KR20170126519A - 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선 - Google Patents

박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선 Download PDF

Info

Publication number
KR20170126519A
KR20170126519A KR1020177032410A KR20177032410A KR20170126519A KR 20170126519 A KR20170126519 A KR 20170126519A KR 1020177032410 A KR1020177032410 A KR 1020177032410A KR 20177032410 A KR20177032410 A KR 20177032410A KR 20170126519 A KR20170126519 A KR 20170126519A
Authority
KR
South Korea
Prior art keywords
layer
inorganic
oled
oxygen
layers
Prior art date
Application number
KR1020177032410A
Other languages
English (en)
Other versions
KR102057176B1 (ko
Inventor
영진 최
범수 박
수영 최
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20170126519A publication Critical patent/KR20170126519A/ko
Application granted granted Critical
Publication of KR102057176B1 publication Critical patent/KR102057176B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • H01L51/5253
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • H01L51/0002
    • H01L51/5237
    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Abstract

기판 상에 무기 층을 증착하는 방법 및 장치가 설명된다. 무기 층은, 다양한 디스플레이 어플리케이션들에서 활용되는 캡슐화 막의 일부일 수 있다. 캡슐화 막은 수-배리어 성능을 개선하기 위해, 배리어 층들로서 하나 또는 그 초과의 무기 층들을 포함한다. 아산화질소와 같은 산소 함유 가스가, 무기 층의 증착 동안에 도입된다. 결과적으로, 무기 층은 응력이 낮아지며, 100 mg/m2-day 미만의 수증기 전달 레이트(WVTR)를 획득할 수 있다.

Description

박막 캡슐화를 위한 N2O 희석 프로세스에 의한 배리어 막 성능의 개선{IMPROVEMENT OF BARRIER FILM PERFORMANCE WITH N2O DILUTION PROCESS FOR THIN FILM ENCAPSULATION}
[0001] 본원에서 개시되는 실시예들은 일반적으로, 화학 기상 증착(CVD) 프로세싱을 이용하여 박막들을 증착하는 것에 관한 것이다. 보다 구체적으로, 실시예들은 일반적으로, 대면적 기판들 상에 배리어 층들을 증착하기 위한 방법들에 관한 것이다.
[0002] 텔레비젼 스크린들, 컴퓨터 모니터들, 휴대폰들, 다른 휴대용(hand-held) 디바이스들, 또는 정보를 디스플레이하기 위한 다른 디바이스들의 제조시, 유기 발광 다이오드들(OLED)이 사용된다. 전형적인 OLED는 2개의 전극들 사이에 배치되는, 유기 물질로 된 층들을 포함할 수 있으며, 이들 모두는, 개별적으로 활성화가능한(energizable) 픽셀들을 갖는 매트릭스 디스플레이 패널(matrix display panel)을 형성하는 방식으로 기판 상에 증착된다. OLED는 일반적으로 2개의 유리 패널들 사이에 배치되며, 유리 패널들의 엣지들은 밀봉되어, OLED를 유리 패널들 내에 캡슐화한다.
[0003] 캡슐화는, UV-경화되는 에폭시 수지의 비드(bead)에 의해 고정되는 유리 리드(glass lid)를 사용하여, 불활성 분위기 내에 활성 물질들(active materials)을 밀봉시킴으로써 달성된다. 활성 OLED 물질들을 수분(water moisture) 및 산소로부터 보호하기 위해서, 내구성 있으며 가요성 있는 캡슐화가 필요한 경우, 경질 캡슐화(rigid encapsulation)는 가요성 디스플레이들에 적용가능하지 않다. 수분 및 산소 침투에 대한 배리어로서 다층 캡슐화 구조를 사용하는 것이 한가지 접근법이다. 주 배리어 층으로서, 무기 층들이 다층 캡슐화 구조 내로 통합될 수 있다. 유기 층들이 또한, 응력 완화(stress relaxation) 및 물/산소 확산 채널들 디커플링 층(water/oxygen diffusion channels decoupling layer)의 목적들로 통합될 수 있다.
[0004] 실리콘 질화물(SiN)이 우수한 배리어 물질로서 공지되어 있으며, 그에 따라 다층 캡슐화 구조 내의 무기 배리어 층으로서의 잠재력을 나타낸다. 그러나, 섭씨 100도 미만과 같은 낮은 온도들에서 증착된 SiN 막들은 높은 응력을 가지며, 이는 박리(delamination)로서 또한 공지되어 있는 막 필링(film peeling), 또는 다중-막(multi-film) 스택 구성들에서의 미스매치 문제들(mismatch issues)을 유발할 수 있다. OLED 디바이스의 층들 중 일부의 민감성에 기인하여, OLED 물질들 위에 후속하여 증착되는 층들은 보다 낮은 온도들, 이를테면 100℃ 미만의 온도들에서 증착될 필요가 있을 것이다.
[0005] 따라서, 하부의(underneath) 디바이스들을 보호하기 위해 개선된 수-배리어 성능(water-barrier performance)을 갖는 캡슐화/배리어 막들을 대면적 기판들 상에 증착하는 방법들이 필요하다.
[0006] 기판 상에 무기 층을 증착하는 방법 및 장치가 설명된다. 무기 층은 다양한 디스플레이 어플리케이션들에서 활용되는 다층 캡슐화 구조의 일부일 수 있다. 다층 캡슐화 구조는 수-배리어 성능을 개선하기 위해 하나 또는 그 초과의 무기 층들을 배리어 층들로서 포함한다. 무기 층들 중 하나 또는 그 초과의 무기 층은 산소-도핑된 실리콘 질화물로 구성된다. 산소-도핑된 실리콘 질화물은, 다층 캡슐화 구조 내에서의 미스매치 또는 필링을 방지하기 위해 낮은 응력을 유지하면서도, 낮은 수증기 전달 레이트(water vapor transmission rate)를 제공한다.
[0007] 일 실시예에서, OLED 디바이스는, 기판 상에 형성되는 OLED 구조 및 OLED 구조 위에 형성되는 다층 캡슐화 층을 포함할 수 있다. 다층 캡슐화 구조는, 기판 및 OLED 구조의 노출된 표면 위에 형성되는 하나 또는 그 초과의 무기 층들을 포함할 수 있고, 하나 또는 그 초과의 무기 층들 중 적어도 하나의 무기 층은, 아산화질소(N2O)로 도핑된 실리콘 질화물을 포함한다.
[0008] 다른 실시예에서, OLED 디바이스는 기판 상에 형성된 OLED 구조 및 OLED 구조 위에 형성되는 다층 캡슐화 층을 포함할 수 있다. 다층 캡슐화 구조는, 기판 및 OLED 구조의 노출된 표면 상에 형성되는 제 1 무기 층, 제 1 무기 층 상에 형성되는 하나 또는 그 초과의 유기 층들, 및 하나 또는 그 초과의 유기 층들 중 적어도 하나의 유기 층 상에 형성되는 하나 또는 그 초과의 제 2 무기 층을 포함할 수 있으며, 하나 또는 그 초과의 제 2 무기 층들 중 적어도 하나의 무기 층은 산소-함유 가스로 도핑된 실리콘 질화물을 포함한다.
[0009] 다른 실시예에서, 캡슐화 구조를 증착하는 방법은, 프로세싱 챔버 내에 기판을 위치시키는 단계, 기판의 표면 상에 OLED 구조를 형성하는 단계, 프로세싱 챔버 내로 아산화질소 및 실란 화합물을 포함하는 증착 가스를 유동시키는 단계 ― 아산화질소 및 실란 화합물은 약 0.3:1 내지 약 3:1의 비율로 전달됨(delivered) ―, 및 기판 및 OLED 구조의 표면 위에 증착 가스로부터 무기 층을 증착하는 단계를 포함할 수 있으며, 무기 층은 산소-도핑된 실리콘 질화물을 포함한다.
[0010] 본 발명의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된 본 발명의 보다 구체적인 설명이 실시예들을 참조로 하여 이루어질 수 있는데, 이러한 실시예들의 일부는 첨부된 도면들에 예시되어 있다. 그러나, 첨부된 도면들은 본 발명의 단지 전형적인 실시예들을 도시하는 것이므로 본 발명의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 발명이 다른 균등하게 유효한 실시예들을 허용할 수 있기 때문이다.
[0011] 도 1은 하나 또는 그 초과의 실시예에 이용가능한 프로세스 챔버이다;
[0012] 도 2는 일 실시예에 따른, 다층 캡슐화 구조가 최상부 상에 증착된 OLED 디바이스의 개략적 단면도이다; 그리고
[0013] 도 3은 일 실시예에 따른, 기판 상에 다층 캡슐화 구조를 형성하는 프로세스를 도시하는 흐름도이다.
[0014] 이해를 용이하게 하기 위해, 도면들에 공통적인 동일한 엘리먼트들을 지시하기 위해, 가능한 경우, 동일한 참조 번호들이 사용되었다. 일 실시예에 개시된 엘리먼트들은 구체적인 설명 없이도 다른 실시예들에 유리하게 활용될 수 있는 것으로 생각된다.
[0015] 산소-도핑된 실리콘 질화물 배리어 층을 포함하는 OLED 구조 및 그 제조 방법들이 설명된다. 무기 층은, 다양한 디스플레이 어플리케이션들에서 활용되는 다중-층 막 스택의 일부일 수 있다. 다중-층 막 스택은, 수-배리어 성능을 개선하기 위해 하나 또는 그 초과의 무기 층들 및 하나 또는 그 초과의 유기 층들을 배리어 층들로서 포함한다. 무기 층들 중 하나 또는 그 초과의 무기 층은 산소-도핑된 SiN으로 구성될 수 있다. 산소-도핑된 SiN은, 표준 SiN에 비해 감소된 응력을 나타내면서도 고 밀도를 유지한다. 본원에서 개시되는 실시예들은 하기의 도면들을 참조하여 보다 명확히 설명된다.
[0016] 본 발명은, 캘리포니아 산타클라라에 소재한 Applied Materials, Inc.의 사업부(division)인 AKT America로부터 입수가능한 플라즈마 강화 화학 기상 증착(PECVD) 시스템과 같은 프로세싱 시스템에서 활용되는 것으로, 하기에서 예시적으로 설명된다. 그러나, 본 발명은 다른 제조자들에 의해 시판되는 것들을 포함하여, 다른 시스템 구성들에서 활용성을 갖는 것이 이해되어야 한다.
[0017] 도 1은, 본원에서 설명되는 동작들을 수행하는데 사용될 수 있는 프로세스 챔버의 개략적 단면도이다. 이 장치는 챔버(100)를 포함하며, 챔버 내에서 하나 또는 그 초과의 막들이 기판(120) 상에 증착될 수 있다. 챔버(100)는 일반적으로, 프로세스 용적을 정의하는, 벽들(102), 바닥(104), 및 샤워헤드(106)를 포함한다. 기판 지지부(118)가 프로세스 용적 내에 배치된다. 프로세스 용적은 슬릿 밸브 개구(108)를 통해 접근될 수 있으며, 그에 따라 기판(120)은 챔버(100)의 안팎으로 이송될 수 있다. 기판 지지부(118)는, 기판 지지부(118)를 상승시키고 하강시키기 위한 액츄에이터(116)에 커플링될 수 있다. 기판 지지부(118)를 통하여 리프트 핀들(122)이 이동가능하게 배치되어서, 기판 수용 표면으로 그리고 기판 수용 표면으로부터 기판을 이동시킨다. 기판 지지부(118)는 또한 가열 및/또는 냉각 엘리먼트들(124)을 포함하여서, 기판 지지부(118)를 희망 온도로 유지할 수 있다. 기판 지지부(118)는 또한 RF 복귀 스트랩들(126)을 포함하여서, 기판 지지부(118)의 주변부에 RF 복귀 경로를 제공할 수 있다.
[0018] 샤워헤드(106)는 체결 메커니즘(140)에 의해 백킹 플레이트(112)에 커플링될 수 있다. 샤워헤드(106)는 하나 또는 그 초과의 체결 메커니즘들(140)에 의해 백킹 플레이트(112)에 커플링되어서, 처짐(sag)을 방지하고 그리고/또는 샤워헤드(106)의 진직도/곡률을 제어하는 것을 도울 수 있다.
[0019] 백킹 플레이트(112)에 가스 소스(132)가 커플링되어서, 샤워헤드(106) 내의 가스 통로들을 통해, 샤워헤드(106)와 기판(120) 사이의 프로세싱 영역에 프로세스 가스들을 제공할 수 있다. 가스 소스(132)는 특히, 실리콘-함유 가스 공급 소스, 산소 함유 가스 공급 소스, 및 탄소-함유 가스 공급 소스를 포함할 수 있다. 하나 또는 그 초과의 실시예들에 이용가능한 전형적인 프로세스 가스들은, 실란(SiH4), 디실란, N2O, 암모니아(NH3), H2, N2, 또는 이들의 조합들을 포함한다.
[0020] 프로세스 용적을 희망 압력으로 제어하기 위해, 진공 펌프(110)가 챔버(100)에 커플링된다. 샤워헤드(106)에 RF 전류를 제공하기 위해, RF 소스(128)가 매치 네트워크(150)를 통해 백킹 플레이트(112) 및/또는 샤워헤드(106)에 커플링될 수 있다. RF 전류는 샤워헤드(106)와 기판 지지부(118) 사이에 전기장을 생성하며, 그에 따라 샤워헤드(106)와 기판 지지부(118) 사이의 가스들로부터 플라즈마가 발생될 수 있다.
[0021] 원격 플라즈마 소스(130), 이를테면 유도 결합된 원격 플라즈마 소스(130)가 또한, 가스 소스(132)와 백킹 플레이트(112) 사이에 커플링될 수 있다. 기판들을 프로세싱하는 사이에, 원격 플라즈마 소스(130)에 세정 가스가 제공될 수 있으며, 그에 따라 원격 플라즈마가 생성된다. 원격 플라즈마로부터의 라디칼들이 챔버(100)에 제공되어서, 챔버(100) 컴포넌트들을 세정할 수 있다. 세정 가스는 샤워헤드(106)에 제공되는 RF 소스(128)에 의해 추가로 여기될 수 있다.
[0022] 샤워헤드(106)는, 샤워헤드 서스펜션(134)에 의해 백킹 플레이트(112)에 부가적으로 커플링될 수 있다. 일 실시예에서, 샤워헤드 서스펜션(134)은 가요성 금속 스커트(flexible metal skirt)이다. 샤워헤드 서스펜션(134)은, 샤워헤드(106)가 위에 놓일 수 있는 립(136)을 가질 수 있다. 백킹 플레이트(112)는, 챔버(100)를 밀봉하도록, 챔버 벽들(102)과 커플링되는 렛지(114)의 상부 표면 상에 놓일 수 있다.
[0023] 도 2는 일 실시예에 따른, 다층 캡슐화 구조(204)가 최상부 상에 증착된 OLED 디바이스(200)를 도시한다. 다층 캡슐화 구조(204)는, 본원에서 설명되는 방법들을 사용하여 기판(202) 상에 증착될 수 있다. 일 실시예에서, 기판(202) 상에는 애노드 층(208)이 증착되며, 기판은 유리 또는 플라스틱, 이를테면 폴리에틸렌 테레프탈레이트(PET) 또는 폴리에틸렌 나프탈레이트(PEN)로 제조될 수 있다. 하나 또는 그 초과의 실시예들에서 이용가능한 애노드 층(208)의 예는 인듐-주석-산화물(ITO)이다. 일 실시예에서, 애노드 층(208)은 약 200 옹스트롬 내지 약 2000 옹스트롬의 두께를 가질 수 있다.
[0024] 애노드 층(208), 이를테면 인듐 주석 산화물(ITO) 층이 기판(202) 상에 증착된 후, 애노드 층(208) 상에 유기 스택(220)이 증착된다. 유기 스택(220)은 홀-주입 층(210), 홀-운반 층(212), 방사 층(214), 전자-운반 층(216) 및 전자 주입 층(218)을 포함할 수 있다. OLED 디바이스(206)의 유기 스택(220)을 쌓기(build) 위해, 반드시 5개의 모든 층들이 요구되는 것은 아님이 주목되어야 한다. 일 실시예에서, 유기 스택(220)을 형성하기 위해, 단지 홀-운반 층(212) 및 방사 층(214)만이 사용된다. 증착 후에, 유기 스택(220)은 패터닝된다.
[0025] 유기 스택(220)의 표면을 패터닝한 뒤에, 캐소드 층(222)이 그 다음에 증착되고 패터닝된다. 캐소드 층(222)은 금속, 금속들의 혼합물, 또는 금속들의 합금일 수 있다. 캐소드 물질의 예는, 약 1000 옹스트롬 내지 약 3000 옹스트롬의 두께 범위의, 마그네슘(Mg), 은(Ag), 및 알루미늄(Al)의 합금이다.
[0026] 다층 캡슐화 구조(204)는, OLED 디바이스(206)의 구성이 완료된 뒤에, 기판 표면의 최상부 상에 증착된다. 일 실시예에서, 다층 캡슐화 구조(204)는, 약 500 옹스트롬 내지 약 50,000 옹스트롬, 이를테면 약 2000 옹스트롬 내지 약 50,000 옹스트롬의 두께 범위로 증착되는, 무기 질화물 막, 무기 산화물 막, 및 폴리머-타입 유기 막의 얇은 층을 포함한다. 일 실시예에서, 캡슐화 물질로서, 특히, 실리콘 질화물(SiN), 실리콘 산질화물(SiON), 실리콘 산화물(SiO), 및 실리콘 탄화물(SiC)이 사용될 수 있다.
[0027] 본 발명의 일 실시예는, 기판(202) 상에 증착된 다층 캡슐화 구조(204)가, 배리어/캡슐화 물질들, 이를테면 무기 질화물, 무기 산화물 막 및 폴리머-타입 유기 물질로 된 하나 또는 그 초과의 층들을 포함하는 것을 제공한다. 하나 또는 그 초과의 부가적인 물질 층들, 이를테면 다양한 탄소-함유 물질들과 폴리머-타입 유기 물질들, 및 저-유전 상수 물질들, 예를 들어, 비정질 탄소, 다이아몬드-형 탄소, 탄소-도핑된 실리콘 함유 물질, 등이 다층 캡슐화 구조(204) 내에 증착되어서, 접착(adhesion)을 향상시키고 다층 캡슐화 구조(204)를 연화시킨다(soften).
[0028] 다층 캡슐화 구조(204)는, 하나 또는 그 초과의 유기 층들 및 하나 또는 그 초과의 무기 층들을 포함할 수 있다. 전술한 바와 같이, 무기 층들은 일반적으로 배리어 특성들을 제공하는 반면, 유기 층들은 일반적으로, 다층 캡슐화 구조(204)의 가요성을 증가시킨다. 일 실시예에서, 다층 캡슐화 구조(204)는, 제 1 무기 층(224), 제 2 무기 층(228), 및 제 1 무기 층(224)과 제 2 무기 층(228) 사이에 삽입된(sandwiched) 유기 층(226)을 포함한다. 다른 방식으로 말하면, 유기 층들은, 하나 또는 그 초과의 무기 층들 사이의, 또는 하나 또는 그 초과의 무기 층들 중 임의의 무기 층과 접촉하고 있는, 하나 또는 그 초과의 층들로서 증착될 수 있다. 추가의 실시예들은 하나 또는 그 초과의 무기 층들만을 사용할 수 있다.
[0029] 일 실시예에서, 약 1,000 옹스트롬의 두께를 갖는 다층 캡슐화 구조(204)는 그 후 기판(202) 및 OLED 디바이스(206)의 표면 위에 증착된다. 다층 캡슐화 구조(204)는, 수분 및 산소가 OLED 디바이스(206) 및/또는 기판(202) 내로 침투하는 것을 방지할 수 있다. 다층 캡슐화 구조(204)는 공통의 챔버 내에서 증착될 수 있으며, 그에 따라 제 1 무기 층(224), 제 2 무기 층(228)과 유기 층(226)이 모두 진공을 파괴하지 않으면서 동일한 챔버 내에서 증착된다.
[0030] 하나 또는 그 초과의 무기 층들은, 실리콘, 이를테면 SiN, SiON, 산소-도핑된 SiN으로 구성된 층들, 또는 실리콘을 함유하는 다른 조성물들(compositions)을 포함할 수 있다. 이때, 무기 층들은 -2*109 dynes/cm2 내지 -0.1*109 dynes/cm2의 응력을 가질 수 있다. 산소-도핑된 SiN은, 산소, 이를테면 O2 또는 N2O를 포함하는 임의의 도펀트로 도핑된 SiN을 포함할 수 있다. 하나 또는 그 초과의 무기 층들 중 적어도 하나의 무기 층은 산소-도핑된 SiN으로 구성되어야 한다. 산소-도핑된 SiN은 -1.0*109 dynes/cm2 미만의 응력을 가질 수 있다.
[0031] 이론에 의해 제한되도록 의도하지 않고, 층의 필링(peeling)을 방지하기 위해서는 -1.0*109 dynes/cm2 미만의 응력이 바람직한 것으로 생각된다. 층 내의 높은 응력은 하부에 놓인(underlying) 층들로부터 층의 분리를 야기할 수 있다. 이러한 효과(effect)는 다층 구조들 내에서 악화되는데(exacerbated), 이는 후속 층들 내의 응력이 이전 층들 내의 응력과 합성될(compound) 수 있기 때문이다. 단일 층 내의 응력과 전체로서의 구조 내의 응력은 모두, 막의 필링을 야기할 수 있는데, 이러한 막의 필링은 캡슐화 구조의 경우, 수분 및 대기 상태들(atmospheric conditions)이 민감한 컴포넌트들에 도달하는 것을 허용하고, 그에 따라 디바이스 파손(failure)을 야기할 수 있다. 산소-도핑된 SiN 층을 증착하는 것에 의해, 저 응력 층을 사용하면서 낮은 수증기 전달 레이트가 유지될 수 있다.
[0032] 도 3은 일 실시예에 따른, 기판 상에 다층 캡슐화 구조를 형성하는 프로세스(300)를 도시하는 흐름도이다. 프로세스(300)는 단계(302)에서와 같이, 기판이 프로세싱 챔버 내에 배치되는 것으로 시작된다. 이 단계에서, 기판은 기판 지지 조립체 상에 위치되고 프로세싱 영역 내로 이동된다. 기판은, 금속, 유기 물질, 실리콘, 유리, 석영, 폴리머 물질들 또는 플라스틱, 이를테면 폴리에틸렌 테레프탈레이트(PET) 또는 폴리에틸렌 나프탈레이트(PEN)으로 된 얇은 시트와 같은, 박막들의 증착에 사용되는 표준 기판일 수 있다. 또한, 임의의 적합한 기판 크기가 프로세싱될 수 있다. 적합한 기판 크기들의 예시들은, 약 2000 제곱 센티미터 또는 그 초과, 이를테면 약 4000 제곱 센티미터 또는 그 초과, 예를 들면 약 10000 제곱 센티미터 또는 그 초과의 표면적(surface area)을 갖는 기판을 포함한다. 일 실시예에서, 약 90000 제곱 센티미터 또는 그 초과의 표면적을 갖는 기판이 프로세싱될 수 있다. 하기에서 설명되는 실시예들은 5500 제곱 센티미터 기판에 관한 것이다.
[0033] 단계(304)에서와 같이, 위치된 기판의 표면 상에 그 후 OLED 구조가 형성된다. OLED 구조는, 도 2를 참조하여 설명된 바와 같이, 캐소드 층 및 애노드 층과 함께, 적어도 홀-전달 층 및 방사 층을 포함한다. 그러나, OLED 구조는, 전술된 애노드 및 캐소드 층들뿐 아니라 5개의 모든 층들 또는 이들의 기능적 등가물들을 포함할 수 있다.
[0034] OLED 구조들의 형성 이후에, 단계(306)에서와 같이, N2O와 같은 산소 함유 가스 및 SiH4와 같은 실란 화합물을 포함하는 증착 가스가 프로세싱 챔버 내로 유동된다. 산소 함유 가스 및 실란 화합물은 약 0.3:1 내지 약 3:1의 비율로 전달된다. 산소 함유 가스들은, N2O, 일산화질소(NO), 오산화 이질소(N2O5), 사산화 이질소(N2O4), O2, O3, 또는 이들의 조합들을 포함할 수 있다. 실란 함유 가스들은, SiH4, 디실란, 이들의 유도체들, 및 이들의 조합들을 포함할 수 있다. 증착 가스는, H2, N2, NH3, 불활성 가스들 또는 이들의 조합들을 더 포함할 수 있다. 낮은 온도를 유지하기 위해, 증착 가스는 플라즈마 소스를 이용하여 활성화된다(activated).
[0035] 단계(308)에서와 같이, 증착 가스를 사용하여, 기판 및 OLED 구조의 표면 위에 무기 층이 증착된다. 무기 층은 산소-도핑된 SiN을 포함한다. 일 실시예에서, 산소-도핑된 SiN은, 전술된 방법들에 의해 산소 함유 화합물, 이를테면 N2O에 의해 도핑된 SiN을 포함한다. 증착된 산소-도핑된 SiN 층의 두께는 20Å 내지 1000Å일 수 있다. 또한, 하나 초과의 산소-도핑된 SiN 층이 캡슐화 구조를 형성하는데 사용될 수 있다. 산소-도핑된 SiN 층은, SiO와 같은, 기술분야에 공지되어 있는 유기 또는 무기 막들과 함께 사용될 수 있다. 산소-도핑된 SiN 층은 캡슐화 구조의 임의의 층으로서 증착될 수 있으며, 캡슐화 구조의 다른 증착된 층들 사이에 삽입될 수 있다. 예를 들면, 산소-도핑된 SiN 층은, 유기 층과 무기 층 사이, 유기 층과 유기 층 사이, 또는 무기 층과 무기 층 사이에 증착될 수 있다. 무기 층들은 산소-도핑된 SiN 층들을 포함할 수 있다.
[0036] 이론에 의해 제한되도록 의도하지 않고, 산소-함유 화합물을 사용하는 도핑은, 낮은 온도들에서 증착되는 실리콘 질화물 층들에 내재된(intrinsic) 응력을 감소시킬 수 있는 것으로 생각된다. OLED 구조들은 섭씨 100도 초과의 온도들에 민감하다. OLED 구조가 형성된 이후에 캡슐화 구조가 증착되기 때문에, 캡슐화 구조는, 하부에 놓인 OLED의 기능에 영향을 미치지 않는 온도들에서 증착될 수 있다. 일 실시예에서, 캡슐화 구조는 섭씨 90도 미만의 온도들, 이를테면 섭씨 85도 또는 그 미만의 온도들에서 증착된다. 약 0.3:1 내지 약 3:1의 산소 함유 화합물 대 실란 화합물의 비율을 사용하여 실리콘 질화물 층을 증착함으로써, SiN은 산소 함유 화합물로 도핑된다. 이러한 증착 프로세스는, 우수한 균일성, 표준 SiN 층들에 비해 감소된 응력, 및 (100 mg/m2-day 미만, 이를테면 75 mg/m2-day 미만의 WVTR을 갖는) 낮은 수증기 투과성(permeability)을 가지면서, 섭씨 100도 미만의 온도들에서 수행될 수 있다.
[0037] 하기의 표 1은, 이전에 개시된 실시예들 중 하나 또는 그 초과의 실시예를 사용한 실험 데이터로부터의 예시들을 보여준다. 증착들은, 캘리포니아 산타클라라에 소재한 Applied Materials, Inc.로부터 입수가능한 AKT-5500 PX PECVD 챔버에서 수행되었으며, 프로세싱되는 기판에 대해 sccm/cm2로 표준화되었다. 본원에서 설명되는 실시예들은, 상이한 크기의(sized) 기판들 및 상이한 크기의 챔버들에 대해 보상하기 위해 규모가 확대되거나 축소될 수 있음이 이해되어야 한다. 하기에서 설명되는 예시들 중 각각의 예시에 나타낸 바와 같이, 증착 파라미터들, 이를테면 유량들, 온도들 및 압력들은, N2O 유량을 제외하고, 동일하게 유지되었다.
Figure pat00001
[0038] 제 1 예시는, N2O 도핑이 없는, SiN 층에 대한 증착 파라미터들을 도시한다. 이러한 예시에서, SiH4, NH3, N2 및 H2는 각각, 960, 2180, 5480 및 9128 sccm으로 전달된다. SiN 층은, 1600 mTorr의 압력에서 4000 W에서의 RF 플라즈마의 존재하에 섭씨 85도에서 증착된다. N2O가 없는 증착된 SiN 층은, 40 mg/m2-day의 수증기 전달 레이트(WVTR), 1.863의 굴절률 및 -3.09*109 dynes/cm2의 비교적 높은 압축 응력을 갖는다.
[0039] 제 2 예시는, 500 sccm의 N2O를 갖는, SiN 층에 대한 증착 파라미터들을 도시한다. 이러한 예시에서, SiH4, NH3, N2, 및 H2는 각각, 960, 2180, 5480 및 9128 sccm(0.52:1의 N2O:SiH4 비율)으로 전달된다. SiN 층은 1600 mTorr의 압력에서 4000W에서의 RF 플라즈마의 존재하에 섭씨 85도에서 증착된다. 증착된 산소-도핑된 SiN 층은 35 mg/m2-day의 수증기 전달 레이트(WVTR), 1.795의 굴절률, 및 -1.68*109 dynes/cm2의 보다 낮은 압축 응력을 갖는다.
[0040] 제 3 예시는, 1000 sccm의 N2O를 갖는, SiN 층에 대한 증착 파라미터들을 도시한다. 이 예시에서, SiH4, NH3, N2 및 H2는 각각, 960, 2180, 5480 및 9128 sccm(1.04:1의 N2O:SiH4 비율)으로 전달된다. 이 층은 1600 mTorr의 압력에서 4000W에서의 RF 플라즈마의 존재하에 섭씨 85도에서 증착된다. 증착된 산소-도핑된 SiN 층은 75 mg/m2-day의 수증기 전달 레이트(WVTR), 1.744의 굴절률, 및 -1.07*109 dynes/cm2의 압축 응력을 갖는다.
[0041] 제 4 예시는, 2000 sccm의 N2O를 갖는, SiN 층에 대한 증착 파라미터들을 도시한다. 이 예시에서, SiH4, NH3, N2 및 H2는 각각, 960, 2180, 5480 및 9128 sccm(2.08:1의 N2O:SiH4 비율)으로 전달된다. SiN 층은 1600 mTorr의 압력에서 4000W에서의 RF 플라즈마의 존재하에 섭씨 85도에서 증착된다. 증착된 산소-도핑된 SiN 층은 81 mg/m2-day의 수증기 전달 레이트(WVTR), 1.678의 굴절률, 및 -0.44*109 dynes/cm2의 압축 응력을 갖는다.
[0042] 제 5 예시는, 3000 sccm의 N2O를 갖는, SiN 층에 대한 증착 파라미터들을 도시한다. 이 예시에서, SiH4, NH3, N2 및 H2는 각각, 960, 2180, 5480 및 9128 sccm(2.08:1의 N2O:SiH4 비율)으로 전달된다. SiN 층은 1600 mTorr의 압력에서 4000W에서의 RF 플라즈마의 존재하에 섭씨 85도에서 증착된다. 증착된 산소-도핑된 SiN 층은 81 mg/m2-day의 수증기 전달 레이트(WVTR), 1.634의 굴절률, 및 -0.44*109 dynes/cm2의 압축 응력을 갖는다.
[0043] 예시적인 증착된 SiN 층들에서, SiH4 농도에 비해 N2O 농도가 증가함에 따라 응력은 감소한다. 그러나, SiH4 농도에 비해 N2O 농도가 증가함에 따라, WVTR이 또한 증가한다. 따라서, WVTR 및 응력은, 0.3:1 내지 3:1의 N2O:SiH4 비율들, 예를 들면, 0.5:1 내지 3:1의 비율들에서 최적이다.
결론
[0044] 요약하면, OLED 디바이스에 대한 배리어 층으로서, SiN 층과 같은 무기 층이 증착된다. SiN은 매우 낮은 수증기 전달 레이트로 증착될 수 있지만, 낮은 온도들에서의 증착은 압축 응력이 높은 SiN 층을 생성한다. 본원에서 설명된 실시예들에서, 우수한(superior) 수증기 전달 레이트를 유지하면서도, 층의 응력을 감소시키기 위해 SiN 층의 증착 동안에 산소 함유 가스가 도입된다.
[0045] 전술한 내용은 본 발명의 실시예들에 관한 것이지만, 본 발명의 기본 범위로부터 벗어나지 않고 본 발명의 다른 그리고 추가의 실시예들이 안출될 수 있으며, 본 발명의 범위는 하기의 청구항들에 의해 결정된다.

Claims (14)

  1. OLED 디바이스로서:
    기판 상에 형성되는 OLED 구조; 및
    상기 OLED 구조 위에 형성되는 다층 캡슐화 층(multilayer encapsulation layer)을 포함하고, 상기 다층 캡슐화 층은, 상기 기판 및 상기 OLED 구조의 노출된 표면 위에 형성되는 하나 또는 그 초과의 무기 층들을 포함하며,
    상기 하나 또는 그 초과의 무기 층들 중 적어도 하나의 무기 층은 산소-도핑된 실리콘 질화물 및 실리콘 산화물(SiO)을 포함하고,
    상기 산소-도핑 된 실리콘 질화물은 0.3:1 내지 3:1의 산소 함유 화합물 대 실리콘 함유 화합물의 비율을 사용하여 증착되는,
    OLED 디바이스.
  2. 제 1 항에 있어서,
    상기 무기 층의 수증기 전달 레이트(water vapor transmission rate)는 100 mg/m2-day 미만인,
    OLED 디바이스.
  3. 제 1 항에 있어서,
    상기 OLED 구조는 홀-주입 층(hole-injection layer), 홀-운반 층(hole-transport layer), 방사 층(emissive layer), 전자-운반 층 및 전자 주입 층을 포함하는,
    OLED 디바이스.
  4. 제 1 항에 있어서,
    상기 하나 또는 그 초과의 무기 층들은 실리콘 질화물을 포함하고, -2*109 dynes/cm2 내지 -0.1*109 dynes/cm2의 응력을 갖는,
    OLED 디바이스.
  5. 제 1 항에 있어서,
    상기 하나 또는 그 초과의 무기 층들은 실리콘 산질화물(SiON), 실리콘 탄화물(SiC) 또는 이들의 조합들을 더 포함하는,
    OLED 디바이스.
  6. OLED 디바이스로서:
    기판 상에 형성되는 OLED 구조; 및
    상기 OLED 구조 위에 형성되는 다층 캡슐화 층을 포함하며, 상기 다층 캡슐화 층은:
    상기 기판 및 상기 OLED 구조 상에 형성되는 하나 또는 그 초과의 유기 층들; 및
    상기 하나 또는 그 초과의 유기 층들 중 적어도 하나의 유기 층 상에 형성되는 하나 또는 그 초과의 무기 층을 포함하며,
    상기 하나 또는 그 초과의 무기 층들 중 적어도 하나의 무기 층은 산소-함유 가스로 도핑된 실리콘 질화물 및 실리콘 산화물(SiO)을 포함하고,
    상기 산소-도핑 된 실리콘 질화물은 0.3:1 내지 3:1의 산소 함유 화합물 대 실리콘 함유 화합물의 비율을 사용하여 증착되는,
    OLED 디바이스.
  7. 제 6 항에 있어서,
    상기 산소-함유 가스는 아산화질소인,
    OLED 디바이스.
  8. 제 6 항에 있어서,
    상기 산소-함유 가스는 일산화질소 또는 오존인,
    OLED 디바이스.
  9. 제 6 항에 있어서,
    상기 무기 층의 수증기 전달 레이트는 100 mg/m2-day 미만인,
    OLED 디바이스.
  10. 제 6 항에 있어서,
    상기 OLED 구조는, 홀-주입 층, 홀-운반 층, 방사 층, 전자-운반 층 및 전자 주입 층을 포함하는,
    OLED 디바이스.
  11. 제 6 항에 있어서,
    상기 하나 또는 그 초과의 무기 층들 중 적어도 하나의 무기 층은 실리콘 질화물을 포함하고, -2*109 dynes/cm2 내지 -0.1*109 dynes/cm2의 응력을 갖는,
    OLED 디바이스.
  12. 제 6 항에 있어서,
    상기 하나 또는 그 초과의 무기 층들은 실리콘 산질화물(SiON), 실리콘 탄화물(SiC) 또는 이들의 조합들을 더 포함하는,
    OLED 디바이스.
  13. 제 6 항에 있어서,
    상기 무기 층은 무기 질화물 또는 무기 산화물 층인,
    OLED 디바이스.
  14. 제 6 항에 있어서,
    상기 하나 또는 그 초과의 무기 층들은 무기 질화물 또는 무기 산화물 층인,
    OLED 디바이스.
KR1020177032410A 2013-03-12 2014-03-10 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선 KR102057176B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361778067P 2013-03-12 2013-03-12
US61/778,067 2013-03-12
PCT/US2014/022498 WO2014164465A1 (en) 2013-03-12 2014-03-10 Improvement of barrier film performance with n2o dilution process for thin film encapsulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020157027762A Division KR20150131098A (ko) 2013-03-12 2014-03-10 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선

Publications (2)

Publication Number Publication Date
KR20170126519A true KR20170126519A (ko) 2017-11-17
KR102057176B1 KR102057176B1 (ko) 2019-12-18

Family

ID=51523573

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020157027762A KR20150131098A (ko) 2013-03-12 2014-03-10 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선
KR1020177032410A KR102057176B1 (ko) 2013-03-12 2014-03-10 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020157027762A KR20150131098A (ko) 2013-03-12 2014-03-10 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선

Country Status (6)

Country Link
US (1) US9269923B2 (ko)
JP (1) JP6312791B2 (ko)
KR (2) KR20150131098A (ko)
CN (1) CN105190932A (ko)
TW (1) TWI578592B (ko)
WO (1) WO2014164465A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167226A1 (ja) * 2015-04-17 2016-10-20 シャープ株式会社 El表示装置及びel表示装置の製造方法
KR102364708B1 (ko) * 2017-07-12 2022-02-21 삼성디스플레이 주식회사 표시 장치의 제조 방법
CN108305954B (zh) * 2018-01-24 2020-07-31 武汉华星光电半导体显示技术有限公司 Oled器件的薄膜封装方法及oled器件
GB201806865D0 (en) * 2018-04-26 2018-06-13 Spts Technologies Ltd Method of depositing a SiN film
CN113841263B (zh) * 2019-04-25 2024-04-26 应用材料公司 具有低折射率和低水蒸气穿透率的湿气阻挡膜
CN113053941A (zh) * 2019-12-27 2021-06-29 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
KR20210134176A (ko) 2020-04-29 2021-11-09 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
US20220230927A1 (en) 2021-04-15 2022-07-21 Jnk Tech Glass and wafer inspection system and a method of use thereof
US11508590B2 (en) 2021-04-15 2022-11-22 Jnk Tech Substrate inspection system and method of use thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039468A (ja) 2002-07-04 2004-02-05 Tdk Corp 有機elカラーディスプレイ
CN102281659B (zh) * 2002-12-26 2014-06-04 株式会社半导体能源研究所 发光装置和制造发光装置的方法
US7371452B2 (en) * 2003-04-28 2008-05-13 Eastman Kodak Company Conductive patterned sheet utilizing multi-layered conductive conduit channels
US20060110580A1 (en) * 2003-04-28 2006-05-25 Aylward Peter T Article comprising conductive conduit channels
KR100563057B1 (ko) 2003-11-14 2006-03-24 삼성에스디아이 주식회사 초박형 유기 전계 발광 표시장치 및 그 제조방법
US7060961B2 (en) * 2003-12-12 2006-06-13 Canon Kabushiki Kaisha Image sensing element and optical instrument having improved incident light use efficiency
US7220687B2 (en) * 2004-06-25 2007-05-22 Applied Materials, Inc. Method to improve water-barrier performance by changing film surface morphology
JP2007038529A (ja) * 2005-08-03 2007-02-15 Konica Minolta Holdings Inc ガスバリア性薄膜積層体、ガスバリア性樹脂基材および有機エレクトロルミネッセンスデバイス
JP2007220646A (ja) 2006-01-19 2007-08-30 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
KR100873082B1 (ko) * 2007-05-30 2008-12-09 삼성모바일디스플레이주식회사 유기전계발광 표시 장치 및 그의 제조 방법
TWI420722B (zh) * 2008-01-30 2013-12-21 Osram Opto Semiconductors Gmbh 具有封裝單元之裝置
CN101952967A (zh) * 2008-02-22 2011-01-19 皇家飞利浦电子股份有限公司 双面有机发光二极管(oled)
JP5024220B2 (ja) * 2008-07-24 2012-09-12 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、電子機器
CN101810050B (zh) * 2008-09-26 2011-12-28 富士电机株式会社 有机el器件及其制造方法
KR101560234B1 (ko) * 2009-06-29 2015-10-15 엘지디스플레이 주식회사 유기전계발광 표시장치 및 그 제조방법
JP2011210544A (ja) * 2010-03-30 2011-10-20 Canon Inc 有機発光装置及びその製造方法
JP5673927B2 (ja) * 2010-10-08 2015-02-18 住友化学株式会社 積層フィルム
JP5880442B2 (ja) * 2010-11-19 2016-03-09 コニカミノルタ株式会社 ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
US8329575B2 (en) * 2010-12-22 2012-12-11 Applied Materials, Inc. Fabrication of through-silicon vias on silicon wafers
KR101844557B1 (ko) * 2011-02-08 2018-04-02 어플라이드 머티어리얼스, 인코포레이티드 유기 발광 다이오드의 하이브리드 캡슐화를 위한 방법
KR20120109083A (ko) * 2011-03-24 2012-10-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
JP2012216452A (ja) * 2011-04-01 2012-11-08 Hitachi High-Technologies Corp 光半導体装置およびその製造方法
JP2013022820A (ja) * 2011-07-20 2013-02-04 Nitto Denko Corp 透明ガスバリアフィルム、透明ガスバリアフィルムの製造方法、有機エレクトロルミネッセンス素子、太陽電池および薄膜電池
KR101901832B1 (ko) * 2011-12-14 2018-09-28 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
US8735255B2 (en) * 2012-05-01 2014-05-27 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TWI578592B (zh) 2017-04-11
JP2016512651A (ja) 2016-04-28
KR20150131098A (ko) 2015-11-24
KR102057176B1 (ko) 2019-12-18
US9269923B2 (en) 2016-02-23
TW201503444A (zh) 2015-01-16
CN105190932A (zh) 2015-12-23
US20140264296A1 (en) 2014-09-18
JP6312791B2 (ja) 2018-04-18
WO2014164465A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
KR102057176B1 (ko) 박막 캡슐화를 위한 n2o 희석 프로세스에 의한 배리어 막 성능의 개선
TWI251933B (en) Light emitting device
KR101701257B1 (ko) 박막 캡슐화 ― oled 어플리케이션을 위한 얇은 초고 배리어 층
CN101409236A (zh) 半导体器件的制造方法
KR20140129075A (ko) 캡슐화 필름을 증착하기 위한 방법
JP5998232B2 (ja) 薄膜トランジスタ及びその製造方法
US20170207255A1 (en) Display device
KR102631535B1 (ko) 유기 발광 표시 장치
KR100569607B1 (ko) 유기 발광 소자의 보호막 형성 방법
US11118266B2 (en) Method for depositing protection film of light-emitting element
US20210202899A1 (en) Oled display screen, display panel and manufacturing method thereof
JP2007059094A (ja) 有機elディスプレイ及び有機elディスプレイの製造方法
US10777777B2 (en) Passivation film deposition method for light-emitting diode
US10461282B2 (en) Method for depositing protection film of light-emitting element
US8003195B2 (en) Method for manufacturing display device
KR101436778B1 (ko) PVD를 이용한 SiOC 박막 형성을 이용한 OLED 정공 차단층 형성 방법
CN110911586B (zh) 一种oled面板、oled面板的制备方法和显示装置
KR20100027902A (ko) 유기전계발광표시장치와 이의 제조방법
US11751426B2 (en) Hybrid thin film permeation barrier and method of making the same
KR20160056465A (ko) 표시 장치, 표시 장치의 제조 장치 및 표시 장치의 제조 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant