WO2021027171A1 - 一种柔性显示面板及其制备方法 - Google Patents

一种柔性显示面板及其制备方法 Download PDF

Info

Publication number
WO2021027171A1
WO2021027171A1 PCT/CN2019/119538 CN2019119538W WO2021027171A1 WO 2021027171 A1 WO2021027171 A1 WO 2021027171A1 CN 2019119538 W CN2019119538 W CN 2019119538W WO 2021027171 A1 WO2021027171 A1 WO 2021027171A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
retaining wall
protective film
display panel
emitting device
Prior art date
Application number
PCT/CN2019/119538
Other languages
English (en)
French (fr)
Inventor
卢瑞
尹雪兵
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/641,154 priority Critical patent/US11374198B2/en
Publication of WO2021027171A1 publication Critical patent/WO2021027171A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers

Definitions

  • This application relates to the field of display technology, in particular to a flexible display panel and a preparation method thereof.
  • OLED Organic Light Emitting Diode
  • the luminescent material of the OLED device is very sensitive to water and oxygen, a small amount of water and oxygen will cause rapid attenuation and aging of the device, thereby affecting its life. It can effectively block the damage of external water and oxygen to the OLED device to ensure that the OLED flexible display panel has a long service life.
  • the packaging technology is particularly important.
  • the existing thin film encapsulation (TFE) design generally adopts an inorganic/organic film layer stack structure to achieve the purpose of blocking water and oxygen.
  • the main function of the inorganic film layer is to block water and oxygen, generally by chemical vapor deposition (Chemical Vapor Deposition, referred to as CVD) process or atomic layer deposition (Atomic Layer Deposition, abbreviated as ALD) process;
  • the organic film layer mainly plays the role of flattening the surface of the substrate, covering pollutant particles (particle) and slow-releasing stress, generally by inkjet printing (Inkjet Printing, abbreviated as IJP) process or atomic Layer deposition process preparation.
  • the display area of the display panel Active Area, AA for short
  • One or more retaining walls (Dam) are designed on the periphery.
  • FIG. 1 a cross-sectional view of a partial layer structure of an existing OLED display panel.
  • the OLED display panel includes a TFT (Thin Film Transistor) array substrate 11, a light emitting device layer 12 formed on the TFT array substrate 11, a barrier 13 arranged around the edge of the light emitting device layer 12, and An encapsulation structure 14 on the light-emitting device layer 12.
  • TFT Thin Film Transistor
  • the TFT array substrate 11 includes a TFT array layer 111 and a planarization layer (PLN) 112 formed on the TFT array layer 111.
  • the TFT array layer 111 is the driving circuit of the OLED panel, and is an important part of the display panel; the planarization layer 112 mainly functions to level the in-plane patterns on the TFT array substrate 11 caused by various layers Step difference, and isolate the TFT and the light-emitting device layer, and prevent electric field interference.
  • the light-emitting device layer 12 includes an anode (ANO) layer 121, a pixel definition (PDL) layer 122, a light-emitting material layer 123, and a cathode layer (not shown in the figure) stacked in sequence.
  • the anode layer 121 adopts a sandwich structure of a first ITO layer 1211 / an Ag layer 1212 / a second ITO layer 1213.
  • the luminescent material functional layer 123 is prepared in the area defined by the pixel defining layer 122.
  • the retaining wall 13 is used to prevent the organic film layer material in the packaging structure 14 from flowing out of the coverage area of the inorganic film layer.
  • the packaging structure 14 includes: a first inorganic film layer 141 covering the barrier wall 13, the light-emitting device layer 12 and the TFT array substrate 11, and a first inorganic film layer 141 deposited on the first inorganic film layer 141 The first organic film layer 142, a second inorganic film layer 143 covering the first organic film layer 142 and the first inorganic film layer 141.
  • FIG. 2 a schematic diagram of the peeling phenomenon of the anode layer of the existing OLED display panel.
  • the arrow on the anode layer 121 in the figure indicates the direction of stress.
  • the second ITO layer 1213 and the Ag layer 1212 of the anode layer 121 are likely to peel off at the corners of the retaining wall ( peeling) 201, that is, the anode layer 121 at the corner of the retaining wall will peel off itself, which will lead to package failure.
  • the analysis reasons are as follows:
  • the bonding force between the ITO layer and the Ag layer is weak: the anode layer is a metal film layer, and physical vapor deposition (Physical Vapor Deposition) is generally used. Vapor Deposition, referred to as PVD), pulsed laser deposition (Pulsed Laser Deposition, referred to as PLD) and other equipment for physical deposition, resulting in weak bonding between the film layers, under the stress of the inorganic film layer in the package structure, extremely It is easy to peel off where the bonding force is weak (weak), resulting in peeling.
  • PVD Vapor Deposition
  • PLD Pulsed Laser Deposition
  • the purpose of this application is to provide a flexible display panel and a preparation method thereof in view of the problems in the prior art, which can slow down the stress concentration of the inorganic film layer at the corner of the retaining wall, thereby effectively improving the peeling of the anode layer of the flexible display panel
  • the problem of the phenomenon improves the packaging yield of the display panel.
  • the present application provides a flexible display panel, the flexible display panel includes: an array substrate; a light emitting device layer, the light emitting device layer includes an anode layer formed on the array substrate, wherein ,
  • the anode layer adopts a sandwich structure of a first ITO layer/a Ag layer/a second ITO layer; a retaining wall group, the retaining wall group includes at least one retaining wall arranged around the edge of the light emitting device layer
  • a protective film covering at least a part of at least one side wall of the retaining wall, wherein the slope of a side wall of the protective film away from the retaining wall is less than the slope of the side wall of the retaining wall; and an encapsulation
  • the structure is formed on the light-emitting device layer and completely covers the light-emitting device layer, the retaining wall, the protective film and the array substrate.
  • the present application also provides a flexible display panel, the flexible display panel comprising: an array substrate; a light emitting device layer, the light emitting device layer comprising an anode layer formed on the array substrate; A retaining wall set including at least one retaining wall arranged around the edge of the light-emitting device layer; a protective film covering at least a part of at least one side wall of the retaining wall; and an encapsulation structure forming On the light-emitting device layer, and completely cover the light-emitting device layer, the retaining wall, the protective film and the array substrate.
  • the present application also provides a method for manufacturing a flexible display panel.
  • the manufacturing method includes the following steps: forming an anode layer of a light emitting device layer on an array substrate; and forming an anode layer on the anode layer.
  • a barrier wall group and a pixel definition layer of the light-emitting device layer wherein the barrier wall group includes at least one barrier wall arranged around the edge of the light-emitting device layer; a protective film is formed near the barrier wall, The protective film covers at least a part of at least one side wall of the retaining wall; forming the luminescent material functional layer of the light-emitting device layer in the area defined by the pixel definition layer; and forming a light-emitting device layer on the light-emitting device layer
  • An encapsulation structure which completely covers the light-emitting device layer, the retaining wall, the protective film, and the array substrate.
  • the protective film is filled in the stress concentration area of the inorganic film layer at the corner of the retaining wall.
  • it can effectively slow down the slope of the side wall of the retaining wall and reduce the stress concentration effect of the inorganic film layer in the upper packaging structure to a certain extent.
  • the protective film when the protective film is under stress, it can effectively relieve the stress, weaken or even eliminate the stress of the package structure at the corner of the retaining wall on the anode layer.
  • Figure 1 is a cross-sectional view of a partial layered structure of an existing OLED display panel
  • FIG. 2 is a schematic diagram of the peeling phenomenon of the anode layer of the existing OLED display panel
  • FIG. 3 is a cross-sectional view of a part of the layered structure of the first embodiment of the flexible display panel of this application;
  • FIG. 4 is a cross-sectional view of a partial layered structure of a second embodiment of a flexible display panel of the present application.
  • FIG. 5 is a schematic flowchart of a method for preparing a flexible display panel according to this application.
  • 6A to 6D are a preparation flow chart of an embodiment of the flexible display panel of the present application.
  • the terms “first”, “second”, “third”, etc. (if any) in the specification and claims of this application and the drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or The order should be understood that the objects described in this way can be interchanged under appropriate circumstances.
  • the "on” or “under” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the flexible display panel of the present application includes an array substrate, a light emitting device layer formed on the array substrate, at least one retaining wall arranged around the edge of the light emitting device layer, covering at least a part of at least one side wall of the retaining wall A protective film of, and an encapsulation structure formed on the light-emitting device layer, the encapsulation structure adopts an inorganic/organic film layer stack structure.
  • the stress concentration of the film layer; on the other hand, the protective film is sufficient to release the stress of the inorganic film layer, so that the inorganic film layer no longer has stress on the anode layer of the light-emitting device layer, thereby protecting the anode layer Therefore, the peeling phenomenon of the anode layer at the retaining wall is effectively improved, and the packaging yield of the flexible display panel is improved.
  • FIG. 3 is a cross-sectional view of a partial layer structure of the first embodiment of the flexible display panel of the present application.
  • the flexible display panel includes: an array substrate 31, a light emitting device layer 32, a barrier wall group 33, a protective film 34 and an encapsulation structure 35.
  • the array substrate 31 is a TFT array substrate, and includes a TFT array layer 311 and a planarization layer (PLN) 312 formed on the TFT array layer 311.
  • the TFT array layer 311 is the driving circuit of the flexible display panel and is an important part of the display panel; the planarization layer 312 mainly functions to flatten the surface of the TFT array substrate 31 caused by various layer patterns.
  • the manufacturing process of the array substrate 31 can refer to the existing process, which is not limited in this application.
  • the light-emitting device layer 32 includes an anode layer 321, a pixel definition layer (PDL) 322, a luminescent material functional layer 323, and a cathode layer (not shown in the figure) stacked in sequence.
  • PDL pixel definition layer
  • a luminescent material functional layer 323, and a cathode layer (not shown in the figure) stacked in sequence.
  • the anode layer 321 adopts a sandwich structure of a first ITO layer 3211 / an Ag layer 3212 / a second ITO layer 3213; the light transmittance of ITO is high, and at the same time, it can improve film adhesion, work function and light emission.
  • the effect of the matching degree of the luminescent material in the material layer 123; Ag has high conductivity and high emissivity, which can effectively prevent light from passing through.
  • the anode layer 321 is a metal film layer, physical vapor deposition (Physical Vapor Deposition, referred to as PVD), pulsed laser deposition (Pulsed Laser Deposition, referred to as PLD) and other equipment for physical deposition, resulting in weak bonding between the film layers.
  • PVD Physical Vapor Deposition
  • PLD Pulsed Laser Deposition
  • the edge of the anode layer 321 adopting a sandwich structure is covered by the planarization layer 312.
  • the luminescent material functional layer 323 includes an electron injection layer (EIL), an electron transport layer (ETL), a light emitting layer (EML), a hole injection layer (HIL), and a hole transport layer (HTL), which are prepared in the pixel definition The area defined by layer 322.
  • the light-emitting material of the light-emitting material functional layer 323 may be an OLED light-emitting material, and correspondingly, the flexible display panel is an OLED flexible display panel. It should be noted that, in other embodiments, the luminescent material of the luminescent material functional layer 323 may also be a quantum dot luminescent material, and the specific arrangement form of the luminescent material is not limited in this application.
  • the barrier wall set 33 includes a first barrier wall 331 and a second barrier wall 332 spaced around the edge of the light emitting device layer 32 to prevent the organic film in the packaging structure.
  • the layer material flows out of the covered area of the inorganic film layer.
  • the first retaining wall 331 is arranged on the anode layer 321 and is close to the pixel definition layer 322; the second retaining wall 332 is arranged on the anode layer 321 and the planarization layer 312 On the interface, and away from the pixel definition layer 322.
  • the first retaining wall 331 and the second retaining wall 332 have the same shape. In other embodiments, the shapes of the two retaining walls may also be different.
  • the barrier wall group 33 is an organic film layer, which can be made in the same layer as the pixel definition layer 322 and prepared by the same patterning process.
  • the retaining wall (Dam) of the retaining wall group 33 can be made of parylene or parylene-based materials, and the same mask as the pixel definition layer 322, which is prepared through exposure, development and other processes. to make. It should be noted that the number of retaining walls of the retaining wall group 33 is not limited to one, but can be two or more, which is not limited in this application.
  • the protective film 34 respectively covers the two side walls of the first retaining wall 331 and the two side walls of the second retaining wall 332; that is, the inorganic film layer at the corners of the corresponding retaining wall
  • the stress concentration area is filled with a protective film to slow down the stress concentration effect here, thereby improving the problem of peeling at the anode layer in the flexible display panel.
  • the protective film 34 may be prepared by an exposure and development method, a mask technology or an embossing method.
  • the protective film 34 may be made of epoxy resin (Epoxy resin), aluminum-based organic-inorganic composite film (alucone), or hexamethyldisiloxane (HMDSO).
  • the thickness of the protective film 34 is less than or equal to the thickness of the first retaining wall 331 (the second retaining wall 332 has the same shape as the first retaining wall 331).
  • the cross-sectional view of the protective film 34 is an obtuse triangle, and a side wall of the protective film 34 away from the first retaining wall 331 is the longest side of the obtuse triangle.
  • the slope of a side wall of the protective film 34 away from the first retaining wall 331 (that is, the side wall corresponding to the longest side of the obtuse triangle) is smaller than the slope of the side wall of the first retaining wall 331.
  • the packaging structure 35 is formed on the light-emitting device layer 32 and completely covers the light-emitting device layer 32, the barrier group 33, the protective film 34 and the array substrate 31.
  • the packaging structure 35 adopts an inorganic/organic film layer stack structure, and includes: a first inorganic film layer 351, a first organic film layer 352, and a second inorganic film layer 353. It should be noted that the packaging structure 35 may also include multiple organic film layers, and multiple organic film layers may be stacked between the first inorganic film layer 351 and the second inorganic film layer 353.
  • the first inorganic film layer 351 completely covers the light emitting device layer 32, the retaining wall group 33, the protective film 34 and the array substrate 31, and its main function is to isolate water and oxygen to prevent water vapor or oxygen from intruding
  • the light-emitting device layer (especially the light-emitting material functional layer 323) causes the light emission to become dark.
  • the first inorganic film layer 351 can be achieved by using a chemical vapor deposition (Chemical Vapor Deposition, CVD) process, plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition) Chemical Vapor Deposition, referred to as PECVD) process, atomic layer deposition (Atomic Layer Deposition, referred to as ALD) process, physical vapor deposition (Physical Vapor Deposition, referred to as PVD) process or sputtering coating (sputtering) process and other process methods .
  • CVD chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • PECVD atomic layer deposition
  • PVD Physical vapor deposition
  • sputtering coating sputtering
  • the first organic film layer 352 is deposited on the first inorganic film layer 351, and is located on the side of the barrier wall group 33 away from the edge of the flexible display panel, mainly to flatten and cover the surface of the substrate Live the role of pollution particles (particle).
  • the first organic film layer 352 can be prepared by using an inkjet printing (IJP) process. It can be understood that the material used in the first organic film layer 352 is a material used to buffer the stress of the device during bending and folding and the coverage of particulate contaminants. It is understood that in some embodiments, there may be no pollution particles.
  • the second inorganic film layer 353 completely covers the first organic film layer 352 and the first inorganic film layer 351, and its main function is to isolate water and oxygen.
  • the second inorganic film layer 353 can also be prepared by using a chemical vapor deposition process, a plasma enhanced chemical vapor deposition process, an atomic layer deposition process, a physical vapor deposition process, or a sputtering coating process. It is understandable that the material used for the second inorganic film layer 353 is also an inorganic material that can increase the water and oxygen blocking performance of the device, and it may be the same as the material used for the first inorganic film layer 351.
  • the protective film is filled in the stress concentration area of the inorganic film layer at the corner of the retaining wall.
  • it can effectively slow down the slope of the side wall of the retaining wall and reduce the stress concentration effect of the inorganic film layer in the upper packaging structure to a certain extent.
  • the protective film when the protective film is under stress, it can effectively relieve the stress, weaken or even eliminate the stress of the package structure at the corner of the retaining wall on the anode layer.
  • FIG. 4 is a cross-sectional view of a partial layer structure of a second embodiment of a flexible display panel of the present application.
  • a protective film 44 completely covers the retaining wall group 33.
  • the protective film 44 covers the two side walls and top surface of the first retaining wall 331, and covers the two side walls and top surface of the second retaining wall 332; and covers the top surface of the corresponding retaining wall
  • the thickness of the protective film 44 above is designed to be about 1 ⁇ m. That is, all exposed surfaces of the corresponding retaining wall are covered with protective films.
  • This design can not only relieve the stress concentration at the corners of the corresponding retaining wall, but also relieve the stress on the top surface of the retaining wall corner, which is more conducive to alleviation
  • the stress effect of the inorganic film layer in the packaging structure is released, and the problem of peeling phenomenon at the anode layer in the flexible display panel is effectively improved.
  • the slope of the side wall of the protective film 44 away from the first retaining wall 331 is smaller than the slope of the side wall of the first retaining wall 331.
  • FIG. 5 is a schematic flow chart of a method for preparing a flexible display panel according to the present application
  • FIGS. 6A-6D are a flow chart of preparing a flexible display panel according to an embodiment of the present application.
  • the preparation method of the flexible display panel of the present application specifically includes the following steps:
  • Step S51 forming an anode layer of a light emitting device layer on an array substrate; after this step, the structure obtained is as shown in FIG. 6A.
  • the provided array substrate 31 is a TFT array substrate, which includes a TFT array layer 311 and a planarization layer 312 formed on the TFT array layer 311.
  • the TFT array layer 311 is the driving circuit of the flexible display panel and is an important part of the display panel; the planarization layer 312 mainly functions to flatten the surface of the TFT array substrate 31 caused by various layer patterns.
  • the manufacturing process of the array substrate 31 can refer to the existing process, which is not limited in this application.
  • the formed anode layer 321 adopts a sandwich structure of a first ITO layer 3211 / an Ag layer 3212 / a second ITO layer 3213; the light transmittance of ITO is high, and at the same time, it can improve film adhesion, work function and light emission
  • the effect of the matching degree of the luminescent material in the material layer 323; Ag has high conductivity and high emissivity, which can effectively prevent light from passing through.
  • the edge of the anode layer 321 adopting a sandwich structure is covered by the planarization layer 312.
  • Step S52 forming a barrier wall group and a pixel defining layer of the light emitting device layer on the anode layer, wherein the barrier wall group includes at least one barrier wall arranged around the edge of the light emitting device layer;
  • the retaining wall group 33 can be made in the same layer as the pixel definition layer 322 and prepared by the same patterning process.
  • the barrier wall set 33 includes a first barrier wall 331 and a second barrier wall 332 spaced around the edge of the light emitting device layer 32 to prevent the organic film in the packaging structure.
  • the layer material flows out of the covered area of the inorganic film layer.
  • the first retaining wall 331 is arranged on the anode layer 321 and is close to the pixel definition layer 322; the second retaining wall 332 is arranged on the anode layer 321 and the planarization layer 312 On the interface, and away from the pixel definition layer 322.
  • the first retaining wall 331 and the second retaining wall 332 have the same shape. In other embodiments, the shapes of the two retaining walls may also be different.
  • the retaining wall (Dam) of the retaining wall group 33 can be made of parylene or parylene-based materials, and the same mask as the pixel definition layer 322, which is prepared through exposure, development and other processes. to make. It should be noted that the number of retaining walls of the retaining wall group 33 is not limited to one, but can be two or more, which is not limited in this application.
  • Step S53 forming a protective film near the retaining wall, the protective film covering at least a part of at least one side wall of the retaining wall; after this step, the structure obtained is as shown in FIG. 6C.
  • the protective film 34 may be prepared by exposure and development, mask technology, or imprinting.
  • the material used for the protective film 34 may be epoxy resin, aluminum-based organic-inorganic composite film (alucone). ), or hexamethyldisiloxane (HMDSO).
  • the protective film 34 respectively covers the two side walls of the first retaining wall 331 and the two side walls of the second retaining wall 332; that is, the inorganic film layer at the corners of the corresponding retaining wall
  • the stress concentration area is filled with a protective film to slow down the stress concentration effect here, thereby improving the problem of peeling at the anode layer in the flexible display panel.
  • the thickness of the protective film 34 is less than or equal to the thickness of the first retaining wall 331 (the second retaining wall 332 has the same shape as the first retaining wall 331).
  • the cross-sectional view of the protective film 34 is an obtuse triangle, and a side wall of the protective film 34 away from the first retaining wall 331 is the longest side of the obtuse triangle.
  • the slope of a side wall of the protective film 34 away from the first retaining wall 331 (that is, the side wall corresponding to the longest side of the obtuse triangle) is smaller than the slope of the side wall of the first retaining wall 331.
  • the prepared protective film can completely cover the retaining wall group 33.
  • the protective film covers both side walls and top surface of the first retaining wall 331, and covers both side walls and top surface of the second retaining wall 332; covering the top surface of the corresponding retaining wall
  • the thickness of the protective film is designed to be about 1 ⁇ m. That is, all exposed surfaces of the corresponding retaining wall are covered with protective films. This design can not only relieve the stress concentration at the corners of the corresponding retaining wall, but also relieve the stress on the top surface of the retaining wall corner, which is more conducive to alleviation The stress effect of the inorganic film layer in the packaging structure is released, and the problem of peeling phenomenon at the anode layer in the flexible display panel is effectively improved.
  • Step S54 forming the luminescent material functional layer of the luminescent device layer in the area defined by the pixel definition layer; after this step, the structure is obtained as shown in FIG. 6D.
  • the luminescent material functional layer 323 formed includes an electron injection layer (EIL), an electron transport layer (ETL), a light emitting layer (EML), a hole injection layer (HIL), and a hole transport layer (HTL).
  • the light-emitting material of the light-emitting material functional layer 323 may be an OLED light-emitting material, and correspondingly, the flexible display panel is an OLED flexible display panel.
  • the luminescent material of the luminescent material functional layer 323 may also be a quantum dot luminescent material, and the specific arrangement form of the luminescent material is not limited in this application.
  • the preparation method further includes preparing the cathode layer of the light-emitting device layer 32 on the luminescent material functional layer 323.
  • the preparation method can refer to the existing technology, which is not limited in this application.
  • Step S55 forming a packaging structure on the light-emitting device layer, the packaging structure completely covering the light-emitting device layer, the retaining wall, the protective film and the array substrate; after this step, the structure is obtained as shown in FIG. 3 Shown.
  • the formed packaging structure 35 adopts an inorganic/organic film layer stack structure, including: a first inorganic film layer 351, a first organic film layer 352, and a second inorganic film layer 353.
  • the packaging structure 35 may also include multiple organic film layers, and multiple organic film layers may be stacked between the first inorganic film layer 351 and the second inorganic film layer 353.
  • the first inorganic film layer 351 completely covers the light emitting device layer 32, the retaining wall group 33, the protective film 34 and the array substrate 31, and its main function is to isolate water and oxygen to prevent water vapor or oxygen from intruding
  • the light-emitting device layer (especially the light-emitting material functional layer 323) causes the light emission to become dark.
  • the first inorganic film layer 351 can be deposited by chemical vapor deposition (Chemical Vapor Deposition, CVD) process, plasma enhanced chemical vapor deposition (Plasma Enhanced Chemical Vapor Deposition) Chemical Vapor Deposition (PECVD) process, atomic layer deposition (Atomic Layer Deposition, ALD) process, physical vapor deposition (Physical Vapor Deposition, PVD) process or sputtering coating (sputtering) process and other process methods are prepared. It can be understood that the material used for the first inorganic film layer 351 is an inorganic material that can increase the water and oxygen blocking performance of the device.
  • the first organic film layer 352 is deposited on the first inorganic film layer 351, and is located on the side of the barrier wall group 33 away from the edge of the flexible display panel, mainly to flatten and cover the surface of the substrate Live the role of pollution particles (particle).
  • the first organic film layer 352 may be prepared by an inkjet printing (IJP) process. It can be understood that the material used in the first organic film layer 352 is a material used to buffer the stress of the device during bending and folding and the coverage of particulate contaminants. It is understood that in some embodiments, there may be no pollution particles.
  • the second inorganic film layer 353 completely covers the first organic film layer 352 and the first inorganic film layer 351, and its main function is to isolate water and oxygen.
  • the second inorganic film layer 353 can also be prepared by using a chemical vapor deposition process, a plasma enhanced chemical vapor deposition process, an atomic layer deposition process, a physical vapor deposition process, or a sputtering coating process. It is understandable that the material used for the second inorganic film layer 353 is also an inorganic material that can increase the water and oxygen blocking performance of the device, and it may be the same as the material used for the first inorganic film layer 351.
  • the protective film is filled in the stress concentration area of the inorganic film layer at the corner of the retaining wall.
  • it can effectively slow down the slope of the side wall of the retaining wall and reduce the stress concentration effect of the inorganic film layer in the upper packaging structure to a certain extent.
  • the protective film when the protective film is under stress, it can effectively relieve the stress, weaken or even eliminate the stress of the package structure at the corner of the retaining wall on the anode layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性显示面板及其制备方法,通过在挡墙(13)角落处的无机膜层的应力集中区域填充保护膜(34),有效减缓挡墙侧壁的坡度,在一定程度上减小上层封装结构(35)中无机膜层的应力集中作用,保护膜(34)在受到应力作用时,可有效缓释应力,削弱甚至消除挡墙(13)角落处封装结构(35)对阳极层(121)的应力作用。

Description

一种柔性显示面板及其制备方法
本申请要求于2019年08月14日提交中国专利局、申请号为201910747074.4、发明名称为“一种柔性显示面板及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种柔性显示面板及其制备方法。
背景技术
随着有机发光二极管(Organic Light Emitting Diode,简称OLED)显示技术的快速发展,推动曲面和柔性显示产品迅速进入市场,相关领域技术更新也是日新月异。OLED器件是利用有机发光材料在电场驱动下,通过载流子注入和复合导致发光的二极管器件。OLED器件因其重量轻、厚度薄、可弯曲、视角范围大等优势,受到了广泛关注。
由于OLED器件的发光材料对水氧十分敏感,少量的水氧入侵即会造成器件的快速衰减及老化,从而影响其寿命。有效的阻隔外界水氧对OLED器件的破坏,以保证OLED柔性显示面板具有较长的使用寿命,其封装技术尤为重要。
现有的薄膜封装(TFE)设计,一般采用无机/有机膜层堆叠结构来达到阻隔水氧的目的。其中,无机膜层主要作用是阻隔水氧,一般由化学气相沉积(Chemical Vapor Deposition,简称CVD)工艺或原子层沉积(Atomic Layer Deposition,简称ALD) 工艺制备;有机膜层主要起使基板表面平坦化、包覆住污染颗粒(particle)及缓释应力的作用,一般由喷墨打印(Inkjet Printing,简称IJP) 工艺或原子层沉积工艺制备。为了防止有机膜层流出无机膜层的覆盖区域,一般会在显示面板的显示区(Active Area,简称AA)外围设计一个或多个挡墙(Dam)。
技术问题
请参阅图1,现有OLED显示面板部分层状结构剖视图。所述OLED显示面板包括一TFT(薄膜晶体管)阵列基板11、形成于所述TFT阵列基板11上的一发光器件层12,围绕所述发光器件层12的边缘设置的一挡墙13以及形成于所述发光器件层12上的一封装结构14。
所述TFT阵列基板11包括一TFT阵列层111、形成于所述TFT阵列层111上的一平坦化层(PLN)112。所述TFT阵列层111为所述OLED面板的驱动电路,是显示面板的重要组成部分;所述平坦化层112主要起平整所述TFT阵列基板11上因各种不同层图案所造成的面内段差,以及隔离TFT与发光器件层、防止电场干扰的作用。
所述发光器件层12包括依次层叠设置的一阳极(ANO)层121,一像素定义(PDL)层122,一发光材料层123以及一阴极层(未示于图中)。所述阳极层121采用一第一ITO层1211/一Ag层1212/一第二ITO层1213夹层结构。所述发光材料功能层123制备在所述像素定义层122所定义的区域。
所述挡墙13用于防止所述封装结构14中的有机膜层材料流出无机膜层的覆盖区域。
所述封装结构14包括:覆盖所述挡墙13、所述发光器件层12以及所述TFT阵列基板11的一第一无机膜层141、沉积在所述第一无机膜层141之上的一第一有机膜层142、覆盖所述第一有机膜层142、所述第一无机膜层141的一第二无机膜层143。
请参阅图2,现有OLED显示面板阳极层产生剥落现象示意图,图中阳极层121上的箭头示意应力方向。在实际的OLED显示面板封装可靠性试验中,发现经过所述封装结构14封装后,所述阳极层121的第二ITO层1213与Ag层1212之间易在挡墙的角落处产生剥落现象(peeling)201,即挡墙角落处的所述阳极层121自身会产生剥离,进而导致封装失效。分析原因如下:
1)无机膜层的应力集中作用:因挡墙为阻挡有机膜层溢出,一般高度较高,且挡墙处的封装膜层仅有无机膜层,无应力缓释作用,这就导致在挡墙角落处应力较大,较大的应力会将上层ITO层抓起,从而导致上层ITO层与Ag层剥离,产生剥落现象,这也是阳极层发生剥落现象的主要因素;
2)ITO层与Ag层间的结合力较弱:阳极层为金属膜层,一般采用物理气相沉积(Physical Vapor Deposition,简称PVD)、脉冲激光沉积(Pulsed Laser Deposition,简称PLD)等设备进行物理性沉积,导致膜层之间的结合力较弱,在受到封装结构中无机膜层的应力作用时,极易在结合力较弱(weak)处发生剥离,产生剥落现象。
技术解决方案
本申请的目的在于,针对现有技术存在的问题,提供一种柔性显示面板及其制备方法,可以缓释挡墙角落处的无机膜层应力集中作用,从而有效改善柔性显示面板阳极层的剥落现象的问题,提高显示面板的封装良率。
为实现上述目的,本申请提供了一种柔性显示面板,所述柔性显示面板包括:一阵列基板;一发光器件层,所述发光器件层包括形成于所述阵列基板上的一阳极层,其中,所述阳极层采用一第一ITO层/一Ag层/一第二ITO层的夹层结构;一挡墙组,所述挡墙组包括围绕所述发光器件层的边缘设置的至少一挡墙;一保护膜,覆盖所述挡墙的至少一侧壁的至少一部分,其中,所述保护膜远离所述挡墙的一侧壁的坡度小于所述挡墙的侧壁的坡度;以及一封装结构,形成于所述发光器件层上,并完全覆盖所述发光器件层、所述挡墙、所述保护膜以及所述阵列基板。
为实现上述目的,本申请还提供了一种柔性显示面板,所述柔性显示面板包括:一阵列基板;一发光器件层,所述发光器件层包括形成于所述阵列基板上的一阳极层;一挡墙组,所述挡墙组包括围绕所述发光器件层的边缘设置的至少一挡墙;一保护膜,覆盖所述挡墙的至少一侧壁的至少一部分;以及一封装结构,形成于所述发光器件层上,并完全覆盖所述发光器件层、所述挡墙、所述保护膜以及所述阵列基板。
为实现上述目的,本申请还提供了一种柔性显示面板的制备方法,所述制备方法包括如下步骤:在一阵列基板上形成一发光器件层的一阳极层;在所述阳极层上形成一挡墙组和所述发光器件层的一像素定义层,其中,所述挡墙组包括围绕所述发光器件层的边缘设置的至少一挡墙;在靠近所述挡墙处形成一保护膜,所述保护膜覆盖所述挡墙的至少一侧壁的至少一部分;在所述像素定义层所定义的区域形成所述发光器件层的发光材料功能层;以及在所述发光器件层上形成一封装结构,所述封装结构完全覆盖所述发光器件层、所述挡墙、所述保护膜以及所述阵列基板。
有益效果
本申请通过在挡墙角落处的无机膜层的应力集中区域填充保护膜,一方面,可有效减缓挡墙侧壁的坡度,在一定程度上减小上层封装结构中无机膜层的应力集中作用;另一方面,保护膜在受到应力作用时,可有效缓释应力,削弱甚至消除挡墙角落处封装结构对阳极层的应力作用。通过从以上两方面缓释了挡墙角落处的应力集中作用,从而能有效改善挡墙处阳极层易方式剥落现象的问题,提高柔性显示面板的封装良率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为现有OLED显示面板部分层状结构剖视图;
图2为现有OLED显示面板阳极层产生剥落现象示意图;
图3为本申请柔性显示面板第一实施例的部分层状结构剖视图;
图4为本申请柔性显示面板第二实施例的部分层状结构剖视图;
图5为本申请柔性显示面板的制备方法的流程示意图;
图6A-图6D为本申请柔性显示面板的一实施例的制备流程图。
本发明的实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
本申请的说明书和权利要求书以及附图中的术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,应当理解,这样描述的对象在适当情况下可以互换。在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请柔性显示面板,包括阵列基板,形成于所述阵列基板上的发光器件层,围绕所述发光器件层的边缘设置的至少一挡墙,覆盖所述挡墙的至少一侧壁的至少一部分的一保护膜,以及形成于所述发光器件层上的封装结构,所述封装结构采用无机/有机膜层堆叠结构。通过在挡墙的角落采用曝光显影方式、掩膜板技术或压印方式制备所述保护膜,一方面可有效减缓所述挡墙的坡度,在一定程度上减小所述封装结构中的无机膜层的应力集中作用;另一方面,所述保护膜足以缓释无机膜层的应力,使无机膜层不再有应力作用在所述发光器件层的阳极层上,进而保护所述阳极层,从而有效改善所述挡墙处阳极层的剥落现象(Peeling),提高柔性显示面板的封装良率。
请参阅图3,本申请柔性显示面板第一实施例的部分层状结构剖视图。所述柔性显示面板包括:一阵列基板31、一发光器件层32、一挡墙组33、一保护膜34以及一封装结构35。
在本实施例中,所述阵列基板31为TFT阵列基板,包括一TFT阵列层311、形成于所述TFT阵列层311上的一平坦化层(PLN)312。所述TFT阵列层311为所述柔性显示面板的驱动电路,是显示面板的重要组成部分;所述平坦化层312主要起平整所述TFT阵列基板31上因各种不同层图案所造成的面内段差,以及隔离TFT与所述发光器件层32、防止电场干扰的作用。所述阵列基板31的制备工艺可参考现有工艺,本申请对此不做限定。
在本实施例中,所述发光器件层32包括依次层叠设置的一阳极层321,一像素定义层(PDL)322,一发光材料功能层323以及一阴极层(未示于图中)。
所述阳极层321采用一第一ITO层3211/一Ag层3212/一第二ITO层3213的夹层结构;ITO的光透过率高,同时有提高膜层附着力、提高功函数与提高发光材料层123中的发光材料匹配度的作用;Ag的电导率较高,发射率高,可有效防止光透过。由于所述阳极层321为金属膜层,一般采用物理气相沉积(Physical Vapor Deposition,简称PVD)、脉冲激光沉积(Pulsed Laser Deposition,简称PLD)等设备进行物理性沉积,导致膜层之间的结合力较弱。本实施例中,采用夹层结构的所述阳极层321的边缘被所述平坦化层312包覆。
所述发光材料功能层323包括电子注入层(EIL)、电子传输层 (ETL)、发光层(EML)、空穴注入层(HIL)、空穴传输层(HTL),制备在所述像素定义层322所定义的区域。所述发光材料功能层323的发光材料可以为OLED发光材料,相应的,所述柔性显示面板为OLED柔性显示面板。需要说明的是,在其它实施例中,所述发光材料功能层323的发光材料的也可以是量子点发光材料,本申请对于发光材料的具体设置形式不作限定。
在本实施例中,所述挡墙组33包括围绕所述发光器件层32的边缘间隔设置的一第一挡墙331和一第二挡墙332,用于防止所述封装结构中的有机膜层材料流出无机膜层的覆盖区域。具体的,所述第一挡墙331设置在所述阳极层321上,并靠近所述像素定义层322;所述第二挡墙332设置在所述阳极层321与所述平坦化层312的交界面上,并远离所述像素定义层322。所述第一挡墙331与所述第二挡墙332形状相同,在其它实施例中,两挡墙的形状也可以不同。所述挡墙组33为有机膜层,可以与所述像素定义层322同层,且采用同一构图工艺制备而成。所述挡墙组33的挡墙(Dam)可以采用聚对二甲苯基或派瑞林(parylene)类材料,并与所述像素定义层322采用同一道光罩,通过曝光、显影等工序制备而成。需要说明的是,所述挡墙组33的挡墙的数量不限于一个,可为两个或多个,本申请对此不做限定。
在本实施例中,所述保护膜34分别覆盖所述第一挡墙331的两侧壁,以及覆盖所述第二挡墙332的两侧壁;即在相应挡墙角落处的无机膜层的应力集中区域填充保护膜,以此来缓释此处的应力集中作用,从而改善柔性显示面板中阳极层处的剥落现象的问题。
进一步的实施例中,所述保护膜34可以采用曝光显影方式、掩膜板(mask)技术或压印方式制备而成。所述保护膜34采用的材料可以为环氧树脂(Epoxy resin)、铝基有机无机复合薄膜(alucone),或六甲基二硅氧烷(HMDSO)。
进一步的实施例中,所述保护膜34的厚度小于或等于所述第一挡墙331的厚度(所述第二挡墙332与所述第一挡墙331形状相同)。在主视视角下,所述保护膜34的截面图为钝角三角形,所述保护膜34远离所述第一挡墙331的一侧壁为所述钝角三角形的最长边。所述保护膜34远离所述第一挡墙331的一侧壁(即所述钝角三角形的最长边对应的侧壁)的坡度小于所述第一挡墙331的侧壁的坡度。
在本实施例中,所述封装结构35形成于所述发光器件层32上,并完全覆盖所述发光器件层32、所述挡墙组33、所述保护膜34以及所述阵列基板31。
进一步的实施例中,所述封装结构35采用无机/有机膜层堆叠结构,包括:一第一无机膜层351、一第一有机膜层352以及一第二无机膜层353。需要说明的是,所述封装结构35也可以包括多层有机膜层,多层有机膜层可以堆叠设置在所述第一无机膜层351与所述第二无机膜层353之间。
所述第一无机膜层351完全覆盖所述发光器件层32、所述挡墙组33、所述保护膜34以及所述阵列基板31,其主要作用是隔绝水氧,以防止水汽或氧侵入所述发光器件层(特别是所述发光材料功能层323)而造成的发光变暗。所述第一无机膜层351可通过采用化学气相沉积(Chemical Vapor Deposition,简称CVD)工艺、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,简称PECVD)工艺、原子层沉积(Atomic Layer Deposition,简称ALD) 工艺、物理气相沉积(Physical Vapor Deposition,简称PVD)工艺或溅射镀膜层(sputtering)工艺等工艺制程方式制备而成。可以理解的是,所述第一无机膜层351所采用的材料为能增加器件阻水氧性能的无机材料。
所述第一有机膜层352沉积在所述第一无机膜层351之上,且位于所述挡墙组33远离所述柔性显示面板边缘的一侧,主要起使基板表面平坦化及包覆住污染颗粒(particle)的作用。所述第一有机膜层352可以采用喷墨打印(Inkjet Printing,简称IJP)工艺制备而成。可以理解的是,所述第一有机膜层352所采用的材料为用于缓冲器件在弯曲、折叠时的应力以及颗粒污染物的覆盖的材料。可以理解的是,在一些实施例中,也可能不存在污染颗粒。
所述第二无机膜层353完全覆盖所述第一有机膜层352以及所述第一无机膜层351,其主要作用是隔绝水氧。所述第二无机膜层353也可通过采用化学气相沉积工艺、等离子体增强化学气相沉积工艺、原子层沉积工艺、物理气相沉积工艺或溅射镀膜层工艺等工艺制程方式制备而成。可以理解的是,所述第二无机膜层353所采用的材料也为能增加器件阻水氧性能的无机材料,其可以与所述第一无机膜层351所采用的材料相同。
通过对柔性显示面板中阳极层处的发生剥落现象分析可知,挡墙角落处的无机膜层的应力集中作用是阳极层处的发生剥落现象的主要因素。本申请通过在挡墙角落处的无机膜层的应力集中区域填充保护膜,一方面,可有效减缓挡墙侧壁的坡度,在一定程度上减小上层封装结构中无机膜层的应力集中作用;另一方面,保护膜在受到应力作用时,可有效缓释应力,削弱甚至消除挡墙角落处封装结构对阳极层的应力作用。通过从以上两方面缓释了挡墙角落处的应力集中作用,从而能有效改善挡墙处阳极层易方式剥落现象的问题,提高柔性显示面板的封装良率。
请参阅图4,本申请柔性显示面板第二实施例的部分层状结构剖视图。与图3所示实施例的不同之处在于,在本实施例中,一保护膜44完全覆盖所述挡墙组33。具体的,所述保护膜44包覆所述第一挡墙331的两侧壁和顶面,以及包覆所述第二挡墙332的两侧壁和顶面;覆盖在相应挡墙顶面上的所述保护膜44的厚度设计为1μm左右。即在相应挡墙的所有外露面全部覆盖保护膜,这样的设计不仅可以缓释相应挡墙角落处的应力集中作用,还可以缓释应挡墙角顶面上的应力作用,从而更有利于缓释封装结构中的无机膜层的应力作用,有效改善柔性显示面板中阳极层处的剥落现象的问题。同样的,所述保护膜44远离所述第一挡墙331的一侧壁的坡度小于所述第一挡墙331的侧壁的坡度。
基于同一申请构思,本申请还提供一种柔性显示面板的制备方法。请一并参阅图5及图6A-图6D,其中,图5为本申请柔性显示面板的制备方法的流程示意图,图6A-图6D为本申请柔性显示面板的一实施例的制备流程图。
本申请柔性显示面板的制备方法,具体包括以下步骤:
步骤S51:在一阵列基板上形成一发光器件层的一阳极层;经过该步骤获得结构如图6A所示。其中,提供的阵列基板31为TFT阵列基板,包括一TFT阵列层311、形成于所述TFT阵列层311上的一平坦化层312。所述TFT阵列层311为所述柔性显示面板的驱动电路,是显示面板的重要组成部分;所述平坦化层312主要起平整所述TFT阵列基板31上因各种不同层图案所造成的面内段差,以及隔离TFT与所述发光器件层32、防止电场干扰的作用。所述阵列基板31的制备工艺可参考现有工艺,本申请对此不做限定。形成的阳极层321采用一第一ITO层3211/一Ag层3212/一第二ITO层3213的夹层结构;ITO的光透过率高,同时有提高膜层附着力、提高功函数与提高发光材料层323中的发光材料匹配度的作用;Ag的电导率较高,发射率高,可有效防止光透过。本实施例中,采用夹层结构的所述阳极层321的边缘被所述平坦化层312包覆。
步骤S52:在所述阳极层上形成一挡墙组和所述发光器件层的一像素定义层,其中,所述挡墙组包括围绕所述发光器件层的边缘设置的至少一挡墙;经过该步骤获得结构如图6B所示。其中,挡墙组33可以与像素定义层322同层,且采用同一构图工艺制备而成。
在本实施例中,所述挡墙组33包括围绕所述发光器件层32的边缘间隔设置的一第一挡墙331和一第二挡墙332,用于防止所述封装结构中的有机膜层材料流出无机膜层的覆盖区域。具体的,所述第一挡墙331设置在所述阳极层321上,并靠近所述像素定义层322;所述第二挡墙332设置在所述阳极层321与所述平坦化层312的交界面上,并远离所述像素定义层322。所述第一挡墙331与所述第二挡墙332形状相同,在其它实施例中,两挡墙的形状也可以不同。所述挡墙组33的挡墙(Dam)可以采用聚对二甲苯基或派瑞林(parylene)类材料,并与所述像素定义层322采用同一道光罩,通过曝光、显影等工序制备而成。需要说明的是,所述挡墙组33的挡墙的数量不限于一个,可为两个或多个,本申请对此不做限定。
步骤S53:在靠近所述挡墙处形成一保护膜,所述保护膜覆盖所述挡墙的至少一侧壁的至少一部分;经过该步骤获得结构如图6C所示。其中,可以采用曝光显影方式、掩膜板(mask)技术或压印方式制备保护膜34,所述保护膜34采用的材料可以为环氧树脂(Epoxy resin)、铝基有机无机复合薄膜(alucone),或六甲基二硅氧烷(HMDSO)。
在本实施例中,所述保护膜34分别覆盖所述第一挡墙331的两侧壁,以及覆盖所述第二挡墙332的两侧壁;即在相应挡墙角落处的无机膜层的应力集中区域填充保护膜,以此来缓释此处的应力集中作用,从而改善柔性显示面板中阳极层处的剥落现象的问题。所述保护膜34的厚度小于或等于所述第一挡墙331的厚度(所述第二挡墙332与所述第一挡墙331形状相同)。在主视视角下,所述保护膜34的截面图为钝角三角形,所述保护膜34远离所述第一挡墙331的一侧壁为所述钝角三角形的最长边。所述保护膜34远离所述第一挡墙331的一侧壁(即所述钝角三角形的最长边对应的侧壁)的坡度小于所述第一挡墙331的侧壁的坡度。
在其它实施例中,制备的保护膜可以完全覆盖所述挡墙组33。具体的,所述保护膜包覆所述第一挡墙331的两侧壁和顶面,以及包覆所述第二挡墙332的两侧壁和顶面;覆盖在相应挡墙顶面上的所述保护膜的厚度设计为1μm左右。即在相应挡墙的所有外露面全部覆盖保护膜,这样的设计不仅可以缓释相应挡墙角落处的应力集中作用,还可以缓释应挡墙角顶面上的应力作用,从而更有利于缓释封装结构中的无机膜层的应力作用,有效改善柔性显示面板中阳极层处的剥落现象的问题。
步骤S54:在所述像素定义层所定义的区域形成所述发光器件层的发光材料功能层;经过该步骤获得结构如图6D所示。其中,形成的发光材料功能层323包括电子注入层(EIL)、电子传输层 (ETL)、发光层(EML)、空穴注入层(HIL)、空穴传输层(HTL)。所述发光材料功能层323的发光材料可以为OLED发光材料,相应的,所述柔性显示面板为OLED柔性显示面板。需要说明的是,在其它实施例中,所述发光材料功能层323的发光材料的也可以是量子点发光材料,本申请对于发光材料的具体设置形式不作限定。需要说明的是,所述制备方法还包括在所述发光材料功能层323上制备所述发光器件层32的阴极层,其制备方式可参考现有工艺,本申请对此不做限定。
步骤S55:在所述发光器件层上形成一封装结构,所述封装结构完全覆盖所述发光器件层、所述挡墙、所述保护膜以及所述阵列基板;经过该步骤获得结构如图3所示。其中,形成的封装结构35采用无机/有机膜层堆叠结构,包括:一第一无机膜层351、一第一有机膜层352以及一第二无机膜层353。需要说明的是,所述封装结构35也可以包括多层有机膜层,多层有机膜层可以堆叠设置在所述第一无机膜层351与所述第二无机膜层353之间。
所述第一无机膜层351完全覆盖所述发光器件层32、所述挡墙组33、所述保护膜34以及所述阵列基板31,其主要作用是隔绝水氧,以防止水汽或氧侵入所述发光器件层(特别是所述发光材料功能层323)而造成的发光变暗。所述第一无机膜层351可通过采用化学气相沉积(Chemical Vapor Deposition,CVD)工艺、等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)工艺、原子层沉积(Atomic Layer Deposition,ALD) 工艺、物理气相沉积(Physical Vapor Deposition,PVD)工艺或溅射镀膜层(sputtering)工艺等工艺制程方式制备而成。可以理解的是,所述第一无机膜层351所采用的材料为能增加器件阻水氧性能的无机材料。
所述第一有机膜层352沉积在所述第一无机膜层351之上,且位于所述挡墙组33远离所述柔性显示面板边缘的一侧,主要起使基板表面平坦化及包覆住污染颗粒(particle)的作用。所述第一有机膜层352可以采用喷墨打印(Inkjet Printing,IJP)工艺制备而成。可以理解的是,所述第一有机膜层352所采用的材料为用于缓冲器件在弯曲、折叠时的应力以及颗粒污染物的覆盖的材料。可以理解的是,在一些实施例中,也可能不存在污染颗粒。
所述第二无机膜层353完全覆盖所述第一有机膜层352以及所述第一无机膜层351,其主要作用是隔绝水氧。所述第二无机膜层353也可通过采用化学气相沉积工艺、等离子体增强化学气相沉积工艺、原子层沉积工艺、物理气相沉积工艺或溅射镀膜层工艺等工艺制程方式制备而成。可以理解的是,所述第二无机膜层353所采用的材料也为能增加器件阻水氧性能的无机材料,其可以与所述第一无机膜层351所采用的材料相同。
本申请通过在挡墙角落处的无机膜层的应力集中区域填充保护膜,一方面,可有效减缓挡墙侧壁的坡度,在一定程度上减小上层封装结构中无机膜层的应力集中作用;另一方面,保护膜在受到应力作用时,可有效缓释应力,削弱甚至消除挡墙角落处封装结构对阳极层的应力作用。通过从以上两方面缓释了挡墙角落处的应力集中作用,从而能有效改善挡墙处阳极层易方式剥落现象的问题,提高柔性显示面板的封装良率。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种柔性显示面板,其中,所述柔性显示面板包括:
    一阵列基板;
    一发光器件层,所述发光器件层包括形成于所述阵列基板上的一阳极层,并且其中,所述阳极层采用一第一ITO层/一Ag层/一第二ITO层的夹层结构;
    一挡墙组,所述挡墙组包括围绕所述发光器件层的边缘设置的至少一挡墙;
    一保护膜,覆盖所述挡墙的至少一侧壁的至少一部分,并且其中,所述保护膜远离所述挡墙的一侧壁的坡度小于所述挡墙的侧壁的坡度;以及
    一封装结构,形成于所述发光器件层上,并完全覆盖所述发光器件层、所述挡墙、所述保护膜以及所述阵列基板。
  2. 如权利要求1所述的柔性显示面板,其中,所述保护膜完全覆盖所述挡墙。
  3. 如权利要求1所述的柔性显示面板,其中,所述保护膜采用的材料为环氧树脂、铝基有机无机复合薄膜,或六甲基二硅氧烷。
  4. 如权利要求1所述的柔性显示面板,其中,在主视视角下,所述保护膜的截面图为钝角三角形,所述保护膜远离所述挡墙的一侧壁为所述钝角三角形的最长边。
  5. 如权利要求1所述的柔性显示面板,其中,所述发光器件层还包括设于所述阳极层上的一像素定义层,所述挡墙与所述像素定义层同层。
  6. 一种柔性显示面板,其中,所述柔性显示面板包括:
    一阵列基板;
    一发光器件层,所述发光器件层包括形成于所述阵列基板上的一阳极层;
    一挡墙组,所述挡墙组包括围绕所述发光器件层的边缘设置的至少一挡墙;
    一保护膜,覆盖所述挡墙的至少一侧壁的至少一部分;以及
    一封装结构,形成于所述发光器件层上,并完全覆盖所述发光器件层、所述挡墙、所述保护膜以及所述阵列基板。
  7. 如权利要求6所述的柔性显示面板,其中,所述阳极层采用一第一ITO层/一Ag层/一第二ITO层的夹层结构。
  8. 如权利要求6所述的柔性显示面板,其中,所述保护膜完全覆盖所述挡墙。
  9. 如权利要求6所述的柔性显示面板,其中,所述保护膜采用的材料为环氧树脂、铝基有机无机复合薄膜,或六甲基二硅氧烷。
  10. 如权利要求6所述的柔性显示面板,其中,在主视视角下,所述保护膜的截面图为钝角三角形,所述保护膜远离所述挡墙的一侧壁为所述钝角三角形的最长边。
  11. 如权利要求6所述的柔性显示面板,其中,所述保护膜远离所述挡墙的一侧壁的坡度小于所述挡墙的侧壁的坡度。
  12. 如权利要求6所述的柔性显示面板,其中,所述发光器件层还包括设于所述阳极层上的一像素定义层,所述挡墙与所述像素定义层同层。
  13. 一种柔性显示面板的制备方法,其中,所述制备方法包括如下步骤:
    在一阵列基板上形成一发光器件层的一阳极层;
    在所述阳极层上形成一挡墙组和所述发光器件层的一像素定义层,其中,所述挡墙组包括围绕所述发光器件层的边缘设置的至少一挡墙;
    在靠近所述挡墙处形成一保护膜,所述保护膜覆盖所述挡墙的至少一侧壁的至少一部分;
    在所述像素定义层所定义的区域形成所述发光器件层的发光材料功能层;以及
    在所述发光器件层上形成一封装结构,所述封装结构完全覆盖所述发光器件层、所述挡墙、所述保护膜以及所述阵列基板。
  14. 如权利要求13所述的制备方法,其中,所述阳极层采用一第一ITO层/一Ag层/一第二ITO层的夹层结构。
  15. 如权利要求13所述的制备方法,其中,所述保护膜采用的材料为环氧树脂、铝基有机无机复合薄膜,或六甲基二硅氧烷。
  16. 如权利要求13所述的制备方法,其中,在主视视角下,所述保护膜的截面图为钝角三角形,所述保护膜远离所述挡墙的一侧壁为所述钝角三角形的最长边。
  17. 如权利要求13所述的制备方法,其中,所述保护膜远离所述挡墙的一侧壁的坡度小于所述挡墙的侧壁的坡度。
  18. 如权利要求13所述的制备方法,其中,所述的在靠近所述挡墙处形成一保护膜的步骤中,所形成的保护膜完全覆盖所述挡墙。
  19. 如权利要求13所述的制备方法,其中,通过同一构图工艺制备所述挡墙组与所述像素定义层。
  20. 如权利要求13所述的制备方法,其中,所述的在靠近所述挡墙处形成一保护膜的步骤中,进一步通过曝光显影方式、掩膜板技术或压印方式制备所述保护膜。
PCT/CN2019/119538 2019-08-14 2019-11-19 一种柔性显示面板及其制备方法 WO2021027171A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/641,154 US11374198B2 (en) 2019-08-14 2019-11-19 Manufacturing method of flexible display panel comprising forming dam group disposed around edge of light emitting device layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910747074.4A CN110556405B (zh) 2019-08-14 2019-08-14 一种柔性显示面板及其制备方法
CN201910747074.4 2019-08-14

Publications (1)

Publication Number Publication Date
WO2021027171A1 true WO2021027171A1 (zh) 2021-02-18

Family

ID=68737482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119538 WO2021027171A1 (zh) 2019-08-14 2019-11-19 一种柔性显示面板及其制备方法

Country Status (3)

Country Link
US (1) US11374198B2 (zh)
CN (1) CN110556405B (zh)
WO (1) WO2021027171A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444571B (zh) * 2019-08-12 2022-07-05 京东方科技集团股份有限公司 显示面板及其制备方法
WO2021097690A1 (zh) * 2019-11-20 2021-05-27 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
CN111725419B (zh) * 2020-06-02 2021-11-23 武汉华星光电半导体显示技术有限公司 柔性显示器及其制备方法
US11424270B2 (en) 2020-06-02 2022-08-23 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Flexible display device and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167430A (zh) * 2014-08-08 2014-11-26 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置
KR20160050422A (ko) * 2014-10-29 2016-05-11 엘지디스플레이 주식회사 배향막 형성방법 및 이를 적용한 액정표시장치 제조방법
CN106816456A (zh) * 2016-12-16 2017-06-09 上海天马微电子有限公司 一种有机发光二极管显示面板及显示器
CN106981584A (zh) * 2017-03-20 2017-07-25 上海天马有机发光显示技术有限公司 柔性有机发光二极管显示面板、显示装置及其制作方法
CN107293554A (zh) * 2017-06-19 2017-10-24 深圳市华星光电技术有限公司 顶发射型oled面板的制作方法及其结构
CN108832017A (zh) * 2018-06-07 2018-11-16 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、显示模组、电子装置
CN109920937A (zh) * 2019-03-20 2019-06-21 云谷(固安)科技有限公司 一种显示面板
CN110444571A (zh) * 2019-08-12 2019-11-12 京东方科技集团股份有限公司 显示面板及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020000834A2 (pt) * 2019-08-01 2022-02-08 Boe Technology Group Co Ltd Substrato de display e dispositivo de display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167430A (zh) * 2014-08-08 2014-11-26 京东方科技集团股份有限公司 一种有机电致发光显示面板、其制作方法及显示装置
KR20160050422A (ko) * 2014-10-29 2016-05-11 엘지디스플레이 주식회사 배향막 형성방법 및 이를 적용한 액정표시장치 제조방법
CN106816456A (zh) * 2016-12-16 2017-06-09 上海天马微电子有限公司 一种有机发光二极管显示面板及显示器
CN106981584A (zh) * 2017-03-20 2017-07-25 上海天马有机发光显示技术有限公司 柔性有机发光二极管显示面板、显示装置及其制作方法
CN107293554A (zh) * 2017-06-19 2017-10-24 深圳市华星光电技术有限公司 顶发射型oled面板的制作方法及其结构
CN108832017A (zh) * 2018-06-07 2018-11-16 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、显示模组、电子装置
CN109920937A (zh) * 2019-03-20 2019-06-21 云谷(固安)科技有限公司 一种显示面板
CN110444571A (zh) * 2019-08-12 2019-11-12 京东方科技集团股份有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
US20210408460A1 (en) 2021-12-30
CN110556405A (zh) 2019-12-10
CN110556405B (zh) 2021-06-01
US11374198B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2021027171A1 (zh) 一种柔性显示面板及其制备方法
US9614185B2 (en) Display panel, manufacturing method thereof, and display device
JP5675924B2 (ja) 有機光電子装置及び前記装置をカプセル化する方法
KR102580938B1 (ko) 디스플레이 모듈의 봉지구조 및 봉지구조의 제조방법
TWI645593B (zh) 具有撓性基板之有機發光顯示裝置
WO2019218455A1 (zh) Oled显示面板及其制作方法、oled显示装置
US9172057B2 (en) Encapsulation structure for an opto-electronic component
US10079367B2 (en) Waterproof and anti-reflective flexible OLED apparatus and method for manufacturing the same
CN106848088B (zh) 显示模组封装结构及其制备方法
WO2021031417A1 (zh) 一种柔性封装结构及柔性显示面板
KR101658822B1 (ko) 광전자 컴포넌트를 위한 캡슐화 구조 및 광전자 컴포넌트를 캡슐화시키기 위한 방법
JP2013118171A (ja) 有機発光表示装置及びその製造方法
KR20160135804A (ko) 발광 장치 및 발광 장치의 제조 방법
WO2018223815A1 (zh) 薄膜封装结构和显示装置
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
KR102317715B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US20210202899A1 (en) Oled display screen, display panel and manufacturing method thereof
KR101174873B1 (ko) 유기 발광 디스플레이 장치 및 이를 제조하는 방법
US11335881B2 (en) Display panel
CN213425016U (zh) 一种封装结构
CN214226948U (zh) 一种封装结构
US10833290B2 (en) Encapsulation method of organic light emitting diode device and encapsulation structure encapsulated using same
CN110943180A (zh) 一种柔性oled器件封装结构及其封装方法
CN112331799A (zh) 一种封装结构及制作方法
WO2021109339A1 (zh) 显示面板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941359

Country of ref document: EP

Kind code of ref document: A1