WO2016180103A1 - 薄膜封装结构及其制作方法和显示装置 - Google Patents

薄膜封装结构及其制作方法和显示装置 Download PDF

Info

Publication number
WO2016180103A1
WO2016180103A1 PCT/CN2016/078538 CN2016078538W WO2016180103A1 WO 2016180103 A1 WO2016180103 A1 WO 2016180103A1 CN 2016078538 W CN2016078538 W CN 2016078538W WO 2016180103 A1 WO2016180103 A1 WO 2016180103A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
organic
inorganic
organic film
layer
Prior art date
Application number
PCT/CN2016/078538
Other languages
English (en)
French (fr)
Inventor
杨久霞
白峰
王迎姿
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/511,521 priority Critical patent/US20170288172A1/en
Publication of WO2016180103A1 publication Critical patent/WO2016180103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to a thin film package structure, a method of fabricating the same, and a display device.
  • the organic light-emitting display is an active light-emitting device, which has the advantages of light weight, wide viewing angle, low power consumption, fast response speed, and flexible display. Therefore, the organic electroluminescent display has been widely used in the display field and the lighting field.
  • the core component of the organic light emitting display is an organic light emitting device (OLED device) which is a novel display device which has the advantages of good color saturation and wide viewing angle.
  • OLED device organic light emitting device
  • the luminescent materials and functional materials in the display device are sensitive to water and gas.
  • the water and gas resistance requirements of the corresponding products are: the sealing requirement for oxygen is less than 10 -3 cc / m 2 ⁇ day; the barrier to water Requires less than 10 -6 g/m 2 ⁇ day.
  • Embodiments of the present invention provide a thin film package structure, a method of fabricating the same, and a display device.
  • One of the problems that can be solved is, for example, that the organic light emitting display device is easily eroded by water and oxygen.
  • a thin film encapsulation structure comprising a flexible film for covering a device, the flexible film comprising at least two organic film layers and at least one inorganic film layer, the at least two layers of organic
  • the film layer includes a first organic film layer and a second organic film layer, the first organic An inorganic film layer is disposed between the film layer and the second organic film layer, wherein the first organic film layer contacts the device, and the second organic film layer is disposed at an outermost layer of the flexible film.
  • the flexible film comprises more than two layers of inorganic film layers, the organic film layer and the inorganic film layer being alternately arranged, each layer of the inorganic film layer being between two organic film layers.
  • the sum of the number of layers of the organic film layer and the inorganic film layer is three to nine layers.
  • the material of the inorganic film layer comprises an inorganic nano material.
  • the inorganic nanomaterial is dispersed within an ethylenically unsaturated monomer.
  • a photoinitiator and/or a wetting leveling agent is added to the inorganic film layer.
  • the material of the organic film layer includes one or a combination of polyvinyl alcohol, urethane acrylate polymer, and polyimide resin.
  • a display device comprising a light emitting display device and a thin film package structure as described above overlying the light emitting display device.
  • a method of fabricating a thin film encapsulation structure comprising: fabricating a flexible film having at least two organic film layers and at least one inorganic film layer, the at least two organic film layers including the first The organic film layer and the second organic film layer, the flexible film is formed including:
  • the second organic film layer is formed, and the second organic film layer is located at an outermost layer of the flexible film.
  • an organic film layer is formed and cured by a coating process, an inkjet printing process, or a chemical vapor deposition process.
  • an inorganic material solution is coated on the organic film layer, baked and cured by an ultraviolet curing process to form an inorganic film layer; or an inorganic film layer is formed on the organic film layer by an atomic layer deposition process.
  • the baking temperature is 50-70 degrees Celsius for a duration of 60-90 seconds.
  • the thin film encapsulation structure according to the embodiment of the present invention can effectively prevent external oxygen and water from infiltrating into a device such as an organic light emitting display device by alternately disposing an organic film layer and an inorganic film layer.
  • the package structure and process of the present invention can be applied to packages of devices such as flexible display devices.
  • FIG. 1 is a schematic structural view of a thin film encapsulation structure according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a thin film encapsulation structure according to another embodiment of the present invention.
  • FIG. 3 is a flow chart of a method of fabricating a thin film encapsulation structure in accordance with one embodiment of the present invention.
  • the thin film encapsulation structure of the present embodiment includes a flexible film 100 for covering a device such as an organic light emitting display device, the flexible film 100 including at least two organic film layers 1 and At least one inorganic film layer 2, the at least two organic film layers including a first organic film layer and a second organic film layer, and an inorganic film layer 2 is disposed between the first organic film layer and the second organic film layer Wherein the first organic film layer contacts the device (such as an organic light emitting display device) and the second organic film layer is disposed at an outermost layer of the flexible film.
  • the material of the inorganic film layer includes an inorganic nano material including one or a combination of aluminum oxide, zinc oxide, titanium oxide, silicon dioxide, silicon nitride, and zirconium oxide. That is, the material of the inorganic film layer may be one or more selected from the group consisting of alumina, zinc oxide, titanium oxide, silicon dioxide, silicon nitride, and zirconium oxide.
  • the inorganic nanomaterial is dispersed within an ethylenically unsaturated monomer.
  • the inorganic nanomaterial can also be uniformly dispersed in the ethylenically unsaturated monomer.
  • Dispersing the inorganic nanomaterial in the ethylenically unsaturated monomer is to achieve mutual compatibility between the inorganic nanomaterial and the ethylenically unsaturated monomer.
  • the ethylenically unsaturated monomer is cured by ultraviolet light, the inorganic nanomaterial is simultaneously cured, and a good combination of the inorganic material and the organic material can be obtained.
  • a photoinitiator and/or a wetting leveling agent is added to the inorganic film layer.
  • Ethylene unsaturated monomers are photocurable materials. Since the inorganic nanomaterial is dispersed in the ethylenically unsaturated monomer inner body, when the photocurable material is cured, a photoinitiator needs to be added to the inorganic film layer.
  • Photoinitiator also known as photosensitizer or photocuring agent, can absorb a certain wavelength of energy in the ultraviolet or visible region to generate free radicals, cations, etc., thereby initiating polymerization of the monomer by crosslinking.
  • a wetting leveling agent can adjust the surface tension of the liquid mixture such that it is more flat during film formation.
  • the material of the organic film layer comprises one or a combination of polyvinyl alcohol, urethane acrylate polymer, polyimide resin.
  • FIG. 1 shows, in addition to the flexible film 100, a composition of a device covered by the flexible film 100 (an organic light-emitting display device in FIG. 1), wherein reference numeral 3 denotes a substrate, and reference numeral 4 denotes an anode, and a mark 5 denotes a hole injecting layer, and reference numeral 6 denotes a hole transporting layer, Reference numeral 7 denotes an organic light-emitting layer, reference numeral 8 denotes an electron transport layer, and reference numeral 9 denotes a cathode.
  • reference numeral 3 denotes a substrate
  • reference numeral 4 denotes an anode
  • a mark 5 denotes a hole injecting layer
  • reference numeral 6 denotes a hole transporting layer
  • Reference numeral 7 denotes an organic light-emitting layer
  • reference numeral 8 denotes an electron transport layer
  • reference numeral 9 denotes a cathode.
  • the sum of the number of layers of the organic film layer 1 and the inorganic film layer 2 is not excessive.
  • the sum of the number of layers of the organic film layer 1 and the inorganic film layer 2 is 3-9 layers, for example, 3, 5, 7, and 9 layers.
  • the thin film encapsulation structure for a package device (such as an organic light-emitting display device) of the present embodiment adopts a manner in which an organic film layer and an inorganic film layer are alternately disposed, which can effectively prevent external oxygen and water from penetrating into the organic light-emitting display device. In addition, it has been verified by high temperature and high humidity experiments, which can meet the reliability requirements of products. Furthermore, the thin film encapsulation structure of the present embodiment can also be applied to a package of a flexible display device.
  • the flexible film 100 for covering a device such as an organic light-emitting display device in the thin film package structure of the present embodiment includes three organic film layers 1 and two inorganic film layers 2, wherein the organic film layer 1 The inorganic film layer 2 is alternately disposed, and each of the inorganic film layers 2 is interposed between the two organic film layers 1.
  • the organic film layer 1 is used for a contact device such as an organic light-emitting display device, and the outermost layer of the flexible film is the organic film layer 1.
  • the composition of the device covered by the flexible film 100 (the organic light-emitting display device in FIG. 2), wherein the mark 3 indicates the substrate, the mark 4 indicates the anode, and the mark 5 indicates the hole injection layer, and the mark 6 The hole transport layer is indicated, the mark 7 indicates the organic light-emitting layer, the mark 8 indicates the electron transport layer, and the mark 9 indicates the cathode.
  • the flexible film 100 for covering a device such as an organic light-emitting display device in a thin film package structure may further include four organic film layers 1 and three inorganic film layers 2; or five organic film layers 1 and four inorganic layers Membrane layer 2, the specific case will not be drawn one by one.
  • An embodiment of the present invention provides a display device including a light emitting display device (such as an organic light emitting display device) and a thin film package structure as described in any of the above embodiments overlying the light emitting display device .
  • the display device provided in this embodiment can be seen in FIG. 1 and FIG. 2 .
  • the marks 3-9 constitute an organic light-emitting display device which is covered with a thin film encapsulation structure in which the organic film layer 1 and the inorganic film layer 2 are alternately disposed, and is in contact with the organic light-emitting display device.
  • Organic film layer 1 and the outermost layer of the thin film encapsulation structure It is an organic film layer 1.
  • the display device described in this embodiment can be a flexible display device.
  • the display device of the embodiment since the thin film encapsulation structure provided by the above embodiments is adopted, the display device has better water and oxygen barrier properties.
  • the display device may be a product having a display function such as a mobile phone, an electronic paper, a tablet computer, a video camera, a camera, a television, and a printer.
  • a display function such as a mobile phone, an electronic paper, a tablet computer, a video camera, a camera, a television, and a printer.
  • One embodiment of the present invention provides a method of fabricating a thin film encapsulation structure, the method comprising: fabricating a flexible film having at least two organic film layers and at least one inorganic film layer, the at least two organic film layers including a first organic film layer and a second organic film layer, the fabricating the flexible film comprising: forming a first organic film layer on the device; forming an inorganic film layer on the first organic film layer; and fabricating the second organic film a layer, the second organic film layer being located at an outermost layer of the flexible film.
  • FIG. 3 shows a flow chart of a method of fabricating a thin film encapsulation structure according to the present embodiment.
  • the manufacturing method of the thin film encapsulation structure provided by this embodiment includes:
  • Step 101 The organic film layer is formed and cured by a coating process, an inkjet printing process, or a chemical vapor deposition process.
  • an organic film layer is formed and cured by a coating process, an inkjet printing process, or a chemical vapor deposition process.
  • the material which can be selected when the organic film layer is formed is one or a combination of polyvinyl alcohol, urethane acrylate polymer, and polyimide resin.
  • Step 102 coating an inorganic material solution on the organic film layer, baking and curing by an ultraviolet curing process to form an inorganic film layer; or forming an inorganic film layer on the organic film layer by an atomic layer deposition process.
  • the baking temperature is 50-70 degrees Celsius
  • the duration is 60-90 seconds.
  • a material which can be selected is one or a combination of alumina, zinc oxide, titanium oxide, silicon dioxide, silicon nitride, and zirconium oxide.
  • the inorganic nanomaterials of the above materials are uniformly dispersed in the ethylenically unsaturated monomer, and an additive such as a photoinitiator or a wetting leveling agent is added to the inorganic nanomaterial.
  • the inorganic nano material is dispersed in the ethylenically unsaturated monomer in order to make the inorganic nano material and the ethylenically unsaturated monomer realize the mutual compatibility of the organic material and the inorganic material.
  • the ethylenically unsaturated monomer is cured by ultraviolet rays, the inorganic nanomaterial is simultaneously cured, and a good combination of the inorganic material and the organic material can be obtained.
  • the ethylenically unsaturated monomer is a photocurable material. Since the inorganic nanomaterial is dispersed in the ethylenically unsaturated monomer inner body, a photoinitiator can be added to the inorganic nano material when the photocurable material is cured. The photoinitiator can absorb a certain wavelength of energy in the ultraviolet light region or the visible light region to generate a radical, a cation, etc., thereby initiating a compound in which the monomer is polymerized and crosslinked and solidified.
  • a wetting leveling agent can adjust the surface tension of the liquid mixture so that the film layer is more flat during film formation.
  • Step 103 Steps 101 and 102 are repeated several times in sequence to form an alternate structure of the organic film layer and the inorganic film layer.
  • Step 104 An organic film layer is formed, the organic film layer being located at an outermost layer of the thin film encapsulation structure.
  • the sum of the number of layers of the organic film layer and the inorganic film layer is not excessive.
  • the sum of the number of layers of the organic film layer and the inorganic film layer is 3-9 layers, for example, 3, 5, 7, 9 layers.
  • the method for fabricating the thin film encapsulation structure described in this embodiment can be used to fabricate the thin film encapsulation structure described in the above embodiments.
  • the thin film encapsulation structure fabricated by the fabrication method described in this embodiment can cover a device such as an organic light emitting display device.
  • the film package structure of the embodiment can meet the reliability requirements of the product.
  • the thin film encapsulation structure can effectively prevent external oxygen and water from penetrating into the organic light emitting display, and satisfies the packaging performance of devices such as organic light emitting display devices.
  • the package structure and process described in this embodiment can be applied to the package of the flexible light emitting display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种薄膜封装结构,包括用于覆盖器件的柔性薄膜(100),柔性薄膜包括至少两层有机膜层(1)和至少一层无机膜层(2),至少两层有机膜层包括第一有机膜层和第二有机膜层,第一有机膜层和第二有机膜层之间设置有无机膜层,其中第一有机膜层接触器件,第二有机膜层设置在柔性薄膜的最外层。该薄膜封装结构能够有效阻隔水氧渗入器件,满足了器件的封装性能。

Description

薄膜封装结构及其制作方法和显示装置
本申请要求申请日为2015年5月14的中国专利申请第201510246548.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本发明的实施例涉及一种薄膜封装结构及其制作方法和显示装置。
背景技术
一般而言,大多数的器件(诸如有机发光显示器)需要进行封装,从而例如保护器件,使器件与外部环境隔离,例如阻隔水和空气,或其它需求等。例如,有机发光显示器为主动发光型器件,具有轻薄、宽视角、功耗低、响应速度快、可实现柔性显示的优势,因此有机电致发光显示器在显示领域及照明领域得到了广泛应用。
有机发光显示器的核心部件是有机发光器件(OLED器件),其作为新型显示器件,其具有良好的色彩饱和度和广视角的优点。但是其显示器件内的发光材料和功能材料对水和气比较敏感,例如,其相应产品的耐水和气的参数要求是:对氧的密封要求小于10-3cc/m2〃day;对水的阻隔要求小于10-6g/m2〃day。
因此需要提供一种封装结构,以形成对待封装的器件的保护。
发明内容
本发明的实施例提供一种薄膜封装结构及其制作方法和显示装置,可以解决的问题之一是例如有机发光显示器件容易被水氧侵蚀的问题。
根据本发明的第一方面,提供了一种薄膜封装结构,包括用于覆盖器件的柔性薄膜,所述柔性薄膜包括至少两层有机膜层和至少一层无机膜层,所述至少两层有机膜层包括第一有机膜层和第二有机膜层,所述第一有机 膜层和第二有机膜层之间设置有无机膜层,其中所述第一有机膜层接触所述器件,所述第二有机膜层设置在所述柔性薄膜的最外层。
根据本发明的实施例,所述柔性薄膜包括多于两层的无机膜层,所述有机膜层和无机膜层交替设置,每层所述无机膜层处于两层有机膜层之间。
根据本发明的实施例,所述有机膜层和无机膜层的层数之和为三层到九层。
根据本发明的实施例,所述无机膜层的材料包括无机纳米材料。
根据本发明的实施例,所述无机纳米材料分散在乙烯性不饱和单体内。
根据本发明的实施例,所述无机膜层中添加有光引发剂和/或润湿流平剂。
根据本发明的实施例,所述有机膜层的材料包括聚乙烯醇、聚氨酯丙烯酸酯聚合物、聚酰亚胺树脂中的一种或几种的组合。
根据本发明的第二方面,提供了一种显示装置,包括发光显示器件及覆盖在所述发光显示器件上的如上面所述的薄膜封装结构。
根据本发明的第三方面,提供了一种薄膜封装结构的制作方法,包括制作具有至少两层有机膜层和至少一层无机膜层的柔性薄膜,所述至少两层有机膜层包括第一有机膜层和第二有机膜层,制作所述柔性薄膜包括:
在器件上制作第一有机膜层;
在所述第一有机膜层上制作无机膜层;
制作所述第二有机膜层,所述第二有机膜层位于所述柔性薄膜的最外层。
根据本发明的实施例,采用涂覆工艺、喷墨印刷工艺或化学气相沉积工艺制作有机膜层并进行固化。
根据本发明的实施例,在有机膜层上涂布无机材料溶液,进行烘烤并采用紫外线固化工艺进行固化形成无机膜层;或者在有机膜层上采用原子层沉积工艺制作无机膜层。
根据本发明的实施例,所述烘烤的温度为50-70摄氏度,持续的时间为60-90秒。
由上述技术方案可知,本发明的实施例所述的薄膜封装结构,通过交替设置有机膜层和无机膜层,使得该封装结构能够有效阻止外部氧气和水渗入诸如有机发光显示器件的器件,满足了诸如有机发光显示器件的器件的封装性能。本发明所述的封装结构及工艺可以应用于诸如柔性显示器件的器件的封装。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1是根据本发明一个实施例的薄膜封装结构的结构示意图;
图2是根据本发明另一实施例的薄膜封装结构的结构示意图;以及
图3是根据本发明一个实施例的薄膜封装结构的制作方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,虽然下文中主要在有机发光显示器件的上下文中来描述本发明的各种实施例,但是本领域的技术人员应当了解的是,本发明的实施例还可以应用于任何其它合适的器件,而并不是仅局限于有机发光显示器件。
图1示出了根据本发明一个实施例的薄膜封装结构的结构示意图。如图1所示,本实施例的薄膜封装结构包括用于覆盖器件(诸如有机发光显示器件)的柔性薄膜100,所述柔性薄膜100包括至少两层有机膜层1和 至少一层无机膜层2,所述至少两层有机膜层包括第一有机膜层和第二有机膜层,所述第一有机膜层和第二有机膜层之间设置有无机膜层2,其中所述第一有机膜层接触所述器件(诸如有机发光显示器件),所述第二有机膜层设置在所述柔性薄膜的最外层。
其中,所述无机膜层的材料包括无机纳米材料,所述无机纳米材料包括氧化铝、氧化锌、氧化钛、二氧化硅、氮化硅、氧化锆中的一种或几种的组合。即所述无机膜层的材料可以选取氧化铝、氧化锌、氧化钛、二氧化硅、氮化硅和氧化锆中的一种或多种。
在一个实施例中,所述无机纳米材料分散在乙烯性不饱和单体内。当然,也可以使得所述无机纳米材料均匀地分散在乙烯性不饱和单体内。
将所述无机纳米材料分散在乙烯性不饱和单体内,是为了使得无机纳米材料与乙烯性不饱和单体实现有机与无机材料的互容。在通过紫外光固化乙烯性不饱和单体时,同时将无机纳米材料进行固化,可获得无机材料与有机材料良好的结合。
在一个实施例中,所述无机膜层中添加有光引发剂和/或润湿流平剂。
乙烯性不饱和单体属于光固化材料。由于将无机纳米材料分散在乙烯性不饱和单体内体,因此在光固化材料进行固化时,所述无机膜层中需要添加有光引发剂。
光引发剂又称光敏剂或光固化剂,能在紫外光区或可见光区吸收一定波长的能量,产生自由基、阳离子等,从而引发单体聚合交联固化的化合物。
另外,加入润湿流平剂可以调节液态混合物的表面张力,使得其在成膜时,膜层的平坦度更好。
在一个实施例中,所述有机膜层的材料包括聚乙烯醇、聚氨酯丙烯酸酯聚合物、聚酰亚胺树脂中的一种或几种的组合。
图1除了示出了柔性薄膜100以外,还示出了柔性薄膜100所覆盖的器件(在图1中为有机发光显示器件)的组成结构,其中,标记3表示基板,标记4表示阳极,标记5表示空穴注入层,标记6表示空穴传输层, 标记7表示有机发光层,标记8表示电子传输层,标记9表示阴极。
为了节省材料和工艺,所述有机膜层1和无机膜层2的层数之和不宜过多。在一个实施例中,所述有机膜层1和无机膜层2的层数之和为3-9层,例如3,5,7,9层。
本实施例的用于包裹器件(诸如有机发光显示器件)的薄膜封装结构,采用了有机膜层和无机膜层交替设置的方式,可以有效阻止外部氧气和水渗入有机发光显示器件。此外,经过高温高湿实验验证,它可以满足产品的信赖性要求。此外,本实施例的薄膜封装结构还可以应用于柔性显示器件的封装。
图2示出了根据本发明另一实施例的薄膜封装结构的结构示意图。如图2所示,本实施例的薄膜封装结构中用于覆盖器件(诸如有机发光显示器件)的柔性薄膜100包括三层有机膜层1和两层无机膜层2,其中,有机膜层1和无机膜层2交替设置,每层无机膜层2处于两层有机膜层1之间。其中,有机膜层1用于接触器件(诸如有机发光显示器件),且所述柔性薄膜的最外层为有机膜层1。
图2还示出了柔性薄膜100所覆盖的器件(在图2中为有机发光显示器件)的组成结构,其中,标记3表示基板,标记4表示阳极,标记5表示空穴注入层,标记6表示空穴传输层,标记7表示有机发光层,标记8表示电子传输层,标记9表示阴极。
当然,薄膜封装结构中用于覆盖器件(诸如有机发光显示器件)的柔性薄膜100还可以包括四层有机膜层1和三层无机膜层2;或包括五层有机膜层1和四层无机膜层2,具体情形将不再一一画图示例。
本发明的一个实施例提供了一种显示装置,所述显示装置包括发光显示器件(诸如有机发光显示器件)及覆盖在所述发光显示器件上的如上面任一实施例所述的薄膜封装结构。其中,本实施例提供的显示装置可参见图1和图2所示。在图1和图2中,标记3-9组成了有机发光显示器件,其上面覆盖有有机膜层1和无机膜层2交替设置的薄膜封装结构,且和所述有机发光显示器件接触的为有机膜层1,且所述薄膜封装结构的最外层 为有机膜层1。
由于上述实施例提供的薄膜封装结构可以应用于柔性显示器件的封装,因此,本实施例所述的显示装置可以为柔性显示装置。
本实施例所述的显示装置,由于采用了上述实施例提供的薄膜封装结构,因此,该显示装置的具有较好的水氧阻隔特性。
本实施例所述的显示装置可以为手机、电子纸、平板电脑、摄像机、照相机、电视机和打印机等具有显示功能的产品。
本发明的一个实施例提供了一种薄膜封装结构的制作方法,所述方法包括:制作具有至少两层有机膜层和至少一层无机膜层的柔性薄膜,所述至少两层有机膜层包括第一有机膜层和第二有机膜层,制作所述柔性薄膜包括:在器件上制作第一有机膜层;在所述第一有机膜层上制作无机膜层;制作所述第二有机膜层,所述第二有机膜层位于所述柔性薄膜的最外层。
具体地,图3示出了根据本实施例的薄膜封装结构的制作方法的流程图。参见图3,本实施例提供的薄膜封装结构的制作方法包括:
步骤101:采用涂覆工艺、喷墨印刷工艺或化学气相沉积工艺制作有机膜层并进行固化。
在本步骤中,在诸如有机发光显示器件的器件上,采用涂覆工艺、喷墨印刷工艺或化学气相沉积工艺制作有机膜层并进行固化。在制作所述有机膜层时可以选择的材料有聚乙烯醇、聚氨酯丙烯酸酯聚合物、聚酰亚胺树脂中一种或几种的组合。
步骤102:在有机膜层上涂布无机材料溶液,进行烘烤并采用紫外线固化工艺进行固化形成无机膜层;或者在有机膜层上采用原子层沉积工艺制作无机膜层。其中,所述烘烤的温度为50-70摄氏度,持续的时间为60-90秒。
其中,在制作所述无机膜层时,可以选择的材料有氧化铝、氧化锌、氧化钛、二氧化硅、氮化硅、氧化锆中一种或几种的组合。在一个实施例中,采用上述材料的无机纳米材料,均匀分散在乙烯性不饱和单体内,同时向无机纳米材料内添加光引发剂、润湿流平剂等添加剂。
将无机纳米材料分散在乙烯性不饱和单体内,是为了使得无机纳米材料与乙烯性不饱和单体实现有机材料与无机材料的互容。在通过紫外线固化乙烯性不饱和单体时,同时将无机纳米材料进行固化,可获得无机材料与有机材料良好的结合。
所述乙烯性不饱和单体属于光固化材料。由于将无机纳米材料分散在乙烯性不饱和单体内体,因此在光固化材料进行固化时,可以向无机纳米材料中添加光引发剂。光引发剂能在紫外光区或可见光区吸收一定波长的能量,产生自由基、阳离子等,从而引发单体聚合交联固化的化合物。
另外,加入润湿流平剂可以调节液态混合物的表面张力,使得在成膜时,膜层的平坦度更好。
步骤103:依次重复若干次步骤101和步骤102,形成有机膜层和无机膜层相交替的结构。
步骤104:制作有机膜层,所述有机膜层位于所述薄膜封装结构的最外层。
为了节省材料和工艺,所述有机膜层和无机膜层的层数之和不宜过多。在一个实施例中,所述有机膜层和无机膜层的层数之和为3-9层,例如3,5,7,9层。
本实施例所述的薄膜封装结构的制作方法,可以用于制作上述实施例所述的薄膜封装结构。
采用本实施例所述的制作方法制作的薄膜封装结构可以覆盖诸如有机发光显示器件的器件。经过高温高湿实验,本实施例的薄膜封装结构可以满足产品的信赖性要求。实验证明所述薄膜封装结构可以有效阻止外部氧气和水渗入有机发光显示器内,满足了诸如有机发光显示器件的器件的封装性能。同时本实施例所述的封装结构及工艺可以应用于柔性发光显示器件的封装。
以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:在不脱离本发明技术方案的精神和范围的情况下,可以对前述各实施例所 记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。

Claims (12)

  1. 一种薄膜封装结构,包括用于覆盖器件的柔性薄膜,所述柔性薄膜包括至少两层有机膜层和至少一层无机膜层,所述至少两层有机膜层包括第一有机膜层和第二有机膜层,所述第一有机膜层和第二有机膜层之间设置有无机膜层,其中所述第一有机膜层接触所述器件,所述第二有机膜层设置在所述柔性薄膜的最外层。
  2. 根据权利要求1所述的薄膜封装结构,其中,所述柔性薄膜包括多于两层的无机膜层,所述有机膜层和无机膜层交替设置,每层所述无机膜层处于两层有机膜层之间。
  3. 根据权利要求1或2所述的薄膜封装结构,其中,所述有机膜层和无机膜层的层数之和为三层到九层。
  4. 根据权利要求1-3任一所述的薄膜封装结构,其中,所述无机膜层的材料包括无机纳米材料。
  5. 根据权利要求4所述的薄膜封装结构,其中,所述无机纳米材料分散在乙烯性不饱和单体内。
  6. 根据权利要求1-5任一所述的薄膜封装结构,其中,所述无机膜层中添加有光引发剂和/或润湿流平剂。
  7. 根据权利要求1-6任一所述的薄膜封装结构,其中,所述有机膜层的材料包括聚乙烯醇、聚氨酯丙烯酸酯聚合物、聚酰亚胺树脂中一种或几种的组合。
  8. 一种显示装置,包括发光显示器件及覆盖在所述发光显示器件上的如权利要求1-7任一项所述的薄膜封装结构。
  9. 一种薄膜封装结构的制作方法,包括制作具有至少两层有机膜层和至少一层无机膜层的柔性薄膜,所述至少两层有机膜层包括第一有机膜层和第二有机膜层,制作所述柔性薄膜包括:
    在器件上制作第一有机膜层;
    在所述第一有机膜层上制作无机膜层;
    制作所述第二有机膜层,所述第二有机膜层位于所述柔性薄膜的最外 层。
  10. 根据权利要求9所述的薄膜封装结构的制作方法,其中,采用涂覆工艺、喷墨印刷工艺或化学气相沉积工艺制作有机膜层并进行固化。
  11. 根据权利要求9或10所述的薄膜封装结构的制作方法,其中,在有机膜层上涂布无机材料溶液,进行烘烤并采用紫外线固化工艺进行固化形成无机膜层;或者在有机膜层上采用原子层沉积工艺制作无机膜层。
  12. 根据权利要求11所述的薄膜封装结构的制作方法,其中,所述烘烤的温度为50-70摄氏度,持续的时间为60-90秒。
PCT/CN2016/078538 2015-05-14 2016-04-06 薄膜封装结构及其制作方法和显示装置 WO2016180103A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/511,521 US20170288172A1 (en) 2015-05-14 2016-04-06 Thin Film Packaging Structure, Method For Fabrication Thereof And Display Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510246548.9 2015-05-14
CN201510246548.9A CN104882565B (zh) 2015-05-14 2015-05-14 薄膜封装结构及其制作方法和显示装置

Publications (1)

Publication Number Publication Date
WO2016180103A1 true WO2016180103A1 (zh) 2016-11-17

Family

ID=53949972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078538 WO2016180103A1 (zh) 2015-05-14 2016-04-06 薄膜封装结构及其制作方法和显示装置

Country Status (3)

Country Link
US (1) US20170288172A1 (zh)
CN (1) CN104882565B (zh)
WO (1) WO2016180103A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882565B (zh) * 2015-05-14 2017-10-13 京东方科技集团股份有限公司 薄膜封装结构及其制作方法和显示装置
CN105514298B (zh) * 2015-12-31 2018-12-18 固安翌光科技有限公司 一种薄膜封装结构及薄膜封装方法
CN107845732A (zh) * 2016-09-19 2018-03-27 上海和辉光电有限公司 一种薄膜封装结构和oled显示面板
CN106206994B (zh) 2016-09-26 2019-04-26 京东方科技集团股份有限公司 一种显示面板及制备方法
CN108666341B (zh) * 2017-03-30 2021-04-02 昆山国显光电有限公司 显示装置及其制作方法
CN107994131A (zh) * 2017-11-28 2018-05-04 武汉华星光电半导体显示技术有限公司 用于封装oled器件的封装结构、显示装置
CN109524440B (zh) * 2018-11-21 2021-03-12 云谷(固安)科技有限公司 一种柔性显示面板及装置
CN110444568A (zh) * 2019-07-31 2019-11-12 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制作方法、显示装置
CN110707236B (zh) 2019-10-17 2022-08-30 京东方科技集团股份有限公司 显示基板的封装结构、封装方法及显示装置
CN113410413B (zh) * 2021-06-18 2024-04-19 北京京东方技术开发有限公司 柔性拼接模组、显示装置及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258955A (zh) * 2012-02-20 2013-08-21 中国科学院微电子研究所 有机电子器件的封装方法
CN103855185A (zh) * 2012-12-06 2014-06-11 三星显示有限公司 有机发光显示装置及其制造方法
CN104882565A (zh) * 2015-05-14 2015-09-02 京东方科技集团股份有限公司 薄膜封装结构及其制作方法和显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624568B2 (en) * 2001-03-28 2003-09-23 Universal Display Corporation Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices
FR2955051B1 (fr) * 2010-01-14 2013-03-08 Arkema France Film resistant a l'humidite a base de polymere fluore et d'oxyde inorganique pour application photovoltaique
KR101182234B1 (ko) * 2010-05-28 2012-09-12 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101990555B1 (ko) * 2012-12-24 2019-06-19 삼성디스플레이 주식회사 박막봉지 제조장치 및 박막봉지 제조방법
CN103440824B (zh) * 2013-08-07 2016-08-10 北京京东方光电科技有限公司 一种有机电致发光显示面板、其制造方法及显示装置
KR102356841B1 (ko) * 2014-11-21 2022-02-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258955A (zh) * 2012-02-20 2013-08-21 中国科学院微电子研究所 有机电子器件的封装方法
CN103855185A (zh) * 2012-12-06 2014-06-11 三星显示有限公司 有机发光显示装置及其制造方法
CN104882565A (zh) * 2015-05-14 2015-09-02 京东方科技集团股份有限公司 薄膜封装结构及其制作方法和显示装置

Also Published As

Publication number Publication date
CN104882565B (zh) 2017-10-13
CN104882565A (zh) 2015-09-02
US20170288172A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016180103A1 (zh) 薄膜封装结构及其制作方法和显示装置
EP3550630B1 (en) Packaging method for organic semiconductor device
WO2015188491A1 (zh) 有机电致发光显示面板及其封装方法、显示装置
US9013099B2 (en) Organic electroluminescent apparatus
US8664852B2 (en) Organic light emitting display device and method for manufacturing the same
WO2016169370A1 (zh) 薄膜封装结构及其制作方法和显示装置
CN105601810B (zh) 用于制造有机膜的组合物、使用该有机膜制造的有机发光显示设备以及该设备的制造方法
US20120161197A1 (en) Flexible organic light-emitting display device and method of manufacturing the same
US9373812B2 (en) White OLED display device and packaging method thereof
WO2015055029A1 (zh) Oled显示屏及制造方法、显示装置及填充胶的填充方法
US20180102505A1 (en) Package method of oled element and oled package structure
US20210367210A1 (en) Packaging structure, display component and display device
CN107369776B (zh) Oled器件的封装结构和oled器件
KR20100122834A (ko) 광투과성 게터층을 갖는 유기전계발광표시장치 및 그 제조방법
CN105470284B (zh) 一种薄膜封装的oled屏体及其制备方法
WO2014134861A1 (zh) Oled器件封装薄膜、制备方法以及oled器件、封装方法
WO2018223815A1 (zh) 薄膜封装结构和显示装置
CN108389877A (zh) 薄膜封装结构及其制作方法和显示面板
EP3352238B1 (en) Method for preparing uneven particle layer, organic electroluminescent device, and display device
WO2020248420A1 (zh) 封装体、显示面板及显示面板的封装方法
CN107623086A (zh) 封装结构、封装结构的制备方法和oled显示面板
CN112018131B (zh) 柔性显示面板及其制备方法
US11805670B2 (en) Packaging structure for display substrate, packaging method and display device
TWI707436B (zh) 封裝結構
JP2005329680A (ja) 透明ガス遮断性積層体、並びにそれを用いたディスプレイ用基板及びディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16791953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16791953

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.04.2018)