WO2019242114A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2019242114A1
WO2019242114A1 PCT/CN2018/104927 CN2018104927W WO2019242114A1 WO 2019242114 A1 WO2019242114 A1 WO 2019242114A1 CN 2018104927 W CN2018104927 W CN 2018104927W WO 2019242114 A1 WO2019242114 A1 WO 2019242114A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic
refractive index
oled
inorganic layer
Prior art date
Application number
PCT/CN2018/104927
Other languages
English (en)
French (fr)
Inventor
张文智
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/317,549 priority Critical patent/US10978678B2/en
Publication of WO2019242114A1 publication Critical patent/WO2019242114A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present application relates to the field of panel manufacturing, and in particular, to a display panel and a manufacturing method thereof.
  • OLEDs In the field of flexible displays, OLEDs have the advantage of being difficult to replace, but the susceptibility of organic materials to water and oxygen erosion still restricts the development of OLEDs. Therefore, the isolation of the OLED device from the external environment is crucial to the stability of the OLED device.
  • the currently popular packaging technology solution is to package OLED devices through laminated organic / inorganic thin films.
  • the present application provides a display panel and a manufacturing method thereof, so as to solve the technical problem that the light emitted by the existing OLED has a total reflection during transmission in a thin film package.
  • This application proposes a method for manufacturing a display panel, which includes steps:
  • the first inorganic layer covers the OLED layer, and a refractive index of the first inorganic layer gradually decreases in a direction from the substrate to the OLED layer;
  • the second inorganic layer covers the first organic layer.
  • the display panel includes the first inorganic layer, and a refractive index of the first inorganic layer gradually decreases in a direction from the substrate to the OLED layer.
  • the display panel includes at least two layers of the first inorganic layer, and a refractive index of the first inorganic layer decreases layer by layer in a direction from the substrate to the OLED layer.
  • the first inorganic layer is composed of at least two inorganic materials having a large refractive index difference, and the inorganic material includes at least one inorganic substance that absorbs an ultraviolet wavelength band.
  • a minimum refractive index on the first inorganic layer is not greater than a refractive index of the first organic layer.
  • the present application also proposes a display panel, wherein the display panel includes a substrate, an OLED layer provided on the substrate, and a thin film encapsulation layer provided on the substrate and the OLED device and covering the OLED device;
  • the thin film encapsulation layer includes at least a first inorganic layer, a first organic layer formed on the first inorganic layer, and a second inorganic layer formed on the first organic layer;
  • the first inorganic layer covers the OLED layer, and a refractive index of the first inorganic layer gradually decreases in a direction from the substrate to the OLED layer,
  • the first inorganic layer is composed of at least two inorganic materials having a large difference in refractive index, and the inorganic material includes at least one inorganic substance that absorbs an ultraviolet wavelength band.
  • the display panel includes the first inorganic layer, and a refractive index of the first inorganic layer gradually decreases in a direction from the substrate to the OLED layer.
  • the display panel includes at least two layers of the first inorganic layer, and a refractive index of the first inorganic layer decreases from layer to layer in a direction from the substrate to the OLED layer.
  • the minimum refractive index on the first inorganic layer is not greater than the refractive index of the first organic layer.
  • the present application also proposes a display panel including a substrate, an OLED layer provided on the substrate, and a thin film encapsulation layer provided on the substrate and the OLED device and covering the OLED device;
  • the thin film encapsulation layer includes at least a first inorganic layer, a first organic layer formed on the first inorganic layer, and a second inorganic layer formed on the first organic layer.
  • the first inorganic layer covers the OLED layer, and the refractive index of the first inorganic layer gradually decreases in a direction from the substrate to the OLED layer.
  • the display panel includes the first inorganic layer, and a refractive index of the first inorganic layer gradually decreases in a direction from the substrate to the OLED layer.
  • the display panel includes at least two layers of the first inorganic layer, and a refractive index of the first inorganic layer decreases from layer to layer in a direction from the substrate to the OLED layer.
  • the minimum refractive index on the first inorganic layer is not greater than the refractive index of the first organic layer.
  • the first inorganic layer includes an inorganic material that absorbs ultraviolet light, which can protect human eyes and alleviate light aging of the OLED device;
  • the refractive index is reduced in a gradual manner, which avoids the possibility of total reflection of the light emitted by the OLED at the contact surface of each layer, which effectively improves the stability and luminous performance of the display panel.
  • FIG. 1 is a schematic diagram of steps of a method for manufacturing a display panel of the present application
  • 2A-2E are process flow diagrams of a method for manufacturing a display panel of the present application.
  • FIG. 3 is a film structure diagram of a first embodiment of a display panel of the present application.
  • FIG. 4 is a film structure diagram of a second embodiment of a display panel of the present application.
  • FIG. 1 is a schematic diagram of steps of a display panel manufacturing method of the present application. The method includes steps:
  • a substrate is provided, and an OLED layer is formed on the substrate.
  • FIGS. 2A to 2E are process flow diagrams of a display panel manufacturing method of the present application.
  • the substrate 101 may be a flexible substrate.
  • the material of the flexible substrate may be a polyimide film as a base of the flexible display panel.
  • the OLED layer 102 is formed on the substrate 101.
  • the OLED layer 102 includes an anode layer, a pixel definition layer, a first common layer, a light emitting layer, a second common layer, and a cathode layer.
  • a first inorganic layer is formed on the OLED layer.
  • the first inorganic layer covers the OLED layer, and a refractive index of the first inorganic layer gradually decreases in a direction from the substrate to the OLED layer.
  • At least one first inorganic layer 103 can be formed on the OLED layer 102 and the substrate 101 by a process such as pulsed laser deposition (PLD), atomic layer deposition (ALD), or sputtering.
  • the first inorganic layer 103 is also referred to as an inorganic improving layer.
  • the first inorganic layer 103 is mainly composed of at least two kinds of composite materials having a large refractive index difference, and the ratio of the composite materials is controlled to form the first inorganic layer 103.
  • the first inorganic layer 103 is formed of two composite materials for illustration.
  • the first composite material is a material with a low refractive index
  • the first composite material includes, but is not limited to, silicon oxide or zinc oxide.
  • the refractive index of the first composite material preferably ranges from 1.40 to 1.65.
  • the proportion of the first composite material in the first inorganic layer 103 is 50-100%.
  • the second composite material is a high refractive index material, and the second composite material includes, but is not limited to, titanium dioxide and zirconium dioxide.
  • the refractive index of the second composite material may be 1.80 ⁇ 2.40.
  • the proportion of the second composite material in the first inorganic layer 103 is 0-50%.
  • each film layer is 50-500 nm, and the ratio of the doping material inside the first inorganic substance in each layer is relatively fixed.
  • the doping ratio of the second composite material decreases in order. That is, the refractive index of the first inorganic substance decreases sequentially in this direction, and the refractive index difference between the adjacent two layers of the first inorganic substance is between 0.1 and 0.2.
  • the refractive index of the first inorganic substance at the uppermost layer is similar to or equal to the refractive index of other thin film encapsulation layers prepared thereon, preventing total reflection of light emitted from the OLED during transmission between the film layers.
  • the first composite material is a high refractive index material
  • the first composite material includes, but is not limited to, aluminum oxide or zirconium dioxide.
  • the refractive index of the first composite material may be 1.75 to 2.25.
  • the proportion of the first composite material in the first inorganic layer 103 is 50-100%.
  • the second composite material is a low refractive index material, and the second composite material includes, but is not limited to, silicon dioxide and the like.
  • the refractive index of the second composite material may be 1.40 to 1.55, and the proportion of the second composite material in the first inorganic layer 103 is 0 to 50%.
  • each inorganic film layer is 50-500 nm.
  • the ratio of the doped material of each inorganic film layer is relatively fixed.
  • the doping ratio of the second composite material in each inorganic film layer increases sequentially. That is, in a direction from the substrate 101 to the OLED layer 102, the refractive index of the first inorganic substance decreases in order.
  • the refractive index difference between the two adjacent first inorganic materials is between 0.1 and 0.2.
  • the refractive index of the first inorganic substance located in the uppermost layer is similar to or equal to the refractive index of other thin film encapsulation layers prepared thereon.
  • the application can control the film forming speed of the doped material by adjusting the film forming process parameters:
  • the doping material is used as a high refractive index material, so that the doping ratio is reduced uniformly.
  • the doping material is a low-refractive-index material, so that the doping ratio increases at a uniform speed.
  • the refractive index of the first inorganic layer 103 is gradually reduced from bottom to top (direction of the substrate 101 to the OLED layer 102).
  • the refractive index of the first inorganic substance in a part of the uppermost layer is similar to or equal to the refractive index of other thin film encapsulation layers prepared thereon.
  • the inorganic material of the first inorganic layer 103 may further include at least one inorganic substance that absorbs the ultraviolet wave band. Absorbs ultraviolet light to protect the human eye and relieve light aging of OLED devices.
  • this step may use, but is not limited to, plasma enhanced chemical vapor deposition (PECVD), inkjet printing (IJP), or other film forming processes to form at least one first on the first inorganic layer 103.
  • PECVD plasma enhanced chemical vapor deposition
  • IJP inkjet printing
  • Organic layer 104 Organic layer 104.
  • the material of the first organic layer 104 includes, but is not limited to, Acrylic, epoxy resin, HMDSO, polydimethylsiloxane, polyacrylates, polycarbonates, polystyrene, and the like.
  • the refractive indices of the above organic materials can be between 1.40 and 1.55.
  • the refractive index of the organic material in the first organic layer 104 is about 1.50.
  • Step S40 forming at least a second inorganic layer on the first organic layer.
  • This step may use, but is not limited to, film formation processes such as plasma enhanced chemical vapor deposition (PECVD), inkjet printing (IJP), atomic layer deposition (ALD), or sputtering.
  • PECVD plasma enhanced chemical vapor deposition
  • IJP inkjet printing
  • ALD atomic layer deposition
  • sputtering At least one second inorganic layer 105 is formed on the first organic layer 104.
  • the second inorganic layer 105 covers the first organic layer 104.
  • the thickness of the thin film of the second inorganic layer 105 is 1 ⁇ 2um, which is mainly used to increase the device's ability to block water and oxygen.
  • the inorganic material of the second inorganic layer 105 may be one of aluminum oxide, silicon nitride, silicon oxynitride, or silicon oxide.
  • the refractive index of the organic material is between 1.55 and 1.75.
  • the first inorganic layer, the first organic layer, and the second inorganic layer in the above steps are the smallest periodic units of the film layer structure in the thin-film encapsulation layer. Cycle settings.
  • FIG. 3 is a structural diagram of a film layer according to a first embodiment of a display panel of the present application.
  • the display panel includes a substrate 201, an OLED layer 202 provided on the substrate 201, and a thin film encapsulation layer provided on the substrate 201 and the OLED device and covering the OLED device.
  • the thin-film encapsulation layer includes at least a first inorganic layer 203, a first organic layer 204 formed on the first inorganic layer 203, and a second inorganic layer 205 formed on the first organic layer 204.
  • the thin-film encapsulation layer mainly plays a role of blocking water and oxygen, and prevents the organic light-emitting layer from being eroded by external water vapor.
  • the thin-film encapsulation layer is mainly formed by alternately stacking an organic encapsulation layer and an inorganic encapsulation layer.
  • the first inorganic layer 203 shown may be formed on the OLED layer 202 and the substrate 201 by using a film forming process such as pulsed laser deposition (PLD), atomic layer deposition (ALD), or sputtering. .
  • a film forming process such as pulsed laser deposition (PLD), atomic layer deposition (ALD), or sputtering.
  • the first inorganic layer 203 is mainly composed of at least two kinds of composite materials having a large refractive index difference, and the ratio of the composite materials is controlled to form the first inorganic layer 203.
  • the first inorganic layer 203 may include, but is not limited to, the following three formation methods:
  • the first composite material is a material with a low refractive index
  • the first composite material includes, but is not limited to, silicon oxide or zinc oxide.
  • the refractive index of the first composite material preferably ranges from 1.40 to 1.65.
  • the proportion of the first composite material in the first inorganic layer 203 is 50-100%.
  • the second composite material is a high refractive index material, and the second composite material includes, but is not limited to, titanium dioxide and zirconium dioxide.
  • the refractive index of the second composite material may be 1.80 ⁇ 2.40.
  • the proportion of the second composite material in the first inorganic layer 203 is 0-50%.
  • the thickness of each film layer is 50-500 nm, and the ratio of the doping material inside the first inorganic substance in each layer is relatively fixed.
  • the doping ratio of the second composite material decreases in order. That is, the refractive index of the first inorganic substance decreases sequentially in this direction, and the refractive index difference between the adjacent two layers of the first inorganic substance is between 0.1 and 0.2.
  • the refractive index of the first inorganic substance at the uppermost layer is similar to or equal to the refractive index of other thin film encapsulation layers prepared thereon, preventing total reflection of light emitted from the OLED during transmission between the film layers.
  • the first composite material is a high refractive index material
  • the first composite material includes, but is not limited to, aluminum oxide or zirconium dioxide.
  • the refractive index of the first composite material may be 1.75 to 2.25.
  • the proportion of the first composite material in the first inorganic layer 203 is 50-100%.
  • the second composite material is a low refractive index material, and the second composite material includes, but is not limited to, silicon dioxide and the like.
  • the refractive index of the second composite material may be 1.40 to 1.55, and the proportion of the second composite material in the first inorganic layer 203 is 0 to 50%.
  • each inorganic film layer is 50-500 nm.
  • the ratio of the doped material of each inorganic film layer is relatively fixed.
  • the doping ratio of the second composite material in each inorganic film layer increases sequentially. That is, in a direction from the substrate 201 to the OLED layer 202, the refractive index of the first inorganic substance decreases in order.
  • the refractive index difference between the two adjacent first inorganic materials is between 0.1 and 0.2.
  • the refractive index of the first inorganic substance located in the uppermost layer is similar to or equal to the refractive index of other thin film encapsulation layers prepared thereon.
  • the application can control the film forming speed of the doped material by adjusting the film forming process parameters:
  • the doping material is used as a high refractive index material, so that the doping ratio is reduced uniformly.
  • the doping material is a low-refractive-index material, so that the doping ratio increases at a uniform speed.
  • the refractive index of the first inorganic layer 203 is gradually reduced from bottom to top (direction from the substrate 201 to the OLED layer 202).
  • the refractive index of the first inorganic substance in a part of the uppermost layer is similar to or equal to the refractive index of other thin film encapsulation layers prepared thereon.
  • the inorganic material of the first inorganic layer 203 may further include at least one inorganic substance that absorbs ultraviolet wavelength band. Absorbs ultraviolet light to protect the human eye and relieve light aging of OLED devices.
  • the first organic layer 204 is formed on the first inorganic layer 203.
  • the first inorganic layer 203 is, but is not limited to, plasma enhanced chemical vapor deposition (PECVD), Inkjet printing technology (IJP) or other film forming processes are formed on the first inorganic layer 203, and the first organic layer 204 may also be referred to as an organic buffer layer;
  • the material of the first organic layer 204 includes, but is not limited to, Acrylic, epoxy resin, HMDSO, polydimethylsiloxane, polyacrylates, polycarbonates, polystyrene, and the like.
  • the refractive indices of the above organic materials can be between 1.40 and 1.55.
  • the refractive index of the organic material in the first organic layer 204 is about 1.50.
  • This step can adopt, but is not limited to, a film formation process such as plasma enhanced chemical vapor deposition (PECVD), inkjet printing (IJP), atomic layer deposition (ALD), or sputtering.
  • PECVD plasma enhanced chemical vapor deposition
  • IJP inkjet printing
  • ALD atomic layer deposition
  • sputtering At least one second inorganic layer 205 is formed on the first organic layer 204.
  • the second inorganic layer 205 covers the first organic layer 204.
  • the thickness of the thin film of the second inorganic layer 205 is 1 ⁇ 2um, which is mainly used to increase the device's ability to block water and oxygen.
  • the inorganic material of the second inorganic layer 205 may be one of alumina, silicon nitride, silicon oxynitride, or silicon oxide.
  • the refractive index of the organic material is between 1.55 and 1.75.
  • the first inorganic layer, the first organic layer, and the second inorganic layer in the above steps are the smallest periodic units of the film layer structure in the thin film encapsulation layer.
  • the above three film layer structures can be performed according to actual needs. Cycle settings.
  • the present application provides a display panel and a manufacturing method thereof.
  • the display panel includes a substrate, an OLED layer, and a thin film encapsulation layer.
  • the thin film encapsulation layer includes at least a first inorganic layer, at least a first organic layer, and at least one A second inorganic layer;
  • the first inorganic layer includes an inorganic material that absorbs ultraviolet light, which can protect the human eye and alleviate light aging of the OLED device;
  • the refractive index of the first inorganic layer is gradually reduced to avoid OLED The possibility of total reflection of the emitted light at the contact surfaces of the layers effectively improves the stability and luminous performance of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板及其制作方法,显示面板包括薄膜封装层;薄膜封装层包括至少一第一无机层(103)、至少一第一有机层(104)以及至少一第二无机层(105);第一无机层(103)包括吸收紫外光波段的无机材料,第一无机层(103)的折射率呈渐变式减小,避免了OLED层(102)发出的光在各层接触面发生全反射的可能性,有效提高了显示面板的稳定性。

Description

显示面板及其制作方法 技术领域
本申请涉及面板制造领域,尤其涉及一种显示面板及其制作方法。
背景技术
在柔性显示领域,OLED有着难以取代的优势,但有机材料易于受到水氧侵蚀的特点依然制约了OLED自身的发展。因此,通过对OLED器件进行封装使之与外界环境隔绝,对OLED器件的稳定性至关重要。对于柔性器件来说,目前较为流行的封装技术方案是通过叠层的有机/无机薄膜对OLED器件进行封装。
现有技术中,光线从无机阻隔层进入有机缓冲层、或从无机阻隔层进入空气时,都会受到全反射现象的影响而降低发光效率。
因此,目前亟需一种显示面板以解决上述问题。
技术问题
本申请提供一种显示面板及其制作方法,以解决现有OLED发出的光线在薄膜封装传输时产生全反射的技术问题。
技术解决方案
本申请提出了一种显示面板的制作方法,其中,包括步骤:
提供一基板,在所述基板上形成OLED层;
在所述OLED层上形成第一无机层,
其中,所述第一无机层覆盖所述OLED层,所述第一无机层的折射率在所述基板至所述OLED层的方向上逐渐减小;
在所述第一无机层上形成至少一第一有机层;
在所述第一有机层上形成至少一第二无机层,
其中,所述第二无机层覆盖所述第一有机层。
在本申请的制作方法中,所述显示面板包括一所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐渐减小。
在本申请的制作方法中,所述显示面板包括至少两层所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐层减小。
在本申请的制作方法中,所述第一无机层由至少两种具有较大折射率差异的无机材料构成,所述无机材料包括至少一种吸收紫外波段的无机物。
在本申请的制作方法中,所述第一无机层上的最小折射率不大于所述第一有机层的折射率。
本申请还提出了一种显示面板,其中,所述显示面板包括基板、设于所述基板上的OLED层、以及设于所述基板及OLED器件上并覆盖OLED器件的薄膜封装层;
所述薄膜封装层包括至少一第一无机层、形成于所述第一无机层上的第一有机层、以及形成于所述第一有机层上的第二无机层;
所述第一无机层覆盖所述OLED层,所述第一无机层的折射率在所述基板至所述OLED层的方向上逐渐减小,
其中,所述第一无机层由至少两种具有较大折射率差异的无机材料构成,所述无机材料包括至少一种吸收紫外波段的无机物。
在本申请的显示面板中,所述显示面板包括一所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐渐减小。
在本申请的显示面板中,所述显示面板包括至少两层所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐层减小。
在本申请的显示面板中,所述第一无机层上的最小折射率不大于所述第一有机层的折射率。
本申请还提出了一种显示面板,其包括基板、设于所述基板上的OLED层、以及设于所述基板及OLED器件上并覆盖OLED器件的薄膜封装层;
所述薄膜封装层包括至少一第一无机层、形成于所述第一无机层上的第一有机层、以及形成于所述第一有机层上的第二无机层,
其中,所述第一无机层覆盖所述OLED层,所述第一无机层的折射率在所述基板至所述OLED层的方向上逐渐减小。
在本申请的显示面板中,所述显示面板包括一所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐渐减小。
在本申请的显示面板中,所述显示面板包括至少两层所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐层减小。
在本申请的显示面板中,所述第一无机层上的最小折射率不大于所述第一有机层的折射率.
有益效果
本申请通过在所述OLED层形成至少一层第一无机层,所述第一无机层包括吸收紫外光波段的无机材料,可以保护人眼以及缓解OLED器件的光老化;所述第一无机层的折射率呈渐变式减小,避免了OLED发出的光在各层接触面发生全反射的可能性,有效提高了显示面板的稳定性和发光性能。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一种显示面板制作方法的步骤示意图;
图2A~2E为本申请一种显示面板制作方法工艺流程图;
图3为本申请显示面板第一种实施方式的膜层结构图;
图4为本申请显示面板第二种实施方式的膜层结构图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
请参阅图1,图1为本申请一种显示面板制作方法的步骤示意图,所述方法包括步骤:
S10、提供一基板,在所述基板上形成OLED层。
请参阅图2A~2E,图2A~2E为本申请一种显示面板制作方法工艺流程图。
请参阅图2A,提供一基板101。所述基板101可以为柔性基板。所述柔性基板的材料可以为聚酰亚胺薄膜,作为柔性显示面板的基底。
在所述基板101上形成OLED层102。所述OLED层102包括阳极层、像素定义层、第一公共层、发光层、第二公共层、阴极层。
S20、在所述OLED层上形成第一无机层。
在本步骤中,所述第一无机层覆盖所述OLED层,所述第一无机层的折射率在所述基板至所述OLED层的方向上逐渐减小。
在一种实施例中,可以利用脉冲激光沉积(PLD)、原子层沉积法(ALD)或溅射等工艺在所述OLED层102以及所述基板101上形成至少一第一无机层103。所述第一无机层103也被称为无机改善层。
所述第一无机层103主要由至少两种具有较大折射率差异的复合材料构成,并控制所述复合材料的比例形成所述第一无机层103。在一种实施例中,所述第一无机层103中由两种复合材料形成进行举例说明。
一、当第一复合材料为低折射率的材料时,第一复合材料包括但不限定于氧化硅或氧化锌等。第一复合材料的折射率优选区间为1.40~1.65。第一复合材料在第一无机层103中所占的比例为50~100%。
第二复合材料为高折射率材料,第二复合材料包括但不限定于二氧化钛和二氧化锆等。在一种实施例中,第二复合材料折射率可以为1.80~2.40。第二复合材料在第一无机层103中所占的比例为0~50%。
请参阅图2B,在所述OLED层102上形成三层所述第一无机物。每一膜层的厚度为50~500nm,每一层所述第一无机物内部的掺杂材料的比例相对固定。
在所述基板101至所述OLED层102的方向上,第二复合材料的掺杂比例依次减小。即在该方向上所述第一无机物的折射率依次减小,相邻两层所述第一无机物之间的折射率差值介于0.1~0.2。位于最上层的所述第一无机物的折射率与其上制备的其他薄膜封装层上的薄膜的折射率相近或相等,防止从OLED发出的光在各膜层间传输时发生全反射。
二、当第一复合材料为高折射率材料时,第一复合材料包括但不限定于三氧化二铝或二氧化锆等。在一种实施例中,第一复合材料折射率可以为1.75~2.25。第一复合材料在第一无机层103中所占的比例为50~100%。
第二复合材料为低折射率材料,第二复合材料包括但不限定于二氧化硅等。在一种实施例中,第二复合材料的折射率可以为1.40~1.55,第二复合材料在第一无机层103中所占的比例为0~50%。
在所述OLED层102上形成的三层无机物膜层。每一无机物膜层的厚度为50~500nm。每一无机物膜层掺杂材料的比例相对固定。
在所述基板101至所述OLED层102的方向上,每一无机物膜层中第二复合材料的掺杂比例依次增加。即在所述基板101至所述OLED层102的方向上,所述第一无机物的折射率依次减小。相邻两层所述第一无机物之间的折射率差值介于0.1~0.2。
在一种实施例中,位于最上层的所述第一无机物的折射率与其上制备的其他薄膜封装层上的薄膜的折射率相近或相等。
三、请参阅图2C,当所述OLED层102上形成一层所述第一无机层103时,本申请可以通过调节成膜工艺参数来控制掺杂材料的成膜速度:
采用掺杂材料为高折射率材料,使其掺杂比例匀速减小。采用掺杂材料为低折射率材料,使其掺杂比例匀速增加。使得所述第一无机层103的折射率由下至上(所述基板101至所述OLED层102的方向)渐变式减小。在一种实施例中,位于最上层一部分所述第一无机物的折射率与其上制备的其他薄膜封装层上的薄膜的折射率相近或相等。
在一种实施例中,所述第一无机层103的无机材料还可以包括至少一种吸收紫外波段的无机物。吸收掉紫外光以保护人眼以及缓解OLED器件的光老化。
S30、在所述第一无机层上形成至少一第一有机层。
请参阅图2D,本步骤可以采用但不限定于等离子体增强化学气相沉积法(PECVD)、喷墨打印技术(IJP)或其他成膜工艺在所述第一无机层103上形成至少一第一有机层104。
所述第一有机层104的材料包括但不限定于Acrylic、环氧树脂、HMDSO、聚二甲基硅氧烷、聚丙烯酸酯类、聚碳酸脂类、聚苯乙烯等。上述几种有机材料的折射率可以为1.40~1.55之间。
在一种实施例中,所述第一有机层104中有机材料的折射率为1.50左右。
步骤S40、在所述第一有机层上形成至少一第二无机层。
请参阅图2E,本步骤可以采用但不限定于,等离子体增强化学气相沉积法(PECVD)、喷墨打印技术(IJP)、原子层沉积法(ALD)或溅射等成膜工艺,在所述第一有机层104上形成至少一第二无机层105。所述第二无机层105覆盖所述第一有机层104。
所述第二无机层105的薄膜厚度为1~2um,主要用于增加器件阻隔水氧的性能。所述第二无机层105的无机材料可以为三氧化二铝、氮化硅、氮氧化硅或氧化硅等中的一种。上述有机材料的折射率为1.55~1.75之间。
在一种实施例中,上述步骤中的第一无机层、第一有机层以及第二无机层为薄膜封装层中膜层结构的最小周期性单元,上述三种膜层结构可以根据实际需求进行循环设置。
请参阅图3,图3为本申请显示面板第一种实施方式的膜层结构图。
所述显示面板包括基板201、设于所述基板201上的OLED层202、以及设于所述基板201及OLED器件上并覆盖OLED器件的薄膜封装层。
所述薄膜封装层包括至少一第一无机层203、形成于所述第一无机层203上的第一有机层204、以及形成于所述第一有机层204上的第二无机层205。
所述薄膜封装层主要是起阻水阻氧的作用,防止外部水汽对有机发光层的侵蚀,所述薄膜封装层主要由有机封装层与无机封装层交错层叠而成。
在一种实施例中,所示第一无机层203可以利用脉冲激光沉积(PLD)、原子层沉积法(ALD)或溅射等成膜工艺在所述OLED层202以及所述基板201上形成。
所述第一无机层203主要由至少两种具有较大折射率差异的复合材料构成,并控制所述复合材料的比例形成所述第一无机层203。
在一种实施例中,所述第一无机层203可以包括但不限定于以下三种形成方式:
一、当第一复合材料为低折射率的材料时,第一复合材料包括但不限定于氧化硅或氧化锌等。第一复合材料的折射率优选区间为1.40~1.65。第一复合材料在第一无机层203中所占的比例为50~100%。
第二复合材料为高折射率材料,第二复合材料包括但不限定于二氧化钛和二氧化锆等。在一种实施例中,第二复合材料折射率可以为1.80~2.40。第二复合材料在第一无机层203中所占的比例为0~50%。
在所述OLED层202上形成三层所述第一无机物。每一膜层的厚度为50~500nm,每一层所述第一无机物内部的掺杂材料的比例相对固定。
在所述基板201至所述OLED层202的方向上,第二复合材料的掺杂比例依次减小。即在该方向上所述第一无机物的折射率依次减小,相邻两层所述第一无机物之间的折射率差值介于0.1~0.2。位于最上层的所述第一无机物的折射率与其上制备的其他薄膜封装层上的薄膜的折射率相近或相等,防止从OLED发出的光在各膜层间传输时发生全反射。
二、当第一复合材料为高折射率材料时,第一复合材料包括但不限定于三氧化二铝或二氧化锆等。在一种实施例中,第一复合材料折射率可以为1.75~2.25。第一复合材料在第一无机层203中所占的比例为50~100%。
第二复合材料为低折射率材料,第二复合材料包括但不限定于二氧化硅等。在一种实施例中,第二复合材料的折射率可以为1.40~1.55,第二复合材料在第一无机层203中所占的比例为0~50%。
在所述OLED层202上形成的三层无机物膜层。每一无机物膜层的厚度为50~500nm。每一无机物膜层掺杂材料的比例相对固定。
在所述基板201至所述OLED层202的方向上,每一无机物膜层中第二复合材料的掺杂比例依次增加。即在所述基板201至所述OLED层202的方向上,所述第一无机物的折射率依次减小。相邻两层所述第一无机物之间的折射率差值介于0.1~0.2。
在一种实施例中,位于最上层的所述第一无机物的折射率与其上制备的其他薄膜封装层上的薄膜的折射率相近或相等。
三、当所述OLED层202上形成一层所述第一无机层203时,本申请可以通过调节成膜工艺参数来控制掺杂材料的成膜速度:
采用掺杂材料为高折射率材料,使其掺杂比例匀速减小。采用掺杂材料为低折射率材料,使其掺杂比例匀速增加。使得所述第一无机层203的折射率由下至上(所述基板201至所述OLED层202的方向)渐变式减小。在一种实施例中,位于最上层一部分所述第一无机物的折射率与其上制备的其他薄膜封装层上的薄膜的折射率相近或相等。
在一种实施例中,所述第一无机层203的无机材料还可以包括至少一种吸收紫外波段的无机物。吸收掉紫外光以保护人眼以及缓解OLED器件的光老化。
请参阅图3或图4,所述第一有机层204形成于所述第一无机层203上,所述第一无机层203采用但不限定于,等离子体增强化学气相沉积法(PECVD)、喷墨打印技术(IJP)或其他成膜工艺在所述第一无机层203上形成,所述第一有机层204也可称为有机缓冲层;
所述第一有机层204的材料包括但不限定于Acrylic、环氧树脂、HMDSO、聚二甲基硅氧烷、聚丙烯酸酯类、聚碳酸脂类、聚苯乙烯等。上述几种有机材料的折射率可以为1.40~1.55之间。
在一种实施例中,所述第一有机层204中有机材料的折射率为1.50左右。
请参阅图3或图4,本步骤可以采用但不限定于,等离子体增强化学气相沉积法(PECVD)、喷墨打印技术(IJP)、原子层沉积法(ALD)或溅射等成膜工艺,在所述第一有机层204上形成至少一第二无机层205。所述第二无机层205覆盖所述第一有机层204。
所述第二无机层205的薄膜厚度为1~2um,主要用于增加器件阻隔水氧的性能。所述第二无机层205的无机材料可以为三氧化二铝、氮化硅、氮氧化硅或氧化硅等中的一种。上述有机材料的折射率为1.55~1.75之间。
在一种实施例中,上述步骤中的第一无机层、第一有机层以及第二无机层为薄膜封装层中膜层结构的最小周期性单元,上述三种膜层结构可以根据实际需求进行循环设置。
本申请提出了一种显示面板及其制作方法,所述显示面板包括基板、OLED层、以及薄膜封装层;所述薄膜封装层包括至少一第一无机层、至少一第一有机层以及至少一第二无机层;所述第一无机层包括吸收紫外光波段的无机材料,可以保护人眼以及缓解OLED器件的光老化;所述第一无机层的折射率呈渐变式减小,避免了OLED发出的光在各层接触面发生全反射的可能性,有效提高了显示面板的稳定性和发光性能。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (13)

  1. 一种显示面板的制作方法,其中,包括步骤:
    提供一基板,在所述基板上形成OLED层;
    在所述OLED层上形成第一无机层,
    其中,所述第一无机层覆盖所述OLED层,所述第一无机层的折射率在所述基板至所述OLED层的方向上逐渐减小;
    在所述第一无机层上形成至少一第一有机层;
    在所述第一有机层上形成至少一第二无机层,
    其中,所述第二无机层覆盖所述第一有机层。
  2. 根据权利要求1所述的制作方法,其中,所述显示面板包括一所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐渐减小。
  3. 根据权利要求1所述的制作方法,其中,所述显示面板包括至少两层所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐层减小。
  4. 根据权利要求1所述的制作方法,其中,所述第一无机层由至少两种具有较大折射率差异的无机材料构成,所述无机材料包括至少一种吸收紫外波段的无机物。
  5. 根据权利要求1所述的制作方法,其中,所述第一无机层上的最小折射率不大于所述第一有机层的折射率。
  6. 一种显示面板,其包括基板、设于所述基板上的OLED层、以及设于所述基板及OLED器件上并覆盖OLED器件的薄膜封装层;
    所述薄膜封装层包括至少一第一无机层、形成于所述第一无机层上的第一有机层、以及形成于所述第一有机层上的第二无机层;
    所述第一无机层覆盖所述OLED层,所述第一无机层的折射率在所述基板至所述OLED层的方向上逐渐减小,
    其中,所述第一无机层由至少两种具有较大折射率差异的无机材料构成,所述无机材料包括至少一种吸收紫外波段的无机物。
  7. 根据权利要求6所述的显示面板,其中,所述显示面板包括一所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐渐减小。
  8. 根据权利要求6所述的显示面板,其中,所述显示面板包括至少两层所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐层减小。
  9. 根据权利要求6所述的显示面板,其中,所述第一无机层上的最小折射率不大于所述第一有机层的折射率。
  10. 一种显示面板,其包括基板、设于所述基板上的OLED层、以及设于所述基板及OLED器件上并覆盖OLED器件的薄膜封装层;
    所述薄膜封装层包括至少一第一无机层、形成于所述第一无机层上的第一有机层、以及形成于所述第一有机层上的第二无机层,
    其中,所述第一无机层覆盖所述OLED层,所述第一无机层的折射率在所述基板至所述OLED层的方向上逐渐减小。
  11. 根据权利要求10所述的显示面板,其中,所述显示面板包括一所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐渐减小。
  12. 根据权利要求10所述的显示面板,其中,所述显示面板包括至少两层所述第一无机层,在所述基板至所述OLED层的方向上,所述第一无机层的折射率逐层减小。
  13. 根据权利要求10所述的显示面板,其中,所述第一无机层上的最小折射率不大于所述第一有机层的折射率。
PCT/CN2018/104927 2018-06-21 2018-09-11 显示面板及其制作方法 WO2019242114A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/317,549 US10978678B2 (en) 2018-06-21 2018-09-11 Display panel and display panel manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810646399.9 2018-06-21
CN201810646399.9A CN108899438A (zh) 2018-06-21 2018-06-21 显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2019242114A1 true WO2019242114A1 (zh) 2019-12-26

Family

ID=64345469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104927 WO2019242114A1 (zh) 2018-06-21 2018-09-11 显示面板及其制作方法

Country Status (3)

Country Link
US (1) US10978678B2 (zh)
CN (1) CN108899438A (zh)
WO (1) WO2019242114A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585512B (zh) * 2018-12-06 2021-09-21 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN109713164A (zh) * 2018-12-29 2019-05-03 武汉天马微电子有限公司 显示面板以及显示装置
CN109841758B (zh) * 2019-03-29 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN110647213A (zh) * 2019-09-25 2020-01-03 Oppo(重庆)智能科技有限公司 折叠显示模组和电子设备
CN111129349A (zh) 2019-12-26 2020-05-08 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN111224016A (zh) * 2020-01-16 2020-06-02 Oppo广东移动通信有限公司 封装膜层、显示屏及电子设备
CN111697160B (zh) * 2020-06-22 2022-11-29 云谷(固安)科技有限公司 显示面板及显示装置
US11797052B2 (en) * 2020-07-24 2023-10-24 Dell Products L.P. Information handling system zero bezel display
CN112038501B (zh) * 2020-09-08 2021-08-10 长春海谱润斯科技股份有限公司 一种顶发射有机电致发光器件
CN112201157B (zh) * 2020-09-29 2022-07-26 合肥维信诺科技有限公司 盖板和显示装置
CN115605934A (zh) * 2021-01-26 2023-01-13 京东方科技集团股份有限公司(Cn) 显示基板及其制备方法、显示装置
CN113036054B (zh) * 2021-03-02 2024-04-05 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN115207241A (zh) * 2021-04-08 2022-10-18 广东聚华印刷显示技术有限公司 封装结构及显示面板
CN113629211A (zh) * 2021-07-28 2021-11-09 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
CN113871547B (zh) * 2021-09-17 2023-02-03 武汉华星光电半导体显示技术有限公司 显示面板及移动终端
CN114975562A (zh) * 2022-06-16 2022-08-30 Tcl华星光电技术有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256202A1 (en) * 2011-04-11 2012-10-11 So-Young Lee Organic light emitting diode display and manufacturing method thereof
CN105470405A (zh) * 2014-09-25 2016-04-06 三星显示有限公司 有机发光二极管显示器及其制造方法
CN106816462A (zh) * 2017-03-28 2017-06-09 上海天马有机发光显示技术有限公司 有机发光二极管显示装置及制造方法
CN107359265A (zh) * 2016-12-22 2017-11-17 广东聚华印刷显示技术有限公司 有机发光器件及其光取出组件
CN107591493A (zh) * 2016-07-06 2018-01-16 三星显示有限公司 有机发光二极管显示装置
CN108039421A (zh) * 2017-12-27 2018-05-15 武汉华星光电半导体显示技术有限公司 一种oled薄膜封装结构及封装方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037809A (ja) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス装置およびその製造方法
KR101964265B1 (ko) * 2008-04-09 2019-07-31 에이전시 포 사이언스, 테크놀로지 앤드 리서치 산소 및/또는 수분 민감성 전자 소자들을 밀봉하는 다층막
KR101001552B1 (ko) * 2009-01-20 2010-12-17 삼성모바일디스플레이주식회사 유기 발광 표시 장치
JP2017147191A (ja) * 2016-02-19 2017-08-24 株式会社ジャパンディスプレイ 表示装置、及び表示装置の製造方法
KR102477262B1 (ko) * 2016-08-05 2022-12-14 삼성디스플레이 주식회사 유기 전계 발광 표시 장치
KR102622390B1 (ko) * 2016-09-20 2024-01-08 삼성디스플레이 주식회사 유기발광 표시장치
CN106450035B (zh) * 2016-11-17 2018-10-30 上海天马有机发光显示技术有限公司 一种显示面板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120256202A1 (en) * 2011-04-11 2012-10-11 So-Young Lee Organic light emitting diode display and manufacturing method thereof
CN105470405A (zh) * 2014-09-25 2016-04-06 三星显示有限公司 有机发光二极管显示器及其制造方法
CN107591493A (zh) * 2016-07-06 2018-01-16 三星显示有限公司 有机发光二极管显示装置
CN107359265A (zh) * 2016-12-22 2017-11-17 广东聚华印刷显示技术有限公司 有机发光器件及其光取出组件
CN106816462A (zh) * 2017-03-28 2017-06-09 上海天马有机发光显示技术有限公司 有机发光二极管显示装置及制造方法
CN108039421A (zh) * 2017-12-27 2018-05-15 武汉华星光电半导体显示技术有限公司 一种oled薄膜封装结构及封装方法

Also Published As

Publication number Publication date
CN108899438A (zh) 2018-11-27
US20200083490A1 (en) 2020-03-12
US10978678B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2019242114A1 (zh) 显示面板及其制作方法
WO2019205426A1 (zh) Oled显示面板及其制作方法
WO2020258870A1 (zh) 显示面板及其制备方法
WO2019223456A1 (zh) 显示面板及其制备方法、显示装置
TWI454173B (zh) 有機發光顯示裝置
WO2018086191A1 (zh) Oled显示器及其制作方法
KR101873476B1 (ko) 유기 발광 표시 장치 및 이의 제조 방법
US10418598B1 (en) OLED panel and its method of manufacturing, OLED display
WO2020037907A1 (zh) 有机发光显示面板及其制造方法
WO2016033885A1 (zh) 有机发光二极管显示面板及其制作方法、显示装置
US10756304B2 (en) Organic light-emitting display panel and display device thereof
WO2020024347A1 (zh) Oled显示装置
EP3557645B1 (en) Film packaging structure and display apparatus having same
WO2019041386A1 (zh) Oled面板的制作方法及oled面板
CN108539041A (zh) 显示面板及其制作方法
KR20120113555A (ko) 유기 발광 표시 장치 및 이의 제조 방법
CN208904069U (zh) 一种显示基板和显示装置
WO2021068337A1 (zh) 显示面板及显示装置
WO2017117982A1 (zh) 一种oled器件的封装结构、显示装置和封装方法
WO2016180103A1 (zh) 薄膜封装结构及其制作方法和显示装置
CN106450036A (zh) Oled器件封装结构、oled器件及显示屏
WO2018223815A1 (zh) 薄膜封装结构和显示装置
WO2020073627A1 (zh) 一种量子点偏光片
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
WO2020199272A1 (zh) 量子点柔性oled显示装置及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923318

Country of ref document: EP

Kind code of ref document: A1