a single row or multiple rows of pixels adjacent to each other on the OLED device.
  • An embodiment of the present invention also provides a flexible OLED device packaging method.
  • the packaging method mainly includes: sequentially preparing an organic protective layer, at least one continuous organic flat layer, at least one organic barrier layer, and at least one organic barrier layer on the OLED device.
  • An organic layer; and plasma treatment is performed on the outermost surface of each organic layer to form a hardened surface layer, wherein the hardened surface layer and the unhardened part of the organic layer are combined to form an organic barrier layer.
  • the specific process of the flexible OLED device packaging structure is:
  • the constituent materials of the organic protective layer include, but are not limited to, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), or polyvinyl fluoride (PVF).
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • At least one continuous organic flat layer is prepared on the organic protective layer by processes such as IJP) or coating, and the edge portion of the organic flat layer is located inside the coverage area of the organic protective layer.
  • the thickness of the organic flat layer is between 1um-10um, and the constituent materials include but are not limited to acrylic resin, epoxy resin, silicone resin, polydimethylsiloxane (PDMS), hexamethyldisiloxane (HMDSO) )Wait.
  • Plasma Enhanced Chemical Vapor Deposition such as Chemical Vapor Deposition (PECVD), Atomic Layer Deposition (ALD), PLD, or Sputter prepare at least one inorganic barrier layer on the organic flat layer.
  • the inorganic barrier layer is a continuous film covering the entire display area of the OLED device, and the edge portion of the inorganic barrier layer extends to the non-display area of the OLED device.
  • the thickness of the inorganic barrier layer is between 500nm-1.5um, and its constituent materials include but are not limited to Al2O3, TiO2, CrO2, SiNx, SiONx, SiOx, etc.
  • At least one organic layer is prepared on the inorganic barrier layer by IJP or coating processes.
  • the thickness of the organic layer is between 1um-10um, and the constituent materials include but are not limited to silicone resin, polydimethylsiloxane (PDMS), hexamethyldisiloxane (HMDSO), and the like.
  • Plasma treatment is performed on the outer surface of the organic layer through a plasma treatment process, so that a thin hardened layer, that is, a surface hardened layer, is formed on the outermost surface of the organic layer.
  • the thickness of the hardened surface layer is between 50nm and 500nm, and it combines with the remaining unhardened parts in the organic layer to form an organic barrier layer.
  • the plasma for performing the plasma treatment process includes but is not limited to O2 and CO2 plasma.
  • the OLED device 20 is prepared on the back plate 10, and a 10nm-100nm organic protective layer 30 is prepared on the OLED device 20 by thermal evaporation or PLD and other processes.
  • the constituent materials include but are not limited to polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), etc.
  • the organic protective layer 30 covers the entire display area of the OLED device 20.
  • a continuous organic flat layer 40 is prepared on the organic protective layer 30 by a process such as IJP or coating.
  • the opening of the organic flat layer 40 is smaller than the opening of the organic protective layer 30.
  • the thickness of the organic flat layer 40 is preferably between 3um-6um, and its constituent materials include but are not limited to acrylic resin, epoxy resin, silicone resin, polydimethylsiloxane (PDMS), and hexamethyldisiloxane. (HMDSO) and so on.
  • an inorganic barrier layer 50 is prepared on the organic flat layer 40 through PECVD, ALD, PLD, or Sputter processes.
  • the inorganic barrier layer 50 is a continuous film covering the entire display area of the OLED device 20, and its opening is larger than the opening of the organic flat layer 40.
  • the thickness of the inorganic barrier layer 50 is preferably between 500 nm and 1 um, and the constituent materials include but are not limited to Al2O3, TiO2, CrO2, SiNx, SiONx, SiOx, and the like.
  • the organic layer 60 is prepared on the inorganic barrier layer 50 through IJP or coating processes.
  • the organic layer 60 is preferably a continuous film, and its thickness is preferably between 3um-6um.
  • the constituent materials include but are not limited to silicone resin, polydimethylsiloxane (PDMS), and hexamethyldisiloxane. (HMDSO) and so on.
  • the cured organic layer 60 is subjected to surface treatment using a plasma treatment process, so that a thin surface hardening layer 602 is formed on the surface of the organic layer 60.
  • the surface hardening layer 602 and the organic layer 60 The unhardened part 601 is finally compounded to form an organic barrier layer.
  • O2 is plasma to perform plasma processing on the surface of the organic layer 60.
  • the thickness of the resulting surface hardened layer 602 is preferably between 100 nm and 200 nm.
  • the encapsulation method flow of this embodiment is the same as that of the above embodiment.
  • the difference from the above embodiment is that the organic barrier layer of the above embodiment is a continuous film, and the organic barrier layer in this embodiment is preferably It is a discontinuous film.
  • the organic barrier layer when the organic barrier layer is a discontinuous film, the organic barrier layer is a plurality of independent bulk unit films, and each bulk unit film can cover the OLED device 20 Single or multiple pixels adjacent to each other in the film.
  • the organic barrier layer when the organic barrier layer is a discontinuous film, can also be a plurality of independent strip-shaped unit films, and each strip-shaped unit film can cover A single row or multiple rows of pixels adjacent to each other on the film of an OLED device.
  • the present invention provides a flexible OLED device packaging structure and packaging method thereof.
  • An organic layer is prepared on the outermost layer of the LOED device film, and the organic layer is processed through a plasma surface treatment process, so that the outermost surface of the organic layer forms a surface.
  • a thin surface hardening layer, and the surface hardening layer and the unhardened remaining part of the organic layer are combined to form an organic barrier layer, where the surface hardening layer can resist water vapor intrusion to prevent corrosion and prolong the life of the OLED device; in the organic barrier layer
  • the unhardened part also helps to fully relieve the tensile stress of the inorganic film layer.
  • the flexible OLED device packaging structure can improve the water and oxygen barrier performance while reducing the risk of deterioration of the thin film packaging structure during the bending process.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种柔性OLED器件封装结构及其封装方法。柔性OLED器件封装结构包括在OLED器件上依序制备的有机物保护层、至少一层连续的有机平坦层、至少一层无机阻隔层和至少一层有机层。每一有机层的最外表面经过等离子体处理后形成表面硬化层。表面硬化层与有机层未硬化部位复合形成有机阻隔层。表面硬化层可以抵御水汽入侵以防侵蚀,延长OLED器件的寿命。有机阻隔层中未硬化部位也有助于充分缓解无机膜层的张应力。柔性OLED器件封装结构提升了阻隔水氧的性能并减小弯折过程中薄膜封装结构劣化的风险。

Description

一种柔性OLED器件封装结构及其封装方法 技术领域
本申请涉及工艺封装及制备技术领域,尤其涉及一种柔性OLED器件封装结构及其封装方法。
背景技术
近年来,有机发光二极管(Organic Light-Emitting Diode,OLED)被认为是柔性显示领域最具有发展前景的技术,但有机材料易于受到水氧侵蚀的特点依然制约了OLED器件的寿命。因此,通过封装工艺隔绝OLED器件与水氧的接触对OLED显示屏的稳定性至关重要。
为了解决这个问题,目前通常采用有机/无机薄膜堆叠结构来同时实现OLED器件阻隔水氧和柔性弯折两种功能。如图1所示,其中,薄膜封装结构的最外层为致密的无机膜层152,能起到阻隔水氧的作用;薄膜封装结构的内层为有机聚合物膜层151,能起到平坦化和包裹杂质颗粒(particle)的作用,同时也有助于缓释膜层间的应力。
技术问题
然而,此种有机/无机薄膜堆叠的封装结构在OLED显示屏外弯的情况下,最外层的无机膜层152的张应力并不能充分释放,很容易发生脱粘分离甚至膜层断裂。
技术解决方案
为了克服OLED显示屏在弯折的过程中容易发生脱粘分离甚至膜层断裂的问题,本揭示提供了一种柔性OLED器件封装结构及其封装方法。
本申请提供了一种OLED器件封装结构,包括在OLED器件上依序制备的有机物保护层、至少一层连续的有机平坦层、至少一层无机阻隔层和至少一层有机层;其中,每一层所述有机层的最外表面经过等离子体处理后形成表面硬化层,所述表面硬化层与所述有机层中未硬化部位复合形成有机阻隔层。
在上述技术方案的基础上,本发明还可以作如下改进。
进一步的,每一层所述有机层为连续薄膜,所述薄膜的厚度为3um-6um。
进一步的,所述表面硬化层的厚度为100nm-200nm。
进一步的,每一层所述有机层为非连续薄膜。
进一步的,所述有机层为多个独立的块状单元薄膜,每一个所述块状单元薄膜覆盖OLED器件上单个或相互临近的多个像素。
进一步的,所述有机层为多个独立的条形单元薄膜,每一个所述条形单元薄膜覆盖OLED器件上单排或互相临近的多排像素。
进一步的,所述有机层的材料为有机硅类材料。
进一步的,所述等离子体为O2等离子体或CO2等离子体。
本发明还提供了一种OLED器件封装方法,包括:在OLED器件上依序制备有机物保护层、至少一层连续的有机平坦层、至少一层有机阻隔层和至少一层有机层;以及对每一层所述有机层的最外表面进行等离子体处理以形成表面硬化层,其中所述表面硬化层与所述有机层中未硬化部位复合形成有机阻隔层。
进一步的,所述对每一层所述有机层的最外表面进行等离子体处理以形成表面硬化层具体包括:通过调节所述等离子体的比例和使用等离子体处理工艺对所述有机层的处理时长,使得生成的所述表面硬化层的厚度为100um-200um。
有益效果
本发明的有益效果为:在LOED器件的最外层制备有机层,并通过等离子体表面处理工艺对有机层进行处理,使得有机层的最外表面形成一层薄的表面硬化层,且表面硬化层与有机层未硬化的剩余部分复合形成一层有机阻隔层,其中,表面硬化层可以抵御水汽入侵以防侵蚀,延长OLED器件的寿命;有机阻隔层中未硬化部位也有助于充分缓解无机膜层的张应力。该柔性OLED器件封装结构能够在提升阻隔水氧性能的基础上同时减小弯折过程中薄膜封装结构劣化的风险。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中OLED器件封装结构示意图。
图2为本发明一个实施例的在OLED器件制备有机物保护层后的结构示意图。
图3为本发明一个实施例的在有机物保护层上制备有机平坦层后的结构示意图。
图4为本发明一个实施例的在有机平坦层上制备无机阻隔层后的结构示意图。
图5为本发明一个实施例的在无机阻隔层上制备有机层后的结构示意图。
图6为本发明一个实施例的有机阻隔层的形成示意图。
图7为本发明一个实施例的有机阻隔层为多个独立的块状单元薄膜的结构示意图。
图8为图7中块状单元薄膜的像素覆盖示意图。
图9为本发明一个实施例中当有机阻隔层为多个独立的条形单元薄膜的像素覆盖示意图。
本发明的实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
在OLED柔性显示领域,OLED器件的有机材料易受到水氧侵蚀会影响OLED器件的寿命,通过封装工艺隔绝OLED器件与水氧的接触能够延长OLED器件的寿命。
现有主流的薄膜封装结构中,通常采用有机/无机薄膜堆叠结构来同时实现阻隔水氧和柔性弯折两种功能,如图1所示,即TFE结构的最外层为致密的无机膜层152,能起到阻隔水氧的作用;TFE结构(薄膜封装结构)的内层为有机聚合物膜层151,能起到平坦化和包裹杂志颗粒的作用,也有助于缓释膜层间的应力。但需要指出的是,图1中的这种封装结构,在OLED显示屏外弯的情况下,最外层无机膜层的张应力并不能充分释放,因此很容易发生脱粘分离甚至膜层断裂。
从力学角度考虑,在无机膜层外侧再额外制备一层有机膜层即可以解决这个问题。但大多数有机聚合物都极易吸收和容纳水汽,如果TFE结构的最外层为有机磨蹭时,容易导致TFE结构的侵蚀;同时有机物表面硬度小,易在后续模组制程中产生划痕等损伤。因此,通常情况下有机膜层并不适宜于制备在TFE结构的最外侧。
等离子体工艺是一种常见的表面处理工艺,有研究表明,O2、CO2和空气等离子体都可以氧化有机聚合物,从而对有机聚合物的表面进行改性。O2等离子体可以有效增加聚二甲基硅氧烷(PDMS)薄膜表面的Si-to-O比例并降低相应Si-to-C比例,从而使得PDMS薄膜的表面硬度增加。也有类似的相关研究,经历O2等离子处理的PDMS薄膜表面会形成一层薄的SiOx-rich修饰层,而该修饰层被证实能降低PDMS薄膜表面的气体渗透性,起到隔离水氧的作用。
基于上述理论知识,为了使得OLED器件既能够阻隔水氧不被侵蚀,也能够减小弯折过程中TFE结构劣化的风险,在本发明的一个实施例中,提供了一种能够增强弯折性能的柔性OLED器件封装结构,可参见图2-6,该封装结构包括在OLED器件20上依序制备的有机物保护层30、至少一层连续的有机平坦层40、至少一层无机阻隔层50和至少一层有机层60。其中,每一层有机层60的最外表面经过等离子体处理后形成表面硬化层602,表面硬化层602与有机层60中未硬化部位601复合形成有机阻隔层。
其中,有机层60的材料为有机硅类材料,对有机层的外表面经过等离子体处理工艺后在有机硅类薄膜表面形成一层薄的硬化层,为描述方便,以下称为表面硬化层602。其中,等离子体为O2等离子体或CO2等离子体,表面硬化层602构成成分介于有机硅和无机硅之间,且与剩余的未硬化部位601复合形成一层有机阻隔层。TFE结构最外侧的有机阻隔层,能够在提升阻隔水氧性能的基础上同时减小弯折过程中TFE结构劣化的风险,延长OLED器件的寿命。
其中,在本发明的一个实施例中,每一层有机层可以为连续薄膜,也可以为非连续薄膜。当有机层为连续薄膜时,该薄膜的厚度为3um-6um,表面硬化层的厚度为100nm-200nm。当有机层为非连续薄膜时,有机层可以为多个独立的块状单元薄膜,每一个块状单元薄膜覆盖OLED器件上单个或相互临近的多个像素;有机层也可以为多个独立的条形单元薄膜,每一个所述条形单元薄膜覆盖OLED器件上单排或互相临近的多排像素。
本发明的一个实施例还提供了一种柔性OLED器件封装方法,封装方法主要包括:在OLED器件上依序制备有机物保护层、至少一层连续的有机平坦层、至少一层有机阻隔层和至少一层有机层;以及对每一层有机层的最外表面进行等离子体处理以形成表面硬化层,其中表面硬化层与有机层未硬化部位复合形成有机阻隔层。
其中,在本发明的一个实施例中,柔性OLED器件封装结构的具体工艺过程为:
(1)通过热蒸镀或脉冲激光沉积(Pulsed Laser Deposition,PLD)等方式在OLED器件之上沉积一层含氟有机物作为保护层,覆盖OLED器件的整个显示区域,其厚度介于10nm-100nm之间。其中,有机物保护层的构成材料包括但不限于聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)或聚氟乙烯(PVF)等。
(2)通过喷墨打印法(Ink-jet Print, IJP)或Coating等工艺在有机物保护层之上制备至少一层连续的有机平坦层,有机平坦层的边缘部分位于有机物保护层的覆盖区域内部。有机平坦层的厚度介于1um-10um之间,构成材料包括但不限于丙烯酸树脂、环氧树脂、有机硅树脂、聚二甲基硅氧烷(PDMS)、六甲基二硅氧烷(HMDSO)等。
(3)通过等离子增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、原子层沉积(Atomic Layer Deposition,ALD)、PLD或Sputter等工艺在有机平坦层之上制备至少一层无机阻隔层。无机阻隔层为覆盖OLED器件的整个显示区域的连续薄膜,且无机阻隔层的边缘部分延伸到OLED器件的非显示区域。无机阻隔层的厚度介于500nm-1.5um之间,构成材料包括但不限于Al2O3、TiO2、CrO2、SiNx、SiONx、SiOx等。
(4)通过IJP或Coating等工艺在无机阻隔层之上制备至少一层有机层。有机层的厚度介于1um-10um之间,构成材料包括但不限于有机硅树脂、聚二甲基硅氧烷(PDMS)、六甲基二硅氧烷(HMDSO)等。
(5)通过等离子体处理工艺对有机层的外表面进行等离子体处理,使得有机层最外表面形成一层薄的硬化层,即表面硬化层。表面硬化层的厚度介于50nm-500nm之间,并与有机层中剩余的未硬化部位复合形成有机阻隔层。其中,进行等离子体处理工艺的等离子体包括但不限于O2和CO2等离子体。
下面以一个具体的实施例对OLED器件的封装方法进行详细描述。
第一步,如图2所示,OLED器件20制备于背板10上,通过热蒸镀或PLD等工艺在OLED器件20之上制备一层10nm-100nm的有机物保护层30,有机物保护层30的构成材料包括但不限于聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)、聚氟乙烯(PVF)等。其中,有机物保护层30覆盖OLED器件20的整个显示区域。
第二步,如图3所示,通过IJP或Coating等工艺在有机物保护层30之上制备一层连续的有机平坦层40,有机平坦层40的开口小于有机物保护层30的开口。有机平坦层40的厚度优选为3um-6um之间,其构成材料包括但不限于丙烯酸树脂、环氧树脂、有机硅树脂、聚二甲基硅氧烷(PDMS)、六甲基二硅氧烷(HMDSO)等。
第三步,如图4所示,通过PECVD、ALD、PLD或Sputter等工艺在有机平坦层40之上制备一层无机阻隔层50。其中,无机阻隔层50为覆盖OLED器件20的整个显示区域的连续薄膜,其开口大于有机平坦层40的开口。无机阻隔层50的厚度优选为介于500nm-1um之间,构成材料包括但不限于Al2O3、TiO2、CrO2、SiNx、SiONx、SiOx等。
第四步,如图5所示,通过IJP或Coating等工艺在无机阻隔层50之上制备至少一层有机层60。其中,有机层60优选为连续薄膜,其厚度优选为介于3um-6um之间,构成材料包括但不限于有机硅树脂、聚二甲基硅氧烷(PDMS)、六甲基二硅氧烷(HMDSO)等。
第五步,如图6所示,利用等离子处理工艺对固化后的有机层60进行表面处理,使有机层60的表面生成一层薄的表面硬化层602,表面硬化层602与有机层60中未硬化部位601最终复合形成有机阻隔层。其中,优选O2为等离子体对有机层60的表面进行等离子体工艺处理。在进行等离子体处理的过程中,通过调节O2比例和对有机层60表面进行等离子体处理的处理时长,使生成的表面硬化层602的厚度优选为介于100nm-200nm之间。
下面以另一个具体的实施例对OLED器件封装方法流程进行描述。其中,如图7所示,本实施例与上述实施例的封装方法流程相同,与上述实施例的区别在于,上述实施例的有机阻隔层为连续薄膜,而本实施例中的有机阻隔层优选为非连续薄膜。
在本发明的一个实施例中,如图8所示,当有机阻隔层为非连续薄膜时,有机阻隔层为多个独立的块状单元薄膜,且每一个块状单元薄膜可覆盖OLED器件20薄膜的单个或互相临近的多个像素。
在本发明的另一个实施例中,如图9所示,当有机阻隔层为非连续薄膜时,有机阻隔层还可以为多个独立的条形单元薄膜,且每一个条形单元薄膜可覆盖OLED器件薄膜上的单排或相互临近的多排像素。
以上各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
需要说明的是,本发明附图中各层的厚度和形状不反映真实比例,目的只是示意说明本申请实施例内容。
工业实用性
本发明提供的一种柔性OLED器件封装结构及其封装方法,在LOED器件薄膜的最外层制备有机层,并通过等离子体表面处理工艺对有机层进行处理,使得有机层的最外表面形成一层薄的表面硬化层,且表面硬化层与有机层未硬化的剩余部分复合形成一层有机阻隔层,其中,表面硬化层可以抵御水汽入侵以防侵蚀,延长OLED器件的寿命;有机阻隔层中未硬化部位也有助于充分缓解无机膜层的张应力。该柔性OLED器件封装结构能够在提升阻隔水氧性能的基础上同时减小弯折过程中薄膜封装结构劣化的风险。
综上所述,虽然本申请已将优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种柔性OLED器件封装结构,其包括在OLED器件上依序制备的有机物保护层、至少一层连续的有机平坦层、至少一层无机阻隔层和至少一层有机层;
    其中,每一层所述有机层的最外表面经过等离子体处理后形成表面硬化层,所述表面硬化层与所述有机层未硬化部位复合形成有机阻隔层。
  2. 根据权利要求1所述的柔性OLED器件封装结构,其中每一层所述有机层为连续薄膜,所述薄膜的厚度为3um-6um。
  3. 根据权利要求2所述的柔性OLED器件封装结构,其中所述表面硬化层的厚度为100nm-200nm。
  4. 根据权利要求1所述的柔性OLED器件封装结构,其中每一层所述有机层为非连续薄膜。
  5. 根据权利要求4所述的柔性OLED器件封装结构,其中所述有机层为多个独立的块状单元薄膜,每一个所述块状单元薄膜覆盖OLED器件上单个或相互临近的多个像素。
  6. 根据权利要求4所述的柔性OLED器件封装结构,其中所述有机层为多个独立的条形单元薄膜,每一个所述条形单元薄膜覆盖OLED器件上单排或互相临近的多排像素。
  7. 根据权利要求1所述的柔性OLED器件封装结构,其中所述有机层的材料为有机硅类材料。
  8. 根据权利要求1所述的柔性OLED器件封装结构,其中所述等离子体为O 2等离子体或CO 2等离子体。
  9. 一种柔性OLED器件封装方法,其包括:
    在OLED器件上依序制备有机物保护层、至少一层连续的有机平坦层、至少一层有机阻隔层和至少一层有机层;以及
    对每一层所述有机层的最外表面进行等离子体处理以形成表面硬化层,其中所述表面硬化层与所述有机层中未硬化部位复合形成有机阻隔层。
  10. 根据权利要求9所述的柔性OLED器件封装方法,其中所述对每一层所述有机层的最外表面进行等离子体处理以形成表面硬化层具体包括:
    通过调节所述等离子体的比例和使用等离子体处理工艺对所述有机层的处理时长,使得生成的所述表面硬化层的厚度为100um-200um。
PCT/CN2020/079460 2019-11-18 2020-03-16 一种柔性oled器件封装结构及其封装方法 WO2021098091A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/966,037 US11943954B2 (en) 2019-11-18 2020-03-16 Encapsulation structure and encapsulation method for flexible organic light-emitting diode device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911124495.8A CN110943180A (zh) 2019-11-18 2019-11-18 一种柔性oled器件封装结构及其封装方法
CN201911124495.8 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021098091A1 true WO2021098091A1 (zh) 2021-05-27

Family

ID=69907694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079460 WO2021098091A1 (zh) 2019-11-18 2020-03-16 一种柔性oled器件封装结构及其封装方法

Country Status (3)

Country Link
US (1) US11943954B2 (zh)
CN (1) CN110943180A (zh)
WO (1) WO2021098091A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111755625A (zh) * 2020-06-24 2020-10-09 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150014663A1 (en) * 2013-07-11 2015-01-15 Korea Institute Of Science And Technology Organic light emitting display apparatus and the method for manufacturing the same
CN104701461A (zh) * 2013-12-03 2015-06-10 乐金显示有限公司 有机发光装置
CN109817673A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
CN110061149A (zh) * 2019-04-28 2019-07-26 福州大学 一种柔性oled器件薄膜封装方法
CN110085767A (zh) * 2013-12-18 2019-08-02 上海天马有机发光显示技术有限公司 一种疏水有机薄膜封装的有机发光显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845912B2 (en) * 2010-11-22 2014-09-30 Microcontinuum, Inc. Tools and methods for forming semi-transparent patterning masks
JP2014519206A (ja) * 2011-06-30 2014-08-07 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド トップエミッション型の有機エレクトロルミネッセンスデバイス及びその製造方法。
TWI492436B (zh) * 2012-11-16 2015-07-11 Au Optronics Corp 可撓式顯示面板
CN103490019B (zh) 2013-09-29 2016-02-17 京东方科技集团股份有限公司 有机电致发光器件的封装结构及封装方法、显示装置
CN104752634A (zh) * 2013-12-31 2015-07-01 中国科学院微电子研究所 交替结构薄膜封装层界面的处理方法
US20190334123A1 (en) 2018-04-25 2019-10-31 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Package structure and packaging method of oled device
CN108539044B (zh) * 2018-04-25 2020-04-03 武汉华星光电半导体显示技术有限公司 一种oled器件的封装结构及封装方法
CN109411625B (zh) * 2018-10-24 2021-01-29 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
TWI679788B (zh) * 2018-11-13 2019-12-11 友達光電股份有限公司 畫素結構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150014663A1 (en) * 2013-07-11 2015-01-15 Korea Institute Of Science And Technology Organic light emitting display apparatus and the method for manufacturing the same
CN104701461A (zh) * 2013-12-03 2015-06-10 乐金显示有限公司 有机发光装置
CN110085767A (zh) * 2013-12-18 2019-08-02 上海天马有机发光显示技术有限公司 一种疏水有机薄膜封装的有机发光显示装置
CN109817673A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
CN110061149A (zh) * 2019-04-28 2019-07-26 福州大学 一种柔性oled器件薄膜封装方法

Also Published As

Publication number Publication date
US20230180509A1 (en) 2023-06-08
CN110943180A (zh) 2020-03-31
US11943954B2 (en) 2024-03-26

Similar Documents

Publication Publication Date Title
US8772066B2 (en) Method for hybrid encapsulation of an organic light emitting diode
US10745795B2 (en) Inorganic graded barrier film and methods for their manufacture
WO2019242114A1 (zh) 显示面板及其制作方法
WO2018157449A1 (zh) 有机电致发光显示装置及其制作方法
EP3557645B1 (en) Film packaging structure and display apparatus having same
KR101891987B1 (ko) 유기 발광장치 및 그 제조방법
JP2007526601A (ja) 拡散バリア層および拡散バリア層の製造方法
WO2020206980A1 (zh) 柔性oled显示装置及制备方法
KR20160146525A (ko) 박막 봉지 구조, 제조 방법 및 해당 구조를 구비한 유기 발광 장치
JP7287284B2 (ja) ガスバリア性フィルム及びその製造方法
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
US20190032208A1 (en) Gas barrier film and method of manufacturing the same
WO2013132890A1 (ja) シリコン含有膜及びシリコン含有膜形成方法
WO2021026996A1 (zh) 一种显示面板及其制备方法
WO2021027171A1 (zh) 一种柔性显示面板及其制备方法
WO2021098091A1 (zh) 一种柔性oled器件封装结构及其封装方法
JP5567934B2 (ja) 非晶質窒化珪素膜とその製造方法、ガスバリア性フィルム、並びに、有機エレクトロルミネッセンス素子とその製造方法および封止方法
WO2020220523A1 (zh) 有机发光二极管显示装置及其制作方法
TWI477642B (zh) 阻氣基板
US20120114910A1 (en) Flexible gas barrier film, method for preparing the same, and flexible display device using the same
WO2021017172A1 (zh) 一种显示面板及其制备方法
WO2022188193A1 (zh) 一种显示面板及其制备方法
Kim et al. Thin film passivation characteristics in OLED using in-situ passivation
KR20200067025A (ko) 유기광전자소자의 봉지필름 및 그 제조방법
Lin et al. Transparent ultrahigh-strength moisture barrier film fabricated by lamination process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890611

Country of ref document: EP

Kind code of ref document: A1