WO2021026996A1 - 一种显示面板及其制备方法 - Google Patents

一种显示面板及其制备方法 Download PDF

Info

Publication number
WO2021026996A1
WO2021026996A1 PCT/CN2019/105120 CN2019105120W WO2021026996A1 WO 2021026996 A1 WO2021026996 A1 WO 2021026996A1 CN 2019105120 W CN2019105120 W CN 2019105120W WO 2021026996 A1 WO2021026996 A1 WO 2021026996A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic
display panel
organic layer
base substrate
Prior art date
Application number
PCT/CN2019/105120
Other languages
English (en)
French (fr)
Inventor
郭天福
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/960,101 priority Critical patent/US20210083225A1/en
Priority to JP2020529132A priority patent/JP2021536092A/ja
Publication of WO2021026996A1 publication Critical patent/WO2021026996A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the invention relates to the field of display, in particular to a display panel and a preparation method thereof.
  • the display panel Compared with the traditional LCD, the display panel has the advantages of lighter weight, wide viewing angle, fast response time, low temperature resistance, and high luminous efficiency. Therefore, it has always been regarded as the next generation of new display technology in the display industry.
  • OLED can be made into a flexible device that can be bent on a flexible substrate. This is a huge advantage unique to OLED.
  • TFE thin film encapsulation
  • the deadly killer of the display panel is the presence of water and oxygen in the external environment.
  • the intrusion of external water and oxygen can be divided into two categories: one is that the water and oxygen directly penetrate the TFE film from the top to the bottom to enter the inside of the display panel; the second is that the water and oxygen enters and corrodes the OLED from the side of the TFE film.
  • the thin film encapsulation layer includes a first inorganic layer, an organic layer, and a second inorganic layer, and is a sandwich film structure, which is a common TFE film structure in the industry.
  • the water vapor transmission rate (WVTR) of this sandwich film structure can achieve ⁇ 5 E-4 in the industry g/m2/day.
  • the first inorganic layer and the second inorganic layer are mainly used to block external water and oxygen from entering the organic layer inside the display panel. Because the organic layer is loose and porous, it does not have any ability to block water and oxygen. Therefore, the water and oxygen blocking effect of the display panel is poor.
  • the thin-film packaging structure adopts an aluminum oxide layer and a PP layer to form a laminated film layer.
  • This laminated film layer theoretically has good water and oxygen blocking performance, but in actual production, it cannot effectively wrap Avoid foreign objects, so the actual water and oxygen blocking effect is often poor.
  • the structure of the thin-film encapsulation layer includes a first inorganic layer/first organic layer/second inorganic layer/second organic layer/third inorganic layer, wherein the first inorganic layer is alumina.
  • the main disadvantage of the structure of this thin-film encapsulation layer is that the structure of the overlapping design of the inorganic layer and the organic layer is too thick, resulting in relatively poor bending resistance, the film layer is often too stressed, and may even cause the light-emitting film under the display panel The layer is grabbed, which is not conducive to the long-term development of the flexible display panel.
  • the present invention provides a display panel and a preparation method thereof to solve the technical problems of poor water and oxygen blocking performance, poor flexibility, and influence on the optical performance of the display panel in the prior art.
  • the present invention provides a display panel including a base substrate and a thin film encapsulation layer; wherein the thin film encapsulation layer includes a first inorganic layer, an organic layer, a second inorganic layer, and a laminated film layer; the first The inorganic layer is provided on the surface of the base substrate; the organic layer is provided on the surface of the first inorganic layer on the side away from the base substrate; the organic layer includes a patterned surface; the second The inorganic layer is provided on the surface of the organic layer away from the first inorganic layer; the laminated film layer is provided between the organic layer and the first inorganic layer or between the organic layer and the second inorganic layer.
  • each laminated film layer includes a dense film layer, a transition layer
  • the dense film layer is attached to the first inorganic layer or the second inorganic layer; one side of the transition layer is attached It is attached to the dense film layer, and the other side is attached to the organic layer.
  • the organic layer includes more than two protrusions protruding from the patterned surface.
  • the patterned surface is in contact with the laminated film layer, or in contact with the second inorganic layer.
  • the material of the dense film layer includes aluminum oxide and/or titanium oxide.
  • the material of the transition layer includes silicon oxide and/or silicon oxynitride.
  • the thickness of the dense film layer is less than 200 nm; the thickness of the transition layer is less than 150 nm, and the refractive index is greater than 1.6.
  • the present invention also provides a method for manufacturing a display panel, which includes the following steps: a base substrate providing step, providing a base substrate; and a thin film packaging layer preparation step, preparing a thin film on the upper surface of the base substrate Encapsulation layer; wherein the preparation step of the thin-film encapsulation layer includes the following steps: a first inorganic layer preparation step, a first inorganic layer is prepared on the upper surface of the base substrate; a laminated film layer preparation step, in the first A laminated film layer is prepared on the upper surface of the inorganic layer; the organic layer preparation step is to prepare an organic layer on the upper surface of the laminated film layer, and the surface of the organic layer is patterned; and the second inorganic layer preparation step is A second inorganic layer is prepared on the upper surface of the organic layer.
  • the step of preparing the laminated film layer includes the following steps: a step of preparing a dense film layer, using an atomic deposition method to deposit a uniform dense film layer on the upper surface of the first inorganic layer; and a step of preparing a transition layer, using a chemical vapor deposition method in A transition layer is deposited on the upper surface of the dense film layer; in the organic layer preparation step, an organic layer is deposited on the upper surface of the transition layer, and the surface of the organic layer is patterned.
  • the present invention also provides a method for manufacturing a display panel, which includes the following steps: a base substrate providing step, providing a base substrate; and a thin film packaging layer preparation step, preparing a thin film on the upper surface of the base substrate Encapsulation layer; wherein, the preparation step of the thin film encapsulation layer includes the following steps: a first inorganic layer preparation step, a first inorganic layer is prepared on the upper surface of the base substrate; an organic layer preparation step, in the inorganic layer An organic layer is prepared on the upper surface, and the surface of the organic layer is patterned; the laminated film layer preparation step is to prepare a laminated film layer on the upper surface of the organic layer; and the second inorganic layer preparation step is A second inorganic layer is prepared on the upper surface of the organic layer.
  • the step of preparing the laminated film layer includes the following steps: a transition layer preparation step: a transition layer is deposited on the upper surface of the first inorganic layer by a chemical vapor deposition method; a dense film layer preparation step is performed by an atomic deposition method A dense film layer is deposited on the upper surface of the transition layer; and in the second inorganic layer preparation step, a second inorganic layer is deposited on the upper surface of the laminated film layer.
  • the technical effect of the present invention is to provide a display panel and a preparation method thereof.
  • the stress release ability of the film layer on the patterned surface is improved, and the film encapsulation layer is reduced in the display panel.
  • the risk of fracture during the bending process improves the reliability of the thin film encapsulation layer and the optical performance of the display panel;
  • the laminated film layer is arranged between the adjacent organic layer and the inorganic layer to improve the The adhesion between adjacent layers improves the ability of the film encapsulation layer to isolate water and oxygen, thereby further improving the reliability of the film encapsulation layer.
  • FIG. 1 is a schematic diagram 1 of the structure of the OLED display device of Embodiment 1;
  • FIG. 2 is a second schematic diagram of the structure of the OLED display device of Embodiment 1;
  • FIG. 3 is a flow chart of the manufacturing method of the display panel described in Embodiment 1;
  • Example 4 is a flow chart of the steps of preparing the thin film encapsulation layer in Example 1;
  • Example 5 is a graph of the optical transmittance of the film encapsulation layer of Example 1;
  • Example 6 is a graph of the light-emitting spectrum of the thin-film encapsulation layer of Example 1;
  • FIG. 7 is a schematic diagram of the structure of the thin film encapsulation layer of Embodiment 2;
  • FIG. 8 is a flow chart of the preparation steps of the thin film encapsulation layer in Example 2.
  • 201 active layer 202 polysilicon layer; 203 dielectric layer; 204 source and drain electrodes; 205 gate electrodes;
  • this embodiment provides a display panel including a base substrate 1 and a thin film packaging layer 2, and the thin film packaging layer 2 is on the upper surface of the base substrate 1.
  • the base substrate 1 includes a glass substrate 101, a PI substrate 102, a thin film transistor, a pixel definition layer 103 and a light emitting layer 104.
  • the glass substrate 101 is a glass substrate in the prior art.
  • the PI substrate 102 is a flexible substrate, and its material is mainly polyimide (Polyimide, PI), PI material can effectively improve light transmittance.
  • Each thin film transistor includes an active layer 201 (P-type doping), a polysilicon layer 202, a dielectric layer 203, a source and drain electrode 204, a gate electrode 205, an insulating layer 206, a flat layer 207, and an anode 208.
  • a doped region 2011 is provided in the active layer 201, and the doped region 2011 may be doped with P-type impurities or N-type impurities to form a connection region of the source and drain electrodes of the MOS transistor, which is connected to the source and drain electrodes 204 .
  • the polysilicon layer 202 forms a connection area of the gate electrode of the MOS tube, and is connected to the gate electrode 205.
  • the dielectric layer 203 is used to insulate the source and drain electrodes 204 and the gate electrode 205 to avoid contact between the two electrodes and cause a short circuit.
  • the insulating layer 206 is disposed on the upper surfaces of the active layer 202, the dielectric layer 203, and the gate layer 205, and is penetrated by the source and drain electrodes 204.
  • the flat layer 207 is provided on the upper surfaces of the source and drain electrodes 204 and the insulating layer 206.
  • the anode 208 is provided on the upper surface of the flat layer 207 and the anode 208.
  • the planarization layer 207 is generally made of polymethyl methacrylate or nano-particle composite materials, which has better heat resistance.
  • the pixel definition layer 103 is provided on the upper surface of the flat layer 207.
  • the light emitting layer 104 is disposed on the upper surface of the pixel defining layer 103, and a cathode (not shown) is disposed in the light emitting layer 104.
  • the light emitting layer 104 includes a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and an electron injection layer, so that the QLED device has the characteristics of good stability, high color purity, good color temperature, and long life.
  • the thin film encapsulation layer 2 includes a first inorganic layer 210, an organic layer 212 and a second inorganic layer 213.
  • the first inorganic layer 210 is provided on the upper surface of the base substrate 1
  • the organic layer 212 is provided on the upper surface of the first inorganic layer 210
  • the second inorganic layer 213 is provided on the upper surface of the organic layer 212.
  • a laminated film layer 211 is provided between the first inorganic layer 210 and the organic layer 212.
  • Each laminated film layer 211 includes a dense film layer 2111 and an interlayer 2112.
  • the thin film encapsulation layer includes a first inorganic layer 210, a dense film layer 2111, a transition layer 2112, an organic layer 212, and a second inorganic layer 213 in order from bottom to top.
  • the first inorganic layer 210 is formed on the upper surface of the base substrate by using methods such as chemical vapor deposition (CVD), physical vapor deposition (PVD), etc.
  • the thickness is less than 2 ⁇ m, and the material can be silicon nitride (SiN), silicon oxynitride (SiON), silicon monoxide (SiO) and other inorganic compounds.
  • the first inorganic layer 210 can block water and oxygen from outside, and can improve the optical performance of the display panel.
  • the dense film layer 2111 is formed on the upper surface of the first inorganic layer 210 by atomic deposition.
  • the material of the dense film layer 2111 includes one or two of aluminum oxide and titanium oxide, but is not limited to other materials.
  • the thickness of the dense film layer 2111 is less than 200 nm, the refractive index is greater than 1.6, and it has good water and oxygen blocking performance and extremely strong light transmittance.
  • the light transmittance of the dense film 2111 is greater than 99%, and the wavelength is in the range of 400 to 800 nm.
  • the refractive index of the dense film layer 2111 is greater than the refractive index of the first inorganic layer 210, which can effectively fill defects in the film quality of the first inorganic layer 210, and can effectively improve the water and oxygen blocking effect of the thin film encapsulation layer.
  • the thickness of the dense film layer 2111 is preferably 80 nm, 95 nm, 100 nm, but not limited to other thicknesses, as long as the water and oxygen blocking effect of the thin film encapsulation layer can be effectively improved.
  • the transition layer 2112 is attached to the upper surface of the dense film layer 2111 by chemical vapor deposition. Its thickness is less than 150 nm, and its material includes one or two of silicon oxide and silicon oxynitride, but not limited to other materials.
  • the transition layer 2112 has a hydrophobic effect, which can improve the mechanical properties between the film layers, thereby enhancing the adhesion between the film layers.
  • the organic layer 212 is attached to the upper surface of the transition layer 2112 by deposition.
  • the organic layer 212 includes a patterned surface, and the patterned surface includes a plurality of protrusions 200, which are distributed in a Z-shape, S-shape, and arc shape, which improves the stress relief ability, thereby improving the optical performance of the display panel.
  • the shape of the protrusion is not limited, and those skilled in the art can set it according to actual needs, as long as the optical performance of the display panel can be improved.
  • the material of the organic layer 212 may be hexamethyldimethicone (HMDSO), aluminum-based organic-inorganic compound (Alucone), epoxy resin, acrylic system, or silicon-containing organic compound. Therefore, the organic layer 212 can wrap the foreign matter occurring during the deposition process, relieve the stress generated between the film layers, reduce the risk of the display panel breaking during the bending process, and improve the flexibility and optical performance of the display panel package.
  • HMDSO hexamethyldimethicone
  • Alucone aluminum-based organic-inorganic compound
  • epoxy resin acrylic system
  • acrylic system acrylic system
  • silicon-containing organic compound silicon-containing organic compound. Therefore, the organic layer 212 can wrap the foreign matter occurring during the deposition process, relieve the stress generated between the film layers, reduce the risk of the display panel breaking during the bending process, and improve the flexibility and optical performance of the display panel package.
  • a transition layer 2112 is provided between the dense film layer 2111 and the organic layer 212, which can enhance the adhesion between the dense film layer 2111 and the organic layer 212, and improve the water and oxygen isolation of the thin film encapsulation layer. Capability, thereby further improving the reliability of the thin film encapsulation layer.
  • the second inorganic layer 213 is formed on the upper surface of the organic layer 212 using methods such as chemical vapor deposition (CVD), physical vapor deposition (PVD), etc., that is, attached to the patterned surface.
  • the thickness of the second inorganic layer 213 is less than 2 ⁇ m, and the material may be an inorganic compound such as silicon nitride (SiN), silicon oxynitride (SiON), silicon monoxide (SiO), etc.
  • the second inorganic layer 213 has the function of isolating water and oxygen.
  • the organic layer 212 includes a patterned surface
  • the contact area between the second inorganic layer 213 and the organic layer 212 can be increased to effectively isolate water and oxygen; on the other hand, the second inorganic layer 213 and the organic layer 212 can be increased.
  • the adhesion force of the film can relieve the stress between the film layers, improve the flexibility of the film packaging layer, and improve the optical performance of the display panel.
  • this embodiment also provides a method for manufacturing a display panel, including steps S1 to S2.
  • the S1 base substrate providing step provides a base substrate.
  • the S2 thin-film packaging layer preparation step a thin-film packaging layer is prepared on the upper surface of the base substrate.
  • the step of preparing the thin film encapsulation layer includes the following steps S11 to S15.
  • the first inorganic layer preparation step is to prepare a first inorganic layer on the upper surface of the base substrate. Specifically, a method such as chemical vapor deposition (CVD), physical vapor deposition (PVD), etc. is used to deposit the first inorganic layer on the base substrate.
  • the thickness of the first inorganic layer is less than 2 ⁇ m, and the material can be silicon nitride (SiN), silicon oxynitride (SiON), silicon monoxide (SiO) and other inorganic compounds.
  • the first inorganic layer can block water and oxygen invaded from the outside, and can improve the performance of the display panel.
  • an atomic deposition method is used to prepare a uniform dense film on the upper surface of the first inorganic layer.
  • the material of the dense film layer includes one or two of aluminum oxide and titanium oxide, but is not limited to other materials.
  • the thickness of the dense film layer is less than 200 nm, the refractive index is greater than 1.6, and it has good water and oxygen blocking performance and extremely strong light transmittance.
  • the light transmittance of the dense film 2111 is greater than 99%, and the wavelength is in the range of 400-800 nm.
  • the refractive index of the dense film layer is greater than the refractive index of the first inorganic layer, which can effectively fill defects in the film quality of the first inorganic layer, and can effectively improve the water and oxygen blocking effect of the thin film encapsulation layer.
  • the thickness of the dense film layer is preferably 80 nm, 95 nm, 100 nm, but not limited to other thicknesses, as long as the water and oxygen blocking effect of the thin film encapsulation layer can be effectively improved.
  • a transition layer is prepared on the upper surface of the dense film layer by a chemical vapor deposition method.
  • the material of the transition layer includes one or two of silicon oxide and silicon oxynitride, but is not limited to other materials.
  • the thickness of the transition layer is less than 150 nm, and its material is mainly silicon oxide, but not limited to other materials.
  • the transition layer has a hydrophobic effect, which can improve the mechanical properties between the film layers, thereby enhancing the adhesion between the film layers.
  • an organic layer is deposited on the upper surface of the laminated film layer.
  • An organic layer is formed on the upper surface of the laminated film layer by inkjet printing (IJP), chemical vapor deposition (CVD) or evaporation.
  • the organic layer is formed on the upper surface of the transition layer, and the surface of the organic layer is patterned by using a mask to make the surface of the organic layer a patterned surface.
  • the patterned surface includes a plurality of continuously arranged protrusions and is distributed in a Z shape, an S shape, and a circular arc shape, which improves the stress release ability, thereby improving the optical performance of the display panel.
  • the shape of the protrusion is not limited, and those skilled in the art can set it according to actual needs, as long as the optical performance of the display panel can be improved.
  • the material of the organic layer may be hexamethyldimethicone (HMDSO), aluminum-based organic-inorganic composite (Alucone), epoxy resin, acrylic system, and silicon-containing organics. Therefore, the organic layer can wrap the foreign matter during the deposition process, relieve the stress generated between the film layers, reduce the risk of the display panel breaking during the bending process, and improve the flexibility and optical performance of the display panel package.
  • HMDSO hexamethyldimethicone
  • Alucone aluminum-based organic-inorganic composite
  • epoxy resin acrylic system
  • silicon-containing organics silicon-containing organics. Therefore, the organic layer can wrap the foreign matter during the deposition process, relieve the stress generated between the film layers, reduce the risk of the display panel breaking during the bending process, and improve the flexibility and optical performance of the display panel package.
  • a second inorganic layer is deposited on the upper surface of the organic layer.
  • a second inorganic layer is deposited on the upper surface of the organic layer using methods such as chemical vapor deposition (CVD), physical vapor deposition (PVD), and the like.
  • the thickness of the second inorganic layer is less than 2 ⁇ m, and the material may be an inorganic compound such as silicon nitride (SiN), silicon oxynitride (SiON), silicon monoxide (SiO), etc.
  • the second inorganic layer can block water and oxygen invaded from the outside and can improve the optical performance of the display panel.
  • the optical transmittance of the first thin-film encapsulation layer 10 provided by this embodiment is compared with the optical transmittance of the second thin-film encapsulation layer 20 of the prior art.
  • the fluctuation range of the optical transmittance of a thin-film encapsulation layer 10 is small, and its optical transmittance is significantly improved, so that the thin-film encapsulation layer has a good effect of blocking water and oxygen, and improves the encapsulation effect of the display panel.
  • the luminescence spectrum of the first thin-film encapsulation layer 10 provided in this embodiment is compared with the luminescence spectrum of the second thin-film encapsulation layer 20 in the prior art. It can be clearly seen that the luminous efficiency of the first thin-film encapsulation layer 10 is higher.
  • the stress relief ability of the film layer on the patterned surface is improved, and the risk of the film encapsulation layer breaking during the bending process of the display panel is reduced, thereby increasing the film encapsulation layer Reliability and improve the optical performance of the display panel.
  • the display panel and the preparation method thereof provided in this embodiment on the one hand, by providing a patterned surface on the organic layer, the stress relief ability of the film layer on the patterned surface is improved, and the film encapsulation layer is reduced during the bending process of the display panel.
  • the risk of breakage improves the reliability of the thin-film encapsulation layer and improves the optical performance of the display panel.
  • the Adhesion improves the ability of the film encapsulation layer to isolate water and oxygen, thereby further improving the reliability of the film encapsulation layer.
  • this embodiment provides a display panel that includes most of the technical features of the display panel described in Embodiment 1.
  • the distinguishing feature is that in Embodiment 2, the laminated film layer 211 is provided on the second inorganic layer. Between 210 and the organic layer 212, rather than between the first inorganic layer 210 and the organic layer 212.
  • the thin-film encapsulation layer in the display panel includes a first inorganic layer 210, an organic layer 212, a laminated film layer 211, and a second inorganic layer 213 from bottom to top.
  • Each laminated film layer 211 includes a dense film layer 2111 and an interlayer 2112.
  • the transition layer 2112 is provided on the upper surface of the organic layer 212, and the dense film layer 2111 is provided on the upper surface of the transition layer 2112. Due to the weak adhesion between the dense film layer 2111 and the organic layer 212, by providing the transition layer 2112, the adhesion force between the dense film layer 2111 and the organic layer 212 can be enhanced, and the water and oxygen isolation ability of the film encapsulation layer is improved , Thereby further improving the reliability of the thin film encapsulation layer.
  • This embodiment also provides a method for manufacturing a display panel, including the following steps S1 to S2, refer to FIG. 3.
  • the S1 base substrate providing step provides a base substrate.
  • the S2 thin-film packaging layer preparation step a thin-film packaging layer is prepared on the upper surface of the base substrate.
  • the preparation step of the thin film encapsulation layer includes the following steps S21 to S25.
  • Step S21 preparing a first inorganic layer: preparing a first inorganic layer on the upper surface of the base substrate.
  • an organic layer is prepared on the upper surface of the first inorganic layer, and the surface of the organic layer is patterned.
  • a transition layer is prepared on the upper surface of the first inorganic layer by using a chemical vapor deposition method.
  • an atomic deposition method is used to prepare a uniform dense film on the upper surface of the dense film.
  • the second inorganic layer preparation step is to prepare a second inorganic layer on the upper surface of the water-absorbing laminated film layer.
  • the difference between the steps S21 to S25 and the steps S11 to 15 described in the embodiment 1 is that the method for manufacturing the display panel described in the embodiment 2 performs the laminated film layer preparation step after the organic layer preparation step.
  • the technical effects of each step are basically the same as those of the corresponding steps in Embodiment 1, and will not be repeated here.
  • the display panel and the preparation method thereof provided in this embodiment on the one hand, by providing a patterned surface on the organic layer, the stress relief ability of the film layer on the patterned surface is improved, and the film encapsulation layer is reduced during the bending process of the display panel.
  • the risk of breakage improves the reliability of the thin-film encapsulation layer and improves the optical performance of the display panel.
  • the Adhesion improves the ability of the film encapsulation layer to isolate water and oxygen, thereby further improving the reliability of the film encapsulation layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及其制备方法,显示面板包括衬底基板(1)以及薄膜封装层(2),其中薄膜封装层(2)包括第一无机层(210)、有机层(212)以及叠膜层(211);显示面板制备方法包括衬底基板(1)提供步骤(S1)以及薄膜封装层(2)制备步骤(S2);薄膜封装层(2)制备步骤(S2)包括第一无机层(210)制备步骤(S11)、叠膜层(211)制备步骤、有机层(212)制备步骤(S14)以及第二无机层(213)制备步骤(S15)。

Description

一种显示面板及其制备方法 技术领域
本发明涉及显示领域,尤其涉及一种显示面板及其制备方法。
背景技术
显示面板因其较传统LCD相比具有重量轻巧,广视角,响应时间快,耐低温,发光效率高等优点。因此,在显示行业一直被视其为下一代新型显示技术,特别是OLED可以在柔性基板上做成能弯曲的柔性器件,这是OLED所特有的巨大优势。为了实现OLED的该种优势(柔性显示),薄膜封装(TFE)技术是必不可少的核心技术。
显示面板的致命杀手是外界环境中存在的水氧。外界水氧的入侵途径可分为两类:途径一是水氧从上向下直接穿透TFE膜层进入显示面板内部;途径二是水氧从TFE膜层侧面进入侵蚀OLED。
常见的显示面板,包括玻璃基底、阵列基板、发光层、薄膜封装层。其中,薄膜封装层包括第一无机层、有机层以及第二无机层,为三明治膜层结构,是目前行业内较常见的TFE膜层结构。这种三明治膜层结构的水蒸气透过率(water vapor transmission rate,WVTR)行业内能做到< 5 E-4 g/m2/day。主要是通过第一无机层及第二无机层来阻隔外界水氧入侵到显示面板内部的有机层中。由于有机层的膜质疏松多孔,不具备任何阻隔水氧的能力。因此,导致显示面板的阻水氧效果较差。
现有技术中,薄膜封装结构采用氧化铝层与PP层形成叠膜层,这种叠膜层理论上具有较好的阻水氧性能,但是在实际工艺生产中,不能有效地包裹制程中不可避免的异物,因此实际的阻水氧效果往往较差。
在专利US20150021565、US20150048331中,薄膜封装层的结构包括第一无机层/第一有机层/第二无机层/第二有机层/第三无机层,其中第一无机层为氧化铝。这种薄膜封装层的结构的主要缺点为无机层与有机层交叠设计的结构过厚,导致耐弯折性能相对较差,膜层往往应力过大,甚至有可能会导致显示面板下层发光膜层被抓起,不利于柔性显示面板的长期发展。
技术问题
本发明提供一种显示面板及其制备方法,以解决现有技术中存在的阻水氧性能差、柔性性能差、影响显示面板光学性能的技术问题。
技术解决方案
为实现上述目的,本发明提供一种显示面板包括衬底基板以及薄膜封装层;其中,所述薄膜封装层包括第一无机层、有机层、第二无机层以及叠膜层;所述第一无机层设于所述衬底基板一侧的表面;所述有机层设于所述第一无机层远离所述衬底基板一侧的表面,所述有机层包括图形化表面;所述第二无机层设于所述有机层远离所述第一无机层一侧的表面;所述叠膜层设于所述有机层与所述第一无机层之间或者所述有机层与所述第二无机层之间;其中,每一叠膜层包括致密膜层、过渡层,所述致密膜层贴附于所述第一无机层或所述第二无机层;所述过渡层其一侧面贴附于所述致密膜层,另一侧面贴附于所述有机层。
进一步地,所述有机层包括两个以上凸起,突出于所述图形化表面。
进一步地,所述图形化表面与所述叠膜层接触,或者与所述第二无机层接触。
进一步地,所述致密膜层的材质包括氧化铝和/或氧化钛。。
进一步地,所述过渡层的材质包括硅氧化物和/或氮氧化硅。
进一步地,所述致密膜层的厚度小于200nm;所述过渡层的厚度小于150nm,且折射率大于1.6。
为实现上述目的,本发明还提供一种显示面板的制备方法,包括如下步骤衬底基板提供步骤,提供一衬底基板;以及薄膜封装层制备步骤,在所述衬底基板上表面制备一薄膜封装层;其中,所述薄膜封装层制备步骤包括如下步骤,第一无机层制备步骤,在所述衬底基板的上表面制备一第一无机层;叠膜层制备步骤,在所述第一无机层上表面制备一叠膜层;有机层制备步骤,在所述叠膜层上表面制备一有机层,且对所述有机层的表面进行图形化处理;以及第二无机层制备步骤,在所述有机层上表面制备一第二无机层。
进一步地,所述叠膜层制备步骤包括如下步骤致密膜层制备步骤,采用原子沉积方法在所述第一无机层上表面沉积一致密膜层;以及过渡层制备步骤,采用化学气相沉积方法在所述致密膜层上表面沉积一过渡层;在所述有机层制备步骤中,在所述过渡层的上表面沉积一有机层,且对所述有机层的表面进行图形化处理。
为实现上述目的,本发明还提供一种显示面板的制备方法,包括如下步骤衬底基板提供步骤,提供一衬底基板;以及薄膜封装层制备步骤,在所述衬底基板上表面制备一薄膜封装层;其中,所述薄膜封装层制备步骤包括如下步骤,第一无机层制备步骤,在所述衬底基板的上表面制备一第一无机层;有机层制备步骤,在所述一无机层上表面制备一有机层,且对所述有机层的表面进行图形化处理;叠膜层制备步骤,在所述有机层上表面制备一叠膜层;以及第二无机层制备步骤,在所述有机层上表面制备一第二无机层。
进一步地,所述叠膜层制备步骤,包括如下步骤过渡层制备步骤,采用化学气相沉积方法在所述第一无机层上表面沉积一过渡层;致密膜层制备步骤,采用原子沉积方法在所述过渡层上表面沉积备一致密膜层;以及在所述第二无机层制备步骤中,在所述叠膜层的上表面沉积一第二无机层。
有益效果
本发明的技术效果在于,提供一种显示面板及其制备方法,一方面,通过在有机层设置图形化表面,提高了图形化表面的膜层的应力释放能力,降低了薄膜封装层在显示面板弯折过程中产生断裂的风险,从而提高了薄膜封装层的可靠性以及提升显示面板的光学性能;另一方面,通过在相邻的有机层与无机层之间设置叠膜层,提高了相邻各层间的粘附力,提高了薄膜封装层的隔绝水氧的能力,从而进一步地提高了薄膜封装层的可靠性。
附图说明
图1为实施例1所述OLED显示器件的结构示意图一;
图2为实施例1所述OLED显示器件的结构示意图二;
图3为实施例1所述显示面板制备方法流程图;
图4为实施例1 所述薄膜封装层制备步骤的流程图;
图5为实施例1所述薄膜封装层光学透过率的曲线图;
图6为实施例1所述薄膜封装层发光光谱的曲线图;
图7为实施例2所述薄膜封装层的结构示意图;
图8为实施例2 所述薄膜封装层制备步骤的流程图。
附图中部分标识如下:
1衬底基板;2薄膜封装层;
101玻璃基底;102 PI基底;103像素定义层;104发光层;
201有源层;202多晶硅层;203介电层;204源漏电极;205栅电极;
206绝缘层;207平坦层;208阳极;2011掺杂区;
200凸起;210第一无机层;211叠膜层;212有机层;213第二无机层;
2111致密膜层;2112过渡层。
本发明的实施方式
以下参考说明书附图介绍本发明的优选实施例,用以举例证明本发明可以实施,这些实施例可以向本领域中的技术人员完整介绍本发明的技术内容,使得本发明的技术内容更加清楚和便于理解。然而本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
实施例1
如图1所示,本实施提供一种显示面板,包括衬底基板1及薄膜封装层2,薄膜封装层2所述衬底基板1的上表面。
如图2所示,衬底基板1包括玻璃基底101、PI基底102、薄膜晶体管、像素定义层103以及发光层104。
玻璃基底101为现有技术中的玻璃基板。PI基底102为柔性基底,其材料主要为聚酰亚胺(Polyimide, PI),PI材料可以有效地提高透光度。每一薄膜晶体管包括有源层201(P型掺杂)、多晶硅层202、介电层203、源漏电极204、栅电极205、绝缘层206、平坦层207以及阳极208。具体地,在有源层201设有掺杂区2011,该掺杂区2011可以掺杂P型杂质或者N型杂质,用以形成MOS管的源漏电极的连接区域,连接至源漏电极204。多晶硅层202是形成MOS管的栅电极的连接区域,且连接至栅电极205。介电层203用以绝缘源漏电极204与栅电极205,避免两电极间接触,产生短路现象。绝缘层206设于有源层202、介电层203、栅极层205的上表面,且被源漏电极204贯穿。平坦层207设于源漏电极204、绝缘层206的上表面。阳极208设于平坦层207、阳极208的上表面。平坦化层207一般由聚甲基丙烯酸甲酯或纳米粒子复合材料制成,其耐热性能较好。像素定义层103设于平坦层207的上表面。发光层104设于像素定义层103的上表面,一阴极(图未示)设于发光层104内。其中,发光层104包括空穴注入层、空穴传输层、有机发光层、电子传输层以及电子注入层,从而使QLED器件具有稳定性好、色纯度高、色温佳、寿命长等特点。
如图2所示薄膜封装层2包括第一无机层210、有机层212以及第二无机层213。第一无机层210设于衬底基板1的上表面,有机层212设于第一无机层210的上方,第二无机层213设于有机层212的上表面。在第一无机层210与有机层212之间设有一叠膜层211。
每一叠膜层211包括致密膜层2111与过渡层(interlayer)2112。具体地,所述薄膜封装层从下至上依次包括第一无机层210、致密膜层2111、过渡层2112、有机层212以及第二无机层213。
第一无机层210是采用化学气相沉积(CVD)、物理气相沉积(PVD)等方法形成于所述衬底基板的上表面。其厚度小于2μm,材质可以为氮化硅(SiN),氮氧化硅(SiON),一氧化硅(SiO)等无机化合物。第一无机层210可以阻隔外界入侵的水氧,并能提高显示面板的光学性能。
致密膜层2111通过原子沉积的方式形成于第一无机层210上表面。致密膜层2111的材质包括氧化铝、氧化钛中的一种或两种,但不限于其他材质。致密膜层2111的厚度小于200nm,折射率大于1.6,具有良好的阻水氧性能以及极强的透光率。致密膜层2111的透光率大于99%,波长在400~800 nm范围内。本实施例中,致密膜层2111的折射率大于第一无机层210的折射率,可以有效地填充第一无机层210膜质的缺陷,可以有效地提高薄膜封装层的阻水氧效果。本实施例中,致密膜层2111的厚度优选为80nm,95nm,100nm,但不限于其他厚度,只要可以有效地提高薄膜封装层的阻水氧效果即可。
过渡层2112通过化学气相沉积的方式贴附于致密膜层2111上表面。其厚度小于150 nm,其材质包括硅氧化物、氮氧化硅中的一种或两种,但不限于其他材质。过渡层2112具有疏水效果,可以改善膜层间的力学性能,从而提升膜层间的粘附力。
有机层212通过沉积的方式贴附于过渡层2112的上表面。有机层212包括图形化表面,所述图形化表面包括多个凸起200,且呈Z形、S形、圆弧形分布,提高了应力的释放能力,从而提高显示面板的光学性能。本实施例中,对所述凸起的形状不做限定,本领域技术人员可以根据实际需求进行设定,只要可以提高显示面板的光学性能即可。
有机层212的材质可以为六甲基二甲硅醚(HMDSO),铝基有机无机复合物(Alucone),环氧树脂,亚克力体系,含硅有机物。因此,有机层212可以包裹沉积过程中出现的异物,缓解膜层间产生的应力,降低显示面板在弯折过程中产生断裂的风险,从而提高显示面板封装的柔性性能及光学性能。
进一步地,本实施例,在致密膜层2111与有机层212之间设置过渡层2112,可以增强致密膜层2111与有机层212之间的粘附力,提高了薄膜封装层的隔绝水氧的能力,从而进一步地提高了薄膜封装层的可靠性。
第二无机层213是采用化学气相沉积(CVD)、物理气相沉积(PVD)等方法形成于有机层212的上表面,即贴附于所述图形化表面。第二无机层213的厚度小于2μm,材质可以为氮化硅(SiN),氮氧化硅(SiON),一氧化硅(SiO)等无机化合物,第二无机层213具有隔绝水氧的作用。另外,由于有机层212包括图形化表面,一方面,可以增大第二无机层213与有机层212的接触面积,有效地隔绝水氧;另一方面,提高第二无机层213与有机层212的粘附力,缓解膜层间的应力,提高薄膜封装层的柔性性能,提高显示面板的光学性能。
如图3所示,本实施例还提供一种显示面板制备方法,包括步骤S1~S2。S1衬底基板提供步骤,提供一衬底基板。S2薄膜封装层制备步骤,在所述衬底基板上表面制备一薄膜封装层。
如图4所示,所述薄膜封装层制备步骤包括如下步骤S11~S15。
S11第一无机层制备步骤,在衬底基板的上表面制备一第一无机层。具体地,采用化学气相沉积(CVD)、物理气相沉积(PVD)等方法在所述衬底基板沉积第一无机层。所述第一无机层的厚度小于2μm,其材质可以为氮化硅(SiN),氮氧化硅(SiON),一氧化硅(SiO)等无机化合物。所述第一无机层可以阻隔外界入侵的水氧,并能提高显示面板的性能。
S12致密膜层制备步骤,采用原子沉积方法在所述第一无机层上表面制备一致密膜层。
所述致密膜层材质包括氧化铝、氧化钛中的一种或两种,但不限于其他材质。所述致密膜层的厚度小于200nm,折射率大于1.6,具有良好的阻水氧性能以及极强的光透过率。所述致密膜层2111的透光率大于99%,波长在400~800 nm范围内。所述致密膜层的折射率大于所述第一无机层的折射率,可以有效地填充所述第一无机层膜质的缺陷,可以有效地提高薄膜封装层的阻水氧效果。本实施例中,所述致密膜层的厚度优选为80nm,95nm,100nm,但不限于其他厚度,只要可以有效地提高薄膜封装层的阻水氧效果即可。
S13过渡层制备步骤,采用化学气相沉积的方法在所述致密膜层上表面制备一过渡层。
所述过渡层的材质包括硅氧化物、氮氧化硅中的一种或两种,但不限于其他材质。所述过渡层厚度小于150 nm,其材质主要为氧化硅,但不限于其他材质。所述过渡层具有疏水效果,可以改善膜层间的力学性能,从而提升膜层间的粘附力。
S14有机层制备步骤,在所述叠膜层上表面沉积一有机层。
采用喷墨打印(IJP),化学气相沉积(CVD)或蒸镀等方法在所述叠膜层上表面形成有机层。具体地,所述有机层形成于所述过渡层上表面,并利用掩膜板对所述有机层表面进行图形化处理,使所述有机层表面为图形化表面。所述图形化表面包括多个连续设置的凸起,且呈Z形、S形、圆弧形分布,提高了应力的释放能力,从而提高显示面板的光学性能。本实施例中,对所述凸起的形状不做限定,本领域技术人员可以根据实际需求进行设定,只要可以提高显示面板的光学性能即可。
所述有机层的材质可以为六甲基二甲硅醚(HMDSO),铝基有机无机复合物(Alucone),环氧树脂,亚克力体系,含硅有机物。因此,所述有机层可以包裹沉积过程中出现的异物,缓解膜层间产生的应力,降低显示面板在弯折过程中产生断裂的风险,从而提高显示面板封装的柔性性能及光学性能。
S15第二无机层制备步骤,在所述有机层上表面沉积一第二无机层。
采用化学气相沉积(CVD)、物理气相沉积(PVD)等方法在所述有机层的上表面沉积第二无机层。所述第二无机层的厚度小于2μm,其材质可以为氮化硅(SiN),氮氧化硅(SiON),一氧化硅(SiO)等无机化合物。所述第二无机层可以阻隔外界入侵的水氧,并能提高显示面板的光学性能。
如图5所示,本实施例提供的第一薄膜封装层10的光学透过率与现有技术的第二薄膜封装层20的光学透过率相比较,可以明显看出本实施例的第一薄膜封装层10的光学透过率的波动范围较小,其光学透过率显著提升,使得薄膜封装层具有良好的阻隔水氧的效果,提高显示面板的封装效果。
如图6所示,本实施例提供第一薄膜封装层10的发光光谱与现有技术的第二薄膜封装层20的发光光谱相比较,可以明显看出第一薄膜封装层10的发光效率较佳,本实施中通过在有机层设置图形化表面,提高了图形化表面的膜层的应力释放能力,降低了薄膜封装层在显示面板弯折过程中产生断裂的风险,从而提高了薄膜封装层的可靠性以及提升显示面板的光学性能。
本实施例提供的显示面板及其制备方法,一方面,通过在有机层设置图形化表面,提高了图形化表面的膜层的应力释放能力,降低了薄膜封装层在显示面板弯折过程中产生断裂的风险,从而提高了薄膜封装层的可靠性以及提升显示面板的光学性能;另一方面,通过在相邻的有机层与无机层之间设置叠膜层,提高了相邻各层间的粘附力,提高了薄膜封装层的隔绝水氧的能力,从而进一步地提高了薄膜封装层的可靠性。
实施例2
如图7所示,本实施例提供一种显示面板,包括实施例1所述显示面板的大部分技术特征,其区别特征在于,在实施例2中,叠膜层211设于第二无机层210与有机层212之间,而不是设于第一无机层210与有机层212之间。
如图7所示,显示面板中的所述薄膜封装层从下到上依次包括第一无机层210、有机层212、叠膜层211以及第二无机层213。
每一叠膜层211包括致密膜层2111与过渡层(interlayer)2112。
在本实施例中过渡层2112设于有机层212的上表面,致密膜层2111设于过渡层2112的上表面。由于致密膜层2111与有机层212的粘附力较弱,通过设置过渡层2112,可以增强致密膜层2111与有机层212之间的粘附力,提高了薄膜封装层的隔绝水氧的能力,从而进一步地提高了薄膜封装层的可靠性。
本实施例还提供一种显示面板的制备方法,包括如下步骤S1~S2,参照图3。S1衬底基板提供步骤,提供一衬底基板。S2薄膜封装层制备步骤,在所述衬底基板上表面制备一薄膜封装层。
如图8所示,所述薄膜封装层制备步骤包括如下步骤S21~S25。
S21第一无机层制备步骤,在所述衬底基板的上表面制备一第一无机层。
S22有机层制备步骤,在所述第一无机层的上表面制备一有机层,且对所述有机层的表面进行图案化处理。
S23过渡层制备步骤,采用化学气相沉积方法在所述第一无机层上表面制备一过渡层。
S24致密膜层制备步骤,采用原子沉积方法在所述致密膜层上表面制备一致密膜层。
S25第二无机层制备步骤,在所述吸水叠膜层的上表面制备一第二无机层。
所述步骤S21~S25与实施例1所述步骤S11~15相比,其区别特征在于,实施例2所述显示面板的制备方法,在有机层制备步骤后,执行叠膜层制备步骤。各个步骤的技术效果与实施例1中相应步骤的技术效果基本相同,在此不做赘述。
本实施例提供的显示面板及其制备方法,一方面,通过在有机层设置图形化表面,提高了图形化表面的膜层的应力释放能力,降低了薄膜封装层在显示面板弯折过程中产生断裂的风险,从而提高了薄膜封装层的可靠性以及提升显示面板的光学性能;另一方面,通过在相邻的有机层与无机层之间设置叠膜层,提高了相邻各层间的粘附力,提高了薄膜封装层的隔绝水氧的能力,从而进一步地提高了薄膜封装层的可靠性。

Claims (10)

  1. 一种显示面板,其包括:
    衬底基板;以及
    薄膜封装层,设于所述衬底基板一侧的表面;
    其中,所述薄膜封装层包括:
    第一无机层,设于所述衬底基板一侧的表面;
    有机层,设于所述第一无机层远离所述衬底基板一侧的表面,所述有机层包括图形化表面;
    第二无机层,设于所述有机层远离所述第一无机层一侧的表面;以及
    叠膜层,设于所述有机层与所述第一无机层之间或者所述有机层与所述第二无机层之间;
    其中,每一叠膜层包括
    致密膜层,设于所述第一无机层 或所述第二无机层;以及
    过渡层,其一侧面贴附于所述致密膜层,另一侧面贴附于所述有机层。
  2. 如权利要求1所述的显示面板,其中,所述有机层包括
    两个以上凸起,突出于所述图形化表面。
  3. 如权利要求1所述的显示面板,其中,
    所述图形化表面与所述叠膜层接触,或者与所述第二无机层接触。
  4. 如权利要求1所述的显示面板,其中,
    所述致密膜层的材质包括氧化铝和/或氧化钛。
  5. 如权利要求1所述的显示面板,其中,
    所述过渡层的材质包括硅氧化物和/或氮氧化硅。
  6. 如权利要求1所述的显示面板,其中,
    所述致密膜层的厚度小于200nm;
    所述过渡层的厚度小于150nm,且折射率大于1.6。
  7. 一种显示面板的制备方法,其包括如下步骤:
    衬底基板提供步骤,提供一衬底基板;以及
    薄膜封装层制备步骤,在所述衬底基板上表面制备一薄膜封装层;
    其中,所述薄膜封装层制备步骤包括如下步骤:
    第一无机层制备步骤,在所述衬底基板的上表面制备一第一无机层;
    叠膜层制备步骤,在所述第一无机层上表面制备一叠膜层;
    有机层制备步骤,在所述叠膜层上表面制备一有机层,且对所述有机层的表面进行图形化处理;以及
    第二无机层制备步骤,在所述有机层上表面制备一第二无机层。
  8. 如权利要求7所述的显示面板的制备方法,其中,
    所述叠膜层制备步骤包括如下步骤:
    致密膜层制备步骤,采用原子沉积方法在所述第一无机层上表面沉积一致密膜层;以及
    过渡层制备步骤,采用化学气相沉积方法在所述致密膜层上表面沉积一过渡层;
    在所述有机层制备步骤中,
    在所述过渡层的上表面沉积一有机层,且对所述有机层的表面进行图形化处理。
  9. 一种显示面板的制备方法,其中,包括如下步骤:
    衬底基板提供步骤,提供一衬底基板;以及
    薄膜封装层制备步骤,在所述衬底基板上表面制备一薄膜封装层;
    其中,所述薄膜封装层制备步骤包括如下步骤:
    第一无机层制备步骤,在所述衬底基板的上表面制备一第一无机层;
    有机层制备步骤,在所述一无机层上表面制备一有机层,且对所述有机层的表面进行图形化处理;
    叠膜层制备步骤,在所述有机层上表面制备一叠膜层;以及
    第二无机层制备步骤,在所述有机层上表面制备一第二无机层。
  10. 如权利要求9所述的显示面板的制备方法,其中,
    所述叠膜层制备步骤,包括如下步骤:
    过渡层制备步骤,采用化学气相沉积方法在所述第一无机层上表面沉积一过渡层;以及
    致密膜层制备步骤,采用原子沉积方法在所述过渡层上表面沉积一致密膜层;
    在所述第二无机层制备步骤中,在所述叠膜层的上表面沉积一第二无机层。
PCT/CN2019/105120 2019-08-09 2019-09-10 一种显示面板及其制备方法 WO2021026996A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/960,101 US20210083225A1 (en) 2019-08-09 2019-09-10 Display panel and manufacturing method thereof
JP2020529132A JP2021536092A (ja) 2019-08-09 2019-09-10 表示パネル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910733475.4 2019-08-09
CN201910733475.4A CN110571347B (zh) 2019-08-09 2019-08-09 一种显示面板及其制备方法

Publications (1)

Publication Number Publication Date
WO2021026996A1 true WO2021026996A1 (zh) 2021-02-18

Family

ID=68775011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105120 WO2021026996A1 (zh) 2019-08-09 2019-09-10 一种显示面板及其制备方法

Country Status (4)

Country Link
US (1) US20210083225A1 (zh)
JP (1) JP2021536092A (zh)
CN (1) CN110571347B (zh)
WO (1) WO2021026996A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129349A (zh) * 2019-12-26 2020-05-08 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN111129096A (zh) * 2019-12-30 2020-05-08 武汉华星光电半导体显示技术有限公司 有机发光二极管器件及其制作方法
CN111312925B (zh) * 2020-02-27 2022-04-01 武汉华星光电半导体显示技术有限公司 一种封装结构、封装结构制程方法及显示面板
CN111430569A (zh) * 2020-03-31 2020-07-17 武汉华星光电半导体显示技术有限公司 封装层及其制备方法
CN114864856A (zh) * 2022-04-12 2022-08-05 深圳市华星光电半导体显示技术有限公司 基板的封装方法、显示面板及显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150162565A1 (en) * 2012-11-20 2015-06-11 Samsung Display Co., Ltd. Organic light emitting display device
CN105009319A (zh) * 2013-03-04 2015-10-28 应用材料公司 用于oled薄膜封装的含氟等离子体聚合的hmdso
CN105977394A (zh) * 2016-06-15 2016-09-28 信利(惠州)智能显示有限公司 一种柔性oled器件及其封装方法
CN107068904A (zh) * 2017-04-18 2017-08-18 京东方科技集团股份有限公司 无机封装薄膜、oled封装薄膜的制作方法及相应装置
CN108539041A (zh) * 2018-03-29 2018-09-14 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN108649138A (zh) * 2018-04-28 2018-10-12 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100551121B1 (ko) * 2003-10-21 2006-02-13 엘지전자 주식회사 일렉트로 루미네센스 표시장치
JP5124083B2 (ja) * 2004-06-09 2013-01-23 三星ディスプレイ株式會社 有機電界発光表示装置及びその製造方法
KR100875099B1 (ko) * 2007-06-05 2008-12-19 삼성모바일디스플레이주식회사 유기 발광 장치 및 이의 제조 방법
KR102306003B1 (ko) * 2014-04-22 2021-09-28 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN206610830U (zh) * 2017-04-07 2017-11-03 上海天马微电子有限公司 柔性显示面板及显示装置
CN107302014B (zh) * 2017-07-17 2020-06-05 上海天马有机发光显示技术有限公司 一种有机发光显示面板,其显示装置及其制作方法
CN107565055B (zh) * 2017-08-29 2019-06-25 上海天马有机发光显示技术有限公司 有机发光显示面板及有机发光显示装置
KR102540734B1 (ko) * 2018-02-01 2023-06-08 삼성디스플레이 주식회사 유기발광표시장치 및 그의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150162565A1 (en) * 2012-11-20 2015-06-11 Samsung Display Co., Ltd. Organic light emitting display device
CN105009319A (zh) * 2013-03-04 2015-10-28 应用材料公司 用于oled薄膜封装的含氟等离子体聚合的hmdso
CN105977394A (zh) * 2016-06-15 2016-09-28 信利(惠州)智能显示有限公司 一种柔性oled器件及其封装方法
CN107068904A (zh) * 2017-04-18 2017-08-18 京东方科技集团股份有限公司 无机封装薄膜、oled封装薄膜的制作方法及相应装置
CN108539041A (zh) * 2018-03-29 2018-09-14 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN108649138A (zh) * 2018-04-28 2018-10-12 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法

Also Published As

Publication number Publication date
CN110571347A (zh) 2019-12-13
CN110571347B (zh) 2021-04-02
US20210083225A1 (en) 2021-03-18
JP2021536092A (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2021026996A1 (zh) 一种显示面板及其制备方法
WO2019205426A1 (zh) Oled显示面板及其制作方法
KR100885843B1 (ko) 유기전계발광 표시소자 및 그 제조방법
WO2018113018A1 (zh) Oled显示面板及其制作方法
WO2018072283A1 (zh) Oled显示器及其制作方法
CN100472839C (zh) 层叠结构及其制造方法及显示元件和显示单元
US7875895B2 (en) Organic light emitting diode (OLED) display and method of manufacturing the same
WO2016101395A1 (zh) 柔性oled显示器件及其制造方法
WO2016106948A1 (zh) Coa型woled结构及制作方法
WO2016106946A1 (zh) Coa型woled结构及制作方法
WO2018113007A1 (zh) Oled封装方法与oled封装结构
WO2019205425A1 (zh) Woled显示面板及其制作方法
WO2016199739A1 (ja) El表示装置及びel表示装置の製造方法
US8975534B2 (en) Flexible base material and flexible electronic device
TW202001363A (zh) 顯示面板
WO2017161628A1 (zh) Oled基板的封装方法与oled封装结构
US20210336210A1 (en) Organic light emitting diode display panel
WO2020062410A1 (zh) 有机发光二极管显示器及其制作方法
WO2020237830A1 (zh) 柔性有机发光二极管显示面板及其制造方法
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
KR100855489B1 (ko) 평판표시소자 및 그 제조방법
US11482691B2 (en) Display panel and manufacturing method thereof
WO2022077774A1 (zh) 显示面板及其制作方法
CN111584741B (zh) 显示基板、显示装置及其封装方法
KR20150072116A (ko) 유기발광다이오드의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020529132

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941429

Country of ref document: EP

Kind code of ref document: A1