WO2016167226A1 - El表示装置及びel表示装置の製造方法 - Google Patents

El表示装置及びel表示装置の製造方法 Download PDF

Info

Publication number
WO2016167226A1
WO2016167226A1 PCT/JP2016/061722 JP2016061722W WO2016167226A1 WO 2016167226 A1 WO2016167226 A1 WO 2016167226A1 JP 2016061722 W JP2016061722 W JP 2016061722W WO 2016167226 A1 WO2016167226 A1 WO 2016167226A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
display device
sealing
substrate
stress
Prior art date
Application number
PCT/JP2016/061722
Other languages
English (en)
French (fr)
Inventor
岡本 哲也
剛 平瀬
亨 妹尾
通 園田
石田 守
聖士 藤原
大地 西川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016167226A1 publication Critical patent/WO2016167226A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • the present invention relates to an EL display device and a method for manufacturing the EL display device.
  • the EL display device has, for example, a configuration in which an EL element connected to a TFT is provided on a TFT substrate in which a TFT (thin film transistor) is provided on a support made of a glass substrate or the like.
  • EL elements are generally easily affected by moisture, oxygen, and the like, and react with trace amounts of moisture and oxygen to deteriorate their characteristics and impair the life of the display device.
  • the sealing film can be formed by a method such as vapor deposition.
  • the thicker the film the higher the blocking effect for preventing moisture and oxygen from entering the EL element.
  • the film thickness of the sealing film is increased, the film stress of the sealing film increases, and there is a possibility that film floating occurs in which the sealing film is peeled off from the TFT substrate.
  • a stress relaxation film having a stress smaller than that of the inorganic insulating film is provided between the two layers of the inorganic insulating film as the sealing film.
  • a transparent protective laminate is constituted by the relaxation film.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2004-95551 (published on March 25, 2004)”
  • the sealing film when left for a long time in an atmosphere at a temperature of 80 ° C. and a humidity of 85%, the sealing film may cause peeling or film peeling. As a result, moisture, oxygen, and the like enter from the film floating portion at the end of the sealing film, a non-light emitting region is generated in the display region of the EL display device, and display defects such as dark spots and shrinkage occur.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an EL display device and an EL display device manufacturing method with improved adhesion and reliability between a substrate and a sealing film. It is in.
  • an EL display device includes an EL element formed over a substrate and the substrate and the substrate so that the EL element is sealed between the substrate and the EL element.
  • An EL display device including a sealing film formed on an EL element, wherein a product of the film thickness and the film stress of the sealing film is ⁇ 450 MPa ⁇ ⁇ m or more, and ⁇ 350 MPa. -It is characterized by being not more than ⁇ m.
  • an EL display device manufacturing method includes a step of forming an EL element over a substrate, and at least sealing the EL element over the substrate.
  • an EL display device with improved adhesion and reliability between the substrate and the sealing film and a method for manufacturing the EL display device can be provided.
  • FIG. 1 It is a graph which shows the relationship between the Total film
  • FIG. 1 is sectional drawing which shows an example of schematic structure of the organic electroluminescent display apparatus concerning Embodiment 1 of this invention
  • FIG. It is sectional drawing which shows the structure of the 2nd electrode and sealing film of the organic electroluminescent display apparatus concerning Embodiment 1 of this invention.
  • (A)-(g) is sectional drawing which shows the film-forming method of the sealing film concerning Embodiment 1 of this invention in order of a process.
  • an organic EL display device will be described as an example of the EL display device.
  • FIG. 2A is a cross-sectional view illustrating an example of a schematic configuration of the organic EL display device according to the present embodiment
  • FIG. 2B is a cross-sectional view of the organic EL display device illustrated in FIG. It is a top view which shows schematic structure of a sub pixel.
  • the organic EL display device 100 includes an organic EL element 20 (EL element) and a sealing film 30 on a TFT (Thin Film Transistor) substrate 10. , Have a configuration provided in this order.
  • the TFT substrate 10 includes an insulating support 1 made of a glass substrate, a plastic film, a plastic substrate, or the like. On the support 1, a TFT 2, a signal line 3, an interlayer insulating film 4 and the like are provided.
  • the signal line 3 includes a plurality of gate lines, a plurality of source lines, a plurality of power supply lines, and the like.
  • sub-pixels 14 of each color are arranged. For example, one pixel is formed by a set of red (R), green (G), and blue (B) sub-pixels 14.
  • Each subpixel 14 is provided with a TFT 2.
  • Each of the TFTs 2 is connected to the signal line 3, selects a subpixel to which a signal is input through the gate line, determines an amount of electric charge to be input into the selected subpixel through the source line, and supplies current from the power supply line.
  • the organic EL element 20 is flowed.
  • the TFT 2 and the signal line 3 are covered with an interlayer insulating film 4.
  • an insulating material such as an acrylic resin or a polyimide resin can be used.
  • the thickness of the interlayer insulating film 4 is not particularly limited as long as the steps on the upper surfaces of the TFT 2 and the signal line 3 can be eliminated.
  • the organic EL element 20 includes a first electrode 21 (anode), an organic EL layer 22, a second electrode 23 (cathode), and the like.
  • the first electrode 21 is formed on the interlayer insulating film 4.
  • the first electrode 21 injects (supply) holes into the organic EL layer 22, and the second electrode 23 injects electrons into the organic EL layer 22.
  • the first electrode 21 is electrically connected to the TFT 2 through a contact hole 4 a formed in the interlayer insulating film 4.
  • the end of the first electrode 21 is covered with the edge cover 5.
  • the edge cover 5 is an insulating film and is made of, for example, a photosensitive resin.
  • the edge cover 5 prevents the electrode concentration or the organic EL layer 22 from becoming thin at the end of the first electrode 21 and short-circuiting with the second electrode 23.
  • the edge cover 5 also functions as a pixel separation film so that current does not leak to the adjacent sub-pixels 14.
  • the edge cover 5 is provided with an opening 5 a for each sub-pixel 14. An exposed portion of the first electrode 21 through the opening 5 a is a light emitting region of each sub-pixel 14.
  • the organic EL layer 22 is provided between the first electrode 21 and the second electrode 23.
  • the organic EL layer 22 has a configuration in which, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are stacked in this order from the first electrode 21 side.
  • one layer may have a plurality of functions.
  • a hole injection layer / hole transport layer having the functions of both layers may be provided.
  • an electron injection layer / electron transport layer having the functions of both layers may be provided.
  • a carrier blocking layer may be appropriately provided between the layers.
  • the first electrode 21 is an anode (pattern electrode, pixel electrode) and the second electrode 23 is a cathode (common electrode), but the first electrode 21 is a cathode and the second electrode. 23 may be an anode.
  • the order of the layers constituting the organic EL layer 22 is reversed.
  • the organic EL display device 100 is a bottom emission type that emits light from the back side of the support 1
  • the second electrode 23 is formed of a reflective electrode material
  • the first electrode 21 is transparent or translucent. It is preferable to form the transparent electrode material.
  • the organic EL display device 100 is a top emission type that emits light from the sealing film 30 side
  • the first electrode 21 is formed of a reflective electrode material
  • the second electrode 23 is transparent or translucent. It is preferable to form the transparent electrode material.
  • the sealing film 30 is formed on the support 1 and the second electrode 23 so as to seal the organic EL element 20 between the support 1 and the sealing film 30.
  • the sealing film 30 prevents the organic EL element 20 from being deteriorated by moisture or oxygen that has entered from the outside.
  • the organic layer which is not shown in figure may be formed in order to adjust an optical characteristic, and the 2nd electrode 23 is protected.
  • An electrode protective layer may be formed.
  • FIG. 3 is a cross-sectional view showing the configuration of the second electrode and the sealing film of the organic EL display device according to the present embodiment.
  • the sealing film 30 of the organic EL display device 100 according to the present embodiment has a structure in which SiN films and SiON films are alternately stacked.
  • FIG. 3 illustrates the sealing film 30 formed on the second electrode 23.
  • the sealing film 30 is formed on the support 1. Is formed in the same manner.
  • the SiN film has a denser structure than the SiON film, and is a film that is less permeable to moisture and oxygen than the SiON film.
  • the SiON film is generally a film having a smaller film stress than the SiN film. Therefore, the SiN film functions as a barrier film that blocks intrusion of moisture and oxygen into the organic EL element 20, and the SiON film functions as a buffer film that relaxes the film stress of the adjacent SiN films stacked.
  • a first SiN film 31 a is formed in a portion of the sealing film 30 in contact with the organic EL element 20.
  • the SiON films 32a to 32c contain oxygen molecules, but the first SiN film 31a is laminated on the surface of the second electrode 23, and the SiON films 32a to 32c are formed on the SiN films 31a to 31c. Therefore, oxygen derived from oxygen molecules of the respective SiON films 32a to 32c can be prevented from entering the organic EL element 20.
  • sealing film 30 Like the sealing film 30 according to the present embodiment, by having a structure in which SiN films and SiON films are alternately stacked, moisture and oxygen can be prevented from entering the organic EL element 20 and high film stress can be obtained.
  • the sealing film 30 can be prevented from peeling off.
  • the product of the film thickness of the sealing film 30 and the film stress of the sealing film 30 is ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less. It is characterized by being.
  • the product of the film thickness of the sealing film 30 and the film stress is referred to as the total film stress of the sealing film 30.
  • the total film of the sealing film 30 is the film thickness and the film stress of each film. The sum of products.
  • Each of the SiN films 31a to 31d and the SiON films 32a to 32c constituting the sealing film 30 has a thickness of 400 nm, and the sealing film 30 has a thickness of 2800 nm.
  • the film stress of each of the SiN films 31a to 31d is -220 MPa (compressive stress), and the film stress of each of the SiON films 32a to 32c is -69 MPa (compressive stress).
  • the total film stress of the sealing film 30 is ⁇ 435 MPa ⁇ ⁇ m, which is a value in the range of ⁇ 450 MPa ⁇ ⁇ m to ⁇ 350 MPa ⁇ ⁇ m.
  • the adhesion and reliability between the sealing film 30 and the substrate can be sufficiently enhanced, and the peeling of the sealing film 30 can be prevented.
  • the film thickness and film stress of each film described above are examples, and the film thickness of each film is as long as the total film stress of the sealing film 30 is ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less.
  • the specific numerical values of the film stress are not limited.
  • the high temperature and high humidity test is a test in which the test sample is placed in an atmosphere of 80 ° C. and 85% humidity, and the reliability of the sealing film is evaluated based on the presence or absence of film peeling in a high temperature and high humidity environment.
  • the maximum time during which film peeling does not occur is 80 ° C. and 85% OK time.
  • an adhesive tape is affixed to a 15 mm ⁇ 15 mm area above the sealing film of the test sample so as not to entrap air bubbles and foreign matters, and the adhesive tape is used as a sealing film by lightly pressing the surface of the adhesive tape.
  • This is a test for evaluating the adhesion of the sealing film based on the presence or absence of peeling of the sealing film when the adhesive tape is peeled off from the test sample after sticking.
  • the peel test OK rate the ratio (percentage) of the test samples from which the sealing film is peeled out of the total number of test samples.
  • an organic EL element is formed on a TFT substrate including a glass substrate as the support 1 and a sealing film is formed so as to seal the organic EL element between the glass substrate and the TFT substrate.
  • a high temperature and high humidity test and a peel test were conducted.
  • the high temperature and high humidity test and the peel test were performed using a plurality of test samples having the same film thickness and different total film stresses.
  • the cellophane adhesive tape made from Nichiban Co., Ltd. and the tape width of 15 mm were used for the adhesive tape in a peel test.
  • FIG. 1 is a graph showing the relationship between the total film stress of the sealing film based on the results of the high-temperature and high-humidity test and the peel test, the 80 ° C. 85% OK time, and the peel test OK rate.
  • the white circle is a point indicating the relationship between the total film stress of the test sample used in the high-temperature and high-humidity test and 80 ° C. and 85% OK time
  • the solid line is 80 ° C. and 85% OK that approximates each point of the white circle.
  • the black circle is a point indicating the relationship between the total film stress of the test sample used in the peel test and the peel test OK rate
  • the broken line is a peel test OK rate approximate curve approximating each point of the black circle. is there.
  • the peel test OK rate is 90% or more for a test sample having a total film stress of ⁇ 450 MPa ⁇ ⁇ m or more.
  • the 80 ° C. 85% OK time is 750 hours or more when the total film stress is in the range of ⁇ 450 MPa ⁇ ⁇ m to ⁇ 350 MPa ⁇ ⁇ m.
  • the sealing film 30 of the organic EL display device 100 is required not to be peeled off from the support 1 for 40000 hours or more in a normal use environment where the temperature is 25 ° C. and the humidity is 60%. It is known that when the 80 ° C. and 85% OK time is 750 hours or longer, the maximum time during which film peeling does not occur is about 40000 hours or longer under a normal use environment. Therefore, in order to ensure that the sealing film does not peel off for 40000 hours or more under normal use environment, it is required that 80 ° C. and 85% OK time is 750 hours or more.
  • the total film stress of the sealing film 30 is ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less.
  • the peel test OK rate becomes 90% or more
  • the 80 ° C. and 85% OK time becomes 750 hours or more. Therefore, the adhesion and reliability between the support 1 and the sealing film 30 can be improved, the occurrence of film peeling of the sealing film 30 can be prevented, and the sealing performance by the sealing film 30 can be improved. .
  • display defects such as shrinkage and dark spots caused by moisture, oxygen, and foreign matter entering the organic EL element 20 can be prevented.
  • the adhesion between the support 1 and the sealing film 30 can be improved.
  • the bending resistance of the organic EL display device 100 when a flexible support is used as the support 1 can be improved. For this reason, the said technique can be used suitably for the flexible organic electroluminescent display apparatus 100 which can be bent.
  • FIG. 4 is a cross-sectional view showing the sealing film forming method (film forming process) according to this embodiment in the order of processes.
  • the sealing film 30 can be formed using a plasma CVD apparatus.
  • the support 1 on which the organic EL element 20 is formed is placed in a vacuum chamber, and a mixed gas such as monosilane, ammonia, nitrogen, and hydrogen is introduced into the vacuum chamber, and plasma discharge is performed, as shown in FIG.
  • a first SiN film 31 a having a thickness of 500 nm is formed on the second electrode 23.
  • a part of the sealing film 30 is also formed on the support 1.
  • the support 1 on which the first SiN film 31a is formed is placed in a vacuum chamber, and a mixed gas such as monosilane, ammonia, dinitrogen monoxide, nitrogen, hydrogen, or the like is introduced into the vacuum chamber, and plasma discharge is performed.
  • a first SiON film 32a having a thickness of 500 nm is formed on the first SiN film 31a.
  • the support 1 on which the first SiON film 32a is formed is disposed in the vacuum chamber.
  • a second SiN film 31b of 500 nm is formed on one SiON film 32a.
  • the support 1 on which the second SiN film 31b is formed is placed in a vacuum chamber and the first SiON film 32a is formed.
  • a second SiON film 32b having a thickness of 500 nm is formed on the second SiN film 31b.
  • the support 1 on which the second SiON film 32b is formed is placed in the vacuum chamber and the first SiN film 31a is formed.
  • a third SiN film 31c of 500 nm is formed on the second SiON film 32b.
  • the support 1 on which the third SiN film 31c is formed is placed in a vacuum chamber and the first SiON film 32a is formed, as shown in FIG. A third SiON film 32c of 500 nm is formed on the third SiN film 31c.
  • the support 1 on which the third SiON film 32c is formed is placed in a vacuum chamber, and the first SiN film 31a is formed.
  • a fourth SiN film 31d having a thickness of 500 nm is formed on the third SiON film 32c.
  • the film stress of the formed film can be adjusted by controlling the flow rate of gas such as monosilane, ammonia, dinitrogen monoxide, nitrogen, hydrogen and the like.
  • the total film stress of the sealing film 30 is ⁇ 450 MPa by controlling the gas flow rate in the film forming process for forming the sealing film 30.
  • the sealing film 30 is formed so as to be ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less.
  • Examples of the gas flow rate when forming each of the SiN films 31a to 31d are, for example, a monosilane flow rate of 100 to 400 sccm, an ammonia flow rate of 300 to 600 sccm, a nitrogen flow rate of 100 to 400 sccm, and a hydrogen flow rate of 2000 to 5000 sccm.
  • Examples of the gas flow rate when forming each of the SiON films 32a to 32c are, for example, a monosilane flow rate of 100 to 300 sccm, an ammonia flow rate of 200 to 1000 sccm, a nitrogen flow rate of 1000 to 5000 sccm, and a dinitrogen monoxide flow rate of 200 to 1000 sccm. .
  • the organic EL display device 100 is manufactured by placing a plastic substrate on a glass substrate as a carrier glass and forming an organic layer between the support 1. After forming the sealing film 30 on the support body 1 and the 2nd electrode 23 so that the EL element 20 may be sealed, the process of peeling a plastic substrate from a glass substrate may be included.
  • the SiN film is used as the barrier film and the SiON film is used as the buffer film.
  • the materials used as the barrier film and the buffer film are not limited to these.
  • an acrylic film may be used as the buffer film.
  • the present embodiment is not limited to this.
  • a sputtering method or an ALD (Atomic Layer Deposition) method can be used to form the buffer film made of the barrier film and the inorganic film.
  • the buffer film is an organic film
  • the organic film is formed by a vapor deposition polymerization method in addition to the CVD method, or by performing ultraviolet ray (UV light) irradiation after depositing a precursor. Such a method can also be used.
  • the sealing film 30 can be continuously formed only by the CVD apparatus. For this reason, however, if the barrier layer and the buffer layer are formed by the CVD method, it is advantageous in terms of reduction in apparatus cost, reduction in tact time, and prevention of mixing of particles.
  • FIG. 5 is a cross-sectional view showing the configuration of the second electrode and the sealing film of the organic EL display device according to the present embodiment.
  • the sealing film 130 of the organic EL display device according to the present embodiment has a single-layer structure made of the SiN film 31, and the sealing of the organic EL display device according to the first embodiment is performed. It has the same configuration as the film 30.
  • the SiN film 31 constituting the sealing film 130 is formed on the second electrode 23.
  • the film thickness of the SiN film 31 is 1600 nm or more and 2000 nm or less, and the film stress of the SiN film 31 is ⁇ 220 MPa ⁇ ⁇ m. Therefore, the total film stress of the sealing film 130 is ⁇ 440 MPa ⁇ ⁇ m or more and ⁇ 352 MPa ⁇ ⁇ m or less, and is in a range of ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less.
  • the sealing film 30 according to the first embodiment is described with reference to FIG.
  • the peel test OK rate is 90% or more, and the 80 ° C. and 85% OK time is 750 hours or more.
  • the adhesion between the support 1 and the sealing film 130 can be improved, the occurrence of film peeling of the sealing film 130 can be prevented, and the sealing performance by the sealing film 130 can be enhanced.
  • display defects such as shrinkage and dark spots caused by moisture, oxygen, and foreign matter entering the organic EL element 20 can be prevented.
  • the adhesion between the support 1 and the sealing film 130 can be improved.
  • the bending resistance of the organic EL display device 100 when a flexible support is used as the support 1 can be improved. For this reason, the said technique can be used suitably for the flexible organic electroluminescent display apparatus 100 which can be bent.
  • the sealing film 130 according to the present embodiment has a single layer structure of a 3000 nm SiN film 31 formed on the second electrode 23. Therefore, compared with the sealing film 30 according to the first embodiment that includes not only the SiN film as the barrier layer but also the SiON film as the buffer layer, the coverage with respect to moisture, oxygen, and foreign matters is excellent.
  • the sealing film 130 according to the present embodiment can be formed using a plasma CVD apparatus in the same manner as the sealing film 30 according to the first embodiment.
  • the support 1 on which the organic EL element 20 is formed is placed in a vacuum chamber, a mixed gas such as monosilane, ammonia, nitrogen, and hydrogen is introduced into the vacuum chamber, and plasma discharge is performed, whereby the substrate and second A 3000 nm SiN film 31 is formed on the electrode 23.
  • a mixed gas such as monosilane, ammonia, nitrogen, and hydrogen
  • plasma discharge is performed, whereby the substrate and second A 3000 nm SiN film 31 is formed on the electrode 23.
  • the product of the film thickness and the film stress of the sealing film 130 is ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less. 130 is formed.
  • gas flow rate when forming the SiN film 31 is, for example, a monosilane flow rate of 100 to 400 sccm, an ammonia flow rate of 300 to 600 sccm, a nitrogen flow rate of 100 to 400 sccm, and a hydrogen flow rate of 2000 to 5000 sccm.
  • the sealing film 130 according to the present embodiment has a single layer structure of the SiN film 31 as a barrier film. Therefore, when forming the sealing film 130 using a plasma CVD apparatus, it is not necessary to switch the gas introduced into the vacuum chamber. Thereby, tact time can be shortened compared with the case where a sealing film is comprised with a several different film
  • FIGS. 6 to 7 (a) to (f) Another embodiment of the present invention will be described below with reference to FIGS. 6 to 7 (a) to (f).
  • differences from the first embodiment will be described, and members having the same functions as the members described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 6 is a cross-sectional view showing the configuration of the second electrode and the sealing film of the organic EL display device according to the present embodiment.
  • the sealing film 230 of the organic EL display device according to the present embodiment is sealed in the organic EL display device according to the first embodiment except that the stacking order of the SiN film and the SiON film is different. It has the same configuration as the stop film 30.
  • a first SiON film 32a (second film), a first SiN film 31a (first film), and a second SiON film are formed on the second electrode 23.
  • Each of the SiN films 31a to 31c and the SiON films 32a to 32c constituting the sealing film 230 has a thickness of 500 nm, and the sealing film 230 has a thickness of 3000 nm. Further, the film stress of each of the SiN films 31a to 31d is ⁇ 220 MPa, and the film stress of each of the SiON films 32a to 32c is ⁇ 69 MPa.
  • the total film stress of the sealing film 30 is ⁇ 433.5 MPa ⁇ ⁇ m, which is a value in the range of ⁇ 450 MPa ⁇ ⁇ m to ⁇ 350 MPa ⁇ ⁇ m.
  • the sealing film 30 according to the first embodiment is described with reference to FIG.
  • the peel test OK rate is 90% or more, and the 80 ° C. and 85% OK time is 750 hours or more.
  • the adhesion between the support 1 and the sealing film 230 can be improved, the occurrence of film peeling of the sealing film 230 can be prevented, and the sealing performance by the sealing film 230 can be enhanced.
  • display defects such as shrinkage and dark spots caused by moisture, oxygen, and foreign matter entering the organic EL element 20 can be prevented.
  • the adhesion between the support 1 and the sealing film 230 can be improved.
  • the bending resistance of the organic EL display device 100 when a flexible support is used as the support 1 can be improved. For this reason, the said technique can be used suitably for the flexible organic electroluminescent display apparatus 100 which can be bent.
  • the sealing film 230 according to the present embodiment can be formed using a plasma CVD apparatus in the same manner as the sealing film 30 according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing the sealing film forming method (film forming process) according to this embodiment in the order of processes.
  • the support 1 on which the organic EL element 20 is formed is placed in a vacuum chamber, and a mixed gas such as monosilane, ammonia, dinitrogen monoxide, nitrogen, hydrogen, or the like is introduced into the vacuum chamber to perform plasma discharge.
  • a mixed gas such as monosilane, ammonia, dinitrogen monoxide, nitrogen, hydrogen, or the like is introduced into the vacuum chamber to perform plasma discharge.
  • a first SiON film 32a having a thickness of 500 nm is formed on the second electrode.
  • a part of the sealing film 230 is also formed on the support 1.
  • the support 1 on which the first SiON film 32a is formed is placed in a vacuum chamber, a mixed gas such as monosilane, ammonia, nitrogen, hydrogen, etc. is introduced, and plasma discharge is performed, so that (b) of FIG. ), A 500 nm first SiN film 31a is formed on the first SiON film 32a.
  • the support 1 on which the first SiN film 31a is formed is placed in a vacuum chamber and the first SiON film 32a is formed.
  • a second SiON film 32b of 500 nm is formed on one SiN film 31a.
  • the support 1 on which the second SiON film 32b is formed is placed in a vacuum chamber and the first SiN film 31a is formed, as shown in FIG. A second SiN film 31b of 500 nm is formed on the second SiON film 32b.
  • the support 1 having the second SiN film 31b formed therein is placed in a vacuum chamber and the first SiON film 32a is formed.
  • a third SiON film 32c having a thickness of 500 nm is formed on the second SiN film 31b.
  • the support 1 on which the third SiON film 32c is formed is placed in a vacuum chamber and the first SiN film 31a is formed, as shown in FIG. A third SiN film 31c of 500 nm is formed on the third SiON film 32c.
  • the total film stress of the sealing film 230 is ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less by controlling the flow rate of the gas.
  • the sealing film 230 is formed.
  • Examples of the gas flow rate when forming each SiN film 31a to 31c are, for example, a monosilane flow rate of 100 to 400 sccm, an ammonia flow rate of 300 to 600 sccm, a nitrogen flow rate of 100 to 400 sccm, and a hydrogen flow rate of 2000 to 5000 sccm.
  • Examples of the gas flow rate when forming each of the SiON films 32a to 32c are, for example, a monosilane flow rate of 100 to 300 sccm, an ammonia flow rate of 200 to 1000 sccm, a nitrogen flow rate of 1000 to 5000 sccm, and a dinitrogen monoxide flow rate of 200 to 1000 sccm. .
  • the first SiON film 32a functioning as a buffer film is formed as a film to be initially formed on the second electrode 23 and the support 1.
  • FIG. 8 is a cross-sectional view showing the configuration of the second electrode and the sealing film of the organic EL display device according to the present embodiment.
  • the organic EL display according to the first embodiment is the same as the sealing film 330 of the organic EL display device according to the present embodiment except that the respective films are laminated in order from the support 1 side so that the film stress increases. It has the same configuration as the sealing film 30 of the device.
  • a first SiN film 131a, a first SiON film 132a, a second SiN film 131b, a second SiON film 132b, a third The SiN film 131c, the third SiON film 132c, and the fourth SiN film 131d are formed in this order.
  • each SiN film 131a to 131d and each SiON film 132a to 132c is 400 nm, and the film thickness of the sealing film 330 is 2800 nm.
  • the film stress of the first SiN film 131a is ⁇ 160 MPa
  • the film stress of the second SiN film 131b is ⁇ 180 MPa
  • the film stress of the third SiN film 131c is ⁇ 200 MPa
  • the fourth stress The film stress of the SiN film 131d is -220 MPa
  • the film stress of the first SiON film 132a is -69 MPa
  • the film stress of the second SiON film 132b is -69 MPa
  • the film stress of the third SiON film 132c is -69 MPa.
  • the total film stress of the sealing film 330 is ⁇ 387 MPa ⁇ ⁇ m, which is a value within a range of ⁇ 450 MPa ⁇ ⁇ m to ⁇ 350 MPa ⁇ ⁇ m.
  • the sealing film 30 according to the first embodiment is described with reference to FIG.
  • the peel test OK rate is 90% or more, and the 80 ° C. and 85% OK time is 750 hours or more.
  • the adhesion between the support 1 and the sealing film 330 can be improved, the occurrence of film peeling of the sealing film 330 can be prevented, and the sealing performance by the sealing film 330 can be enhanced.
  • display defects such as shrinkage and dark spots caused by moisture, oxygen, and foreign matter entering the organic EL element 20 can be prevented.
  • the total film stress of the sealing film 330 is ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less, adhesion between the support 1 and the sealing film 330 can be improved.
  • the bending resistance of the organic EL display device 100 when a flexible support is used as the support 1 can be improved. For this reason, the said technique can be used suitably for the flexible organic electroluminescent display apparatus 100 which can be bent.
  • each film has the smallest absolute value of the film stress of the first SiN film 131a among the absolute values of the film stress of each film, and the first SiN film 131a and the first SiON film 132a.
  • the second SiN film 131b, the second SiON film 132b, the third SiN film 131c, the third SiON film 132c, and the fourth SiN film 131d are formed in this order so that the absolute value of the film stress increases. ing.
  • the layer closer to the second electrode 23 and the support 1 is a lower layer, the film constituting each layer is formed so that the absolute value of the film stress increases from the lower layer to the upper layer.
  • the film stress of the film formed in the vicinity of the support 1 acts more strongly on the support 1 than the film stress of the film formed in the distance of the support 1. Therefore, the films acting on the support 1 are laminated by laminating each film so that the absolute value of the film stress near the support 1 is smaller than the absolute value of the film stress of the film far from the support 1. Stress can be reduced and warping of the support 1 can be suppressed.
  • the sealing film 330 according to the present embodiment can be formed using a plasma CVD apparatus in the same manner as the sealing film 30 according to the first embodiment.
  • the total film stress of the sealing film 330 is ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less by controlling the flow rate of gas such as monosilane, ammonia, dinitrogen monoxide, nitrogen, and hydrogen.
  • gas such as monosilane, ammonia, dinitrogen monoxide, nitrogen, and hydrogen.
  • a plurality of films having different film stresses are formed such that the film closer to the support 1 has a smaller absolute value of the film stress.
  • Examples of the gas flow rate when forming each of the SiN films 131a to 131d are, for example, a monosilane flow rate of 100 to 400 sccm, an ammonia flow rate of 300 to 600 sccm, a nitrogen flow rate of 100 to 400 sccm, and a hydrogen flow rate of 2000 to 5000 sccm.
  • Examples of the gas flow rate when forming each of the SiON films 132a to 132c are, for example, a monosilane flow rate of 100 to 300 sccm, an ammonia flow rate of 200 to 1000 sccm, a nitrogen flow rate of 1000 to 5000 sccm, and a dinitrogen monoxide flow rate of 200 to 1000 sccm. .
  • the film stress of each layer depends on the film stress. Warpage of the support 1 can be suppressed.
  • the support 1 is suppressed in the film forming process by suppressing warpage of the support 1. It is possible to suppress the generation of a gap between the mask and the mask, and the film formation pattern accuracy of the sealing film 330 can be improved.
  • the organic EL display device 100 has been described as an example of the EL display device.
  • the present invention is not limited to this, and the EL display device according to the present invention may be an inorganic EL display device including an inorganic EL layer composed of an inorganic compound layer, and the present invention is applied to the inorganic EL display device. By doing so, peeling of the sealing film can be prevented, and the sealing performance of the inorganic EL element can be improved.
  • Embodiment 5 The following will describe another embodiment of the present invention with reference to FIG. In the present embodiment, differences from the first embodiment will be described, and members having the same functions as the members described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 9 is a cross-sectional view showing the configuration of the end portion of the sealing film of the organic EL display device according to the present embodiment.
  • the uppermost fourth SiN film 31d is wider than the other layer film, and the fourth SiN film 31d is the other layer film. Except for the point of covering the end, it has the same configuration as the sealing film 30 of the organic EL display device according to the first embodiment.
  • the uppermost fourth SiN film 31d is wider by a width A than the other SiN films 31a to 31c and the other SiON films 32a to 32c.
  • the end portion of the fourth SiN film 31 d is in contact with the signal line 3 formed on the support 1.
  • the width A is preferably 10 times or more the film thickness of the sealing film 430.
  • the fourth SiN film 31d covers the ends of the SiN films 31a to 31c and the other layers of the SiON films 32a to 32c, and the SiN films 31a to 31c and other layers between the TFT substrate.
  • the SiON films 32a to 32c are formed to be sealed. Therefore, the boundary portion of each film is not exposed at the end of the sealing film 430.
  • the EL display device (organic EL display device 100) according to the aspect 1 of the present invention includes the EL element between the EL element (organic EL element 20) formed on the substrate (TFT substrate 10) and the substrate.
  • An EL display device comprising a sealing film (30) formed on the substrate and the EL element so as to seal, wherein the product of the film thickness and the film stress of the sealing film is: It is characterized by being ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less.
  • the adhesion and reliability between the sealing film and the substrate can be improved, and peeling of the sealing film can be prevented.
  • moisture and oxygen can be prevented from entering the light emitting element, and light emission defects such as dark spots and shrinkage can be prevented.
  • the EL display device according to Aspect 2 of the present invention is the EL display device according to Aspect 1, wherein the sealing film has a structure in which a plurality of films having different film stresses are laminated.
  • the sum of the product and the above may be ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less.
  • the film having a small film stress can reduce the film stress to improve the adhesion to the substrate, and the film having a large film stress can improve the sealing performance.
  • the EL display device includes, in the aspect 2, the first film and the second film whose film stress is smaller than that of the first film as the plurality of films.
  • the second film may be provided on the surface of the substrate.
  • membrane is provided in the surface of a board
  • the second film may be a SiON film.
  • the SiON film is provided on the surface of the substrate as the second film, high adhesion to the substrate can be achieved even when there is a fine uneven shape on the surface of the substrate. Can keep. Thereby, the adhesiveness of a board
  • the EL display device according to Aspect 5 of the present invention is the EL display device according to any one of Aspects 2 to 4, wherein the plurality of films have a film stress of a film farther from the substrate than an absolute value of a film stress near the substrate.
  • the layers may be stacked so that the absolute value is larger.
  • the warpage of the substrate due to the film stress of the sealing film can be suppressed.
  • a sealing film is formed on a substrate using a mask, it is possible to suppress the generation of a gap between the substrate and the mask by suppressing the warpage of the substrate. Accuracy can be improved.
  • the EL display device according to Aspect 6 of the present invention is the EL display device according to any one of Aspects 2 to 5, wherein the film formed as the uppermost layer among the plurality of films seals the other film between the substrate.
  • the structure currently formed may be sufficient.
  • the boundary portion of each film is not exposed at the end of the sealing film. Therefore, the penetration
  • the sealing film may be formed of a SiN film at a portion in contact with the EL element.
  • the SiN film is a dense film and does not contain oxygen. Therefore, since the sealing film is formed of a SiN film at a portion in contact with the EL element, deterioration of the light-emitting element due to moisture and oxygen passing through the sealing film can be prevented.
  • the sealing film has a laminated structure of a plurality of films, and a film containing oxygen such as a SiON film is provided on the SiN film, the oxygen is derived from the oxygen-containing film. Deterioration of the light emitting element can be prevented.
  • An EL display device manufacturing method includes: a step of forming an EL element on a substrate; and a sealing film formed of at least one layer so as to seal the EL element on the substrate.
  • the product of the film thickness and the film stress of the sealing film is ⁇ 450 MPa ⁇ ⁇ m or more and ⁇ 350 MPa ⁇ ⁇ m or less. It is characterized by filming.
  • an EL display device including a sealing film that has high adhesion and reliability with the substrate and prevents film peeling. Accordingly, moisture and oxygen can be prevented from entering the light emitting element, and an EL display device can be manufactured in which light emission defects such as dark spots and shrinkage are prevented.
  • the sealing film composed of a plurality of films having different film stresses is used as the film stress of the film close to the substrate.
  • a manufacturing method for forming a film so that the film stress of the film far from the substrate becomes larger may be used.
  • the above manufacturing method it is possible to manufacture an EL display device in which the warpage of the substrate due to the film stress of the sealing film is suppressed.
  • the film forming pattern accuracy of the sealing film can be improved by flattening while suppressing warpage of the substrate.
  • the sealing film including a plurality of films having different film stresses is formed, and the plurality of the sealing films are formed.
  • the film formed in the uppermost layer may be a manufacturing method in which another film is sealed between the film and the substrate.
  • the sealing film in which the boundary portion of each film is not exposed at the end.
  • an EL display device that prevents water and the like from entering the boundary portions of the sealing films.
  • the present invention can be suitably used for forming a sealing film that covers an EL element in an EL display device.
  • TFT substrate 100 Organic EL display device (EL display device) 30, 130, 230, 330, 430 Sealing film 31 SiN film 31a, 131a First SiN film 31b, 131b Second SiN film 31c, 131c Third SiN film 31d, 131d Fourth SiN film 32a, 132a First SiON film 32b, 132b Second SiON film 32c, 132c Third SiON film 20 Organic EL element (EL element)

Abstract

基板上に形成された、発光層を含む発光素子と、発光素子の上に、基板との間に発光素子を封止するように形成された封止膜とを備えているEL表示装置であって、封止膜は、Total膜応力が、-450MPa・μm以上であり、-350MPa・μm以下である。

Description

EL表示装置及びEL表示装置の製造方法
 本発明は、EL表示装置及びEL表示装置の製造方法に関する。
 発光材料の電界発光(Electro luminescence;以下、「EL」と記す)を利用したEL表示装置は、液晶表示装置に比べて応答速度が速く、視野角も広い表示装置として注目されている。
 EL表示装置は、例えば、ガラス基板等からなる支持体上にTFT(薄膜トランジスタ)が設けられてなるTFT基板上に、TFTに接続されたEL素子が設けられた構成を有している。
 しかしながら、EL素子は、一般的に、水分や酸素等による影響を受け易く、微量の水分や酸素と反応することでその特性が劣化し、表示装置の寿命を損なう。
 そこで、EL素子内への水分や酸素の浸入を防止するために、例えば、EL素子上に封止層を形成することでEL素子を封止する技術が知られている。
 封止膜は蒸着等の方法によって成膜することができ、その膜厚が厚いほど、EL素子内への水分及び酸素の侵入を防止するブロッキング効果が高まる。しかしながら、封止膜の膜厚を厚くすると、封止膜の膜応力が増大し、封止膜がTFT基板から剥がれる膜浮きが生じるおそれがある。
 封止膜の膜浮きが生じると、膜浮き部分からEL素子に水分及び酸素等が侵入し、ダークスポットやシュリンク等の発光不良を生じる。
 そこで、特許文献1の発光装置では、封止膜としての2層の無機絶縁膜の間に、無機絶縁膜よりも応力が小さい応力緩和膜が設けられており、2層の無機絶縁膜と応力緩和膜とにより、透明保護積層が構成されている。これにより、無機絶縁膜の膜応力を緩和し、無機絶縁膜の膜剥がれを防止することができる。
日本国公開特許公報「特開2004-95551号公報(2004年3月25日公開)」
 しかしながら、特許文献1の発光装置では、応力緩和膜の膜厚及び膜応力として適切な値が定められておらず、透明保護積層全体としての膜厚及び膜応力が適切なものに設計されていない。その結果、基板と透明保護積層との密着性及び信頼性が十分に高くない。
 例えば、温度80℃、湿度85%の雰囲気下で長時間放置した場合、封止膜はピーリングや膜剥がれを生じるおそれがある。その結果、封止膜の端部の膜浮き部分から水分及び酸素等が侵入し、EL表示装置の表示領域に非発光領域が発生し、ダークスポットやシュリンク等の表示不具合が生じる。
 そこで、本発明は上記の課題に鑑みなされてものであって、その目的は、基板と封止膜との密着性及び信頼性を高めたEL表示装置及びEL表示装置の製造方法を提供することにある。
 上記の課題を解決するために、本発明の一態様に係るEL表示装置は、基板上に形成されたEL素子と、上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜とを備えているEL表示装置であって、上記封止膜の膜厚と膜応力との積が、-450MPa・μm以上であり、かつ、-350MPa・μm以下であることを特徴とする。
 上記の課題を解決するために、本発明の一態様に係るEL表示装置の製造方法は、基板上にEL素子を形成する工程と、上記基板上に、上記EL素子を封止するように少なくとも1層の膜からなる封止膜を成膜する成膜工程とを含み、上記成膜工程では、上記封止膜の膜厚と膜応力との積が、-450MPa・μm以上であり、-350MPa・μm以下となるように成膜することを特徴とする。
 本発明の一態様によれば、基板と封止膜との密着性及び信頼性を高めたEL表示装置及びEL表示装置の製造方法を提供することができる。
高温高湿試験及びピールテストの結果に基づく封止膜のTotal膜応力と80℃85%OK時間及びピールテストOK率との関係を示すグラフである。 (a)は、本発明の実施形態1にかかる有機EL表示装置の概略構成の一例を示す断面図であり、(b)は、(a)に示す有機EL表示装置のサブ画素の概略構成を示す平面図である。 本発明の実施形態1にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。 (a)~(g)は、本発明の実施形態1にかかる封止膜の成膜方法を工程順に示す断面図である。 本発明の実施形態2にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。 本発明の実施形態3にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。 (a)~(f)は、本発明の実施形態3にかかる封止膜の成膜方法を工程順に示す断面図である。 本発明の実施形態4にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。 本発明の実施形態5にかかる有機EL表示装置の封止膜の端部の構成を示す断面図である。
 〔実施形態1〕
 以下、本発明の実施の形態について、図1ないし図4の(a)~(g)に基づいて詳細に説明する。
 以下の説明では、EL表示装置として、有機EL表示装置を例に挙げて説明する。
 <有機EL表示装置の概略構成>
 図2の(a)は、本実施形態にかかる有機EL表示装置の概略構成の一例を示す断面図であり、図2の(b)は、図2の(a)に示す有機EL表示装置のサブ画素の概略構成を示す平面図である。
 図2の(a)に示すように、有機EL表示装置100(EL表示装置)は、TFT(Thin Film Transistor:薄膜トランジスタ)基板10上に、有機EL素子20(EL素子)、封止膜30が、この順に設けられた構成を有している。
 TFT基板10は、ガラス基板、プラスチックフィルム、プラスチック基板等からなる絶縁性の支持体1を備えている。支持体1上には、TFT2、信号線3、層間絶縁膜4等が設けられている。
 信号線3は、複数のゲート線、複数のソース線、及び複数の電源線等で構成されている。これら信号線3で格子状に囲まれた領域の各々には、各色のサブ画素14が配置されている。例えば、赤(R)、緑(G)、青(B)のサブ画素14のセットで、一つの画素を形成している。
 各サブ画素14には、それぞれTFT2が設けられている。TFT2は、それぞれ、信号線3に接続されており、ゲート線で信号入力するサブ画素を選択し、ソース線で、選択されたサブ画素に入力する電荷の量を決定し、電源線から電流を有機EL素子20に流す。
 TFT2及び信号線3は、層間絶縁膜4で覆われている。層間絶縁膜4の材料としては、例えばアクリル樹脂やポリイミド樹脂等の絶縁性材料を用いることができる。層間絶縁膜4の厚さは、TFT2及び信号線3の上面の段差を解消することができればよく、特に限定されない。
 有機EL素子20は、第1電極21(陽極)、有機EL層22、第2電極23(陰極)等で構成されている。
 第1電極21は、層間絶縁膜4上に形成されている。第1電極21は、有機EL層22に正孔を注入(供給)し、第2電極23は、有機EL層22に電子を注入する。第1電極21は、層間絶縁膜4に形成されたコンタクトホール4aを介して、TFT2に電気的に接続されている。
 第1電極21の端部はエッジカバー5で覆われている。エッジカバー5は絶縁膜であり、例えば感光性樹脂で構成されている。エッジカバー5は、第1電極21の端部で、電極集中や有機EL層22が薄くなって第2電極23と短絡することを防止する。また、エッジカバー5は、隣接するサブ画素14に電流が漏れないように、画素分離膜としても機能している。
 エッジカバー5には、サブ画素14毎に開口5aが設けられている。この開口5aによる第1電極21の露出部が各サブ画素14の発光領域となっている。
 有機EL層22は、第1電極21と第2電極23との間に設けられている。有機EL層22は、第1電極21側から、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等が、この順に積層された構成を有している。なお、一つの層が複数の機能を有していてもよい。例えば、正孔注入層及び正孔輸送層に代えて、これら両層の機能を有する正孔注入層兼正孔輸送層が設けられていてもよい。また、電子注入層及び電子輸送層に代えて、これら両層の機能を有する電子注入層兼電子輸送層が設けられていてもよい。また、各層の間に、適宜、キャリアブロッキング層が設けられていてもよい。
 なお、図2の(a)では、第1電極21を陽極(パターン電極、画素電極)とし、第2電極23を陰極(共通電極)としているが、第1電極21を陰極とし、第2電極23を陽極としてもよい。但し、この場合、有機EL層22を構成する各層の順序は反転する。
 また、有機EL表示装置100が支持体1の裏面側から光を放出するボトムエミッション型である場合には、第2電極23を反射性電極材料で形成し、第1電極21を透明または半透明の透光性電極材料で形成することが好ましい。
 一方、有機EL表示装置100が、封止膜30側から光を放出するトップエミッション型である場合には、第1電極21を反射性電極材料で形成し、第2電極23を透明または半透明の透光性電極材料で形成することが好ましい。
 封止膜30は、支持体1との間に有機EL素子20を封止するように支持体1及び第2電極23の上に形成されている。封止膜30は、外部から浸入した水分や酸素によって有機EL素子20が劣化するのを防止する。
 なお、第2電極23と封止膜30との間には、光学特性の調整のために、図示しない有機層(光学調整層)が形成されていてもよいし、第2電極23を保護するための電極保護層が形成されていてもよい。
 <封止膜の構成>
 図3は、本実施形態にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。
 本実施形態にかかる有機EL表示装置100の封止膜30は、SiN膜とSiON膜とが交互に積層された構造を有する。
 具体的には、図3に示すように、第2電極23の上に、第1のSiN膜31a、第1のSiON膜32a、第2のSiN膜31b、第2のSiON膜32b、第3のSiN膜31c、第3のSiON膜32c、第4のSiN膜31dがこの順に形成されている。なお、図3は、第2電極23の上に形成された封止膜30を図示するものであるが、図2の(a)に示すように、封止膜30は支持体1の上にも同様に形成されている。
 SiN膜は、SiON膜よりも緻密な構造を有しており、SiON膜よりも水分及び酸素を透過させ難い膜である。SiON膜は、一般的にSiN膜よりも膜応力が小さい膜である。そのため、SiN膜は、水分及び酸素の有機EL素子20への侵入をブロックするバリア膜として機能し、SiON膜は、隣接して積層されたSiN膜の膜応力を緩和するバッファ膜として機能する。
 なお、封止膜30のうち、有機EL素子20と接する部分には第1のSiN膜31aが形成されている。各SiON膜32a~32cは酸素分子を含んでいるが、第2電極23の表面には第1のSiN膜31aが積層されており、各SiON膜32a~32cは各SiN膜31a~31cの上に積層されているため、各SiON膜32a~32cの酸素分子に由来する酸素が有機EL素子20へ侵入することを防止することができる。
 本実施形態にかかる封止膜30のように、SiN膜とSiON膜とが交互に積層された構造を有することにより、水分及び酸素の有機EL素子20への侵入を防止するとともに、高い膜応力による封止膜30の剥がれを防止することができる。
 また、本実施形態にかかる有機EL表示装置100は、封止膜30の膜厚と、封止膜30の膜応力との積が、-450MPa・μm以上であり、かつ、-350MPa・μm以下であることを特徴としている。
 以下の説明では、封止膜30の膜厚と膜応力との積を、封止膜30のTotal膜応力を言うものとする。なお、封止膜30が複数の膜の積層構造を有しており、各膜の膜応力が互いに異なる場合には、封止膜30のTotal膜とは、各膜の膜厚と膜応力との積の合計をいうものとする。
 封止膜30を構成する各SiN膜31a~31d及び各SiON膜32a~32cの膜厚は何れも400nmであり、封止膜30の膜厚は2800nmである。また、各SiN膜31a~31dの膜応力は-220MPa(圧縮応力)であり、各SiON膜32a~32cの膜応力は-69MPa(圧縮応力)である。
 そのため、封止膜30のTotal膜応力は、-435MPa・μmとなり、-450MPa・μm以上-350MPa・μm以下の範囲内の値となる。
 これにより、後述するように、封止膜30と基板との密着性及び信頼性を十分に高めることができ、封止膜30の剥がれを防止することができる。
 なお、上述した各膜の膜厚及び膜応力は一例であり、封止膜30のTotal膜応力が-450MPa・μm以上であり、かつ、-350MPa・μm以下であれば、各膜の膜厚及び膜応力の具体的な数値は限定されない。
 <試験>
 次に、封止膜と基板との密着性を評価するためのピールテスト、及び封止膜の信頼性を評価するための高温高湿試験について説明する。
 高温高湿試験は、試験サンプルを温度80℃湿度85%の雰囲気下に置き、高温高湿の環境下における膜剥がれの有無に基づいて封止膜の信頼性を評価する試験である。高温高湿試験において、膜剥がれが生じない最大時間を80℃85%OK時間とする。
 ピールテストは、試験サンプルの封止膜の上の15mm×15mmの領域に、気泡及び異物を巻き込まないように粘着テープを貼り付け、粘着テープの表面を軽く押さえつけることによって粘着テープを封止膜に粘着させた後、粘着テープの端を摘み、試験サンプルから粘着テープを剥がしたときの封止膜の剥がれの有無に基づいて封止膜の密着性を評価する試験である。ピールテストにおいて全試験サンプル数のうち封止膜が剥がれた試験サンプルの割合(百分率)をピールテストOK率とする。
 本実施形態では、支持体1としてのガラス基板を備えたTFT基板上に有機EL素子が形成され、ガラス基板との間に有機EL素子を封止するように封止膜が形成されたものを試験サンプルとして用いて高温高湿試験及びピールテストを行った。また、本実施形態では、膜厚が互いに等しく、Total膜応力が互いに異なる複数の試験サンプルを用いて高温高湿試験及びピールテストを行った。
 また、ピールテストにおける粘着テープには、ニチバン株式会社製セロハン粘着テープ、テープ幅15mmを使用した。
 図1は、高温高湿試験及びピールテストの結果に基づく封止膜のTotal膜応力と80℃85%OK時間及びピールテストOK率との関係を示すグラフである。
 図1中、白い丸は高温高湿試験に用いた試験サンプルのTotal膜応力と80℃85%OK時間の関係を示す点であり、実線は白い丸の各点を近似する80℃85%OK時間近似曲線であり、黒い丸はピールテストに用いた試験サンプルのTotal膜応力とピールテストOK率の関係を示す点であり、破線は黒い丸の各点を近似するピールテストOK率近似曲線である。
 図1のピールテストOK率近似曲線よれば、Total膜応力が-450MPa・μm以上の試験サンプルでは、ピールテストOK率が90%以上となる。
 また、図1の80℃85%OK時間近似曲線によれば、Total膜応力が-450MPa・μm以上-350MPa・μm以下の範囲内においては、80℃85%OK時間が750時間以上となる。
 有機EL表示装置100の封止膜30は、温度が25℃で湿度が60%の通常使用環境下において、40000時間以上支持体1から剥がれないことが求められる。80℃85%OK時間が750時間以上であれば、通常使用環境下では、膜剥がれが生じない最大時間が約40000時間以上となることが知られている。そのため、通常使用環境下において40000時間以上封止膜が剥がれないことを保障するために、80℃85%OK時間が750時間以上であることが求められる。
 本実施形態にかかる有機EL表示装置100は、封止膜30のTotal膜応力が、-450MPa・μm以上であり、かつ、-350MPa・μm以下である。これにより、ピールテストOK率が90%以上となり、かつ、80℃85%OK時間が750時間以上となる。そのため、支持体1と封止膜30との密着性及び信頼性を向上させることができ、封止膜30の膜剥がれの発生を防止し、封止膜30による封止性能を高めることができる。その結果、水分、酸素、及び異物が有機EL素子20に侵入することによるシュリンク及びダークスポット等の表示不具合を防止することができる。
 また、封止膜30のTotal膜応力を、-450MPa・μm以上、かつ、-350MPa・μm以下とすることで、支持体1と封止膜30との密着性を向上させることができるので、支持体1にフレキシブルな支持体を用いた場合の有機EL表示装置100の耐屈曲性を向上させることができる。このため、上記技術は、屈曲可能なフレキシブルな有機EL表示装置100に好適に用いることができる。
 <成膜方法>
 次に、本実施形態にかかる封止膜の成膜方法について説明する。
 図4は、本実施形態にかかる封止膜の成膜方法(成膜工程)を工程順に示す断面図である。封止膜30は、プラズマCVD装置を用いて成膜することができる。
 まず、有機EL素子20が形成された支持体1を真空室内に配置し、真空室内に、モノシラン、アンモニア、窒素、水素等の混合ガスを導入し、プラズマ放電を行うことによって、図4の(a)に示すように、第2電極23の上に500nmの第1のSiN膜31aを形成する。(図示は省略するが、封止膜30の一部は支持体1上にも形成される。)
 次に、第1のSiN膜31aが形成された支持体1を真空室内に配置し、真空室内に、モノシラン、アンモニア、一酸化二窒素、窒素、水素、等の混合ガスを導入し、プラズマ放電を行うことによって、図4の(b)に示すように、第1のSiN膜31aの上に500nmの第1のSiON膜32aを形成する。
 次に、第1のSiON膜32aが形成された支持体1を真空室内に配置し、第1のSiN膜31aを形成する工程と同様にして、図4の(c)に示すように、第1のSiON膜32aの上に500nmの第2のSiN膜31bを形成する。
 次に、第2のSiN膜31bが形成された支持体1を真空室内に配置し、第1のSiON膜32aを形成する工程と同様にして、図4の(d)に示すように、第2のSiN膜31bの上に500nmの第2のSiON膜32bを形成する。
 次に、第2のSiON膜32bが形成された支持体1を真空室内に配置し、第1のSiN膜31aを形成する工程と同様にして、図4の(e)に示すように、第2のSiON膜32bの上に500nmの第3のSiN膜31cを形成する。
 次に、第3のSiN膜31cが形成された支持体1を真空室内に配置し、第1のSiON膜32aを形成する工程と同様にして、図4の(f)に示すように、第3のSiN膜31cの上に500nmの第3のSiON膜32cを形成する。
 次に、第3のSiON膜32cが形成された支持体1を真空室内に配置し、第1のSiN膜31aを形成する工程と同様にして、図4の(g)に示すように、第3のSiON膜32cの上に500nmの第4のSiN膜31dを形成する。
 各膜を形成する工程において、モノシラン、アンモニア、一酸化二窒素、窒素、水素等のガスの流量を制御することにより、形成される膜の膜応力を調整することができる。
 本実施形態にかかる有機EL表示装置100の製造方法では、封止膜30を成膜する成膜工程において、上記ガスの流量を制御することにより、封止膜30のTotal膜応力が、-450MPa・μm以上であり、かつ、-350MPa・μm以下となるように封止膜30を形成する。
 各SiN膜31a~31dを成膜するときのガス流量の一例は、例えば、モノシラン流量100~400sccm、アンモニア流量300~600sccm、窒素流量100~400sccm、水素流量2000~5000sccmである。
 また、各SiON膜32a~32cを成膜するときのガス流量の一例は、例えば、モノシラン流量100~300sccm、アンモニア流量200~1000sccm、窒素流量1000~5000sccm、一酸化二窒素流量200~1000sccmである。
 なお、支持体1としてプラスチック基板(またはプラスチックフィルム)を用いる場合、有機EL表示装置100の製造工程は、キャリアガラスとしてのガラス基板の上にプラスチック基板を配置し、支持体1との間に有機EL素子20を封止するように支持体1及び第2電極23の上に封止膜30を形成した後、プラスチック基板をガラス基板から剥がす工程を含んでいてもよい。
 <その他>
 上記の説明では、バリア膜としてSiN膜を用い、バッファ膜としてSiON膜を用いた例について説明したが、バリア膜及びバッファ膜として用いる材料はこれらに限定されない。例えば、バッファ膜としてアクリル膜を用いてもよい。
 なお、本実施形態では、バリア膜及びバッファ膜の成膜にプラズマCVD装置を用いる場合を例に挙げて説明したが、本実施形態はこれに限定されるものではない。バリア膜及び無機膜からなるバッファ膜の成膜には、CVD法以外に、例えば、スパッタ法やALD(Atomic Layer Deposition)法を用いることができる。また、バッファ膜が有機膜である場合、該有機膜の成膜には、CVD法以外に、蒸着重合法や、前駆体を蒸着した後、紫外線(UV光)照射を行うことで重合を行うような方法を用いることもできる。
 但し、バリア層およびバッファ層をCVD法で形成する場合、封止膜30を、CVD装置のみで連続形成することができる。このため、但し、バリア層およびバッファ層をCVD法で形成すれば、装置コストの低減やタクトタイムの短縮、パーティクルの混入防止の点で有利となる。
 〔実施形態2〕
 本発明の実施の他の形態について、図5に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図5は、本実施形態にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。
 図5に示すように、本実施形態にかかる有機EL表示装置の封止膜130は、SiN膜31からなる単層構造である点を除けば、実施形態1にかかる有機EL表示装置の封止膜30と同じ構成を有している。
 封止膜130を構成するSiN膜31は、第2電極23の上に形成されている。SiN膜31の膜厚は1600nm以上2000nm以下であり、SiN膜31の膜応力は、-220MPa・μmである。そのため、封止膜130のTotal膜応力は、-440MPa・μm以上-352MPa・μm以下となり、-450MPa・μm以上-350MPa・μm以下の範囲内の値となる。
 封止膜130のTotal膜応力を-450MPa・μm以上-350MPa・μm以下の範囲内の値とすることにより、実施形態1にかかる封止膜30について図1を参照して説明したように、ピールテストOK率が90%以上となり、かつ、80℃85%OK時間が750時間以上となる。
 これにより、支持体1と封止膜130との密着性を向上させることができ、封止膜130の膜剥がれの発生を防止し、封止膜130による封止性能を高めることができる。その結果、水分、酸素、及び異物が有機EL素子20に侵入することによるシュリンク及びダークスポット等の表示不具合を防止することができる。
 また、封止膜130のTotal膜応力を、-450MPa・μm以上、かつ、-350MPa・μm以下とすることで、支持体1と封止膜130との密着性を向上させることができるので、支持体1にフレキシブルな支持体を用いた場合の有機EL表示装置100の耐屈曲性を向上させることができる。このため、上記技術は、屈曲可能なフレキシブルな有機EL表示装置100に好適に用いることができる。
 本実施形態にかかる封止膜130は、第2電極23の上に形成された3000nmのSiN膜31の単層構造を有している。そのため、バリア層としてのSiN膜だけでなくバッファ層としてのSiON膜を備えている実施形態1にかかる封止膜30に比べて、水分、酸素、及び異物に対するカバレッジ性が優れている。
 <成膜方法>
 本実施形態にかかる封止膜130は、実施形態1にかかる封止膜30と同様に、プラズマCVD装置を用いて成膜することができる。
 まず、有機EL素子20が形成された支持体1を真空室内に配置し、真空室内に、モノシラン、アンモニア、窒素、水素等の混合ガスを導入し、プラズマ放電を行うことによって、基板及び第2電極23の上に3000nmのSiN膜31を形成する。このとき、上記ガスの流量を制御することにより、封止膜130の膜厚と膜応力との積が、-450MPa・μm以上であり、かつ、-350MPa・μm以下となるように封止膜130を形成する。
 SiN膜31を成膜するときのガス流量の一例は、例えば、モノシラン流量100~400sccm、アンモニア流量300~600sccm、窒素流量100~400sccm、水素流量2000~5000sccmである。
 本実施形態にかかる封止膜130は、バリア膜としてのSiN膜31の単層構造である。そのため、プラズマCVD装置を用いて封止膜130を成膜する場合に、真空室内に導入するガスを切り替える必要がない。これにより、封止膜を複数の異なる膜で構成する場合に比べて、タクトタイムを短縮することができる。
 〔実施形態3〕
 本発明の実施の他の形態について、図6ないし図7の(a)~(f)に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図6は、本実施形態にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。
 図6に示すように、本実施形態にかかる有機EL表示装置の封止膜230は、SiN膜とSiON膜との積層順が異なる点を除けば、実施形態1にかかる有機EL表示装置の封止膜30と同じ構成を有している。
 具体的には、図6に示すように、第2電極23の上に、第1のSiON膜32a(第2の膜)、第1のSiN膜31a(第1の膜)、第2のSiON膜32b、第2のSiN膜31b、第3のSiON膜32c、第3のSiN膜31cがこの順に形成されている。
 封止膜230を構成する各SiN膜31a~31c及び各SiON膜32a~32cの膜厚は何れも500nmであり、封止膜230の膜厚は3000nmである。また、各SiN膜31a~31dの膜応力は-220MPaであり、各SiON膜32a~32cの膜応力は-69MPaである。
 そのため、封止膜30のTotal膜応力は、-433.5MPa・μmとなり、-450MPa・μm以上-350MPa・μm以下の範囲内の値となる。
 封止膜230のTotal膜応力を-450MPa・μm以上-350MPa・μm以下の範囲内の値とすることにより、実施形態1にかかる封止膜30について図1を参照して説明したように、ピールテストOK率が90%以上となり、かつ、80℃85%OK時間が750時間以上となる。
 これにより、支持体1と封止膜230との密着性を向上させることができ、封止膜230の膜剥がれの発生を防止し、封止膜230による封止性能を高めることができる。その結果、水分、酸素、及び異物が有機EL素子20に侵入することによるシュリンク及びダークスポット等の表示不具合を防止することができる。
 また、封止膜230のTotal膜応力を、-450MPa・μm以上、かつ、-350MPa・μm以下とすることで、支持体1と封止膜230との密着性を向上させることができるので、支持体1にフレキシブルな支持体を用いた場合の有機EL表示装置100の耐屈曲性を向上させることができる。このため、上記技術は、屈曲可能なフレキシブルな有機EL表示装置100に好適に用いることができる。
 <成膜方法>
 本実施形態にかかる封止膜230は、実施形態1にかかる封止膜30と同様に、プラズマCVD装置を用いて成膜することができる。
 図7は、本実施形態にかかる封止膜の成膜方法(成膜工程)を工程順に示す断面図である。
 まず、有機EL素子20が形成された支持体1を真空室内に配置し、真空室内に、モノシラン、アンモニア、一酸化二窒素、窒素、水素、等の混合ガスを導入し、プラズマ放電を行うことによって、図7の(a)に示すように、第2電極23の上に500nmの第1のSiON膜32aを形成する。(図示は省略するが、封止膜230の一部は支持体1上にも形成される。)
 次に、第1のSiON膜32aが形成された支持体1を真空室内に配置し、モノシラン、アンモニア、窒素、水素等の混合ガスを導入し、プラズマ放電を行うことによって、図7の(b)に示すように、第1のSiON膜32aの上に500nmの第1のSiN膜31aを形成する。
 次に、第1のSiN膜31aが形成された支持体1を真空室内に配置し、第1のSiON膜32aを形成する工程と同様にして、図7の(c)に示すように、第1のSiN膜31aの上に500nmの第2のSiON膜32bを形成する。
 次に、第2のSiON膜32bが形成された支持体1を真空室内に配置し、第1のSiN膜31aを形成する工程と同様にして、図7の(d)に示すように、第2のSiON膜32bの上に500nmの第2のSiN膜31bを形成する。
 次に、第2のSiN膜31bが形成された支持体1を真空室内に配置し、第1のSiON膜32aを形成する工程と同様にして、図7の(e)に示すように、第2のSiN膜31bの上に500nmの第3のSiON膜32cを形成する。
 次に、第3のSiON膜32cが形成された支持体1を真空室内に配置し、第1のSiN膜31aを形成する工程と同様にして、図7の(f)に示すように、第3のSiON膜32cの上に500nmの第3のSiN膜31cを形成する。
 封止膜230を成膜する成膜工程において、上記ガスの流量を制御することにより、封止膜230のTotal膜応力が、-450MPa・μm以上であり、かつ、-350MPa・μm以下となるように封止膜230を形成する。
 各SiN膜31a~31cを成膜するときのガス流量の一例は、例えば、モノシラン流量100~400sccm、アンモニア流量300~600sccm、窒素流量100~400sccm、水素流量2000~5000sccmである。
 また、各SiON膜32a~32cを成膜するときのガス流量の一例は、例えば、モノシラン流量100~300sccm、アンモニア流量200~1000sccm、窒素流量1000~5000sccm、一酸化二窒素流量200~1000sccmである。
 本実施形態にかかる封止膜230の成膜工程では、第2電極23及び支持体1の上に初めに形成する膜として、バッファ膜として機能する第1のSiON膜32aを形成する。
 そのため、支持体1の表面に凹凸がある場合であっても、支持体1の上に第1のSiON膜32aを形成することによって支持体1の凹凸を埋めて平坦化することができる。これにより、支持体1と封止膜230との密着性をより向上することができる。
 〔実施形態4〕
 本発明の実施の他の形態について、図8に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図8は、本実施形態にかかる有機EL表示装置の第2電極及び封止膜の構成を示す断面図である。
 本実施形態にかかる有機EL表示装置の封止膜330は、各膜が、支持体1側から順に膜応力が大きくなるように積層されている点を除けば、実施形態1にかかる有機EL表示装置の封止膜30と同じ構成を有している。
 具体的には、図8に示すように、第2電極23の上に、第1のSiN膜131a、第1のSiON膜132a、第2のSiN膜131b、第2のSiON膜132b、第3のSiN膜131c、第3のSiON膜132c、第4のSiN膜131dがこの順に形成されている。
 各SiN膜131a~131d及び各SiON膜132a~132cの膜厚は400nmであり、封止膜330の膜厚は2800nmである。
 また、第1のSiN膜131aの膜応力は-160MPaであり、第2のSiN膜131bの膜応力は-180MPaであり、第3のSiN膜131cの膜応力は-200MPaであり、第4のSiN膜131dの膜応力は-220MPaであり、第1のSiON膜132aの膜応力は-69MPaであり、第2のSiON膜132bの膜応力は-69MPaであり、第3のSiON膜132cの膜応力は-69MPaである。
 そのため、封止膜330のTotal膜応力は、-387MPa・μmとなり、-450MPa・μm以上-350MPa・μm以下の範囲内の値となる。
 封止膜330のTotal膜応力を-450MPa・μm以上-350MPa・μm以下の範囲内の値とすることにより、実施形態1にかかる封止膜30について図1を参照して説明したように、ピールテストOK率が90%以上となり、かつ、80℃85%OK時間が750時間以上となる。
 これにより、支持体1と封止膜330との密着性を向上させることができ、封止膜330の膜剥がれの発生を防止し、封止膜330による封止性能を高めることができる。その結果、水分、酸素、及び異物が有機EL素子20に侵入することによるシュリンク及びダークスポット等の表示不具合を防止することができる。
 また、封止膜330のTotal膜応力を、-450MPa・μm以上、かつ、-350MPa・μm以下とすることで、支持体1と封止膜330との密着性を向上させることができるので、支持体1にフレキシブルな支持体を用いた場合の有機EL表示装置100の耐屈曲性を向上させることができる。このため、上記技術は、屈曲可能なフレキシブルな有機EL表示装置100に好適に用いることができる。
 また、以上のように、各膜は、各膜の膜応力の絶対値のうち第1のSiN膜131aの膜応力の絶対値が最も小さく、第1のSiN膜131a、第1のSiON膜132a、第2のSiN膜131b、第2のSiON膜132b、第3のSiN膜131c、第3のSiON膜132c、第4のSiN膜131dの順に膜応力の絶対値が大きくなるように成膜されている。言い換えると、第2電極23及び支持体1に近い側の層を下層としたとき、各層を構成する膜は、下層から上層に向かうに従い膜応力の絶対値が大きくなるように形成されている。
 支持体1の近くに成膜された膜の膜応力は、支持体1の遠くに成膜された膜の膜応力に比べて、支持体1に対して強く作用する。そのため、支持体1から遠い膜の膜応力の絶対値よりも支持体1に近い膜の膜応力の絶対値の方が小さくなるように各膜を積層することによって、支持体1に作用する膜応力を低減させ、支持体1の反りを抑制することができる。
 <成膜方法>
 本実施形態にかかる封止膜330は、実施形態1にかかる封止膜30と同様に、プラズマCVD装置を用いて成膜することができる。
 各層を形成する工程において、モノシラン、アンモニア、一酸化二窒素、窒素、水素等のガスの流量を制御することによって、封止膜330のTotal膜応力が、-450MPa・μm以上-350MPa・μm以下となり、かつ、膜応力が互いに異なる複数の膜を、支持体1に近い膜ほど膜応力の絶対値が小さくなるように成膜する。
 各SiN膜131a~131dを成膜するときのガス流量の一例は、例えば、モノシラン流量100~400sccm、アンモニア流量300~600sccm、窒素流量100~400sccm、水素流量2000~5000sccmである。
 また、各SiON膜132a~132cを成膜するときのガス流量の一例は、例えば、モノシラン流量100~300sccm、アンモニア流量200~1000sccm、窒素流量1000~5000sccm、一酸化二窒素流量200~1000sccmである。
 このように、支持体1に近い膜の膜応力の絶対値よりも支持体1に遠い膜の膜応力の絶対値の方が大きくなるように成膜することによって、各層の膜の膜応力による支持体1の反りを抑制することができる。
 開口部を有するマスクを用いて、開口部を介して蒸着することにより支持体1に封止膜330を形成する場合、支持体1の反りを抑制することによって、成膜工程において、支持体1とマスクとの間に隙間が生じることを抑制することができ、封止膜330の成膜パターン精度を向上させることができる。
 上記の説明では、EL表示装置として、有機EL表示装置100を例に挙げて説明した。しかしながら、本発明はこれに限定されず、本発明にかかるEL表示装置は、無機化合物層からなる無機EL層を備えた無機EL表示装置であってもよく、無機EL表示装置に本発明を適用することにより、封止膜の剥がれを防止し、無機EL素子の封止性能を向上することができる。
 〔実施形態5〕
 本発明の実施の他の形態について、図9に基づいて説明すれば、以下の通りである。なお、本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図9は、本実施形態にかかる有機EL表示装置の封止膜の端部の構成を示す断面図である。
 本実施形態にかかる有機EL表示装置の封止膜430は、最上層の第4のSiN膜31dが他の層の膜よりも幅広であり、第4のSiN膜31dが他の層の膜の端部を覆っている点を除けば、実施形態1にかかる有機EL表示装置の封止膜30と同じ構成を有している。
 具体的には、図9に示すように、最上層の第4のSiN膜31dは、他の層のSiN膜31a~31c及び他の層のSiON膜32a~32cよりも幅Aだけ幅広であり、第4のSiN膜31dの端部は、支持体1の上に形成された信号線3に接している。なお、幅Aは、封止膜430の膜厚の10倍以上であることが好ましい。
 このように、第4のSiN膜31dは、SiN膜31a~31c及び他の層のSiON膜32a~32cの端部を覆っており、TFT基板との間にSiN膜31a~31c及び他の層のSiON膜32a~32cを封止するように形成されている。そのため、封止膜430の端部において、各膜の境界部分が露出しない。
 これにより、各膜の境界部分への水などの侵入を防止することができる。
 〔まとめ〕
 本発明の態様1に係るEL表示装置(有機EL表示装置100)は、基板(TFT基板10)上に形成されたEL素子(有機EL素子20)と、上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜(30)とを備えているEL表示装置であって、上記封止膜の膜厚と膜応力との積が、-450MPa・μm以上であり、かつ、-350MPa・μm以下であることを特徴とする。
 上記の構成によれば、封止膜と基板との密着性及び信頼性を高めることができ、封止膜の膜剥がれを防止することができる。これにより、発光素子への水分及び酸素の侵入を防止することができ、ダークスポット及びシュリンク等の発光不良の発生を防止することができる。
 本発明の態様2に係るEL表示装置は、上記態様1において、上記封止膜は、膜応力が互いに異なる複数の膜が積層された構造を有しており、各膜の膜厚と膜応力との積の合計が、-450MPa・μm以上であり、かつ、-350MPa・μm以下であってもよい。
 上記の構成によれば、膜応力が小さい膜により、膜応力を低下させて基板との密着性を向上させるとともに、膜応力が大きい膜により、封止性を高めることができる。
 本発明の態様3に係るEL表示装置は、上記態様2において、上記複数の膜として、第1の膜と、上記第1の膜よりも膜応力が小さい第2の膜とを備えており、上記基板の表面には、上記第2の膜が設けられている構成であってもよい。
 上記の構成によれば、基板の表面に第1の膜よりも膜応力が小さい第2の膜が設けられていることにより、基板の表面に第1の膜が設けられている場合に比べて、基板の表面に微細な凹凸形状がある場合であっても、基板に対して高い密着性を保つことができる。
 これにより、基板と封止膜との密着性を向上することができる。
 本発明の態様4に係るEL表示装置は、上記態様3において、上記第2の膜は、SiON膜であってもよい。
 上記の構成によれば、第2の膜として基板の表面にSiON膜が設けられていることにより、基板の表面に微細な凹凸形状がある場合であっても、基板に対して高い密着性を保つことができる。これにより、基板と封止膜との密着性を向上することができる。
 本発明の態様5に係るEL表示装置は、上記態様2~4の何れかにおいて、上記複数の膜は、上記基板に近い膜の膜応力の絶対値よりも上記基板に遠い膜の膜応力の絶対値の方が大きくなるように積層されている構成であってもよい。
 上記の構成によれば、封止膜の膜応力による基板の反りを抑制することができる。また、マスクを用いて基板に封止膜を形成する場合、基板の反りを抑制することによって、基板とマスクとの間に隙間が生じることを抑制することができ、封止膜の成膜パターン精度を向上させることができる。
 本発明の態様6に係るEL表示装置は、上記態様2~5の何れかにおいて、上記複数の膜のうち、最上層に形成された膜は、上記基板との間に他の膜を封止するように形成されている構成であってもよい。
 上記の構成によれば、封止膜の端部において、各膜の境界部分が露出しない。これにより、各膜の境界部分への水などの侵入を防止することができる。
 本発明の態様7に係るEL表示装置は、上記態様1~6の何れかにおいて、上記封止膜は、上記EL素子と接する部分がSiN膜で構成されていてもよい。
 SiN膜は緻密な膜であり、また、酸素を含まない膜である。そのため、封止膜は、EL素子と接する部分がSiN膜で構成されていることにより、水分及び酸素が封止膜を透過することによる発光素子の劣化を防止することができる。
 また、封止膜が複数の膜の積層構造を有している場合であって、SiN膜の上に、SiON膜等の酸素を含む膜を設けた場合、酸素を含む膜に由来する酸素による発光素子の劣化を防止することができる。
 本発明の態様8に係るEL表示装置の製造方法は、基板上にEL素子を形成する工程と、上記基板上に、上記EL素子を封止するように少なくとも1層の膜からなる封止膜を成膜する成膜工程とを含み、上記成膜工程では、上記封止膜の膜厚と膜応力との積が、-450MPa・μm以上であり、-350MPa・μm以下となるように成膜することを特徴とする。
 上記の製造方法によれば、基板との密着性及び信頼性が高く、膜剥がれを防止した封止膜を備えたEL表示装置を製造することができる。これにより、発光素子への水分及び酸素の侵入を防止することができ、ダークスポット及びシュリンク等の発光不良の発生を防止したEL表示装置を製造することができる。
 本発明の態様9に係るEL表示装置の製造方法は、上記態様8において、上記成膜工程では、膜応力が互いに異なる複数の膜からなる上記封止膜を、上記基板に近い膜の膜応力よりも上記基板に遠い膜の膜応力の方が大きくなるように成膜する製造方法であってもよい。
 上記の製造方法によれば、封止膜の膜応力による基板の反りを抑制したEL表示装置を製造することができる。また、基板に封止膜を形成する場合、基板の反りを抑制して平坦化することによって、封止膜の成膜パターン精度を向上させることができる。
 本発明の態様10に係るEL表示装置の製造方法は、上記態様8または9において、上記成膜工程では、膜応力が互いに異なる複数の膜からなる上記封止膜を成膜するとともに、上記複数の膜のうち最上層に形成された膜を、上記基板との間に他の膜を封止するように成膜する製造方法であってもよい。
 上記の製造方法によれば、端部において、各膜の境界部分が露出しない封止膜を成膜することができる。これにより、封止膜の各膜の境界部分への水などの侵入を防止したEL表示装置を製造することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、EL表示装置におけるEL素子を覆う封止膜の成膜に好適に利用することができる。
 1 支持体
 10 TFT基板(基板)
 100 有機EL表示装置(EL表示装置)
 30、130、230、330、430 封止膜
 31 SiN膜
 31a、131a 第1のSiN膜
 31b、131b 第2のSiN膜
 31c、131c 第3のSiN膜
 31d、131d 第4のSiN膜
 32a、132a 第1のSiON膜
 32b、132b 第2のSiON膜
 32c、132c 第3のSiON膜
 20 有機EL素子(EL素子)

Claims (10)

  1.  基板上に形成されたEL素子と、
     上記基板との間に上記EL素子を封止するように上記基板及び上記EL素子の上に形成された封止膜とを備えているEL表示装置であって、
     上記封止膜の膜厚と膜応力との積が、-450MPa・μm以上であり、かつ、-350MPa・μm以下であることを特徴とするEL表示装置。
  2.  上記封止膜は、膜応力が互いに異なる複数の膜が積層された構造を有しており、
     各膜の膜厚と膜応力との積の合計が、-450MPa・μm以上であり、かつ、-350MPa・μm以下であることを特徴とする請求項1に記載のEL表示装置。
  3.  上記複数の膜として、第1の膜と、上記第1の膜よりも膜応力が小さい第2の膜とを備えており、
     上記基板の表面には、上記第2の膜が設けられていることを特徴とする請求項2に記載のEL表示装置。
  4.  上記第2の膜は、SiON膜であることを特徴とする請求項3に記載のEL表示装置。
  5.  上記複数の膜は、上記基板に近い膜の膜応力の絶対値よりも上記基板に遠い膜の膜応力の絶対値の方が大きくなるように積層されていることを特徴とする請求項2~4の何れか1項に記載のEL表示装置。
  6.  上記複数の膜のうち、最上層に形成された膜は、上記基板との間に他の膜を封止するように形成されていることを特徴とする請求項2~5の何れか1項に記載のEL表示装置。
  7.  上記封止膜は、上記EL素子と接する部分がSiN膜で構成されていることを特徴とする請求項1~6の何れか1項に記載のEL表示装置。
  8.  基板上にEL素子を形成する工程と、
     上記基板上に、上記EL素子を封止するように少なくとも1層の膜からなる封止膜を成膜する成膜工程とを含み、
     上記成膜工程では、上記封止膜の膜厚と膜応力との積が、-450MPa・μm以上であり、-350MPa・μm以下となるように成膜することを特徴とするEL表示装置の製造方法。
  9.  上記成膜工程では、膜応力が互いに異なる複数の膜からなる上記封止膜を、上記基板に近い膜の膜応力よりも上記基板に遠い膜の膜応力の方が大きくなるように成膜することを特徴とする請求項8に記載のEL表示装置の製造方法。
  10.  上記成膜工程では、膜応力が互いに異なる複数の膜からなる上記封止膜を成膜するとともに、上記複数の膜のうち最上層に形成された膜を、上記基板との間に他の膜を封止するように成膜することを特徴とする請求項8または9に記載のEL表示装置の製造方法。
PCT/JP2016/061722 2015-04-17 2016-04-11 El表示装置及びel表示装置の製造方法 WO2016167226A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015085407 2015-04-17
JP2015-085407 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016167226A1 true WO2016167226A1 (ja) 2016-10-20

Family

ID=57125949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061722 WO2016167226A1 (ja) 2015-04-17 2016-04-11 El表示装置及びel表示装置の製造方法

Country Status (1)

Country Link
WO (1) WO2016167226A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230085A (ja) * 2000-02-17 2001-08-24 Denso Corp 有機電界発光素子
JP2004039468A (ja) * 2002-07-04 2004-02-05 Tdk Corp 有機elカラーディスプレイ
WO2005099311A1 (ja) * 2004-04-05 2005-10-20 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス表示装置
JP2007220580A (ja) * 2006-02-20 2007-08-30 Seiko Epson Corp 有機el装置、その製造方法およびこれを備える電子機器
JP2007220646A (ja) * 2006-01-19 2007-08-30 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2010244697A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp 有機el装置、有機el装置の製造方法、電子機器
JP2013230605A (ja) * 2012-04-27 2013-11-14 Mitsubishi Plastics Inc ガスバリア性フィルム及びその製造方法
US20140264296A1 (en) * 2013-03-12 2014-09-18 Applied Materials, Inc. Barrier film performance with n2o dilution process for thin film encapsulation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230085A (ja) * 2000-02-17 2001-08-24 Denso Corp 有機電界発光素子
JP2004039468A (ja) * 2002-07-04 2004-02-05 Tdk Corp 有機elカラーディスプレイ
WO2005099311A1 (ja) * 2004-04-05 2005-10-20 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス表示装置
JP2007220646A (ja) * 2006-01-19 2007-08-30 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
JP2007220580A (ja) * 2006-02-20 2007-08-30 Seiko Epson Corp 有機el装置、その製造方法およびこれを備える電子機器
JP2010244697A (ja) * 2009-04-01 2010-10-28 Seiko Epson Corp 有機el装置、有機el装置の製造方法、電子機器
JP2013230605A (ja) * 2012-04-27 2013-11-14 Mitsubishi Plastics Inc ガスバリア性フィルム及びその製造方法
US20140264296A1 (en) * 2013-03-12 2014-09-18 Applied Materials, Inc. Barrier film performance with n2o dilution process for thin film encapsulation

Similar Documents

Publication Publication Date Title
JP6154470B2 (ja) エレクトロルミネッセンス装置、及びその製造方法
US7875895B2 (en) Organic light emitting diode (OLED) display and method of manufacturing the same
US10930896B2 (en) Package method of OLED element and OLED package structure
KR101818480B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US9614185B2 (en) Display panel, manufacturing method thereof, and display device
US8044573B2 (en) Organic light emitting display and method of manufacturing the same
KR101169879B1 (ko) 유기 el 표시 장치 및 그의 제조 방법
US10270061B2 (en) Electroluminescent device and manufacturing method
WO2016199739A1 (ja) El表示装置及びel表示装置の製造方法
KR20110081215A (ko) 유기 광전자 장치 및 그의 봉지 방법
KR100855763B1 (ko) 유기 el소자 어레이 및 표시소자 및 촬상장치
JP2015195104A (ja) 表示装置
JP2008098148A (ja) 有機発光装置
KR20150137239A (ko) 플렉서블 유기 발광 표시 장치 및 그 제조방법
KR20120137055A (ko) 유기 발광 표시 장치 및 이의 제조 방법
TW201322515A (zh) 可撓性主動元件陣列基板以及有機電激發光元件
JP2007294405A (ja) 有機発光装置
US20210057658A1 (en) Flexible packaging structure and flexible display panel
US9692011B2 (en) Electroluminescent apparatus
KR102364708B1 (ko) 표시 장치의 제조 방법
KR102102908B1 (ko) 유기 발광 표시 장치의 제조 방법 및 이를 적용한 유기 발광 표시 장치
KR20180112895A (ko) 표시 장치 및 이의 제조 방법
US9941491B2 (en) Method of manufacturing display device
WO2016167226A1 (ja) El表示装置及びel表示装置の製造方法
KR102102913B1 (ko) 유기 발광 표시 장치의 제조 방법 및 이를 적용한 유기 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780017

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16780017

Country of ref document: EP

Kind code of ref document: A1