WO2018157449A1 - 有机电致发光显示装置及其制作方法 - Google Patents

有机电致发光显示装置及其制作方法 Download PDF

Info

Publication number
WO2018157449A1
WO2018157449A1 PCT/CN2017/080097 CN2017080097W WO2018157449A1 WO 2018157449 A1 WO2018157449 A1 WO 2018157449A1 CN 2017080097 W CN2017080097 W CN 2017080097W WO 2018157449 A1 WO2018157449 A1 WO 2018157449A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film encapsulation
organic
encapsulation layer
desiccant particles
Prior art date
Application number
PCT/CN2017/080097
Other languages
English (en)
French (fr)
Inventor
倪奎
刘亚伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/532,060 priority Critical patent/US10270062B2/en
Publication of WO2018157449A1 publication Critical patent/WO2018157449A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention belongs to the field of display technologies, and in particular, to an organic electroluminescence display device and a method of fabricating the same.
  • OLED Organic Light-Emitting Diode
  • Common packaging technologies for packaging OLED display devices include: glass or metal cover encapsulation technology of glass substrates, single or multi-layer inorganic thin film encapsulation technology, and thin film encapsulation technology with alternating organic and inorganic materials.
  • Thin-film encapsulation technology is particularly suitable for special applications that are not possible with traditional capped packages, such as flexible organic light-emitting diodes and flexible organic solar cells.
  • the industry's main method of improving thin film encapsulation technology is to use a dry sheet or to maximize the water-oxygen barrier capability of the thin film encapsulation layer, such as depositing a multilayer organic/inorganic composite film after the display device is fabricated to prolong the diffusion path of water and oxygen in the film.
  • this technology still has inherent limitations.
  • ALD atomic layer deposition
  • the present invention provides an organic electroluminescence display device capable of effectively reducing moisture entering the organic electroluminescent device and a method of fabricating the same.
  • an organic electroluminescent display device includes: a substrate; an organic electroluminescent device disposed on the substrate; and a thin film encapsulation structure disposed on the substrate The organic electroluminescent device is encapsulated with desiccant particles in the thin film encapsulation structure.
  • the thin film encapsulation structure comprises: an N-layer inorganic thin film encapsulation layer and an N-1 organic thin film encapsulation layer, wherein N ⁇ 2 and N is a positive integer; the first inorganic thin film encapsulation layer is disposed on the substrate And covering and encapsulating the organic electroluminescent device, the second inorganic thin film encapsulation layer to the Nth inorganic thin film encapsulation layer are sequentially disposed on the first inorganic thin film encapsulation layer; each organic thin film encapsulation layer is disposed correspondingly The desiccant particles are distributed in each of the adjacent organic thin film encapsulation layers between adjacent two inorganic thin film encapsulation layers.
  • the distribution density of the desiccant particles in each of the organic thin film encapsulation layers is gradually increased in a direction away from the organic electroluminescent device, or the distribution density of the desiccant particles in each of the organic thin film encapsulation layers is uniform. .
  • the distribution density of the desiccant particles in the i-th organic thin film encapsulation layer is greater than the distribution density of the desiccant particles in the i-th organic thin film encapsulation layer, wherein 1 ⁇ i ⁇ N-1.
  • the surface of the Nth inorganic thin film encapsulation layer is subjected to surface roughening treatment and/or chemical modification treatment.
  • a method of fabricating an organic electroluminescence display device includes: providing a substrate; forming an organic electroluminescent device on the substrate; forming a package on the substrate A thin film encapsulation structure of an organic electroluminescent device and having desiccant particles.
  • the method for forming the thin film encapsulation structure comprises: forming a first inorganic thin film encapsulation layer covering the organic electroluminescent device on the substrate; and forming the first inorganic thin film encapsulation layer on the first inorganic thin film encapsulation layer
  • the organic thin film encapsulation layer/inorganic thin film encapsulation layer is alternately stacked to form an N-1 inorganic thin film encapsulation layer and an N-1 organic thin film encapsulation layer; wherein the desiccant particles are distributed in each of the organic thin film encapsulation layers, ⁇ 2 and N is a positive integer.
  • the distribution density of the desiccant particles in each of the organic thin film encapsulation layers is gradually increased in a direction away from the organic electroluminescent device, or each layer is organically
  • the distribution density of the desiccant particles in the thin film encapsulation layer is uniform.
  • the distribution density of the desiccant particles in the i-th organic thin film encapsulation layer is made larger than the distribution density of the desiccant particles in the i-th organic thin film encapsulation layer, wherein 1 ⁇ i ⁇ N-1.
  • the manufacturing method further includes: performing surface roughening treatment and/or chemical modification treatment on the surface of the Nth inorganic thin film encapsulation layer.
  • the organic electroluminescence display device of the present invention and a method of fabricating the same can reduce water vapor on a surface of a multi-layer encapsulation film or which has penetrated into a multi-layer encapsulation film to encapsulate an organic electroluminescent device. Influence, thereby extending the life of the organic electroluminescent device.
  • FIG. 1 is a schematic structural view of an organic electroluminescence display device according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of fabricating an organic electroluminescent display device in accordance with an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of an organic electroluminescence display device according to an embodiment of the present invention.
  • an organic electroluminescent display device includes a substrate 100, an organic electroluminescent device 200, and a thin film encapsulation structure 300.
  • the substrate 100 may be a hard substrate made of glass, ceramic or metal, or may be made of polyethylene terephthalate, polyethylene naphthalate, polyimide, or the like. At least one made flexible substrate.
  • the organic electroluminescent device 200 is formed on the substrate 100.
  • the organic electroluminescent device 200 includes a bottom electrode, a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), and an electron transport layer disposed from the bottom to the top.
  • the layer (ETL), the electron injecting layer (EIL), and the top electrode but the organic electroluminescent device of the present invention is not limited to the structure disclosed herein, and may be other suitable structures.
  • the thin film encapsulation structure 300 includes an N-layer inorganic thin film encapsulation layer 310 and an N-1 organic thin film encapsulation layer 320, wherein N ⁇ 2 and N is a positive integer.
  • the first inorganic thin film encapsulation layer 310 is formed on the substrate 100 and covers the packaged organic electroluminescent device 200, and the remaining inorganic thin film encapsulation layer 310 and the N-1 organic thin film encapsulation layer 320 are encapsulated by an organic thin film encapsulation layer/inorganic thin film encapsulation layer. Alternate stacking is formed on the first inorganic thin film encapsulation layer 310.
  • the inorganic thin film encapsulation layer 310 may be made of silicon oxide or silicon nitride or aluminum oxide or titanium dioxide or graphene, and has a thickness of 100 to 2000 nm;
  • the organic thin film encapsulation layer 320 may be made of an acrylic resin or a ring. It is made of an oxy resin or a silicone resin and has a thickness of 20 to 5000 nm.
  • the desiccant particles 321 are distributed in the organic thin film encapsulation layer 320, and the distribution density of the desiccant particles 321 in each of the organic thin film encapsulation layers 320 is uneven. That is, the distribution density of the desiccant particles 321 in each of the organic thin film encapsulation layers 320 gradually increases in a direction away from the organic electroluminescent device 200.
  • the distribution density of the desiccant particles 321 in each of the organic thin film encapsulation layers 320 may be set to be uniform.
  • the desiccant particles 321 may be active metal particles having a particle size of 1 to 200 nm, active metal oxide particles, active non-metal oxide particles (such as P 2 O 5 particles) or water-absorbing salt particles, and the like.
  • the distribution density of the desiccant particles 321 in the i-th organic thin film encapsulation layer 320 is greater than that of the desiccant particles 321 in the i-th organic thin film encapsulation layer 320.
  • Distribution density where 1 ⁇ i ⁇ N-1 and i is a positive integer.
  • the surface of the Nth inorganic thin film encapsulation layer 310 is subjected to surface roughening treatment and/or chemical modification treatment.
  • the surface roughening treatment is a physical or chemical method of performing surface roughness on the surface of the material.
  • the specific treatment method may be: plasma treatment of the surface of the material by using argon gas in the dry etching cavity.
  • the chemical modification treatment refers to a process of replacing a hydrophilic gene of a base material with a hydrophobic group by adsorption, coating, polymerization, chemical reaction, or the like to improve the hydrophobic property of the material, such as fluorination or silicidation.
  • concentration of surface chemical modification (such as the fluorine concentration after fluorination or the silicon concentration after silicidation) is inversely proportional to the surface tension.
  • the specific treatment method may be: fluorinating the surface of the material with a carbon tetrafluoride (CF 4 ) gas in the dry etching cavity.
  • FIG. 2 is a flow chart of a method of fabricating an organic electroluminescent display device in accordance with an embodiment of the present invention.
  • a method for fabricating an organic electroluminescence display device includes the following steps:
  • a method of forming the organic electroluminescent device 200 includes sequentially forming a bottom electrode, a hole injection layer (HIL), and a hole transport layer (HTL) on the substrate 100 from bottom to top. , an illuminating layer (EML), an electron transporting layer (ETL), an electron injecting layer (EIL), and a top electrode, but the method of forming the organic electroluminescent device of the present invention is not limited to the forming method disclosed therein, and it is also possible It is formed by other suitable formation methods.
  • S230 forming a thin film encapsulation structure 300 covering the packaged organic electroluminescent device 200 on the substrate 100.
  • the method of forming the thin film encapsulation structure 300 includes:
  • a first inorganic thin film encapsulation layer 310 covering the packaged organic electroluminescent device 200 is formed on the substrate 100.
  • the first inorganic thin film encapsulation layer 310 can be formed by plasma enhanced chemical vapor deposition (PECVD) or Atomic Layer Deposition (ALD).
  • an N-1 inorganic thin film encapsulation layer 310 and an N-1 organic thin film encapsulation layer 320 are formed on the first inorganic thin film encapsulation layer 310 by alternately stacking the organic thin film encapsulation layer/inorganic thin film encapsulation layer; Desiccant particles 321 are distributed in the layered organic thin film encapsulation layer 320, N ⁇ 2 and N is a positive integer.
  • the second inorganic thin film encapsulation layer 310 to the Nth inorganic thin film encapsulation layer 310 may be a plasma enhanced chemical vapor deposition (PECVD) or an atomic layer deposition (Atomic Layer Deposition). Made by ALD).
  • PECVD plasma enhanced chemical vapor deposition
  • Atomic Layer Deposition atomic layer deposition
  • each of the organic thin film encapsulation layers 320 is formed by ink-jet printing (IJP), nozzle printing (Nozzle Printing) or spin coating using an organic solution in which the desiccant particles 321 are mixed.
  • each of the organic thin film encapsulation layers 320 is formed.
  • Each of the organic thin film encapsulation layers 320 is formed using an organic solution in which different amounts of desiccant particles 321 are mixed.
  • the amount of the desiccant particles 321 mixed in the organic solution forming the i-th organic thin film encapsulation layer 320 is larger than the amount of the desiccant particles 321 mixed in the organic solution forming the i-th layer of the organic thin film encapsulation layer 320.
  • step S240 Surface roughening treatment and/or chemical modification treatment is performed on the surface of the Nth inorganic thin film encapsulation layer 310. It should be noted that, as another embodiment of the present invention, step S240 may be omitted.
  • the organic electroluminescent display device and the method of fabricating the same can reduce the organic electrochemistry caused by the moisture adsorbed on the surface of the multi-layer encapsulation film or which has penetrated into the interior of the multi-layer encapsulation film. The effect of the light emitting device, thereby extending the life of the organic electroluminescent device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光显示装置,其包括:基板(100);有机电致发光器件(200),设置于基板(100)上;薄膜封装结构(300),设置于基板(100)上且封装有机电致发光器件(200),薄膜封装结构(300)中具有干燥剂颗粒(321)。还提供了有机电致发光显示装置的制作方法。有机电致发光显示装置及其制作方法,能够降低因吸附于多层封装薄膜表面或者已经渗入多层封装薄膜内部的水汽对被封装的有机电致发光器件的影响,从而延长有机电致发光器件的寿命。

Description

有机电致发光显示装置及其制作方法 技术领域
本发明属于显示技术领域,具体地讲,涉及一种有机电致发光显示装置及其制作方法。
背景技术
近年来,有机发光二极管(Organic Light-Emitting Diode,OLED)成为国内外非常热门的新兴平面显示装置产品,这是因为OLED显示装置具有自发光、广视角、短反应时间、高发光效率、广色域、低工作电压、薄厚度、可制作大尺寸与可挠曲的面板及制程简单等特性,而且它还具有低成本的潜力。
目前对OLED显示装置进行封装的常用封装技术包括:以玻璃衬底的玻璃或者金属盖板封装技术、单层或者多层无机薄膜封装技术、以有机物和无机物交替的薄膜封装技术。薄膜封装技术特别适用于传统加盖封装所无法实现的一些特殊场合,如对柔性有机发光二极管和柔性有机太阳能电池等的封装。业界提升薄膜封装技术的主要方法是使用干燥片或尽量增加薄膜封装层的水氧阻隔能力,比如在显示器件制作完毕之后沉积多层有机/无机复合薄膜以延长水氧在薄膜中扩散的路径,然而,该项技术仍然存在固有的局限。因为即使交替沉积的多层薄膜也不能保证完全没有孔隙(pinhole),而存在孔隙的位置往往是水汽渗入的途径,这样便会造成器件的损坏或者失效。业界也有采用原子层沉积(ALD)以得到孔隙极少的薄膜,该技术可以阻挡水氧气,但是也并不能完全阻挡水汽。
发明内容
为了解决上述现有技术的问题,本发明提供了一种能够有效地降低进入有机电致发光器件内的水汽的有机电致发光显示装置及其制作方法。
根据本发明的一方面,提供了一种有机电致发光显示装置,其包括:基板;有机电致发光器件,设置于所述基板上;薄膜封装结构,设置于所述基板上且 封装所述有机电致发光器件,所述薄膜封装结构中具有干燥剂颗粒。
可选地,所述薄膜封装结构包括:N层无机薄膜封装层和N-1层有机薄膜封装层,其中,N≥2且N为正整数;第一层无机薄膜封装层设置于所述基板上且覆盖封装所述有机电致发光器件,第二层无机薄膜封装层至第N层无机薄膜封装层依次设置于所述第一层无机薄膜封装层上;每层有机薄膜封装层设置于对应的相邻两层无机薄膜封装层之间,每层有机薄膜封装层中分布有所述干燥剂颗粒。
可选地,每层有机薄膜封装层中的干燥剂颗粒的分布密度沿着远离所述有机电致发光器件的方向逐渐增大,或者每层有机薄膜封装层中的干燥剂颗粒的分布密度均匀。
可选地,第i层有机薄膜封装层中的干燥剂颗粒的分布密度大于第i-1层有机薄膜封装层中的干燥剂颗粒的分布密度,其中,1≤i≤N-1。
可选地,所述第N层无机薄膜封装层的表面经过表面粗造化处理和/或化学修饰处理。
根据本发明的另一方面,还提供了一种有机电致发光显示装置的制作方法,其包括:提供一基板;在所述基板上形成有机电致发光器件;在所述基板上形成封装所述有机电致发光器件且具有干燥剂颗粒的薄膜封装结构。
可选地,形成所述薄膜封装结构的方法包括:在所述基板上形成覆盖封装所述有机电致发光器件的第一层无机薄膜封装层;在所述第一层无机薄膜封装层上以有机薄膜封装层/无机薄膜封装层交替堆叠的方式形成N-1层无机薄膜封装层和N-1层有机薄膜封装层;其中,每层有机薄膜封装层中分布有所述干燥剂颗粒,N≥2且N为正整数。
可选地,在形成每层有机薄膜封装层时,使每层有机薄膜封装层中的干燥剂颗粒的分布密度沿着远离所述有机电致发光器件的方向逐渐增大,或者使每层有机薄膜封装层中的干燥剂颗粒的分布密度均匀。
可选地,使第i层有机薄膜封装层中的干燥剂颗粒的分布密度大于第i-1层有机薄膜封装层中的干燥剂颗粒的分布密度,其中,1≤i≤N-1。
可选地,所述制作方法还包括:对所述第N层无机薄膜封装层的表面进行表面粗造化处理和/或化学修饰处理。
本发明的有益效果:本发明的有机电致发光显示装置及其制作方法,能够降低因吸附于多层封装薄膜表面或者已经渗入多层封装薄膜内部的水汽对被封装的有机电致发光器件的影响,从而延长有机电致发光器件的寿命。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是根据本发明的实施例的有机电致发光显示装置的结构示意图;
图2是根据本发明的实施例的有机电致发光显示装置的制作方法的流程图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
在附图中,为了清楚器件,夸大了层和区域的厚度。相同的标号在整个说明书和附图中表示相同的元器件。
将理解的是,当诸如层、膜、区域或基底的元件被称作“在”另一元件“上”时,该元件可以直接在所述另一元件上,或者也可以存在中间元件。可选择地,当元件被称作“直接在”另一元件“上”时,不存在中间元件。
图1是根据本发明的实施例的有机电致发光显示装置的结构示意图。
参照图1,根据本发明的实施例的有机电致发光显示装置包括:基板100、有机电致发光器件200以及薄膜封装结构300。
具体地,基板100可以是采用玻璃、陶瓷或者金属制成的硬质基板,也可以是采用聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰亚胺等中的至少一种制成的柔性基板。
有机电致发光器件200形成在基板100上。作为本发明的一种实施方式,有机电致发光器件200包括从下至上叠层设置的底电极、空穴注入层(HIL)、空穴传输层(HTL)、发光层(EML)、电子传输层(ETL)、电子注入层(EIL)以及顶电极,但本发明的有机电致发光器件并不局限于该处公开的结构,其也可以是其他合适的结构。
薄膜封装结构300包括N层无机薄膜封装层310以及N-1层有机薄膜封装层320,其中,N≥2且N为正整数。第一层无机薄膜封装层310形成在基板100上并覆盖封装有机电致发光器件200,其余的无机薄膜封装层310和N-1层有机薄膜封装层320以有机薄膜封装层/无机薄膜封装层交替堆叠的方式形成在第一层无机薄膜封装层310上。进一步地,所述无机薄膜封装层310可以采用氧化硅或氮化硅或氧化铝或二氧化钛或石墨烯制成,且其厚度为100~2000nm;所述有机薄膜封装层320可以采用丙烯酸树脂或环氧树脂或硅树脂制成,且其厚度为20~5000nm。
在本实施例中,为了加强薄膜封装结构300对外界水汽的吸收,有机薄膜封装层320中分布有干燥剂颗粒321,并且每层有机薄膜封装层320中的干燥剂颗粒321的分布密度不均匀,即每层有机薄膜封装层320中的干燥剂颗粒321的分布密度沿着远离有机电致发光器件200的方向逐渐增大。然而,应当理解的是,每层有机薄膜封装层320中的干燥剂颗粒321的分布密度可以被设置为均匀。这里,所述干燥剂颗粒321可以为颗粒度大小为1~200nm的活性金属颗粒、活性金属氧化物颗粒、活性非金属氧化物颗粒(诸如P2O5颗粒)或吸水的盐类颗粒等。
此外,为了进一步加强薄膜封装结构300对外界水汽的吸收,第i层有机薄膜封装层320中的干燥剂颗粒321的分布密度大于第i-1层有机薄膜封装层320中的干燥剂颗粒321的分布密度,其中,1≤i≤N-1且i为正整数。
进一步地,第N层无机薄膜封装层310的表面经过了表面粗糙化处理和/或化学修饰处理。
这里,表面粗糙化处理是为了形成表面粗糙度而对材料表面进行的物理或化学方法。具体处理的方法可以是:在干刻腔体中利用氩气对材料表面进行等离子处理。
化学修饰处理是指用吸附、涂敷、聚合、化学反应等方法将基体材料的某个亲水基因替换为疏水基团,以改进材料疏水特性的工艺过程,如氟化或硅化。表面化学修饰的浓度(如氟化后的含氟浓度或硅化后的含硅浓度)与表面张力成反比。具体处理的方法可以是:在干刻腔体利用四氟化碳(CF4)气体对材料表面进行氟化处理。
图2是根据本发明的实施例的有机电致发光显示装置的制作方法的流程图。
参照图2,一并参照图1,根据本发明的实施例的有机电致发光显示装置的制作方法包括步骤:
S210:提供一基板100。
S220,在基板100上制作形成有机电致发光器件200。
这里,作为本发明的一种实施方式,形成有机电致发光器件200的方法包括:在基板100上从下至上依序形成底电极、空穴注入层(HIL)、空穴传输层(HTL)、发光层(EML)、电子传输层(ETL)、电子注入层(EIL)以及顶电极,但本发明的有机电致发光器件的形成方法并不局限于该处公开的形成方法,其也可以是利用其他合适的形成方法形成。
S230:在基板100上制作形成覆盖封装有机电致发光器件200的薄膜封装结构300。
这里,形成薄膜封装结构300的方法包括:
首先,在基板100上制作形成覆盖封装有机电致发光器件200的第一层无机薄膜封装层310。具体地,可以采用等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,简称PECVD)或者原子层沉积方法(Atomic Layer Deposition,简称ALD)制作第一层无机薄膜封装层310。
接着,在第一层无机薄膜封装层310上以有机薄膜封装层/无机薄膜封装层交替堆叠的方式形成N-1层无机薄膜封装层310和N-1层有机薄膜封装层320;其中,每层有机薄膜封装层320中分布有干燥剂颗粒321,N≥2且N为正整数。
具体地,第二层无机薄膜封装层310至第N层无机薄膜封装层310可以采用等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,简称PECVD)或者原子层沉积方法(Atomic Layer Deposition,简称ALD)制成。此外,采用混合有干燥剂颗粒321的有机溶液通过喷墨打印(ink-jetprinting,简称IJP)、喷嘴印刷(Nozzle Printing)或者旋涂(Spin coating)等方式制作每层有机薄膜封装层320。
在本实施例中,由于每层有机薄膜封装层320中的干燥剂颗粒321的分布密度沿着远离有机电致发光器件200的方向逐渐增大,因此形成每层有机薄膜封装层320中,可采用混合了不同数量的干燥剂颗粒321的有机溶液形成每层有机薄膜封装层320。
此外,形成第i层有机薄膜封装层320的有机溶液中混合的干燥剂颗粒321数量大于形成第i-1层有机薄膜封装层320的有机溶液中混合的干燥剂颗粒321的数量。
S240:对第N层无机薄膜封装层310的表面进行表面粗糙化处理和/或化学修饰处理。应当说明的是,作为本发明的另一实施方式,可以将步骤S240省略。
综上所述,根据本发明的实施例的有机电致发光显示装置及其制作方法,能够降低因吸附于多层封装薄膜表面或者已经渗入多层封装薄膜内部的水汽对被封装的有机电致发光器件的影响,从而延长有机电致发光器件的寿命。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (12)

  1. 一种有机电致发光显示装置,其中,包括:
    基板;
    有机电致发光器件,设置于所述基板上;
    薄膜封装结构,设置于所述基板上且封装所述有机电致发光器件,所述薄膜封装结构中具有干燥剂颗粒。
  2. 根据权利要求1所述的有机电致发光显示装置,其中,所述薄膜封装结构包括:N层无机薄膜封装层和N-1层有机薄膜封装层,其中,N≥2且N为正整数;
    第一层无机薄膜封装层设置于所述基板上且覆盖封装所述有机电致发光器件,第二层无机薄膜封装层至第N层无机薄膜封装层依次设置于所述第一层无机薄膜封装层上;每层有机薄膜封装层设置于对应的相邻两层无机薄膜封装层之间,每层有机薄膜封装层中分布有所述干燥剂颗粒。
  3. 根据权利要求2所述的有机电致发光显示装置,其中,每层有机薄膜封装层中的干燥剂颗粒的分布密度沿着远离所述有机电致发光器件的方向逐渐增大,或者每层有机薄膜封装层中的干燥剂颗粒的分布密度均匀。
  4. 根据权利要求2所述的有机电致发光显示装置,其中,第i层有机薄膜封装层中的干燥剂颗粒的分布密度大于第i-1层有机薄膜封装层中的干燥剂颗粒的分布密度,其中,1≤i≤N-1。
  5. 根据权利要求3所述的有机电致发光显示装置,其中,第i层有机薄膜封装层中的干燥剂颗粒的分布密度大于第i-1层有机薄膜封装层中的干燥剂颗粒的分布密度,其中,1≤i≤N-1。
  6. 根据权利要求2所述的有机电致发光显示装置,其中,所述第N层无机薄膜封装层的表面经过表面粗造化处理和/或化学修饰处理。
  7. 一种有机电致发光显示装置的制作方法,其中,所述制作方法包括:
    提供一基板;
    在所述基板上形成有机电致发光器件;
    在所述基板上形成封装所述有机电致发光器件且具有干燥剂颗粒的薄膜封装结构。
  8. 根据权利要求7所述的制作方法,其中,形成所述薄膜封装结构的方法包括:
    在所述基板上形成覆盖封装所述有机电致发光器件的第一层无机薄膜封装层;
    在所述第一层无机薄膜封装层上以有机薄膜封装层/无机薄膜封装层交替堆叠的方式形成N-1层无机薄膜封装层和N-1层有机薄膜封装层;其中,每层有机薄膜封装层中分布有所述干燥剂颗粒,N≥2且N为正整数。
  9. 根据权利要求8所述的制作方法,其中,在形成每层有机薄膜封装层时,使每层有机薄膜封装层中的干燥剂颗粒的分布密度沿着远离所述有机电致发光器件的方向逐渐增大,或者使每层有机薄膜封装层中的干燥剂颗粒的分布密度均匀。
  10. 根据权利要求8所述的制作方法,其中,使第i层有机薄膜封装层中的干燥剂颗粒的分布密度大于第i-1层有机薄膜封装层中的干燥剂颗粒的分布密度,其中,1≤i≤N-1。
  11. 根据权利要求9所述的制作方法,其中,使第i层有机薄膜封装层中的干燥剂颗粒的分布密度大于第i-1层有机薄膜封装层中的干燥剂颗粒的分布密度,其中,1≤i≤N-1。
  12. 根据权利要求8所述的制作方法,其中,所述制作方法还包括:对所述第N层无机薄膜封装层的表面进行表面粗造化处理和/或化学修饰处理。
PCT/CN2017/080097 2017-02-28 2017-04-11 有机电致发光显示装置及其制作方法 WO2018157449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/532,060 US10270062B2 (en) 2017-02-28 2017-04-11 Organic electroluminescent display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710113456.2 2017-02-28
CN201710113456.2A CN106935726A (zh) 2017-02-28 2017-02-28 有机电致发光显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2018157449A1 true WO2018157449A1 (zh) 2018-09-07

Family

ID=59424397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080097 WO2018157449A1 (zh) 2017-02-28 2017-04-11 有机电致发光显示装置及其制作方法

Country Status (3)

Country Link
US (1) US10270062B2 (zh)
CN (1) CN106935726A (zh)
WO (1) WO2018157449A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109308141A (zh) * 2017-07-28 2019-02-05 上海和辉光电有限公司 一种触控显示面板及触控显示面板制作方法
CN107565052B (zh) * 2017-08-25 2020-04-17 京东方科技集团股份有限公司 封装结构及其制造方法、显示装置
CN107863447B (zh) * 2017-10-23 2019-10-11 武汉华星光电半导体显示技术有限公司 制备oled薄膜封装层的方法、oled薄膜封装结构及oled结构
KR20200115492A (ko) * 2018-01-31 2020-10-07 니폰 제온 가부시키가이샤 수지 필름 및 유기 일렉트로루미네센스 장치
CN110197877B (zh) * 2018-02-26 2021-05-14 上海和辉光电股份有限公司 一种amoled显示面板
CN108511622B (zh) 2018-04-02 2020-03-03 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN108649138B (zh) 2018-04-28 2020-09-04 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN108428807A (zh) * 2018-05-14 2018-08-21 云谷(固安)科技有限公司 薄膜封装结构及显示屏
CN108511631A (zh) * 2018-06-08 2018-09-07 京东方科技集团股份有限公司 Oled显示面板及其制造方法、显示装置
CN109461827A (zh) * 2018-08-29 2019-03-12 云谷(固安)科技有限公司 一种柔性显示面板和显示装置
CN109638048B (zh) * 2018-12-13 2021-05-14 云谷(固安)科技有限公司 一种显示面板及其制备方法、显示装置
CN110061150A (zh) * 2019-04-30 2019-07-26 武汉华星光电半导体显示技术有限公司 有机发光二极管显示装置及其制作方法
CN110416436B (zh) * 2019-08-29 2021-05-25 京东方科技集团股份有限公司 一种薄膜封装结构、显示装置及封装方法
CN110911578A (zh) * 2019-11-07 2020-03-24 深圳市华星光电半导体显示技术有限公司 显示面板
CN114824035B (zh) * 2021-01-19 2023-09-15 东莞市中麒光电技术有限公司 一种led显示模块及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093878A (zh) * 2006-12-29 2007-12-26 清华大学 一种有机电致发光器件
CN102007616A (zh) * 2008-02-15 2011-04-06 皇家飞利浦电子股份有限公司 封装的电子设备及其制备方法
CN105098091A (zh) * 2015-06-15 2015-11-25 深圳市华星光电技术有限公司 Oled器件的封装结构及其封装方法
JP2016110963A (ja) * 2014-12-08 2016-06-20 古河電気工業株式会社 電子デバイス封止用樹脂組成物および電子デバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100477329C (zh) * 2003-03-07 2009-04-08 友达光电股份有限公司 一种有机发光显示器的制备方法
CN101471425A (zh) * 2007-12-28 2009-07-01 比亚迪股份有限公司 一种电致发光器件
DE102010038393A1 (de) * 2010-07-26 2012-01-26 Aktiebolaget Skf Wälzkörper für eine Wälzlagerung
KR20120065049A (ko) * 2010-12-10 2012-06-20 삼성모바일디스플레이주식회사 유기발광 표시장치 및 그 제조 방법
JP5970198B2 (ja) * 2011-02-14 2016-08-17 株式会社半導体エネルギー研究所 照明装置
CN104637890B (zh) * 2013-11-14 2017-09-22 昆山工研院新型平板显示技术中心有限公司 一种薄膜封装结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093878A (zh) * 2006-12-29 2007-12-26 清华大学 一种有机电致发光器件
CN102007616A (zh) * 2008-02-15 2011-04-06 皇家飞利浦电子股份有限公司 封装的电子设备及其制备方法
JP2016110963A (ja) * 2014-12-08 2016-06-20 古河電気工業株式会社 電子デバイス封止用樹脂組成物および電子デバイス
CN105098091A (zh) * 2015-06-15 2015-11-25 深圳市华星光电技术有限公司 Oled器件的封装结构及其封装方法

Also Published As

Publication number Publication date
US20180287097A1 (en) 2018-10-04
US10270062B2 (en) 2019-04-23
CN106935726A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2018157449A1 (zh) 有机电致发光显示装置及其制作方法
TWI590503B (zh) 電子裝置的邊緣阻隔薄膜
KR101539635B1 (ko) 캡슐화 필름을 증착하기 위한 방법
WO2017096709A1 (zh) 用于打印成膜工艺的凹槽结构及其制作方法
WO2019041386A1 (zh) Oled面板的制作方法及oled面板
WO2018086194A1 (zh) 用于打印oled显示器件的凹槽结构及oled显示器件的制作方法
KR100922951B1 (ko) 플라스틱 필름에 투습 방지성이 향상된 보호막의 형성 방법및 이를 이용한 플렉시블 유기 전계 발광 소자
CN103490019A (zh) 有机电致发光器件的封装结构及封装方法、显示装置
TW200535262A (en) Method and apparatus of depositing low temperature inorganic films on plastic substrates
WO2019153734A1 (zh) Oled封装方法与oled封装结构
KR20170126519A (ko) 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선
KR101292297B1 (ko) 유기 전계 발광 소자 및 그 제조 방법
KR20110096755A (ko) 유기 발광 표시 장치 및 이의 제조 방법
KR20200075796A (ko) 유기광전자소자의 봉지필름 및 그 제조방법
KR20150044723A (ko) 유기 발광 장치 및 이의 제조 방법
US11118266B2 (en) Method for depositing protection film of light-emitting element
KR20050021152A (ko) 유기 발광 소자의 보호막 형성 방법
KR20150044721A (ko) 유기 발광 장치 및 이의 제조 방법
KR102603870B1 (ko) 봉지 구조, 상기 봉지 구조를 갖는 유기발광표시장치 및 이의 제조방법
CN111162188A (zh) 薄膜封装结构及其制备方法和显示面板
US11943954B2 (en) Encapsulation structure and encapsulation method for flexible organic light-emitting diode device
KR102159993B1 (ko) 유기광전자소자의 봉지필름 및 그 제조방법
KR20210018888A (ko) 유기 발광 장치 및 이의 제조 방법
US20190019996A1 (en) Passivation Film Deposition Method For Light-Emitting Diode
WO2019218558A1 (zh) Oled封装方法及oled封装结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15532060

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898805

Country of ref document: EP

Kind code of ref document: A1