WO2016199739A1 - El表示装置及びel表示装置の製造方法 - Google Patents

El表示装置及びel表示装置の製造方法 Download PDF

Info

Publication number
WO2016199739A1
WO2016199739A1 PCT/JP2016/066829 JP2016066829W WO2016199739A1 WO 2016199739 A1 WO2016199739 A1 WO 2016199739A1 JP 2016066829 W JP2016066829 W JP 2016066829W WO 2016199739 A1 WO2016199739 A1 WO 2016199739A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
inorganic
layer
organic
display device
Prior art date
Application number
PCT/JP2016/066829
Other languages
English (en)
French (fr)
Inventor
石田 守
岡本 哲也
剛 平瀬
亨 妹尾
通 園田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/579,294 priority Critical patent/US10159120B2/en
Publication of WO2016199739A1 publication Critical patent/WO2016199739A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to an EL display device and a method for manufacturing the EL display device.
  • the EL display device has, for example, a configuration in which an EL element connected to a TFT is provided on a TFT substrate in which a TFT (thin film transistor) is provided on a support made of a glass substrate or the like.
  • EL elements are generally easily affected by moisture, oxygen, and the like, and react with trace amounts of moisture and oxygen to deteriorate their characteristics and impair the life of the display device.
  • the sealing film can be formed by a method such as vapor deposition.
  • the thicker the film the higher the blocking effect for preventing moisture and oxygen from entering the EL element.
  • the film thickness of the sealing film is increased, the film stress of the sealing film increases, and there is a possibility that film floating occurs in which the sealing film is peeled off from the TFT substrate. Further, when an external force is applied to the EL display device, there is a possibility that a crack is generated in the sealing film.
  • Patent Document 1 describes a light emitting device in which an inorganic insulating film as a sealing film provided on an organic EL element, a stress relaxation film containing an organic compound, and an inorganic insulating film are provided in this order. ing.
  • a stress relaxation film having a stress smaller than that of the inorganic insulating film is provided between the two layers of the inorganic insulating film, thereby reducing the film stress of the inorganic insulating film. The film peeling can be prevented.
  • Patent Document 2 discloses a gas barrier film in which a SiOx thin film is formed on a base film, and the compressive residual strain is applied to the thin film to increase the fracture strain of the SiOx thin film and suppress the generation of cracks. A gas barrier film is described.
  • Patent Document 3 a buffer layer is provided on a resin film, and a TFT, an organic EL element, and a sealing film formed in this order on the buffer layer by a vacuum deposition method or the like are provided in this order.
  • An EL display device is described.
  • the buffer layer of the organic EL display device of Patent Document 2 has a stacked structure in which a compressive stress layer made of an inorganic film, a tensile stress layer, and a compressive stress layer are stacked in this order. Yes. Thereby, the compressive stress layer and the tensile stress layer cancel each other's stress, and the occurrence of cracks in the TFT can be suppressed.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2004-95551 (published on March 25, 2004)” Japanese Patent Registration “Patent No. 4196440 (Registered on October 10, 2008)” Japanese Patent Registration “Patent No. 5448960 (Registered on January 10, 2014)”
  • an object of the present invention is to improve the adhesion between the substrate and the sealing film and suppress the generation of cracks in the sealing film and the EL.
  • the object is to provide a method for manufacturing a display device.
  • an EL display device includes an EL element formed over a substrate and the substrate and the substrate so that the EL element is sealed between the substrate and the EL element.
  • An EL display device including a sealing film formed on an EL element, wherein the sealing film includes a first inorganic film, and the first inorganic film includes the substrate and It has a laminated structure of a first layer in contact with the EL element and a second layer formed on the first layer, and the absolute value of the film stress of the first layer is the first layer.
  • the absolute value of the film stress of the two layers is smaller, and the film thickness of the first layer is smaller than the film thickness of the second layer.
  • a method for manufacturing an EL display device is to seal the EL element between the EL element formed over the substrate and the substrate.
  • a sealing film formed on the substrate and the EL element, and the sealing film is a method for manufacturing an EL display device including a first inorganic film.
  • the first inorganic film is formed.
  • an EL display device and an EL display device manufacturing method in which adhesion between the substrate and the sealing film is enhanced and cracks in the sealing film are suppressed.
  • FIG. (A) is sectional drawing which shows the structure of the 2nd electrode and sealing film of the organic electroluminescent display apparatus concerning Embodiment 1 of this invention
  • (b) is schematic structure of the sub pixel of the organic electroluminescent display apparatus shown to (a).
  • FIG. (A) is sectional drawing which shows the structure of the 2nd electrode and sealing film of the conventional organic electroluminescence display
  • (b) is the 2nd electrode and sealing when a conventional organic electroluminescence display is bent.
  • (A) is a table
  • (b) is a graph which shows the result of a tension test. It is a table
  • (A)-(c) is sectional drawing of a part of organic electroluminescence display concerning the modification of Embodiment 4 of this invention.
  • an organic EL display device will be described as an example of the EL display device.
  • FIG. 2A is a cross-sectional view illustrating an example of a schematic configuration of the organic EL display device according to the present embodiment
  • FIG. 2B is a cross-sectional view of the organic EL display device illustrated in FIG. It is a top view which shows schematic structure of a sub pixel.
  • the organic EL display device 100 includes an organic EL element 20 (EL element) and a sealing film 30 on a TFT (Thin Film Transistor) substrate 10.
  • the structure is provided in this order from the TFT substrate 10 side.
  • the TFT substrate 10 includes an insulating support 1 (substrate) made of a glass substrate, a plastic film, or the like. On the support 1, a TFT 2, a signal line 3, an interlayer insulating film 4 and the like are provided.
  • the signal line 3 includes a plurality of gate lines, a plurality of source lines, a plurality of power supply lines, and the like.
  • sub-pixels 14 of each color are arranged. For example, one pixel is formed by a set of red (R), green (G), and blue (B) sub-pixels 14.
  • Each subpixel 14 is provided with a TFT 2.
  • Each of the TFTs 2 is connected to the signal line 3, selects a subpixel to which a signal is input through the gate line, determines an amount of electric charge to be input into the selected subpixel through the source line, and supplies current from the power supply line.
  • the organic EL element 20 is flowed.
  • the TFT 2 and the signal line 3 are covered with an interlayer insulating film 4.
  • an insulating material such as an acrylic resin or a polyimide resin can be used.
  • the thickness of the interlayer insulating film 4 is not particularly limited as long as the steps on the upper surfaces of the TFT 2 and the signal line 3 can be eliminated.
  • the organic EL element 20 includes a first electrode 21 (anode), an organic EL layer 22, a second electrode 23 (cathode), and the like.
  • the first electrode 21 is formed on the interlayer insulating film 4.
  • the first electrode 21 injects (supply) holes into the organic EL layer 22, and the second electrode 23 injects electrons into the organic EL layer 22.
  • the first electrode 21 is electrically connected to the TFT 2 through a contact hole 4 a formed in the interlayer insulating film 4.
  • the end of the first electrode 21 is covered with the edge cover 5.
  • the edge cover 5 is an insulating film and is made of, for example, a photosensitive resin.
  • the edge cover 5 prevents the electrode concentration or the organic EL layer 22 from becoming thin at the end of the first electrode 21 and short-circuiting with the second electrode 23.
  • the edge cover 5 also functions as a pixel separation film so that current does not leak to the adjacent sub-pixels 14.
  • the edge cover 5 is provided with an opening 5 a for each sub-pixel 14. An exposed portion of the first electrode 21 through the opening 5 a is a light emitting region of each sub-pixel 14.
  • the organic EL layer 22 is provided between the first electrode 21 and the second electrode 23.
  • the organic EL layer 22 has a configuration in which, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are stacked in this order from the first electrode 21 side.
  • one layer may have a plurality of functions.
  • a hole injection layer / hole transport layer having the functions of both layers may be provided.
  • an electron injection layer / electron transport layer having the functions of both layers may be provided.
  • a carrier blocking layer may be appropriately provided between the layers.
  • the first electrode 21 is an anode (pattern electrode, pixel electrode) and the second electrode 23 is a cathode (common electrode), but the first electrode 21 is a cathode and the second electrode. 23 may be an anode.
  • the order of the layers constituting the organic EL layer 22 is reversed.
  • the organic EL display device 100 is a bottom emission type that emits light from the back side of the support 1
  • the second electrode 23 is formed of a reflective electrode material
  • the first electrode 21 is transparent or translucent. It is preferable to form the transparent electrode material.
  • the organic EL display device 100 is a top emission type that emits light from the sealing film 30 side
  • the first electrode 21 is formed of a reflective electrode material
  • the second electrode 23 is transparent or translucent. It is preferable to form the transparent electrode material.
  • the sealing film 30 is formed on the support 1 and the second electrode 23 so as to seal the organic EL element 20 between the support 1 and the sealing film 30.
  • the sealing film 30 prevents the organic EL element 20 from being deteriorated by moisture or oxygen that has entered from the outside.
  • the organic layer which is not shown in figure may be formed in order to adjust an optical characteristic, and the 2nd electrode 23 is protected.
  • An electrode protective layer may be formed.
  • FIG. 1 is a cross-sectional view showing configurations of a second electrode and a sealing film of the organic EL display device according to the present embodiment.
  • the sealing film 30 of the organic EL display device 100 includes a lower inorganic film 31 (first inorganic film) formed on the second electrode 23 and an organic film 32.
  • the upper inorganic film 33 (second inorganic film) is laminated in this order from the second electrode 23 side.
  • the sealing film 30 is formed on the second electrode 23. As shown in FIG. 2A, the sealing film 30 is formed on the support 1. Is formed in a similar manner, and is formed so as to completely cover the organic EL element 20 in the display region of the organic EL display device 100.
  • the lower inorganic film 31 has a laminated structure of a first inorganic layer 34 (first layer) in contact with the second electrode 23 and a second inorganic layer 35 (second layer). is doing.
  • the film thickness of the first inorganic layer 34 is thinner than the film thickness of the second inorganic layer 35.
  • the first inorganic layer 34 and the second inorganic layer 35 have film stress, and the absolute value of the film stress of the first inorganic layer 34 is smaller than the absolute value of the film stress of the second inorganic layer 35.
  • the film stress of the 1st inorganic layer 34 and the 2nd inorganic layer 35 may be a tensile stress or a compressive stress, below, the 1st inorganic layer 34 and the 2nd inorganic layer 35 are used. Will be described as having compressive stress.
  • an inorganic film has a higher moisture-proof function than an organic film.
  • the sealing film 30 of this embodiment includes a lower inorganic film 31 and an upper inorganic film 33 as inorganic films. Thereby, the sealing film 30 has high moisture resistance.
  • the thickness of the lower layer inorganic film 31 and the upper layer inorganic film 33 is thin, the moisture resistance is lowered. Therefore, the thickness of the lower layer inorganic film 31 and the upper layer inorganic film 33 should be designed according to the required degree of moisture resistance. Is preferred.
  • first inorganic layer 34 and the second inorganic layer 35 have compressive stress (film stress). Thereby, the breaking elongation (breaking strength) of the sealing film 30 can be improved.
  • the first inorganic layer 34 is thinner than the second inorganic layer 35 and has an absolute value of compressive stress smaller than that of the second inorganic layer 35.
  • the adhesiveness of the lower layer inorganic film 31, the 2nd electrode 23, and the support body 1 can be improved.
  • the thickness of the first inorganic layer 34 the force applied three-dimensionally to the first inorganic layer 34 when the organic EL display device 100 is bent is reduced. The elongation at break can be improved.
  • the second inorganic layer 35 has a larger absolute value of compressive stress than the first inorganic layer 34.
  • the lower inorganic film 31 can be formed using a material such as silicon nitride (SiN), silicon oxide (SiO), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), for example.
  • the film thickness of the first inorganic layer 34 is 100 nm or more and less than 200 nm, the compressive stress of the first inorganic layer 34 is ⁇ 100 MPa or more and less than 0 MPa, the film thickness of the second inorganic layer 35 is 200 nm or more and 300 nm or less, 2
  • the compressive stress of the inorganic layer 35 is preferably ⁇ 300 MPa or more and ⁇ 100 MPa or less.
  • Organic film 32 The organic film 32 is provided between the lower inorganic film 31 and the upper inorganic film 33. Thereby, the compressive stress of the lower inorganic film 31 and the upper inorganic film 33 can be relieved, and the lower inorganic film 31 and the upper inorganic film 33 can be prevented from being broken when the organic EL display device 100 is bent. . Furthermore, it is possible to cancel the pinhole and prevent film loss due to foreign matter.
  • the organic film 32 can be formed using a material such as polysiloxane, silicon oxide carbide (SiOC), acrylate, polyurea, parylene, polyimide, polyamide or the like.
  • the organic film 32 is vulnerable to moisture. Therefore, the moisture resistance of the sealing film 30 can be improved by providing the upper inorganic film 33 on the organic film 32.
  • the upper inorganic film 33 has a stacked structure similar to that of the lower inorganic film 31, and specifically, a third inorganic layer 36 (third layer) formed on the organic film 32, and a fourth inorganic film
  • the layer 37 (fourth layer) has a structure laminated in this order from the organic film 32 side.
  • the film thickness of the third inorganic layer 36 is thinner than the film thickness of the fourth inorganic layer 37.
  • the third inorganic layer 36 and the fourth inorganic layer 37 have a compressive stress, and the absolute value of the compressive stress of the third inorganic layer 36 is smaller than the absolute value of the compressive stress of the fourth inorganic layer 37.
  • the film thickness, compressive stress, and composition of the third inorganic layer 36 are the same as the film thickness, compressive stress, and composition of the first inorganic layer 34.
  • the film thickness, compressive stress, and composition of the fourth inorganic layer 37 are the same as the film thickness, compressive stress, and composition of the second inorganic layer 35.
  • the third inorganic layer 36 and the fourth inorganic layer 37 have a compressive stress. Thereby, the breaking elongation (breaking strength) of the sealing film 30 can be improved.
  • the third inorganic layer 36 is thinner than the fourth inorganic layer 37 and has an absolute value of compressive stress smaller than that of the fourth inorganic layer 37.
  • the adhesiveness between the upper inorganic film 33 and the organic film 32 can be improved as compared with the case where the upper inorganic film 33 is composed of only the fourth inorganic layer 37 having a high compressive stress.
  • the thickness of the third inorganic layer 36 by reducing the thickness of the third inorganic layer 36, the force applied three-dimensionally to the third inorganic layer 36 when the organic EL display device 100 is bent is reduced. The elongation at break can be improved.
  • the fourth inorganic layer 37 has an absolute value of compressive stress larger than that of the third inorganic layer 36. Therefore, the breaking elongation rate of the sealing film 30 can be improved as compared with the case where the sealing film 30 is configured by only the third inorganic layer 36.
  • the upper inorganic film 33 can be formed using a material such as silicon nitride (SiN), silicon oxide (SiO), silicon oxynitride (SiON), alumina (Al 2 O 3 ), for example.
  • the film thickness of the third inorganic layer 36 is 100 nm or more and less than 200 nm
  • the compressive stress of the fourth inorganic layer 37 is ⁇ 100 MPa or more and less than 0 MPa
  • the film thickness of the fourth inorganic layer 37 is 200 nm or more and 300 nm or less
  • the compressive stress of the four inorganic layers 37 is preferably ⁇ 300 MPa or more and less than ⁇ 100 MPa.
  • FIG. 3A is a cross-sectional view showing the configuration of the second electrode and the sealing film of the conventional organic EL display device
  • FIG. 3B is a view when the conventional organic EL display device is bent. It is sectional drawing which shows the structure of this 2nd electrode and sealing film.
  • the sealing film 330 of the conventional organic EL display device has a lower inorganic film 331, an organic film 332, and an upper inorganic film 333 on the second electrode 23. It has a laminated structure formed in this order from the 23rd side.
  • the lower inorganic film 331 preferably has a higher compressive stress.
  • the adhesion between the lower inorganic film 331 and the second electrode 23 is improved. Therefore, the compressive stress of the lower inorganic film 331 is limited to a certain value or less.
  • the first inorganic layer 34 ensures adhesion between the organic EL element 20 and the support 1 while The elongation at break can be improved by the second inorganic layer 35.
  • the organic EL display device 100 can be suitably used as a flexible display device that can be bent like paper, such as electronic paper.
  • the tensile test is a test based on JIS K 7127. Pull a test piece with two parallel marked lines separated by 50 mm in a direction parallel to the pulling direction from both sides, and between the marked lines before pulling the test piece. In this test, the elongation at break of the test piece is evaluated based on the distance and the distance between the marked lines when the test piece is broken. For the tensile test, an autograph manufactured by Shimadzu Corporation was used.
  • a sealing film formed in a sheet shape is used as a test piece used in the tensile test.
  • the test piece 1 is a test piece having a film stress of ⁇ 51 MPa and a film thickness of 500 nm.
  • the test piece 2 is a test piece having a film stress of ⁇ 51 MPa and a film thickness of 300 nm.
  • the test piece 3 is a test piece having a film stress of ⁇ 51 MPa and a film thickness of 200 nm.
  • the test piece 4 is a test piece having a film stress of ⁇ 51 MPa and a film thickness of 150 nm.
  • the test piece 5 is a test piece having a film stress of ⁇ 51 MPa and a film thickness of 100 nm.
  • the test piece 6 is a test piece having a film stress of ⁇ 222 Pa and a film thickness of 500 nm.
  • the test piece 7 is a test piece having a film stress of ⁇ 222 Pa and a film thickness of 300 nm.
  • the test piece 8 is a test piece having a film stress of ⁇ 222 Pa and a film thickness of 150 nm.
  • FIG. 4 (a) is a table showing the results of the tensile test
  • FIG. 4 (b) is a graph showing the results of the tensile test.
  • the inorganic film having a high absolute value of the film stress has low adhesion to the second electrode 23 and the support 1, and the first inorganic layer 34 that is in direct contact with the second electrode 23 and the support 1
  • adhesion between the first inorganic layer 34, the second electrode 23, and the support 1 can be improved.
  • the absolute value of the film stress is relatively small.
  • the inorganic film has a lower elongation at break than an inorganic film having a relatively large absolute value of film stress. That is, the elongation at break and the adhesion are in a trade-off relationship with each other.
  • the adhesion between the first inorganic layer 34, the second electrode 23, and the support 1 can be improved.
  • the elongation at break of the first inorganic layer 34 is reduced. Breaking occurs from a film having a low elongation at break. Therefore, the first inorganic layer 34 is broken.
  • the breaking elongation rate increases as the film thickness decreases regardless of the absolute value of the film stress. That is, by reducing the thickness of the inorganic film, the force applied three-dimensionally to the inorganic film is reduced, so that the elongation at break is improved.
  • the moisture resistance decreases with a thin inorganic film. That is, the elongation at break and moisture resistance are also in a trade-off relationship with each other. In order to improve the elongation at break, it is preferable to form a thin inorganic film, while in order to ensure moisture resistance, it is preferable to form a thick inorganic film.
  • the elongation at break of the test pieces 1 to 5 and the elongation at break of the test pieces 6 to 8 are compared, for example, when the compressive stress is ⁇ 51 MPa, as shown by the test pieces 4 and 5,
  • the thickness is less than 200 nm, it is possible to obtain an elongation at break almost equal to that of the test piece 7 having a compressive stress of ⁇ 222 MPa and a film thickness of 300 nm.
  • the elongation at break of the test pieces 4 and 5 is larger than that of the test piece 8 having a compressive stress of ⁇ 222 MPa and a film thickness of 200 nm.
  • test piece 3 having a compressive stress of ⁇ 51 MPa and a film thickness of 200 nm can obtain an elongation at break that is not an exaggeration to say that it is almost equivalent to the test piece 8 having a compressive stress of ⁇ 222 MPa and a film thickness of 500 nm. .
  • the film thickness of the inorganic film having a relatively small absolute value of the film stress, particularly the first inorganic layer 34 is increased, the film stress of the entire inorganic film (for example, the film thickness and the film stress of the first inorganic layer 34). Product) increases. As a result, the adhesion decreases. For this reason, it is desirable that the film thickness of the first inorganic layer 34 be relatively thin.
  • the inorganic film having a relatively small absolute value of the film stress is the first inorganic layer 34
  • the inorganic film having the relatively large absolute value of the film stress is the second inorganic layer 35
  • the film thickness of the first inorganic layer 34 Is made thinner than the film thickness of the second inorganic layer 35 to ensure the moisture resistance of the lower inorganic film 31, the adhesion between the lower inorganic film 31, the second electrode 23 and the support 1, and the lower inorganic layer
  • the breaking elongation of the film 31 can be improved.
  • preferred film thicknesses of the first inorganic layer 34 and the second inorganic layer 35 and further preferred films of an inorganic film having a relatively small absolute value of film stress and an inorganic film having a relatively large absolute value of film stress. Further study on thickness.
  • the film of the inorganic film having the smaller absolute value of the film stress when an inorganic layer having different absolute values of film stress is laminated, such as the first inorganic layer 34 and the second inorganic layer 35, as described above, the film of the inorganic film having the smaller absolute value of the film stress.
  • the thickness is set thinner than the thickness of the inorganic film having the larger absolute value of the film stress, the above-described effect can be obtained, but the inorganic film having the smaller absolute value of the film stress can be obtained.
  • the thickness, particularly the thickness of the first inorganic layer 34 is set to less than 200 nm.
  • the film stress of the lower inorganic film 31 as a whole increases as the film thickness increases.
  • the absolute value of the film stress is increased when the film thickness of the inorganic film having the larger absolute value of the film stress exceeds 300 nm. Compared to the breaking elongation of the smaller inorganic film, the breaking elongation tends to decrease.
  • the thickness of the inorganic film having the smaller absolute value of the film stress is set to less than 200 nm
  • the thickness of the inorganic film having the larger absolute value of the film stress is preferably set to 300 nm or less, for example. .
  • the inorganic film having a smaller absolute value of film stress is formed thin enough to ensure moisture resistance.
  • the Ca test is a test in which calcium covered with a test piece is placed in a high-temperature and high-humidity environment, and the moisture resistance of the test piece is evaluated based on the residual rate of calcium after partial corrosion by water vapor.
  • a sealing film formed in a sheet shape on a glass substrate was used as a test piece used for the Ca test.
  • the moisture resistance of the test piece was evaluated based on the calcium residual rate after placing the calcium covered with the test piece in a high temperature and high humidity environment in an environment of 80 ° C. and 85% humidity for 220 hours.
  • FIG. 5 is a table showing the results of the Ca test.
  • the test piece 1 has a thickness of 500 nm in which an inorganic film 100 nm having a low compressive stress, an inorganic film 300 nm having a high compressive stress, and an inorganic film 100 nm having a low compressive stress are laminated on a glass substrate in this order from the glass substrate side. It is a test piece.
  • Test piece 2 is a test piece having a thickness of 500 nm in which an inorganic film having a high compressive stress is 200 nm, an inorganic film having a low compressive stress is 100 nm, and an inorganic film having a high compressive stress is laminated in this order.
  • the test piece 3 has a thickness of 500 nm, in which an inorganic film 100 nm having a high compressive stress and an inorganic film 100 nm having a low compressive stress are alternately stacked so that the inorganic film 100 nm having a high compressive stress is a layer at both ends. It is a piece.
  • the test piece 4 is a test having a film thickness of 495 nm, in which an inorganic film 55 nm having a high compressive stress and an inorganic film 55 nm having a low compressive stress are alternately laminated so that the inorganic film 55 nm having a high compressive stress is a layer at both ends. It is a piece.
  • the inorganic film having a low compressive stress is a film having a compressive stress (-100 MPa or more and less than 0 MPa) equivalent to that of the first inorganic layer 34 in the sealing film 30 of Embodiment 1.
  • the inorganic film having a high stress is a film having a compressive stress ( ⁇ 300 MPa or more and less than ⁇ 100 MPa) equivalent to that of the second inorganic layer 35 in the sealing film 30 of the first embodiment.
  • the column of compressive stress in the table of FIG. 5 shows the stacking order of the inorganic film having a low compressive stress and the inorganic film having a high compressive stress in each test piece. It means that the inorganic film described in (1) is laminated in this order from the glass substrate side.
  • the film thickness of a film having a high compressive stress is set to 100 nm, as in the lower inorganic film 31 and the upper inorganic film 33 of the sealing film 30 according to the present embodiment.
  • the residual ratio of Ca was 70.2%. From this, it has been confirmed that the lower inorganic film 31 and the upper inorganic film 33 of the sealing film 30 according to the present embodiment have sufficient moisture resistance.
  • the total film thickness of the inorganic film with low compressive stress contained in the test piece 1 and the test piece 3 is 200 nm.
  • the total film thickness of the inorganic film having a low compressive stress contained in the piece 4 is 220 nm, and the total film thickness of the inorganic film having a low compressive stress contained in the test pieces 1, 3, 4 is the same.
  • the film thickness of each layer of the inorganic film having a low compressive stress contained in the test pieces 1 and 3 is 100 nm, and the film thickness of each layer of the inorganic film having a low compressive stress contained in the test piece 4 is 55 nm.
  • the moisture resistance is better when the thickness of the inorganic film having a low compressive stress is 100 nm or more. It turns out that becomes high.
  • the film thickness of the inorganic film with low compressive stress contained in the test piece 2 and the test piece 3 is equal to 100 nm, and the total film thickness of the test piece 2 and the test piece 3 is Equal at 500 nm.
  • the film thickness of the inorganic film with high compressive stress contained in the test piece 2 is 200 nm, and the film thickness of the inorganic film with high compressive stress contained in the test piece 3 is 100 nm. Since the Ca residual rate after the test of the test piece 2 is higher than the Ca residual rate after the test of the test piece 3, the moisture resistance is higher when the thickness of the inorganic film having a high compressive stress is 200 nm or more.
  • the total film thickness of the inorganic film with high compressive stress contained in the test piece 1 and the test piece 3 is equal to 300 nm, and the total film thickness of the test piece 1 and the test piece 3 is the same. Are equal at 500 nm.
  • the film thickness of the inorganic film with high compressive stress contained in the test piece 1 is 300 nm, and the film thickness of each layer of the inorganic film with high compressive stress contained in the test piece 3 is 100 nm.
  • the Ca residual rate after the test of the test piece 3 is higher than the Ca residual rate after the test of the test piece 1.
  • the film thickness of the inorganic film having a high absolute value of the film stress to 300 nm or less from the test piece 1, even if the film thickness of the inorganic film having a low film stress is reduced to 100 nm, sufficient moisture resistance can be obtained. Although it can be obtained, it can be seen that the moisture resistance can be further improved by setting the thickness of the inorganic film having a high absolute value of the film stress to less than 300 nm.
  • the thickness of the first inorganic layer 34 which is an inorganic film having a low absolute value of the film stress, is preferably 100 nm or more.
  • the film thickness of the second inorganic layer 35 which is an inorganic film having a high absolute value of film stress is preferably 200 nm or more and 300 nm or less, and more preferably 200 nm or more and less than 300 nm.
  • the film thickness of the first inorganic layer 34 having a low compressive stress of ⁇ 100 MPa or more and less than 0 MPa is considered in consideration of both the moisture resistance and the elongation at break of the sealing film 30.
  • the film thickness of the second inorganic layer 35 having a high compressive stress of ⁇ 300 MPa or more and less than ⁇ 100 MPa is preferably 200 nm or more and less than 300 nm, and preferably 200 nm or more and less than 300 nm. Is more preferable.
  • the upper inorganic film 33 has the same laminated structure as the lower inorganic film 31, and the film thickness, compressive stress, and composition of the third inorganic layer 36 are the same as those of the first inorganic layer 34.
  • the thickness, compressive stress, and composition are the same, and the film thickness, compressive stress, and composition of the fourth inorganic layer 37 have been described as being the same as the film thickness, compressive stress, and composition of the second inorganic layer 35.
  • the configuration of the sealing film 30 according to the present embodiment is not limited to this.
  • the upper inorganic film 33 only needs to have at least the absolute value of the compressive stress of the fourth inorganic layer 37 higher than the absolute value of the compressive stress of the third inorganic layer 36, and the film of the third inorganic layer 36 and the fourth inorganic layer 37.
  • the thickness, compressive stress, and composition may be different from the film thickness, compressive stress, and composition of the first inorganic layer 34 and the second inorganic layer 35.
  • the sealing film 30 can be formed using a plasma CVD (Chemical Vapor Deposition) apparatus.
  • the support 1 on which the organic EL element 20 is formed is placed in a vacuum chamber, a mixed gas such as monosilane, ammonia, nitrogen, hydrogen, or the like is introduced into the vacuum chamber, and plasma discharge is performed.
  • the first inorganic layer 34 is formed on the support 1.
  • the support 1 on which the first inorganic layer 34 is formed is placed in a vacuum chamber, a mixed gas of monosilane, ammonia, nitrogen, hydrogen, or the like is introduced into the vacuum chamber, and plasma discharge is performed.
  • a second inorganic layer 35 is formed on the first inorganic layer 34.
  • the support 1 on which the lower inorganic film 31 is formed is placed in a vacuum chamber, and an organic film 32 is formed on the lower inorganic film 31 by a known vapor deposition method.
  • the support 1 on which the organic film 32 is formed is placed in a vacuum chamber, and a mixed gas such as monosilane, ammonia, nitrogen, and hydrogen is introduced into the vacuum chamber, and plasma discharge is performed.
  • a mixed gas such as monosilane, ammonia, nitrogen, and hydrogen is introduced into the vacuum chamber, and plasma discharge is performed.
  • the third inorganic layer 36 is formed.
  • the support 1 on which the third inorganic layer 36 is formed is placed in a vacuum chamber, a mixed gas such as monosilane, ammonia, nitrogen, hydrogen, or the like is introduced into the vacuum chamber, and plasma discharge is performed.
  • a fourth inorganic layer 37 is formed on the third inorganic layer 36.
  • the film stress of the formed film can be adjusted by controlling the flow rate of gas such as monosilane, ammonia, nitrogen, hydrogen, etc. it can.
  • the plasma discharge power is 900 W
  • the monosilane flow rate is 243 sccm
  • the ammonia flow rate is 435 sccm.
  • the first inorganic layer 34 of the lower inorganic film 31 has a thickness of 100 nm to less than 200 nm and a compressive stress of ⁇ 100 MPa.
  • the second inorganic layer 35 of the lower inorganic film 31 is sealed so that the film thickness is 200 nm or more and 300 nm or less and the compressive stress is ⁇ 300 MPa or more and less than ⁇ 100 MPa.
  • a stop film 30 was formed.
  • the film-forming method of the sealing film 30 by CVD method using a plasma CVD apparatus was mentioned as an example, the film-forming method of the sealing film 30 is not restricted to this.
  • the sealing film 30 may be formed by sputtering or ALD (Atomic Layer Deposition) method.
  • the CVD method and the ALD method can be preferably used because of high step coverage.
  • the sealing film 30 is used only at a position where film formation is required using a film formation mask having an opening. May be formed.
  • FIG. 6 is a cross-sectional view showing the configuration of the second electrode and the sealing film of the organic EL display device according to the present embodiment.
  • the organic EL display device includes the organic EL display device according to the first embodiment except that the lower inorganic film 131 and the upper inorganic film 133 of the sealing film 130 each have a four-layer structure. It has the same configuration as the EL display device 100.
  • the lower inorganic film 131 includes a first inorganic layer 34 (first layer), a second inorganic layer 35 (second layer), a fifth inorganic layer 38, and a sixth inorganic layer formed on the second electrode 23.
  • the layer 39 has a structure in which the layers are stacked in this order from the second electrode 23 side.
  • the film thickness of the first inorganic layer 34 is thinner than the film thickness of the second inorganic layer 35.
  • the first inorganic layer 34 and the second inorganic layer 35 have a compressive stress, and the absolute value of the compressive stress of the first inorganic layer 34 is smaller than the absolute value of the compressive stress of the second inorganic layer 35.
  • the film thickness and compressive stress of the fifth inorganic layer 38 are the same as the film thickness and compressive stress of the first inorganic layer 34, and the film thickness and compressive stress of the sixth inorganic layer 39 are the film thickness of the second inorganic layer 35. And compressive stress.
  • the upper inorganic film 133 includes a third inorganic layer 36, a fourth inorganic layer 37, a seventh inorganic layer 40, and an eighth inorganic layer 41 formed on the organic film 32 from the second electrode 23 side. It has a structure laminated in this order.
  • the film thickness of the third inorganic layer 36 is thinner than the film thickness of the fourth inorganic layer 37.
  • the third inorganic layer 36 and the fourth inorganic layer 37 have a compressive stress, and the absolute value of the compressive stress of the third inorganic layer 36 is smaller than the absolute value of the compressive stress of the fourth inorganic layer 37.
  • the film thickness and compressive stress of the seventh inorganic layer 40 are the same as the film thickness and compressive stress of the third inorganic layer 36, and the film thickness and compressive stress of the eighth inorganic layer 41 are the film thickness of the fourth inorganic layer 37. And compressive stress.
  • the lower inorganic film 131 of the sealing film 130 includes a thin film (first inorganic layer 34 and fifth inorganic layer 38) having a small compressive stress and a thick film (second inorganic layer 35 and The sixth inorganic layer 39) has a structure in which it is laminated twice.
  • the upper inorganic film 133 includes a thin film (the third inorganic layer 36 and the seventh inorganic layer 40) having a small compressive stress and a thick film (the fourth inorganic layer 37 and the eighth inorganic layer 41) having a large compressive stress. It has a structure in which it is laminated twice.
  • the lower inorganic film 131 and the upper inorganic film 133 each have a four-layer structure, while the organic film 32 having low moisture resistance is provided only between the lower inorganic film 131 and the upper inorganic film 133.
  • the sealing performance (barrier property) of the sealing film 130 is increased as compared with the sealing film 30 according to the first embodiment without increasing the number of layers of the organic film 32 and increasing the thickness of the sealing film 130. Can be improved.
  • the lower inorganic film 131 and the upper inorganic film 133 are described as having a structure in which a thin film having a small compressive stress and a thick film having a large compressive stress are laminated twice.
  • the laminated structure of the lower layer inorganic film 131 and the upper layer inorganic film 133 of the present embodiment is not limited to this.
  • the lower inorganic film 131 and the upper inorganic film 133 may have a structure in which a thin film having a small compressive stress and a thick film having a large compressive stress are stacked three or more times.
  • FIG. 7 is a cross-sectional view showing the configuration of the second electrode and the sealing film of the organic EL display device according to the present embodiment.
  • the organic EL display device according to the present embodiment is the same as the organic EL display device according to the first embodiment except that the lower inorganic film 231 and the upper inorganic film 233 of the sealing film 230 each have a three-layer structure. It has the same configuration as the EL display device 100.
  • the lower inorganic film 231 includes a first inorganic layer 34 (first layer), a second inorganic layer 35 (second layer), and a ninth inorganic layer 42 formed on the second electrode 23. It has a structure in which they are stacked in this order from the electrode 23 side.
  • the film thickness of the first inorganic layer 34 and the ninth inorganic layer 42 is smaller than the film thickness of the second inorganic layer 35.
  • the first inorganic layer 34, the second inorganic layer 35, and the ninth inorganic layer 42 have compressive stress, and the absolute value of the compressive stress of the first inorganic layer 34 and the ninth inorganic layer 42 is the second value.
  • the absolute value of the compressive stress of the inorganic layer 35 is smaller.
  • the film thickness and compressive stress of the ninth inorganic layer 42 are the same as the film thickness and compressive stress of the first inorganic layer 34.
  • the upper inorganic film 233 has a structure in which a third inorganic layer 36, a fourth inorganic layer 37, and a tenth inorganic layer 43 formed on the organic film 32 are laminated in this order from the organic film 32 side. is doing.
  • the film thickness of the third inorganic layer 36 and the tenth inorganic layer 43 is thinner than the film thickness of the fourth inorganic layer 37. Further, the third inorganic layer 36, the fourth inorganic layer 37, and the tenth inorganic layer 43 have compressive stress, and the absolute value of the compressive stress of the third inorganic layer 36 and the tenth inorganic layer 43 is fourth. The absolute value of the compressive stress of the inorganic layer 37 is smaller.
  • the film thickness and compressive stress of the tenth inorganic layer 43 are the same as the film thickness and compressive stress of the third inorganic layer 36.
  • the sealing film 230 according to the present embodiment since the lower inorganic film 231 and the upper inorganic film 233 each have a three-layer structure, the sealing performance of the sealing film 230 compared to the sealing film 30 according to the first embodiment. (Barrier property) can be improved.
  • FIG. 8 is a cross-sectional view showing an example of a schematic configuration of the organic EL display device according to the present embodiment.
  • the organic EL display device 200 includes a counter substrate and according to the first embodiment, except that a filler is filled between the counter substrate and the TFT substrate. It has the same configuration as the organic EL display device 100.
  • the organic EL display device 200 includes a counter substrate 50 that is bonded so as to face the TFT substrate 10.
  • the counter substrate 50 includes a counter support 51 and a color filter 52 provided on the surface of the counter support 51 on the TFT substrate 10 side.
  • the counter substrate 50 and the TFT substrate 10 are aligned so that each light transmission region of the color filter 52 and each sub-pixel of the TFT substrate 10 face each other. It is pasted together.
  • the color filter 52 has a function of modulating the light emitted from the organic EL element 20.
  • the red (R), green (G), and blue (B) color filters 52 are used to convert white light into red, green, and sub-pixels. Or can be emitted after being modulated into a blue color.
  • the color filter 52 is used to modulate the light of each color. It is possible to improve the color purity of each color and to suppress the color shift when the viewing angle changes.
  • the color filter 52 may be omitted when there is no problem with monochromatic light emission or when there is no need to suppress the color purity or the color shift of the light emitted from the organic EL element 20.
  • the organic EL display device 200 can be a flexible display or a bendable display.
  • a gap spacer may be provided on the TFT substrate 10 in order to prevent the counter substrate 50 from colliding with the organic EL element 20 and damaging the organic EL element 20.
  • a sealing material 6 is provided between the TFT substrate 10 and the counter substrate 50 so as to surround the display area.
  • a region surrounded by the TFT substrate 10, the counter substrate 50, and the sealing material 6 is filled with a filler 7.
  • sealing material 6 a low moisture-permeable material may be used.
  • the filler 7 a material having low moisture permeability or a material containing a desiccant or an oxygen absorber may be used.
  • the filler 7 is liquid and exists between the two substrates. This is a case where a curable filler 7 is used as the filler 7, and the filler 7 and the sealing film 30 sufficiently prevent moisture and oxygen from entering the organic EL element 20 to ensure reliability. If possible, the sealing material 6 may be omitted.
  • the filler 7 is injected into a region surrounded by the sealing material 6 after forming the sealing film 30 and irradiating the sealing film 30 with laser.
  • FIG. 9 is a partial cross-sectional view of the organic EL display device according to this embodiment.
  • the counter substrate 50 and the sealing material 6 By filling the region surrounded by the TFT substrate 10, the counter substrate 50 and the sealing material 6 with the filler 7 and encapsulating the organic EL element 20 and the sealing film 30, as shown in FIG.
  • the laminated end face of the stop film 30 (laminated sealing film) is covered with the filler 7. Thereby, the penetration
  • the lower inorganic film 31 is formed on the support 1 so as to cover the end face of the second electrode 23.
  • the organic film 32 is laminated on the lower inorganic film 31, and the upper inorganic film 33 is laminated on the organic film 32.
  • the laminated end face of the sealing film 30, which is composed of the end face of the lower inorganic film 31, the end face of the organic film 32, and the end face of the upper inorganic film 33, is formed flush.
  • the sealing material 6 and the filler 7 suppress the intrusion of moisture and oxygen from the stacked end surface of the sealing film 30 into the organic EL element 20. Therefore, the deterioration of the organic EL element 20 can be further suppressed, and the reliability of the organic EL display device 200 can be improved.
  • FIGS. 10A to 10C are partial cross-sectional views of an organic EL display device according to a modification of the present embodiment.
  • FIG. 10A is a cross-sectional view of a part of the organic EL display device according to the first modification.
  • the sealing film 30A of the organic EL display device according to Modification 1 the lower inorganic film 31A, the organic film 32A, and the upper inorganic film 33A are laminated in this order from the support 1 side, and the upper inorganic film 33A. Covers the laminated end face of the lower inorganic film 31A and the organic film 32A (end faces of the lower inorganic film 31A and the organic film 32A).
  • the lower layer inorganic film 31 ⁇ / b> A is formed on the support 1 so as to cover the end face of the second electrode 23.
  • the organic film 32A is laminated on the lower inorganic film 31, and the upper inorganic film 33A covers the upper surface of the organic film 32A and supports the laminated end face of the lower inorganic film 31A and the organic film 32A. Formed on top.
  • the laminated end surface of the lower inorganic film 31A and the organic film 32A is formed flush.
  • the lower inorganic film 31A has the same configuration as the lower inorganic film 31 of the first embodiment, and the organic film 32A is the same as the organic film 32 of the first embodiment.
  • the upper inorganic film 33A has the same configuration as that of the upper inorganic film 33 of the first embodiment.
  • the lower inorganic film 31A has a laminated structure of a first inorganic layer 34 and a second inorganic layer 35, and the upper inorganic film 33A includes a third inorganic layer 36 and a fourth inorganic layer 37. It has the laminated structure of.
  • the organic film is less moisture-proof than the inorganic film, but according to the configuration of the first modification, the surface (upper surface and end surface) of the organic film 32A is covered with the upper inorganic film 33A. The surface of the film 32A is not exposed. Therefore, it is possible to suppress moisture and oxygen from entering the organic EL element 20 from the surface of the organic film 32A.
  • FIG. 10B is a cross-sectional view of a part of the organic EL display device according to the second modification.
  • the sealing film 30B of the organic EL display device according to Modification 2 the lower inorganic film 31B, the organic film 32B, and the upper inorganic film 33B are laminated in this order from the support 1 side, and the organic film 32B is The surface of the lower inorganic film 31B is covered, and the upper inorganic film 33B covers the surface of the organic film 32B.
  • the lower inorganic film 31 ⁇ / b> B is formed on the support 1 so as to cover the end face of the second electrode 23.
  • the organic film 32B is formed on the support 1 so as to cover the upper surface and the end surface of the lower inorganic film 31B.
  • the upper inorganic film 33B is formed on the support 1 so as to cover the upper surface and the end surface of the organic film 32B.
  • the lower inorganic film 31B has the same configuration as the lower inorganic film 31 of the first embodiment, and the organic film 32B is the same as the organic film 32 of the first embodiment.
  • the upper inorganic film 33B has the same configuration as that of the upper inorganic film 33 of the first embodiment.
  • the lower inorganic film 31B has a laminated structure of the first inorganic layer 34 and the second inorganic layer 35, and the upper inorganic film 33B includes the third inorganic layer 36 and the fourth inorganic layer 37. It has the laminated structure of.
  • the surface of the lower inorganic film 31B that is the film closest to the organic EL element 20 among the films constituting the sealing film 30B is doubly covered with the organic film 32B and the upper inorganic film 33B. It has been broken. Therefore, it is possible to suppress the penetration of moisture and oxygen into the lower inorganic film 31B, and as a result, it is possible to inhibit the penetration of moisture and oxygen into the organic EL element 20.
  • FIG. 10C is a cross-sectional view of a part of the organic EL display device according to the third modification.
  • a lower inorganic film 31C, an organic film 32C, and an upper inorganic film 33C are laminated in this order from the support 1 side, and the upper inorganic film 33C. Covers the end face of the organic film 32C.
  • the lower inorganic film 31C is formed on the support 1 so as to cover the end face of the second electrode 23.
  • the organic film 32C and the upper inorganic film 33C are laminated so that the organic film 32C covers a part of the upper surface of the lower inorganic film 31C, and the upper inorganic film 33C covers the surface of the organic film 32C and the upper surface of the lower inorganic film 31C.
  • the upper inorganic film 33C is laminated on the lower inorganic film 31C so that the end face is flush with the end face of the lower inorganic film 31C.
  • the lower inorganic film 31C has the same configuration as the lower inorganic film 31 of the first embodiment, and the organic film 32C is the same as the organic film 32 of the first embodiment.
  • the upper inorganic film 33C has the same structure as the upper inorganic film 33 of the first embodiment.
  • the lower inorganic film 31C has a laminated structure of a first inorganic layer 34 and a second inorganic layer 35, and the upper inorganic film 33C includes a third inorganic layer 36 and a fourth inorganic layer 37. It has the laminated structure of.
  • moisture and oxygen can be prevented from entering the organic EL element 20 from the surfaces of the organic films 32A, 32B, and 32C.
  • the organic EL display device 100 is described as an example of the EL display device.
  • the present invention is not limited to this, and the EL display device according to the present invention may be an inorganic EL display device including an inorganic EL layer composed of an inorganic compound layer, and the present invention is applied to the inorganic EL display device.
  • the sealing film 30 can be prevented from cracking and the sealing performance of the inorganic EL element can be improved.
  • the EL display device (organic EL display device 100/200) according to the aspect 1 of the present invention includes the EL element between the EL element (organic EL element 20) formed on the substrate (support 1) and the substrate.
  • An EL display device comprising the substrate and a sealing film (30) formed on the EL element so as to seal the element, wherein the sealing film is a first inorganic film (lower layer)
  • the first inorganic film is formed on the first layer (first inorganic layer 34) in contact with the substrate and the EL element, and the first layer.
  • a second layer (second inorganic layer 35), and the absolute value of the film stress of the first layer is smaller than the absolute value of the film stress of the second layer.
  • the film thickness is smaller than the film thickness of the second layer.
  • the first inorganic film includes the first layer, adhesion between the first inorganic film, the substrate, and the EL element can be improved.
  • the breaking elongation of the first inorganic film can be improved.
  • the sealing film is provided on the organic film (32) provided on the first inorganic film and on the organic film.
  • a configuration including the second inorganic film (upper inorganic film 33) may be employed.
  • the stress of a 1st inorganic film can be relieved by providing an organic film, and moisture resistance can be improved by providing a 2nd inorganic film.
  • the second inorganic film includes a third layer (third inorganic layer 36) in contact with the organic film, and the third layer. And a fourth layer (fourth inorganic layer 37) formed thereon, and the absolute value of the film stress of the third layer is smaller than the absolute value of the film stress of the fourth layer.
  • the film thickness of the third layer may be thinner than the film thickness of the fourth layer.
  • the 2nd inorganic film is provided with the 3rd layer, the adhesiveness of a 2nd inorganic film and an organic film can be improved, and a 2nd inorganic film is 4th.
  • the layer By providing the layer, the elongation at break of the second inorganic film can be improved.
  • the first layer has a film thickness of 100 nm or more and less than 200 nm, and a compressive stress of ⁇ 100 MPa or more and less than 0 MPa.
  • the second layer may have a thickness of 200 nm to 300 nm and a compressive stress of ⁇ 300 MPa to less than ⁇ 100 MPa.
  • the moisture resistance and elongation at break of the sealing film can be improved.
  • An EL display device includes the counter substrate arranged to face the substrate in any one of the above aspects 1 to 4, and the EL element and the sealing film are formed. Between the said board
  • the laminated end face of the sealing film is covered with the filler, it is possible to suppress intrusion of moisture and oxygen from the boundary portion of each layer of the sealing film. Thereby, invasion of moisture and oxygen into the EL element can be suppressed.
  • the EL display device may be configured such that, in aspect 2, the second inorganic film is provided so as to cover the upper surface and the end surface of the organic film.
  • the organic film is less moisture-proof than the inorganic film, according to the above configuration, the surface of the organic film (upper surface and end surface) is covered with the second inorganic film, so that the surface of the organic film is exposed. There is nothing. Therefore, it is possible to suppress moisture and oxygen from entering the EL element from the surface of the organic film.
  • the EL display device may be configured such that, in Aspect 6, the second inorganic film covers a laminated end face of the first inorganic film and the organic film.
  • the EL display device according to aspect 8 of the present invention is the EL display device according to aspect 6, wherein the organic film covers an upper surface and an end surface of the first inorganic film, and the second inorganic film is an upper surface of the organic film. And the structure which has covered the end surface may be sufficient.
  • the surface of the first inorganic film that is the film closest to the EL element among the films constituting the sealing film is doubly covered with the organic film and the second inorganic film. Therefore, intrusion of moisture and oxygen into the first inorganic film can be suppressed, and as a result, entry of moisture and oxygen into the EL element can be suppressed.
  • the organic film is provided so as to cover a part of an upper surface of the first inorganic film
  • the second inorganic film is The upper surface and the end surface of the organic film and the upper surface of the first inorganic film may be covered.
  • An EL display device manufacturing method is formed on the substrate and the EL element so that the EL element is sealed between the EL element formed on the substrate and the substrate.
  • the sealing film is a method for manufacturing an EL display device including a first inorganic film, and is a first layer that is a layer in contact with the substrate and the EL element. And a second layer formed on the first layer, and a film forming step of forming the first inorganic film having a stacked structure, wherein the first step
  • the first inorganic film is formed so that the absolute value of the film stress of the layer is smaller than the absolute value of the film stress of the second layer, and the film thickness of the first layer is smaller than the film thickness of the second layer. It is characterized by forming a film.
  • the first inorganic film having the first layer and the second layer is formed, thereby improving the adhesion between the substrate and the EL element and improving the elongation at break.
  • An EL display device including a sealing film having an inorganic film can be manufactured.
  • the method for manufacturing an EL display device according to aspect 11 of the present invention may be the manufacturing method according to aspect 10 in which the sealing film is formed by plasma CVD in the film forming step.
  • a sealing film can be uniformly formed on the surface of the substrate even when there are irregularities on the surface of the substrate. .
  • the present invention can be suitably used for forming a sealing film that covers an EL element in an EL display device.

Abstract

 基板と封止膜との密着性を高め、かつ、封止膜におけるクラックの発生を抑制したEL表示装置を提供する。下層無機膜(31)は、基板及びEL素子に接触している第1無機層(34)と、第2無機層(35)と、の積層構造を有しており、第1無機層(34)の膜応力の絶対値は第2無機層(35)の膜応力の絶対値よりも小さく、第1無機層(34)の膜厚は第2無機層(35)の膜厚よりも薄い。

Description

EL表示装置及びEL表示装置の製造方法
 本発明はEL表示装置及びEL表示装置の製造方法に関する。
 発光材料の電界発光(Electro luminescence;以下、「EL」と記す)を利用したEL表示装置は、液晶表示装置に比べて応答速度が速く、視野角も広い表示装置として注目されている。
 EL表示装置は、例えば、ガラス基板等からなる支持体上にTFT(薄膜トランジスタ)が設けられてなるTFT基板上に、TFTに接続されたEL素子が設けられた構成を有している。
 しかしながら、EL素子は、一般的に、水分や酸素等による影響を受け易く、微量の水分や酸素と反応することでその特性が劣化し、表示装置の寿命を損なう。
 そこで、EL素子内への水分や酸素の浸入を防止するために、例えば、EL素子上に封止膜を形成することでEL素子を封止する技術が知られている。
 封止膜は蒸着等の方法によって成膜することができ、その膜厚が厚いほど、EL素子内への水分及び酸素の侵入を防止するブロッキング効果が高まる。しかしながら、封止膜の膜厚を厚くすると、封止膜の膜応力が増大し、封止膜がTFT基板から剥がれる膜浮きが生じるおそれがある。また、EL表示装置に外力が加わることにより、封止膜にクラックが生じるおそれがある。
 封止膜の膜浮きやクラックが生じると、膜浮き部分やクラック部分からEL素子に水分及び酸素等が侵入し、ダークスポットやシュリンク等の発光不良を生じる。
 特許文献1には、有機EL素子の上に設けられた封止膜としての無機絶縁膜と、有機化合物を含む応力緩和膜と、無機絶縁膜とがこの順で設けられた発光装置が記載されている。特許文献1の発光装置は、2層の無機絶縁膜の間に、無機絶縁膜よりも応力が小さい応力緩和膜が設けられていることにより、無機絶縁膜の膜応力を緩和し、無機絶縁膜の膜剥がれを防止することができる。
 また、特許文献2には、基材フィルムの上にSiOx薄膜が形成されたガスバリアフィルムであって、薄膜に圧縮残留ひずみを与えることによってSiOx薄膜の破壊ひずみを大きくしてクラックの発生を抑制したガスバリアフィルムが記載されている。
 また、特許文献3には、樹脂フィルムの上にバッファ層を設け、バッファ層の上に、真空蒸着法等によって形成されたTFT、有機EL素子、及び封止膜がこの順で設けられた有機EL表示装置が記載されている。特許文献2の有機EL表示装置のバッファ層は、無機膜からなる圧縮応力性の層と、引張応力性の層と、圧縮応力性の層とがこの順で積層された積層構造を有している。これにより、圧縮応力性の層と引張応力性の層とが互いの応力を相殺し、TFTへのクラックの発生を抑制することができる。
日本国公開特許公報「特開2004-95551号公報(2004年3月25日公開)」 日本国登録特許公報「特許第4196440号(2008年10月10日登録)」 日本国登録特許公報「特許第5448960号(2014年1月10日登録)」
 特許文献1の発光装置では、EL素子の上に設けられた無機絶縁膜の厚みが厚いほど防湿性が高まり、EL素子への水分の侵入を防止することができる。しかしながら、無機絶縁膜の厚みを厚くすると、無機絶縁膜が有する圧縮応力の影響により、無機絶縁膜とEL素子との密着性が低下する。特許文献1の発光装置では、無機絶縁膜の防湿性と密着性とを両立することができない。
 特許文献2のガスバリアフィルムでは、SiOx薄膜と基材フィルムとの密着性が考慮されていないため、特許文献2に記載の技術をEL表示装置の封止膜の成膜に適用した場合、封止膜とTFT基板との密着性が低くなり、封止膜がTFT基板から剥がれてしまうおそれがある。
 特許文献3の有機EL表示装置では、バッファ層と樹脂フィルムとの密着性が考慮されていないため、特許文献2に記載の技術をEL表示装置の封止膜の成膜に適用した場合、封止膜とTFT基板との密着性が低くなり、封止膜がTFT基板から剥がれてしまうおそれがある。
 そこで、本発明は上記の課題に鑑みなされたものであって、その目的は、基板と封止膜との密着性を高め、かつ、封止膜におけるクラックの発生を抑制したEL表示装置及びEL表示装置の製造方法を提供することにある。
 上記の課題を解決するために、本発明の一態様に係るEL表示装置は、基板上に形成されたEL素子と、上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜とを備えているEL表示装置であって、上記封止膜は、第1の無機膜を含んでおり、上記第1の無機膜は、上記基板及び上記EL素子に接触している第1層と、上記第1層の上に形成された第2層と、の積層構造を有しており、上記第1層の膜応力の絶対値は上記第2層の膜応力の絶対値よりも小さく、上記第1層の膜厚は上記第2層の膜厚よりも薄いことを特徴とする。
 また、上記の課題を解決するために、本発明の一態様に係るEL表示装置の製造方法は、基板上に形成されたEL素子と、上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜とを備えており、上記封止膜は第1の無機膜を含んでいるEL表示装置の製造方法であって、上記基板及び上記EL素子に接触する第1層と、上記第1層の上に形成された第2層と、の積層構造を有している上記第1の無機膜を成膜する成膜工程を含み、上記成膜工程では、上記第1層の膜応力の絶対値が上記第2層の膜応力の絶対値よりも小さく、上記第1層の膜厚が上記第2層の膜厚よりも薄くなるように上記第1の無機膜を成膜することを特徴とする。
 本発明の一態様によれば、基板と封止膜との密着性を高め、かつ、封止膜におけるクラックの発生を抑制したEL表示装置及びEL表示装置の製造方法を提供することができる。
本発明の実施形態1にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。 (a)は、本発明の実施形態1にかかる有機EL表示装置の概略構成の一例を示す断面図であり、(b)は、(a)に示す有機EL表示装置のサブ画素の概略構成を示す平面図である。 (a)は、従来の有機EL表示装置の第2電極及び封止膜の構成を示す断面図であり、(b)は、従来の有機EL表示装置を屈曲させたときの第2電極及び封止膜の構成を示す断面図である。 (a)は、引張試験の結果を示す表であり、(b)は、引張試験の結果を示すグラフである。 Ca試験の結果を示す表である。 本発明の実施形態2にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。 本発明の実施形態3にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。 本発明の実施形態4にかかる有機EL表示装置の概略構成の一例を示す断面図である。 本発明の実施形態4にかかる有機EL表示装置の一部の断面図である。 (a)~(c)は、本発明の実施形態4の変形例にかかる有機EL表示装置の一部の断面図である。
 〔実施形態1〕
 以下、本発明の実施の形態について、図1ないし図5の(a)・(b)に基づいて詳細に説明する。
 以下の説明では、EL表示装置として、有機EL表示装置を例に挙げて説明する。
 <有機EL表示装置の概略構成>
 図2の(a)は、本実施形態にかかる有機EL表示装置の概略構成の一例を示す断面図であり、図2の(b)は、図2の(a)に示す有機EL表示装置のサブ画素の概略構成を示す平面図である。
 図2の(a)に示すように、有機EL表示装置100(EL表示装置)は、TFT(Thin Film Transistor:薄膜トランジスタ)基板10上に、有機EL素子20(EL素子)、封止膜30が、TFT基板10側からこの順に設けられた構成を有している。
 TFT基板10は、ガラス基板やプラスチックフィルム等からなる絶縁性の支持体1(基板)を備えている。支持体1上には、TFT2、信号線3、層間絶縁膜4等が設けられている。
 信号線3は、複数のゲート線、複数のソース線、及び複数の電源線等で構成されている。これら信号線3で格子状に囲まれた領域の各々には、各色のサブ画素14が配置されている。例えば、赤(R)、緑(G)、青(B)のサブ画素14のセットで、一つの画素を形成している。
 各サブ画素14には、それぞれTFT2が設けられている。TFT2は、それぞれ、信号線3に接続されており、ゲート線で信号入力するサブ画素を選択し、ソース線で、選択されたサブ画素に入力する電荷の量を決定し、電源線から電流を有機EL素子20に流す。
 TFT2及び信号線3は、層間絶縁膜4で覆われている。層間絶縁膜4の材料としては、例えばアクリル樹脂やポリイミド樹脂等の絶縁性材料を用いることができる。層間絶縁膜4の厚さは、TFT2及び信号線3の上面の段差を解消することができればよく、特に限定されない。
 有機EL素子20は、第1電極21(陽極)、有機EL層22、第2電極23(陰極)等で構成されている。
 第1電極21は、層間絶縁膜4上に形成されている。第1電極21は、有機EL層22に正孔を注入(供給)し、第2電極23は、有機EL層22に電子を注入する。第1電極21は、層間絶縁膜4に形成されたコンタクトホール4aを介して、TFT2に電気的に接続されている。
 第1電極21の端部はエッジカバー5で覆われている。エッジカバー5は絶縁膜であり、例えば感光性樹脂で構成されている。エッジカバー5は、第1電極21の端部で、電極集中や有機EL層22が薄くなって第2電極23と短絡することを防止する。また、エッジカバー5は、隣接するサブ画素14に電流が漏れないように、画素分離膜としても機能している。
 エッジカバー5には、サブ画素14毎に開口5aが設けられている。この開口5aによる第1電極21の露出部が各サブ画素14の発光領域となっている。
 有機EL層22は、第1電極21と第2電極23との間に設けられている。有機EL層22は、第1電極21側から、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等が、この順に積層された構成を有している。なお、一つの層が複数の機能を有していてもよい。例えば、正孔注入層及び正孔輸送層に代えて、これら両層の機能を有する正孔注入層兼正孔輸送層が設けられていてもよい。また、電子注入層及び電子輸送層に代えて、これら両層の機能を有する電子注入層兼電子輸送層が設けられていてもよい。また、各層の間に、適宜、キャリアブロッキング層が設けられていてもよい。
 なお、図2の(a)では、第1電極21を陽極(パターン電極、画素電極)とし、第2電極23を陰極(共通電極)としているが、第1電極21を陰極とし、第2電極23を陽極としてもよい。但し、この場合、有機EL層22を構成する各層の順序は反転する。
 また、有機EL表示装置100が支持体1の裏面側から光を放出するボトムエミッション型である場合には、第2電極23を反射性電極材料で形成し、第1電極21を透明または半透明の透光性電極材料で形成することが好ましい。
 一方、有機EL表示装置100が、封止膜30側から光を放出するトップエミッション型である場合には、第1電極21を反射性電極材料で形成し、第2電極23を透明または半透明の透光性電極材料で形成することが好ましい。
 封止膜30は、支持体1との間に有機EL素子20を封止するように支持体1及び第2電極23の上に形成されている。封止膜30は、外部から浸入した水分や酸素によって有機EL素子20が劣化するのを防止する。
 なお、第2電極23と封止膜30との間には、光学特性の調整のために、図示しない有機層(光学調整層)が形成されていてもよいし、第2電極23を保護するための電極保護層が形成されていてもよい。
 <封止膜の構成>
 図1は、本実施形態にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。
 図1に示すように、本実施形態にかかる有機EL表示装置100の封止膜30は、第2電極23の上に形成された下層無機膜31(第1の無機膜)と、有機膜32と、上層無機膜33(第2の無機膜)とが、第2電極23側からこの順に積層された構造を有している。
 なお、図1は、第2電極23の上に形成された封止膜30を図示するものであるが、図2の(a)に示すように、封止膜30は支持体1の上にも同様に形成されており、有機EL表示装置100の表示領域にある有機EL素子20を完全に覆うように形成されている。
 (下層無機膜31)
 図1に示すように、下層無機膜31は、第2電極23に接触している第1無機層34(第1層)と、第2無機層35(第2層)との積層構造を有している。第1無機層34の膜厚は、第2無機層35の膜厚よりも薄い。また、第1無機層34及び第2無機層35は膜応力を有しており、第1無機層34の膜応力の絶対値は、第2無機層35の膜応力の絶対値よりも小さい。
 なお、第1無機層34及び第2無機層35の膜応力は、引張応力であってもよいし、圧縮応力であってもよいが、以下では、第1無機層34及び第2無機層35は圧縮応力を有しているものとして説明する。
 一般的に無機膜は、有機膜に比べて高い防湿機能を有している。本実施形態の封止膜30は、無機膜として、下層無機膜31及び上層無機膜33を備えている。これにより、封止膜30は、高い防湿性を有している。なお、下層無機膜31及び上層無機膜33の厚みが薄い場合、防湿性が低下するため、要求される防湿性の程度に応じて、下層無機膜31及び上層無機膜33の厚みを設計することが好ましい。
 また、第1無機層34及び第2無機層35は圧縮応力(膜応力)を有している。これにより、封止膜30の破断伸び率(破断強度)を向上させることができる。
 また、第1無機層34は、第2無機層35よりも膜厚が薄く、第2無機層35よりも圧縮応力の絶対値が小さい。これにより、下層無機膜31を、圧縮応力が高い第2無機層35のみで構成した場合に比べて、下層無機膜31と第2電極23及び支持体1との密着性を向上させることができる。また、第1無機層34の厚みを薄くすることによって、有機EL表示装置100を屈曲させたときに第1無機層34に対して3次元的に加わる力が低減されるため、封止膜30の破断伸び率を向上させることができる。
 また、第2無機層35は、第1無機層34よりも圧縮応力の絶対値が大きい。これにより、封止膜30を第1無機層34のみで構成した場合に比べて、封止膜30の破断伸び率を向上させることができ、封止膜30におけるクラックの発生を防止することができる。
 下層無機膜31は、例えば、窒化シリコン(SiN)、酸化シリコン(SiO)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)等の材料を用いて形成することができる。
 第1無機層34の膜厚は100nm以上200nm未満であり、第1無機層34の圧縮応力は-100MPa以上0MPa未満であり、第2無機層35の膜厚は200nm以上300nm以下であり、第2無機層35の圧縮応力は-300MPa以上-100MPa以下であることが好ましい。
 (有機膜32)
 有機膜32は、下層無機膜31と上層無機膜33との間に設けられている。これにより、下層無機膜31及び上層無機膜33の圧縮応力を緩和することができ、有機EL表示装置100を屈曲させた際の下層無機膜31及び上層無機膜33の破断を防止することができる。さらに、ピンホールを打ち消したり、異物による膜欠損を防止したりすることができる。
 有機膜32は、例えば、ポリシロキサン、酸化炭化シリコン(SiOC)、アクリレート、ポリ尿素、パリレン、ポリイミド、ポリアミド等の材料を用いて形成することができる。
 (上層無機膜33)
 一般的に有機膜32は水分に弱い。そこで、有機膜32の上に上層無機膜33を設けることによって、封止膜30の防湿性を向上させることができる。
 上層無機膜33は、下層無機膜31と同様の積層構造を有しており、具体的には、有機膜32の上に形成された第3無機層36(第3層)と、第4無機層37(第4層)とが、有機膜32側からこの順に積層された構造を有している。
 第3無機層36の膜厚は、第4無機層37の膜厚よりも薄い。また、第3無機層36及び第4無機層37は圧縮応力を有しており、第3無機層36の圧縮応力の絶対値は、第4無機層37の圧縮応力の絶対値よりも小さい。
 第3無機層36の膜厚、圧縮応力、及び組成は、第1無機層34の膜厚、圧縮応力、及び組成と同じである。また、第4無機層37の膜厚、圧縮応力、及び組成は、第2無機層35の膜厚、圧縮応力、及び組成と同じである。
 第3無機層36及び第4無機層37は圧縮応力を有している。これにより、封止膜30の破断伸び率(破断強度)を向上させることができる。
 また、第3無機層36は、第4無機層37よりも膜厚が薄く、第4無機層37よりも圧縮応力の絶対値が小さい。これにより、上層無機膜33を、圧縮応力が高い第4無機層37のみで構成した場合に比べて、上層無機膜33と有機膜32との密着性を向上させることができる。また、第3無機層36の厚みを薄くすることによって、有機EL表示装置100を屈曲させたときに第3無機層36に対して3次元的に加わる力が低減されるため、封止膜30の破断伸び率を向上させることができる。
 また、第4無機層37は、第3無機層36よりも圧縮応力の絶対値が大きい。これにより、封止膜30を第3無機層36のみで構成した場合に比べて、封止膜30の破断伸び率を向上させることができる。
 上層無機膜33は、例えば、窒化シリコン(SiN)、酸化シリコン(SiO)、酸窒化シリコン(SiON)、アルミナ(Al)等の材料を用いて形成することができる。
 第3無機層36の膜厚は100nm以上200nm未満であり、第4無機層37の圧縮応力は-100MPa以上0MPa未満であり、第4無機層37の膜厚は200nm以上300nm以下であり、第4無機層37の圧縮応力は-300MPa以上-100MPa未満であることが好ましい。
 <フレキシブル性>
 図3の(a)は、従来の有機EL表示装置の第2電極及び封止膜の構成を示す断面図であり、図3の(b)は、従来の有機EL表示装置を屈曲させたときの第2電極及び封止膜の構成を示す断面図である。
 図3の(a)に示すように、従来の有機EL表示装置の封止膜330は、第2電極23の上に、下層無機膜331、有機膜332、上層無機膜333が、第2電極23側からこの順に形成された積層構造を有している。
 下層無機膜331の破断伸び率を向上させるためには、下層無機膜331の圧縮応力は高い方が好ましいが、従来の有機EL表示装置では、下層無機膜331と第2電極23との密着性を確保するために、下層無機膜331の圧縮応力は一定の値以下に制限される。
 そのため、従来の有機EL表示装置を屈曲させた場合、図3の(b)に示すように、下層無機膜331が破断して下層無機膜331にクラック334が生じ、封止膜330の封止性能が低下する。
 これに対して、本実施形態にかかる有機EL表示装置100の封止膜30の積層構造によれば、第1無機層34により有機EL素子20及び支持体1との密着性を確保しつつ、第2無機層35により破断伸び率を向上させることができる。
 これにより、封止膜30の膜剥がれを防止するとともに、屈曲強度を向上させて屈曲時のクラックの発生を抑制することができる。そのため、支持体1にフレキシブルな支持体を用いた場合の有機EL表示装置100の耐屈曲性を向上させることができる。上記有機EL表示装置100は、例えば電子ペーパー等、紙のように折り曲げ可能なフレキシブルな表示装置として好適に用いることができる。
 <引張試験>
 ここで、封止膜の破断伸び率を評価するための引張試験について説明する。
 引張試験は、JIS K 7127に基づく試験であり、引っ張り方向と平行な方向に50mm離れた平行な2本の標線をつけた試験片を両側から引っ張り、試験片を引っ張る前の標線間の距離と試験片が破断したときの標線間の距離とに基づいて試験片の破断伸び率を評価する試験である。引張試験には、株式会社島津製作所製のオートグラフを使用した。
 本実施形態では、引張試験に用いる試験片として、シート状に形成された封止膜を用いた。
 引張試験では、8種類の試験片1~試験片8の破断伸び率を評価した。試験片1は、膜応力が-51MPaで膜厚が500nmの試験片である。試験片2は、膜応力が-51MPaで膜厚が300nmの試験片である。試験片3は、膜応力が-51MPaで膜厚が200nmの試験片である。試験片4は、膜応力が-51MPaで膜厚が150nmの試験片である。試験片5は、膜応力が-51MPaで膜厚が100nmの試験片である。試験片6は、膜応力が-222Paで膜厚が500nmの試験片である。試験片7は、膜応力が-222Paで膜厚が300nmの試験片である。試験片8は、膜応力が-222Paで膜厚が150nmの試験片である。
 図4の(a)は、引張試験の結果を示す表であり、図4の(b)は、引張試験の結果を示すグラフである。
 前述したように、膜応力の絶対値が高い無機膜は、第2電極23及び支持体1との密着性が低く、第2電極23及び支持体1に直接接触する第1無機層34に、膜応力の絶対値が低い無機膜を使用することで、第1無機層34と第2電極23及び支持体1との密着性を向上させることができる。
 しかしながら、図4の(a)・(b)に示す試験片1~試験片8の破断伸び率からわかるように、膜厚が同じ場合、膜応力(圧縮応力)の絶対値が相対的に小さい無機膜は、膜応力の絶対値が相対的に大きい無機膜よりも破断伸び率が低い。すなわち、破断伸び率と密着性とは、互いにトレードオフの関係にある。
 したがって、膜応力の絶対値が相対的に小さい無機膜を第1無機層34として積層することで、第1無機層34と第2電極23及び支持体1との密着性を向上させることができる一方で、第1無機層34の破断伸び率が低下することになる。破断は、破断伸び率が低い膜から起こる。したがって、第1無機層34から破断することになる。
 ここで、試験片1~試験片8の破断伸び率からわかるように、破断伸び率は、膜応力の絶対値に拘らず、膜厚が薄いほど大きい。つまり、無機膜を薄くすることで、無機膜に3次元的に加わる力が低減するので、破断伸び率が向上する。
 しかしながら、薄い無機膜では、防湿性が低下する。つまり、破断伸び率と防湿性もまた、互いにトレードオフの関係にある。破断伸び率を向上させるためには、無機膜を薄く成膜することが好ましい一方で、防湿性を確保するためには、無機膜を厚く成膜することが好ましい。
 試験片1~試験片5の破断伸び率と、試験片6~試験片8の破断伸び率とを比較すると、例えば、圧縮応力が-51MPaの場合、試験片4・5で示すように、膜厚を200nm未満とした場合、圧縮応力が-222MPaで膜厚が300nmの試験片7とほぼ同等の破断伸び率を得ることができる。試験片4・5の破断伸び率は、圧縮応力が-222MPaで膜厚が200nmの試験片8よりも大きい。また、圧縮応力が-51MPaで膜厚が200nmの試験片3は、圧縮応力が-222MPaで膜厚が500nmの試験片8とほぼ同等といっても過言ではない破断伸び率を得ることができる。
 このことから、膜応力の絶対値が相対的に小さい無機膜であっても、膜厚を薄くすることで、膜応力の絶対値が相対的に高い無機膜と同程度に破断伸び率を向上させることができることがわかる。
 さらに、膜応力の絶対値が相対的に小さい無機膜、特に、第1無機層34の膜厚が大きくなると、該無機膜全体の膜応力(例えば、第1無機層34の膜厚と膜応力との積)が大きくなる。この結果、密着性が低下する。このため、第1無機層34の膜厚は、相対的に薄いことが望ましい。
 したがって、膜応力の絶対値が相対的に小さい無機膜を第1無機層34とし、膜応力の絶対値が相対的に大きい無機膜を第2無機層35とし、第1無機層34の膜厚を第2無機層35の膜厚よりも薄くすることで、下層無機膜31の防湿性を確保した上で、下層無機膜31と、第2電極23及び支持体1との密着性および下層無機膜31の破断伸び率を向上させることができる。
 ここで、第1無機層34および第2無機層35の好ましい膜厚、さらには、膜応力の絶対値が相対的に小さい無機膜および膜応力の絶対値が相対的に大きい無機膜の好ましい膜厚についてさらに検討する。
 試験片1~試験片5の破断伸び率から、圧縮応力が-51MPaの場合、膜厚が100nm以上500nm以下の範囲内では、膜厚が薄いほど破断伸び率が大きく、膜厚が200nm以上になると、破断伸び率が急激に低下することがわかる。また、試験片6~試験片8の破断伸び率から、圧縮応力が-222MPaの場合、膜厚の増加に伴って、破断伸び率が緩やかに低下することがわかる。
 したがって、第1無機層34及び第2無機層35のように、膜応力の絶対値が互いに異なる無機層を積層する場合、上述したように、膜応力の絶対値が小さい方の無機膜の膜厚が、膜応力の絶対値が大きい方の無機膜の膜厚よりも薄く設定されてさえいれば、上述した効果を得ることができるものの、膜応力の絶対値が小さい方の無機膜の膜厚、特に、第1無機層34の膜厚は、200nm未満に設定されていることが、特に好ましい。
 一方、膜応力の絶対値が大きい方の無機膜は、破断伸び率に目立った変曲点は見られないものの、膜厚が大きくなると、下層無機膜31全体の膜応力が大きくなる。また、膜応力の絶対値が小さい方の無機膜の膜厚を200nm未満に設定した場合、膜応力の絶対値が大きい方の無機膜の膜厚が300nmを越えると、膜応力の絶対値が小さい方の無機膜の破断延び率と比較して、破断延び率が低下する傾向にある。このため、膜応力の絶対値が小さい方の無機膜の膜厚を200nm未満に設定した場合、膜応力の絶対値が大きい方の無機膜の膜厚は、例えば、300nm以下とすることが好ましい。
 また、上述したように、防湿性の観点からは、膜応力の絶対値が小さい方の無機膜の膜厚は、防湿性が確保できる程度に薄く形成されることが好ましい。
 <Ca試験>
 そこで、封止膜の防湿性を評価するためのCa試験について説明する。
 Ca試験は、試験片で覆われたカルシウムを高温高湿環境下に置き、水蒸気により一部が腐食された後のカルシウムの残存率に基づいて試験片の防湿性を評価する試験である。
 本実施形態では、Ca試験に用いる試験片として、ガラス基板上にシート状に形成された封止膜を用いた。
 Ca試験では、試験片で覆われたカルシウムを、高温高湿環境として温度80℃湿度85%の環境下に220時間置いた後のカルシウム残存率に基づいて試験片の防湿性を評価した。
 図5は、Ca試験の結果を示す表である。
 Ca試験では、4種類の試験片1~試験片4の防湿性を評価した。
 試験片1は、圧縮応力が低い無機膜100nmと圧縮応力が高い無機膜300nmと圧縮応力が低い無機膜100nmとが、ガラス基板上に、該ガラス基板側からこの順に積層された膜厚500nmの試験片である。
 試験片2は、圧縮応力が高い無機膜200nmと圧縮応力が低い無機膜100nmと圧縮応力が高い無機膜200nmとがこの順に積層された膜厚500nmの試験片である。
 試験片3は、圧縮応力が高い無機膜100nmと圧縮応力が低い無機膜100nmとが、圧縮応力が高い無機膜100nmが両端の層となるように交互に5層積層された膜厚500nmの試験片である。
 試験片4は、圧縮応力が高い無機膜55nmと圧縮応力が低い無機膜55nmとが、圧縮応力が高い無機膜55nmが両端の層となるように交互に9層積層された膜厚495nmの試験片である。
 なお、各試験片において、圧縮応力が低い無機膜とは、実施形態1の封止膜30における第1無機層34と同等の圧縮応力(-100MPa以上0MPa未満)を備えた膜であり、圧縮応力が高い無機膜とは、実施形態1の封止膜30における第2無機層35と同等の圧縮応力(-300MPa以上-100MPa未満)を備えた膜である。
 また、図5の表中の圧縮応力の列は、各試験片における圧縮応力が低い無機膜と圧縮応力が高い無機膜との積層順を示し、ガラス基板上に、左側に記す無機膜から右側に記す無機膜までが、ガラス基板側からこの記載順に積層されていることを意味する。
 図5に示すように、本実施形態にかかる封止膜30の下層無機膜31及び上層無機膜33のように、圧縮応力が低い膜の膜厚を100nmとし、圧縮応力が高い膜の膜厚を300nmとした試験片1では、Ca残存率が70.2%であった。このことから、本実施形態にかかる封止膜30の下層無機膜31及び上層無機膜33は十分な防湿性を備えていることを確認することができた。
 また、図5に示すように、試験片1、試験片3、試験片4を比較すると、試験片1及び試験片3に含まれる圧縮応力が低い無機膜の合計膜厚は200nmであり、試験片4に含まれる圧縮応力が低い無機膜の合計膜厚は220nmであり、試験片1、3、4に含まれる圧縮応力が低い無機膜の合計膜厚は同等である。一方で、試験片1、3に含まれる圧縮応力が低い無機膜の各層の膜厚は100nmであり、試験片4に含まれる圧縮応力が低い無機膜の各層の膜厚は55nmである。試験片4の試験後のCa残存率よりも試験片1、3の試験後のCa残存率の方が高いことから、圧縮応力が低い無機膜の膜厚を100nm以上とした方が、防湿性が高くなることがわかる。
 また、試験片2と試験片3とを比較すると、試験片2及び試験片3に含まれる圧縮応力が低い無機膜の膜厚は100nmで等しく、試験片2及び試験片3の合計膜厚は500nmで等しい。一方で、試験片2に含まれる圧縮応力が高い無機膜の膜厚は200nmであり、試験片3に含まれる圧縮応力が高い無機膜の膜厚は100nmである。試験片3の試験後のCa残存率よりも試験片2の試験後のCa残存率の方が高いことから、圧縮応力が高い無機膜の膜厚を200nm以上とした方が、防湿性が高くなることがわかる。
 また、試験片1と試験片3とを比較すると、試験片1及び試験片3に含まれる圧縮応力が高い無機膜の合計膜厚は300nmで等しく、試験片1及び試験片3の合計膜厚は500nmで等しい。一方で、試験片1に含まれる圧縮応力が高い無機膜の膜厚は300nmであり、試験片3に含まれる圧縮応力が高い無機膜の各層の膜厚は100nmである。試験片1の試験後のCa残存率よりも試験片3の試験後のCa残存率の方が高い。このため、試験片1から、膜応力の絶対値が高い無機膜の膜厚を300nm以下とすることで、たとえ膜応力が低い無機膜の膜厚を100nmと薄くしたとしても十分な防湿性を得ることができるものの、膜応力の絶対値が高い無機膜の膜厚を300nm未満とすることで、より防湿性を向上させることができることがわかる。
 以上のCa試験の結果に基づけば、封止膜30の防湿性を高めるためには、膜応力の絶対値が低い無機膜である第1無機層34の膜厚は100nm以上であることが好ましく、膜応力の絶対値が高い無機膜である第2無機層35の膜厚は、200nm以上300nm以下であることが好ましく、200nm以上300nm未満であることがより好ましい。
 また、Ca試験及び引張試験の結果に基づけば、封止膜30の防湿性及び破断伸び率の両方を考慮すると、-100MPa以上0MPa未満の低い圧縮応力を有する第1無機層34の膜厚は、100nm以上200未満であることが好ましく、-300MPa以上-100MPa未満の高い圧縮応力を有する第2無機層35の膜厚は、200nm以上300nm以下であることが好ましく、200nm以上300nm未満であることがより好ましい。
 <その他>
 なお、上記の説明では、上層無機膜33は下層無機膜31と同様の積層構造を有しており、第3無機層36の膜厚、圧縮応力、及び組成は、第1無機層34の膜厚、圧縮応力、及び組成と同じであり、第4無機層37の膜厚、圧縮応力、及び組成は、第2無機層35の膜厚、圧縮応力、及び組成と同じであるものとして説明したが、本実施形態にかかる封止膜30の構成はこれに限られない。
 上層無機膜33は、少なくとも、第4無機層37の圧縮応力の絶対値が第3無機層36の圧縮応力の絶対値よりも高ければよく、第3無機層36及び第4無機層37の膜厚、圧縮応力、及び組成は、第1無機層34及び第2無機層35の膜厚、圧縮応力、及び組成とは異なっていてもよい。
 <封止膜の成膜方法>
 次に、本実施形態にかかる封止膜の成膜方法について説明する。以下では、下層無機膜31及び上層無機膜33として、窒化シリコン膜を形成する場合を例に挙げて説明する。
 封止膜30は、プラズマCVD(Chemical Vapor Deposition)装置を用いて成膜することができる。
 まず、有機EL素子20が形成された支持体1を真空室内に配置し、真空室内に、モノシラン、アンモニア、窒素、水素等の混合ガスを導入し、プラズマ放電を行うことによって、第2電極23及び支持体1の上に第1無機層34を形成する。
 次に、第1無機層34が形成された支持体1を真空室内に配置し、真空室内に、モノシラン、アンモニア、窒素、水素、等の混合ガスを導入し、プラズマ放電を行うことによって、第1無機層34の上に第2無機層35を形成する。
 次に、下層無機膜31が形成された支持体1を真空室内に配置し、周知の蒸着方法により、下層無機膜31の上に有機膜32を形成する。
 次に、有機膜32が形成された支持体1を真空室内に配置し、真空室内に、モノシラン、アンモニア、窒素、水素等の混合ガスを導入し、プラズマ放電を行うことによって、有機膜32上に第3無機層36を形成する。
 次に、第3無機層36が形成された支持体1を真空室内に配置し、真空室内に、モノシラン、アンモニア、窒素、水素、等の混合ガスを導入し、プラズマ放電を行うことによって、第3無機層36の上に第4無機層37を形成する。
 下層無機膜31及び上層無機膜33を形成する工程(成膜工程)において、モノシラン、アンモニア、窒素、水素等のガスの流量を制御することにより、形成される膜の膜応力を調整することができる。
 本実施形態にかかる有機EL表示装置100の製造方法では、下層無機膜31及び上層無機膜33を形成する工程において、例えば、プラズマ放電の電力を900Wとし、モノシラン流量を243sccmとし、アンモニア流量を435sccmとし、窒素流量を4000sccmとし、水素流量を2500sccmとして無機層を形成することにより、下層無機膜31の第1無機層34を、膜厚が100nm以上200nm未満であり、かつ、圧縮応力が-100MPa以上0MPa未満となるように成膜するとともに、下層無機膜31の第2無機層35を、膜厚が200nm以上300nm以下であり、かつ、圧縮応力が-300MPa以上-100MPa未満となるように封止膜30を形成した。
 なお、プラズマCVD装置を用いたCVD法による封止膜30の成膜方法を例に挙げて説明したが、封止膜30の成膜方法はこれに限られない。スパッタ法やALD(Atomic Layer Deposition)法により封止膜30を成膜してもよい。CVD法及びALD法は、段差被覆性が高いため、好適に用いることができる。外部電気配線接続部(端子部)などの領域に封止膜30が成膜されないようにするために、開口部を有する成膜マスクを用いて、成膜が必要な箇所にのみ封止膜30を成膜してもよい。
 〔実施形態2〕
 本発明の他の実施形態について、図6に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図6は、本実施形態にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。
 図6に示すように、本実施形態にかかる有機EL表示装置は、封止膜130の下層無機膜131及び上層無機膜133がそれぞれ4層構造である点を除けば、実施形態1にかかる有機EL表示装置100と同じ構成を有している。
 (下層無機膜131)
 下層無機膜131は、第2電極23の上に形成された第1無機層34(第1層)と、第2無機層35(第2層)と、第5無機層38と、第6無機層39とが、第2電極23側からこの順に積層された構造を有している。
 第1無機層34の膜厚は、第2無機層35の膜厚よりも薄い。また、第1無機層34及び第2無機層35は圧縮応力を有しており、第1無機層34の圧縮応力の絶対値は、第2無機層35の圧縮応力の絶対値よりも小さい。
 第5無機層38の膜厚及び圧縮応力は、第1無機層34の膜厚及び圧縮応力と同じであり、第6無機層39の膜厚及び圧縮応力は、第2無機層35の膜厚及び圧縮応力と同じである。
 (上層無機膜133)
 上層無機膜133は、有機膜32の上に形成された第3無機層36と、第4無機層37と、第7無機層40と、第8無機層41とが、第2電極23側からこの順に積層された構造を有している。
 第3無機層36の膜厚は、第4無機層37の膜厚よりも薄い。また、第3無機層36及び第4無機層37は圧縮応力を有しており、第3無機層36の圧縮応力の絶対値は、第4無機層37の圧縮応力の絶対値よりも小さい。
 第7無機層40の膜厚及び圧縮応力は、第3無機層36の膜厚及び圧縮応力と同じであり、第8無機層41の膜厚及び圧縮応力は、第4無機層37の膜厚及び圧縮応力と同じである。
 本実施形態にかかる封止膜130の下層無機膜131は、圧縮応力が小さい薄い膜(第1無機層34及び第5無機層38)と、圧縮応力が大きい厚い膜(第2無機層35及び第6無機層39)とが2回繰り返して積層された構造を有している。また、上層無機膜133は、圧縮応力が小さい薄い膜(第3無機層36及び第7無機層40)と、圧縮応力が大きい厚い膜(第4無機層37及び第8無機層41)とが2回繰り返して積層された構造を有している。
 また、下層無機膜131及び上層無機膜133をそれぞれ4層構造とする一方で、防湿性が低い有機膜32は下層無機膜131と上層無機膜133との間にのみ設けられている。
 これにより、有機膜32の層の数を増やして封止膜130の厚みを増大させることなく、実施形態1にかかる封止膜30に比べて、封止膜130の封止性能(バリア性)を向上させることができる。
 なお、上記の説明では、下層無機膜131及び上層無機膜133は、圧縮応力が小さい薄い膜と、圧縮応力が大きい厚い膜とが2回繰り返して積層された構造を有しているものとして説明したが、本実施形態の下層無機膜131及び上層無機膜133の積層構造はこれに限られない。下層無機膜131及び上層無機膜133は、圧縮応力が小さい薄い膜と、圧縮応力が大きい厚い膜とが3回以上繰り返して積層された構造を有していてもよい。
 〔実施形態3〕
 本発明の他の実施形態について、図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図7は、本実施形態にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。
 図7に示すように、本実施形態にかかる有機EL表示装置は、封止膜230の下層無機膜231及び上層無機膜233がそれぞれ3層構造である点を除けば、実施形態1にかかる有機EL表示装置100と同じ構成を有している。
 (下層無機膜231)
 下層無機膜231は、第2電極23の上に形成された第1無機層34(第1層)と、第2無機層35(第2層)と、第9無機層42とが、第2電極23側からこの順に積層された構造を有している。
 第1無機層34及び第9無機層42の膜厚は、第2無機層35の膜厚よりも薄い。また、第1無機層34、第2無機層35、及び第9無機層42は圧縮応力を有しており、第1無機層34及び第9無機層42の圧縮応力の絶対値は、第2無機層35の圧縮応力の絶対値よりも小さい。
 第9無機層42の膜厚及び圧縮応力は、第1無機層34の膜厚及び圧縮応力と同じである。
 (上層無機膜233)
 上層無機膜233は、有機膜32の上に形成された第3無機層36と、第4無機層37と、第10無機層43とが、有機膜32側からこの順に積層された構造を有している。
 第3無機層36及び第10無機層43の膜厚は、第4無機層37の膜厚よりも薄い。また、第3無機層36、第4無機層37、及び第10無機層43は圧縮応力を有しており、第3無機層36及び第10無機層43の圧縮応力の絶対値は、第4無機層37の圧縮応力の絶対値よりも小さい。
 第10無機層43の膜厚及び圧縮応力は、第3無機層36の膜厚及び圧縮応力と同じである。
 本実施形態にかかる封止膜230は、下層無機膜231及び上層無機膜233がそれぞれ3層構造であるため、実施形態1にかかる封止膜30に比べて、封止膜230の封止性能(バリア性)を向上させることができる。
 〔実施形態4〕
 本発明の他の実施形態について、図8ないし図10の(a)~(c)に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図8は、本実施形態にかかる有機EL表示装置の概略構成の一例を示す断面図である。
 図8に示すように、本実施形態にかかる有機EL表示装置200は、対向基板を備え、対向基板とTFT基板との間に充填材が充填されている点を除けば、実施形態1にかかる有機EL表示装置100と同じ構成を有している。
 有機EL表示装置200は、TFT基板10に対向するように貼り合わされた対向基板50を備えている。対向基板50は、対向支持体51と、対向支持体51のTFT基板10側の面に設けられたカラーフィルター52とを備えている。
 対向基板50とTFT基板10(有機EL素子20が形成された基板)とは、カラーフィルター52の各光透過領域と、TFT基板10の各サブ画素とが対向するように位置合わせされた状態で貼り合わされている。
 カラーフィルター52は、有機EL素子20から射出された光を変調する機能を有する。例えば、白色に発光する有機EL素子20を用いた場合には、赤(R)、緑(G)、青(B)のカラーフィルター52を用いることによって、白色光をサブ画素毎に赤、緑、または青の色に変調して出射することができる。
 また、例えば、サブ画素毎に赤(R)、緑(G)、青(B)に発光する有機EL素子20を用いた場合には、カラーフィルター52を用いて各色の光を変調することによって、各色の色純度の向上や視野角が変化した時の色味シフトの抑制を図ることができる。
 なお、単色発光で問題ない場合や、有機EL素子20から射出された光の色純度や色味シフトを抑制する必要がない場合には、カラーフィルター52を省略してもよい。
 また、TFT基板10の支持体1、対向基板50の対向支持体51として屈曲性を有する支持体を用いることで、有機EL表示装置200をフレキシブルディスプレイ、ベンダブルディスプレイとすることができる。
 さらに、対向基板50が有機EL素子20に衝突して有機EL素子20が損傷するのを防ぐために、TFT基板10上にギャップスペーサを設けてもよい。
 TFT基板10と対向基板50との間には、表示領域を囲むようにしてシール材6が設けられている。TFT基板10と、対向基板50と、シール材6とで囲まれた領域には、充填材7が充填されている。
 シール材6として、低透湿性の材料を用いてもよい。
 充填材7として、低透湿性を有するものや、乾燥剤や酸素吸収材を含む材料を用いてもよい。充填材7として非硬化型の充填材7を用いた場合、充填材7は液状で両基板間に存在する。充填材7として硬化型の充填材7を用いた場合であって、充填材7と封止膜30とによって有機EL素子20への水分や酸素の侵入を十分に防止して信頼性を確保することができる場合、シール材6を省略してもよい。有機EL表示装置200の製造工程において、充填材7は、封止膜30を形成して封止膜30にレーザ照射を行った後、シール材6で囲まれた領域に注入される。
 図9は、本実施形態にかかる有機EL表示装置の一部の断面図である。
 TFT基板10と、対向基板50と、シール材6とで囲まれた領域に充填材7を充填して有機EL素子20及び封止膜30を封入することによって、図9に示すように、封止膜30(積層封止膜)の積層端面が充填材7によって覆われる。これにより、封止膜30の各層の境界部からの水分や酸素の侵入を抑制することができる。
 下層無機膜31は、第2電極23の端面を覆うように支持体1上に形成されている。有機膜32は、下層無機膜31上に積層されており、上層無機膜33は、有機膜32上に積層されている。下層無機膜31の端面、有機膜32の端面、上層無機膜33の端面からなる、封止膜30の積層端面は、面一に形成されている。
 このように、本実施形態の有機EL表示装置200の構成によれば、シール材6及び充填材7によって、封止膜30の積層端面からの有機EL素子20への水分及び酸素の侵入を抑制することができるため、有機EL素子20の劣化をさらに抑制することができ、有機EL表示装置200の信頼性を向上することができる。
 <変形例>
 図10の(a)~(c)は、本実施形態の変形例にかかる有機EL表示装置の一部の断面図である。
 図10の(a)は変形例1にかかる有機EL表示装置の一部の断面図である。変形例1にかかる有機EL表示装置の封止膜30Aは、下層無機膜31Aと、有機膜32Aと、上層無機膜33Aとが、支持体1側からこの順に積層されており、上層無機膜33Aが、下層無機膜31Aと有機膜32Aとの積層端面(下層無機膜31A及び有機膜32Aの端面)を覆っている。
 具体的には、下層無機膜31Aは、第2電極23の端面を覆うように支持体1上に形成されている。有機膜32Aは、下層無機膜31上に積層されており、上層無機膜33Aは、有機膜32Aの上面を覆うとともに、下層無機膜31Aと有機膜32Aとの積層端面を覆うように支持体1上に形成されている。下層無機膜31Aと有機膜32Aとの積層端面は、面一に形成されている。
 なお、図示は省略するが、変形例1において、下層無機膜31Aは実施形態1の下層無機膜31と同様の構成を有しており、有機膜32Aは実施形態1の有機膜32と同様の構成を有しており、上層無機膜33Aは実施形態1の上層無機膜33と同様の構成を有している。具体的には、下層無機膜31Aは、第1無機層34と第2無機層35との積層構造を有しており、上層無機膜33Aは、第3無機層36と第4無機層37との積層構造を有している。
 一般的に、有機膜は無機膜に比べて防湿性が低いが、変形例1の構成によれば、有機膜32Aの表面(上面および端面)は上層無機膜33Aによって覆われているため、有機膜32Aの表面が露出することがない。そのため、有機膜32Aの表面から有機EL素子20への水分や酸素の侵入を抑制することができる。
 図10の(b)は変形例2にかかる有機EL表示装置の一部の断面図である。変形例2にかかる有機EL表示装置の封止膜30Bは、下層無機膜31Bと、有機膜32Bと、上層無機膜33Bとが、支持体1側からこの順に積層されており、有機膜32Bが下層無機膜31Bの表面を覆っており、上層無機膜33Bが有機膜32Bの表面を覆っている。
 具体的には、下層無機膜31Bは、第2電極23の端面を覆うように支持体1上に形成されている。有機膜32Bは、下層無機膜31Bの上面および端面を覆うように支持体1上に形成されている。上層無機膜33Bは、有機膜32Bの上面および端面を覆うように支持体1上に形成されている。
 なお、図示は省略するが、変形例2において、下層無機膜31Bは実施形態1の下層無機膜31と同様の構成を有しており、有機膜32Bは実施形態1の有機膜32と同様の構成を有しており、上層無機膜33Bは実施形態1の上層無機膜33と同様の構成を有している。具体的には、下層無機膜31Bは、第1無機層34と第2無機層35との積層構造を有しており、上層無機膜33Bは、第3無機層36と第4無機層37との積層構造を有している。
 変形例2の構成によれば、封止膜30Bを構成する膜のうち有機EL素子20に最も近い膜である下層無機膜31Bの表面が、有機膜32Bおよび上層無機膜33Bによって二重に覆われている。そのため、下層無機膜31Bへの水分や酸素の侵入を抑制することができ、その結果、有機EL素子20への水分や酸素の侵入を抑制することができる。
 図10の(c)は変形例3にかかる有機EL表示装置の一部の断面図である。変形例3にかかる有機EL表示装置の封止膜30Cは、下層無機膜31Cと、有機膜32Cと、上層無機膜33Cとが、支持体1側からこの順に積層されており、上層無機膜33Cが有機膜32Cの端面を覆っている。
 具体的には、下層無機膜31Cは、第2電極23の端面を覆うように支持体1上に形成されている。有機膜32Cおよび上層無機膜33Cは、有機膜32Cが下層無機膜31Cの上面の一部を覆い、上層無機膜33Cが有機膜32Cの表面および下層無機膜31Cの上面を覆うように、積層されている。また、上層無機膜33Cは、端面が下層無機膜31Cの端面と面一になるように、下層無機膜31C上に積層されている。
 なお、図示は省略するが、変形例3において、下層無機膜31Cは実施形態1の下層無機膜31と同様の構成を有しており、有機膜32Cは実施形態1の有機膜32と同様の構成を有しており、上層無機膜33Cは実施形態1の上層無機膜33と同様の構成を有している。具体的には、下層無機膜31Cは、第1無機層34と第2無機層35との積層構造を有しており、上層無機膜33Cは、第3無機層36と第4無機層37との積層構造を有している。
 変形例1~3の構成によれば、有機膜32A・32B・32Cの表面から有機EL素子20への水分や酸素の侵入を抑制することができる。また、封止膜の各層の境界部からの水分や酸素の侵入をより確実に抑制することができる。
 なお、上記の説明では、EL表示装置として、有機EL表示装置100を例に挙げて説明した。しかしながら、本発明はこれに限定されず、本発明にかかるEL表示装置は、無機化合物層からなる無機EL層を備えた無機EL表示装置であってもよく、無機EL表示装置に本発明を適用することにより、封止膜30のクラックを防止し、無機EL素子の封止性能を向上することができる。
 〔まとめ〕
 本発明の態様1に係るEL表示装置(有機EL表示装置100・200)は、基板(支持体1)上に形成されたEL素子(有機EL素子20)と、上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜(30)とを備えているEL表示装置であって、上記封止膜は、第1の無機膜(下層無機膜31)を含んでおり、上記第1の無機膜は、上記基板及び上記EL素子に接触している第1層(第1無機層34)と、上記第1層の上に形成された第2層(第2無機層35)と、の積層構造を有しており、上記第1層の膜応力の絶対値は上記第2層の膜応力の絶対値よりも小さく、上記第1層の膜厚は上記第2層の膜厚よりも薄いことを特徴とする。
 上記の構成によれば、第1の無機膜が第1層を備えていることにより、第1の無機膜と基板及びEL素子との密着性を向上させることができ、第1の無機膜が第2層を備えていることにより、第1の無機膜の破断伸び率を向上させることができる。
 これにより、第1の無機膜とEL素子との密着性の向上、及び第1の無機膜の破断伸び率の向上を両立することができる。
 本発明の態様2に係るEL表示装置は、上記態様1において、上記封止膜は、上記第1の無機膜の上に設けられた有機膜(32)と、上記有機膜の上に設けられた第2の無機膜(上層無機膜33)とを含んでいる構成であってもよい。
 上記の構成によれば、有機膜を備えていることにより、第1の無機膜の応力を緩和することができ、第2の無機膜を備えていることにより、防湿性を向上させることができる。
 本発明の態様3に係るEL表示装置は、上記態様2において、上記第2の無機膜は、上記有機膜に接触している第3層(第3無機層36)と、上記第3層の上に形成された第4層(第4無機層37)と、の積層構造を有しており、上記第3層の膜応力の絶対値は上記第4層の膜応力の絶対値よりも小さく、上記第3層の膜厚は上記第4層の膜厚よりも薄い構成であってもよい。
 上記の構成によれば、第2の無機膜が第3層を備えていることにより、第2の無機膜と有機膜との密着性を向上させることができ、第2の無機膜が第4層を備えていることにより、第2の無機膜の破断伸び率を向上させることができる。
 これにより、第2の無機膜と有機膜との密着性の向上、及び第2の無機膜の破断伸び率の向上を両立することができる。
 本発明の態様4に係るEL表示装置は、上記態様1~3の何れかにおいて、上記第1層は、膜厚が100nm以上200nm未満であり、かつ、圧縮応力が-100MPa以上0MPa未満であり、上記第2層は、膜厚が200nm以上300nm以下であり、かつ、圧縮応力が-300MPa以上-100MPa未満である構成であってもよい。
 上記の構成によれば、封止膜の防湿性及び破断伸び率を向上させることができる。
 本発明の態様5に係るEL表示装置は、上記態様1~4の何れかにおいて、上記基板に対向して配置された対向基板を備えており、上記EL素子および上記封止膜が形成された上記基板と上記対向基板との間には、充填材(7)が充填されており、上記封止膜の積層端面は、上記充填材で覆われている構成であってもよい。
 上記の構成によれば、封止膜の積層端面が充填材によって覆われているため、封止膜の各層の境界部からの水分や酸素の侵入を抑制することができる。これにより、EL素子への水分及び酸素の侵入を抑制することができる。
 本発明の態様6に係るEL表示装置は、上記態様2において、上記第2の無機膜は、上記有機膜の上面および端面を覆うように設けられている構成であってもよい。
 有機膜は無機膜に比べて防湿性が低いが、上記の構成によれば、有機膜の表面(上面および端面)は第2の無機膜によって覆われているため、有機膜の表面が露出することがない。そのため、有機膜の表面からEL素子への水分や酸素の侵入を抑制することができる。
 本発明の態様7に係るEL表示装置は、上記態様6において、上記第2の無機膜は、上記第1の無機膜と上記有機膜との積層端面を覆っている構成であってもよい。
 上記の構成によれば、有機膜と第1の無機膜との境界部からEL素子への水分や酸素の侵入を抑制することができる。
 本発明の態様8に係るEL表示装置は、上記態様6において、上記有機膜は、上記第1の無機膜の上面および端面を覆っており、上記第2の無機膜は、上記有機膜の上面および端面を覆っている構成であってもよい。
 上記の構成によれば、封止膜を構成する膜のうちEL素子に最も近い膜である第1の無機膜の表面が、有機膜および第2の無機膜によって二重に覆われている。そのため、第1の無機膜への水分や酸素の侵入を抑制することができ、その結果、EL素子への水分や酸素の侵入を抑制することができる。
 本発明の態様9に係るEL表示装置は、上記態様6において、上記有機膜は、上記第1の無機膜の上面の一部を覆うように設けられており、上記第2の無機膜は、上記有機膜の上面および端面、並びに上記第1の無機膜の上面を覆っている構成であってもよい。
 本発明の態様10に係るEL表示装置の製造方法は、基板上に形成されたEL素子と、上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜とを備えており、上記封止膜は第1の無機膜を含んでいるEL表示装置の製造方法であって、上記基板及び上記EL素子に接触する層である第1層と、上記第1層の上に形成された第2層と、の積層構造を有している上記第1の無機膜を成膜する成膜工程を含み、上記成膜工程では、上記第1層の膜応力の絶対値が上記第2層の膜応力の絶対値よりも小さく、上記第1層の膜厚が上記第2層の膜厚よりも薄くなるように上記第1の無機膜を成膜することを特徴とする。
 上記の製造方法によれば、第1層及び第2層を有する第1の無機膜を成膜することにより、基板及びEL素子との密着性を向上させ、破断伸び率を向上させた第1の無機膜を有する封止膜を備えたEL表示装置を製造することができる。
 本発明の態様11に係るEL表示装置の製造方法は、上記態様10において、上記成膜工程では、プラズマCVDにより上記封止膜を成膜する製造方法であってもよい。
 プラズマCVDは段差被覆性が高いため、上記の製造方法によれば、基板の表面に凹凸が存在している場合であっても、基板の表面に均一に封止膜を成膜することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、EL表示装置におけるEL素子を覆う封止膜の成膜に好適に利用することができる。
 7 充填材
 10 TFT基板
 20 有機EL素子
 30、130、230 封止膜
 31、131,231 下層無機膜(第1の無機膜)
 32 有機膜
 33、133、233 上層無機膜(第2の無機膜)
 34 第1無機層(第1層)
 35 第2無機層(第2層)
 50 対向基板
 100、200 有機EL表示装置(EL表示装置)

Claims (11)

  1.  基板上に形成されたEL素子と、
     上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜とを備えているEL表示装置であって、
     上記封止膜は、第1の無機膜を含んでおり、
     上記第1の無機膜は、上記基板及び上記EL素子に接触している第1層と、上記第1層の上に形成された第2層と、の積層構造を有しており、
     上記第1層の膜応力の絶対値は上記第2層の膜応力の絶対値よりも小さく、上記第1層の膜厚は上記第2層の膜厚よりも薄いことを特徴とするEL表示装置。
  2.  上記封止膜は、上記第1の無機膜の上に設けられた有機膜と、上記有機膜の上に設けられた第2の無機膜とを含んでいることを特徴とする請求項1に記載のEL表示装置。
  3.  上記第2の無機膜は、上記有機膜に接触している第3層と、上記第3層の上に形成された第4層と、の積層構造を有しており、
     上記第3層の膜応力の絶対値は上記第4層の膜応力の絶対値よりも小さく、上記第3層の膜厚は上記第4層の膜厚よりも薄いことを特徴とする請求項2に記載のEL表示装置。
  4.  上記第1層は、膜厚が100nm以上200nm未満であり、かつ、圧縮応力が-100MPa以上0MPa未満であり、
     上記第2層は、膜厚が200nm以上300nm以下であり、かつ、圧縮応力が-300MPa以上-100MPa未満であることを特徴とする請求項1~3の何れか1項に記載のEL表示装置。
  5.  上記基板に対向して配置された対向基板を備えており、
     上記EL素子および上記封止膜が形成された上記基板と上記対向基板との間には、充填材が充填されており、
     上記封止膜の積層端面は、上記充填材で覆われていることを特徴とする請求項1~4の何れか1項に記載のEL表示装置。
  6.  上記第2の無機膜は、上記有機膜の上面および端面を覆うように設けられていることを特徴とする請求項2に記載のEL表示装置。
  7.  上記第2の無機膜は、上記第1の無機膜と上記有機膜との積層端面を覆っていることを特徴とする請求項6に記載のEL表示装置。
  8.  上記有機膜は、上記第1の無機膜の上面および端面を覆っており、
     上記第2の無機膜は、上記有機膜の上面および端面を覆っていることを特徴とする請求項6に記載のEL表示装置。
  9.  上記有機膜は、上記第1の無機膜の上面の一部を覆うように設けられており、
     上記第2の無機膜は、上記有機膜の上面および端面、並びに上記第1の無機膜の上面を覆っていることを特徴とする請求項6に記載のEL表示装置。
  10.  基板上に形成されたEL素子と、上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜とを備えており、上記封止膜は第1の無機膜を含んでいるEL表示装置の製造方法であって、
     上記基板及び上記EL素子に接触する第1層と、上記第1層の上に形成された第2層と、の積層構造を有している上記第1の無機膜を成膜する成膜工程を含み、
     上記成膜工程では、上記第1層の膜応力の絶対値が上記第2層の膜応力の絶対値よりも小さく、上記第1層の膜厚が上記第2層の膜厚よりも薄くなるように上記第1の無機膜を成膜することを特徴とするEL表示装置の製造方法。
  11.  上記成膜工程では、プラズマCVDにより上記封止膜を成膜することを特徴とする請求項10に記載のEL表示装置の製造方法。
PCT/JP2016/066829 2015-06-12 2016-06-07 El表示装置及びel表示装置の製造方法 WO2016199739A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/579,294 US10159120B2 (en) 2015-06-12 2016-06-07 EL display device and method for manufacturing EL display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015119593 2015-06-12
JP2015-119593 2015-06-12

Publications (1)

Publication Number Publication Date
WO2016199739A1 true WO2016199739A1 (ja) 2016-12-15

Family

ID=57504466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066829 WO2016199739A1 (ja) 2015-06-12 2016-06-07 El表示装置及びel表示装置の製造方法

Country Status (2)

Country Link
US (1) US10159120B2 (ja)
WO (1) WO2016199739A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190286A1 (en) * 2020-12-10 2022-06-16 Samsung Display Co., Ltd. Display device and method of manufacturing the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204058A1 (ja) * 2015-06-15 2016-12-22 住友化学株式会社 有機el素子の製造方法
US11751426B2 (en) * 2016-10-18 2023-09-05 Universal Display Corporation Hybrid thin film permeation barrier and method of making the same
WO2019030819A1 (ja) * 2017-08-08 2019-02-14 シャープ株式会社 Elデバイスの製造方法
KR20200093737A (ko) * 2019-01-28 2020-08-06 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN112349861A (zh) * 2019-12-27 2021-02-09 广东聚华印刷显示技术有限公司 发光器件及其封装结构与制作方法
CN112670331B (zh) * 2020-12-24 2022-08-19 武汉天马微电子有限公司 一种有机发光显示面板及其封装层制备方法、显示装置
KR20220108855A (ko) * 2021-01-27 2022-08-04 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN114023794B (zh) * 2021-10-27 2023-05-05 深圳市华星光电半导体显示技术有限公司 显示面板及显示面板的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063304A (ja) * 2002-07-30 2004-02-26 Shimadzu Corp 保護膜製造方法および有機el素子
JP2005222778A (ja) * 2004-02-04 2005-08-18 Shimadzu Corp 有機エレクトロルミネッセンス素子およびその製造方法
WO2009028485A1 (ja) * 2007-08-31 2009-03-05 Tokyo Electron Limited 有機電子デバイス、有機電子デバイスの製造方法、有機電子デバイスの製造装置、基板処理システム、保護膜の構造体、および制御プログラムが記憶された記憶媒体
JP2009181849A (ja) * 2008-01-31 2009-08-13 Pioneer Electronic Corp 有機elパネル及びその製造方法
JP2014086415A (ja) * 2012-10-26 2014-05-12 Samsung Display Co Ltd 表示装置およびその製造方法
JP2015125955A (ja) * 2013-12-27 2015-07-06 古河電気工業株式会社 有機電界発光素子用充填材料及び有機電界発光素子の封止方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196440B2 (ja) 1998-08-31 2008-12-17 凸版印刷株式会社 破壊ひずみ強化ガスバリアフィルムおよびその製造方法
JP2004095551A (ja) 2002-08-09 2004-03-25 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
KR100885843B1 (ko) * 2002-08-31 2009-02-27 엘지디스플레이 주식회사 유기전계발광 표시소자 및 그 제조방법
KR20070104158A (ko) * 2006-04-21 2007-10-25 삼성전자주식회사 전자소자용 보호막 및 그 제조방법
US20080164808A1 (en) * 2007-01-05 2008-07-10 Tae-Woong Kim Organic light emitting display device and manufacturing method of the same
JPWO2010010622A1 (ja) * 2008-07-24 2012-01-05 富士電機株式会社 有機elデバイスおよびその製造方法
US20100051973A1 (en) * 2008-08-28 2010-03-04 Seiko Epson Corporation Light-emitting device, electronic equipment, and process of producing light-emitting device
KR101015848B1 (ko) * 2009-02-09 2011-02-23 삼성모바일디스플레이주식회사 유기 발광 표시 장치
JP5448960B2 (ja) 2010-03-23 2014-03-19 富士フイルム株式会社 薄膜トランジスタ基板並びにそれを備えた表示装置及び電磁波センサ
KR101444065B1 (ko) * 2013-04-26 2014-09-26 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063304A (ja) * 2002-07-30 2004-02-26 Shimadzu Corp 保護膜製造方法および有機el素子
JP2005222778A (ja) * 2004-02-04 2005-08-18 Shimadzu Corp 有機エレクトロルミネッセンス素子およびその製造方法
WO2009028485A1 (ja) * 2007-08-31 2009-03-05 Tokyo Electron Limited 有機電子デバイス、有機電子デバイスの製造方法、有機電子デバイスの製造装置、基板処理システム、保護膜の構造体、および制御プログラムが記憶された記憶媒体
JP2009181849A (ja) * 2008-01-31 2009-08-13 Pioneer Electronic Corp 有機elパネル及びその製造方法
JP2014086415A (ja) * 2012-10-26 2014-05-12 Samsung Display Co Ltd 表示装置およびその製造方法
JP2015125955A (ja) * 2013-12-27 2015-07-06 古河電気工業株式会社 有機電界発光素子用充填材料及び有機電界発光素子の封止方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220190286A1 (en) * 2020-12-10 2022-06-16 Samsung Display Co., Ltd. Display device and method of manufacturing the same

Also Published As

Publication number Publication date
US20180153006A1 (en) 2018-05-31
US10159120B2 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2016199739A1 (ja) El表示装置及びel表示装置の製造方法
US9716249B2 (en) Display module encapsulating structure and preparing method thereof
JP6727843B2 (ja) 表示装置
KR101818480B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
KR101809659B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
JP6154470B2 (ja) エレクトロルミネッセンス装置、及びその製造方法
TWI665799B (zh) 有機電致發光元件構造、其製造方法及發光面板
KR20190048776A (ko) 투명 디스플레이 장치
KR102203446B1 (ko) 플렉서블 유기 발광 표시 장치 및 그 제조방법
US9306071B2 (en) Organic light-emitting display device including a flexible TFT substrate and stacked barrier layers
KR102327834B1 (ko) 플렉서블 유기 발광 표시 장치
KR20170050139A (ko) 플렉서블 유기발광다이오드 표시장치 및 그 제조 방법
JP6788935B2 (ja) 有機el素子用の保護膜の形成方法および表示装置の製造方法
TW201419614A (zh) 有機發光二極體顯示器
US10600982B2 (en) Electroluminescence device and method for producing same
KR20160069073A (ko) 유기 발광 표시 장치 및 그 제조 방법
KR102102908B1 (ko) 유기 발광 표시 장치의 제조 방법 및 이를 적용한 유기 발광 표시 장치
WO2020252865A1 (zh) 有机发光显示面板及其制造方法、封装薄膜
KR101493092B1 (ko) 유기전계발광표시소자
KR20160072643A (ko) 유기 발광 표시 장치
KR102392604B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
KR20150018964A (ko) 유기전계발광 표시장치 및 그의 제조방법
US9941491B2 (en) Method of manufacturing display device
JPWO2007032515A1 (ja) 有機エレクトロルミネセンス表示パネルおよび防湿基板
TWI669815B (zh) 柔性基板側向薄膜封裝

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15579294

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16807446

Country of ref document: EP

Kind code of ref document: A1