WO2020220523A1 - 有机发光二极管显示装置及其制作方法 - Google Patents

有机发光二极管显示装置及其制作方法 Download PDF

Info

Publication number
WO2020220523A1
WO2020220523A1 PCT/CN2019/102016 CN2019102016W WO2020220523A1 WO 2020220523 A1 WO2020220523 A1 WO 2020220523A1 CN 2019102016 W CN2019102016 W CN 2019102016W WO 2020220523 A1 WO2020220523 A1 WO 2020220523A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film layer
metal thin
layer
inorganic
Prior art date
Application number
PCT/CN2019/102016
Other languages
English (en)
French (fr)
Inventor
黄静
徐湘伦
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/615,394 priority Critical patent/US20200411794A1/en
Publication of WO2020220523A1 publication Critical patent/WO2020220523A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display, in particular to an organic light emitting diode display device and a manufacturing method thereof.
  • Organic Light Emitting Diode (OLED) display devices have many advantages such as low driving voltage, high luminous efficiency, and easy flexibility and compatibility, and are recognized by the industry as one of the most promising display technologies.
  • OLED Organic Light Emitting Diode
  • the devices widely use organic materials that are sensitive to water and oxygen, in order to prevent them from being corroded by water and oxygen, effective packaging methods are required.
  • a relatively mature packaging method for organic light emitting diode display devices is to use metal and glass cover plates for packaging, but it cannot meet the development needs of flexible displays.
  • Thin-film packaging is considered to be the key to the breakthrough in flexible displays.
  • Inorganic metal oxide film has good water vapor and oxygen barrier properties, but its bending resistance is poor; organic film has good ductility, but has poor barrier properties.
  • some pure metal films represented by aluminum have good mechanical properties and water and oxygen barrier properties, and are expected to realize their application in flexible electronic device packaging.
  • the existing physical vapor deposition (evaporation, magnetron sputtering) methods are difficult to accurately control the film thickness, and the density of thin film defect sites (pinholes, etc.) is high, which is not suitable for flexible displays
  • the package of the device Although the metal film has good water and oxygen barrier properties, when it is directly plated on the surface of the device, it is easy to cause the device to load voltage to form a short circuit.
  • a single inorganic metal oxide film has certain barrier properties, its bending resistance is poor, and it is more likely to cause cracks due to stress concentration, leading to rapid corrosion of water and oxygen and failure. Therefore, the individual inorganic film layer and the metal film layer have their own defects.
  • the existing encapsulation layer structure generally adopts an overlapping form of inorganic layer-organic layer-inorganic layer.
  • the emerging atomic layer deposition technology ALD can be used to prepare nano-scale inorganic metal oxide films as inorganic layers, and the manufactured films have good shape retention and high step coverage, and have been widely used in the field of large-scale semiconductor manufacturing.
  • inorganic metal oxide films have certain barrier properties, their bending resistance is poor, and they are more prone to cracks due to stress concentration, leading to rapid corrosion of water and oxygen and failure.
  • the binding force between the inorganic layer and the organic layer is poor, and the stability of the encapsulation layer structure is poor.
  • the purpose of the present invention is to overcome the defects in the prior art, provide an organic light-emitting diode display device and a manufacturing method thereof, which can solve the problem that the inorganic metal oxide film in the prior art has poor bending resistance and is more prone to cracks due to stress concentration. Lead to rapid erosion of water and oxygen and failure. It also solves the technical problems of poor bonding force between the inorganic layer and the organic layer in the prior art, and poor structural stability of the encapsulation layer.
  • the present invention provides an organic light emitting diode display device, which includes an array substrate, a light emitting layer, and an encapsulation layer that are stacked, wherein the encapsulation layer includes a first inorganic thin film layer, a first metal thin film layer, Organic thin film layer, second metal thin film layer and second inorganic thin film layer.
  • the light-emitting layer is located on the array substrate; the encapsulation layer is located on the side of the light-emitting layer away from the array substrate; the first metal thin film layer is located on the first inorganic thin film layer; The organic thin film layer is located on the first metal thin film layer; the second metal thin film layer is located on the organic thin film layer; the second inorganic thin film layer is located on the second metal thin film layer.
  • first inorganic thin film layer and the second inorganic thin film layer are prepared by atomic layer deposition.
  • the material of the first metal film layer and the second metal film layer includes aluminum.
  • the thickness of the first metal thin film layer and the second metal thin film layer is in the range of 50-150 nm.
  • the organic film layer includes doped particles
  • the doped particles include desiccant particles and coupling agents.
  • the present invention also provides a manufacturing method of an organic light emitting diode display device, including the following steps:
  • Manufacturing an organic light-emitting diode includes providing an array substrate on which a light-emitting layer is fabricated, and the array substrate and the light-emitting layer form an organic light-emitting diode;
  • fabricating a first inorganic thin film layer which is to prepare the first inorganic thin film layer by atomic layer deposition on the surface of the light emitting layer of the organic light emitting diode that faces away from the array substrate;
  • Preparing a first metal thin film layer which is preparing a first metal thin film layer on the first inorganic thin film layer;
  • Preparing an organic thin film layer which is preparing an organic thin film layer on the surface of the first metal thin film layer facing away from the first inorganic thin film layer;
  • Making a second inorganic thin film layer is to prepare a second inorganic thin film layer on the second metal thin film layer by atomic layer deposition, and the second inorganic thin film layer completely covers the second metal thin film layer.
  • the step of manufacturing the first metal thin film layer further includes: subjecting the manufactured organic light emitting diode display device covered with the first inorganic thin film layer to plasma treatment of the first inorganic metal film The surface of the layer.
  • the completed organic light emitting diode display device coated with the second metal thin film layer is subjected to plasma treatment and the second metal thin film layer is separated from the organic The surface on one side of the film layer.
  • first metal thin film layer and the second metal thin film layer are both prepared by an atomic deposition method, wherein the thickness of the first metal thin film layer and the second metal thin film layer are both 50-150 nm.
  • the beneficial effect of the present invention is to provide an organic light emitting diode display device and a manufacturing method thereof.
  • the packaging layer structure of the metal thin film layer is arranged between the inorganic thin film layer and the organic thin film layer, so that the entire packaging layer is lighter and thinner, which can effectively improve The bonding force between the organic film layer and the inorganic film layer, and avoid the defects of using the inorganic film layer and the metal film layer alone, improve its stability, ensure good water and oxygen barrier performance and bending resistance, and meet flexible electronic packaging technology Requirements.
  • FIG. 1 is a schematic structural diagram of an organic light emitting diode display device according to an embodiment of the invention.
  • FIG. 2 is a manufacturing flow chart of an organic light emitting diode display device according to an embodiment of the invention.
  • Fig. 3 is a schematic structural diagram for completing steps S1-S3 in Fig. 2;
  • FIG. 4 is a schematic structural diagram of completing the step of producing a second metal thin film layer in FIG. 2;
  • FIG. 5 is a comparison diagram of the hydrophilic effect of the organic thin film layer after the step of making the organic thin film layer in FIG. 2 is cured by ultraviolet radiation.
  • Figure 6 is a graph showing the dielectric properties of the first inorganic thin film layer tested.
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • an embodiment of the present invention provides an organic light emitting diode display device 100, which includes an array substrate 10, a light emitting layer 20, and an encapsulation layer 30 that are stacked.
  • the light emitting layer 20 is located on the On the array substrate 10
  • the encapsulation layer 30 is located on the side of the light-emitting layer 20 away from the array substrate 10; wherein the encapsulation layer 30 includes a first inorganic thin film layer 31, a first metal thin film layer 32, and an organic The thin film layer 33, the second metal thin film layer 34 and the second inorganic thin film layer 35.
  • the first metal thin film layer 32 is located on the first inorganic thin film layer 31
  • the organic thin film layer 33 is located on the first metal thin film layer 32
  • the second metal thin film layer 34 is located on the On the organic thin film layer 33
  • the second inorganic thin film layer 35 is located on the second metal thin film layer 34.
  • the first inorganic thin film layer 31 and the second inorganic thin film layer 35 include inorganic metal oxide thin films or inorganic metal nitride thin films.
  • the first inorganic thin film layer 31 and the second inorganic thin film layer 35 include Al2O3, ZrO, HfO or SiNx.
  • the first inorganic thin film layer 31 and the second inorganic thin film layer 35 are Al2O3.
  • Plasma cleaning treatment on the surface of Al2O3 (alumina thin film) can improve its surface free energy and improve its surface hydrophilicity. This further facilitates the uniform deposition of the first metal thin film layer 32 and the second metal thin film layer 34 on the surface thereof.
  • Al2O3 due to its own compactness, makes Al2O3 (aluminum oxide film) have better water and oxygen barrier properties, which can protect the surface of the device from damage by secondary electrons, ions, etc.
  • Al2O3 aluminum oxide film
  • the first inorganic thin film layer 31 and the second inorganic thin film layer 35 have a dielectric constant of 5-11, preferably 7.
  • the thickness of the first inorganic thin film layer 31 and the second inorganic thin film layer 35 is in the range of 0.02-0.05um.
  • the first inorganic thin film layer 31 and the second inorganic thin film layer 35 are both prepared by atomic layer deposition.
  • the atomic layer deposition technology can be used to prepare nano-scale inorganic metal oxide thin films, and the produced thin films have good shape retention.
  • the step coverage is high and can be widely used in the field of large-scale semiconductor manufacturing.
  • the material of the first metal thin film layer 32 and the second metal thin film layer 34 is preferably aluminum, because the metal aluminum film itself has a good water and oxygen barrier capacity, and it can form a dense layer through self-oxidation. The aluminum oxide layer prevents the inner layer from being further eroded.
  • the material of the first metal thin film layer 32 and the second metal thin film layer 34 may also be other metals, such as copper, which all fall within the protection scope of the present invention.
  • the first inorganic thin film layer 31 is an aluminum oxide film
  • the first metal thin film layer 32 is a metal aluminum film.
  • the metal aluminum film itself also has good flexibility and ductility.
  • the metal aluminum film (the The first metal thin film layer 32 and the second metal thin film layer 34) can effectively decouple the defect sites of the inorganic thin film (the first inorganic thin film layer 31 or the second inorganic thin film layer 35).
  • the combination can ensure a stable and effective barrier effect.
  • the first metal thin film layer 32 is located between the first inorganic thin film layer 31 and the organic thin film layer 33
  • the second metal thin film layer 34 is located between the organic thin film layer 33 and the second inorganic thin film layer.
  • the combination of the first inorganic thin film layer 31 and the organic thin film layer 33 and the combination of the organic thin film layer 33 and the second inorganic thin film layer 35 due to the different properties of the organic thin film and the inorganic thin film can be resolved.
  • the bonding methods between the interfaces are different.
  • the bonding force between some organic and inorganic films is weak, and it is easy to separate from the interface layer under the action of external force, thus losing the protection of the device.
  • the film structure of the organic film and the inorganic film at the interface may also change due to the mutual influence of the two, resulting in problems such as poor uniformity of the deposited film and poor light transmittance.
  • the second metal thin film layer 34 can improve the bonding force between the laminated barrier film layers, and can solve the above-mentioned problems, thereby realizing reliable packaging of the organic light emitting diode display device 100.
  • the first metal thin film layer 32 and the second metal thin film layer 34 are prepared by magnetron sputtering.
  • the thickness of the first metal thin film layer 32 and the second metal thin film layer 34 ranges from 50 nm to 150 nm, preferably 100 nm.
  • the organic film layer 33 includes doped particles 331; the doped particles 331 include desiccant particles and coupling agents.
  • the desiccant particles include, but are not limited to, calcium chloride, phosphorus pentoxide, magnesium perchlorate, anhydrous potassium carbonate or anhydrous calcium sulfate; the desiccant particles can be used to absorb water vapor and strengthen the organic film layer
  • the hydrophilicity and water and oxygen barrier properties of 33 if the outer layer of the organic thin film layer 33 is eroded, the water vapor entered by the erosion is absorbed by the desiccant particles, which can prevent the inner layer from being continuously eroded.
  • the coupling agent includes a zirconium coupling agent.
  • the organic material of the organic thin film layer 33 includes epoxy resin, polydimethylsiloxane (PDMS) or photoresist.
  • an embodiment of the present invention provides a manufacturing method of an organic light emitting diode display device 100, which includes steps S1-S6.
  • step S1 is to fabricate an organic light emitting diode, which is to provide an array substrate 10, fabricate a light emitting layer 20 on the array substrate 10, the array substrate 10 and the light emitting layer 20 are formed The organic light emitting diode.
  • step S2 is to prepare a first inorganic thin film layer, which is to prepare the first inorganic thin film layer on the surface of the light emitting layer 20 of the organic light emitting diode that faces away from the array substrate 10. ⁇ 31 ⁇ Film layer 31.
  • a layer of the first inorganic thin film layer 31 with a dielectric constant of 5-11 is prepared on the light emitting layer 20 of the organic light emitting diode by atomic layer deposition technology, and the first inorganic thin film layer 31 includes inorganic
  • the metal oxide film or the inorganic metal nitride film specifically includes Al2O3, ZrO, HfO or SiNx; the thickness of the first inorganic film layer 31 is in the range of 0.02-0.05 um.
  • step S3 is to prepare a first metal thin film layer, and the first metal thin film layer 32 is prepared on the first inorganic thin film layer 31.
  • the first inorganic thin film layer 31 is first placed in the vacuum reaction chamber of the atomic layer deposition equipment and treated with plasma (Plasma) to improve its surface activity; the magnetron sputtering method is used
  • a layer of the first metal thin film layer 32 with a thickness of 50-150 nm is prepared on the first inorganic thin film layer 31; the material of the first metal thin film layer 32 includes aluminum.
  • FIG. 3 it is a schematic diagram of the semi-finished product structure for completing steps S1-S3.
  • the step S3 of manufacturing the first metal thin film layer further includes: subjecting the manufactured organic light emitting diode display device covered with the first inorganic thin film layer 31 to plasma treatment of the first inorganic metal film layer 32 s surface.
  • Plasma cleaning treatment on the surface of the first inorganic thin film layer 31 can improve the hydrophilic properties of the surface, increase the adsorption of the first metal thin film layer 32 (metal aluminum thin film), and form more films. Evenly. Among them, the longer the processing time of the first inorganic thin film layer 31 after plasma cleaning, the better the hydrophilicity of the thin film surface.
  • a nano-scale first metal thin film layer 32 (metal aluminum film) is prepared on the surface of the first inorganic thin film layer 31 (aluminum oxide film) by magnetron sputtering technology.
  • the specific process is that the sputtering power is 2000- 3000 W, the sputtering pressure is 0.5 Pa, the distance between the target and the substrate is 80 mm, the Ar gas flow is 170 sccm, and the substrate surface temperature is 90 degrees Celsius. Since the first inorganic film layer 31 (aluminum oxide film) has been deposited on the surface, it can protect the surface of the device from being damaged by secondary electrons, ions, and the like. In addition, the first inorganic thin film layer 31 (aluminum oxide film) prevents the first metal thin film layer 32 (a metal aluminum film) from directly contacting the device to form a short circuit.
  • step S4 is to prepare an organic thin film layer, and the organic thin film layer 33 is prepared on the surface of the first metal thin film layer 32 facing away from the first inorganic thin film layer 31. Specifically, a certain concentration of organic solution is prepared, and a certain proportion of doping particles 331 are doped in the solution.
  • the organic matter in the organic solution includes, but is not limited to, epoxy resin, polydimethylsiloxane, or photolithography.
  • the doped particles 331 include desiccant particles and coupling agents; the desiccants include but are not limited to calcium chloride, phosphorus pentoxide, magnesium perchlorate, anhydrous potassium carbonate or anhydrous calcium sulfate;
  • the coupling agent includes but is not limited to a zirconium coupling agent; the uniformly mixed organic solution is placed in a vacuum chamber for degassing; both ends of the first metal film layer 32 are covered with a layer of electrostatic adsorption organic film mask frame 36.
  • FIG. 4 it is a schematic diagram of the semi-finished product structure after completing step S4.
  • the hydrophilicity and the water and oxygen barrier properties of the organic thin film layer 33 are enhanced.
  • FIG. 5 it is a comparison diagram of the hydrophilic effect of the organic thin film layer 33 after the completion of step S4 after being cured by ultraviolet radiation.
  • the polydimethylsiloxane organic film cured by heating is irradiated with an ozone ultraviolet lamp for 20 hours, the static contact angle of the film surface is significantly reduced compared with the film treated with an ozone-free ultraviolet lamp, and the hydrophilicity is Significantly improved.
  • step S5 is to prepare a second metal thin film layer, and a second metal thin film layer 34 is prepared on the organic thin film layer 33.
  • a second metal thin film layer 34 of 50-150 nm is prepared on the organic thin film layer 33 by magnetron sputtering; the material of the second metal thin film layer 34 includes aluminum.
  • the manufacturing method of the second metal thin film layer 34 is the same as the manufacturing method of the first metal thin film layer 32, and both are prepared by the atomic deposition method, and the materials of the two are also the same.
  • the thickness of the metal thin film layer and the second metal thin film layer are both 50-150 nm.
  • the materials of the second metal thin film layer 34 and the first metal thin film layer 32 can be changed according to actual needs.
  • the completed organic light emitting diode display device coated with the second metal thin film layer 34 is subjected to plasma treatment.
  • the second metal thin film layer 34 faces away from the organic thin film. The surface of the layer 33 side.
  • step S6 is to prepare a second inorganic thin film layer, a second inorganic thin film layer 35 is prepared on the second metal thin film layer 34, and the second inorganic thin film layer 35 completely covers Cover the second metal thin film layer 34.
  • the second metal thin film layer 34 is first placed in the vacuum reaction chamber of the atomic layer deposition equipment, and treated with plasma to improve its surface activity; the second metal thin film layer 34 is deposited by atomic layer deposition technology.
  • the second inorganic thin film layer 35 is prepared on 34, the second inorganic thin film layer 35 completely covers the second metal thin film layer 34, the second inorganic thin film layer 35 has a dielectric constant of 5-11, which includes
  • the inorganic metal oxide film or the inorganic metal nitride film specifically includes Al2O3, ZrO, HfO or SiNx; the thickness of the second inorganic film layer 35 is in the range of 0.02-0.05um. It can be seen that, in this embodiment, the second inorganic thin film layer 35 and the first inorganic thin film layer 31 have the same composition.
  • the dielectric properties of the first inorganic thin film layer 31 are tested by taking an aluminum oxide film as the first inorganic thin film layer 31, that is, the dielectric properties of the aluminum oxide thin film obtained by atomic layer deposition technology. Electrical performance is tested. The obtained aluminum oxide film was measured by an ellipsometer to be 20 nm, and the current density change of the film was detected by gradually increasing the voltage value at both ends of the film. It is confirmed that its extreme voltage density is 8.7MV/cm, and it has good dielectric properties.
  • the advantage of the present invention is to provide an organic light-emitting diode display device and a manufacturing method thereof.
  • the overall packaging layer is lighter and thinner, which can effectively improve the organic thin film layer and the inorganic thin film layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种有机发光二极管显示装置及其制作方法。有机发光二极管显示装置,包括层叠设置的阵列基板、发光层和封装层,其中封装层包括层叠设置的第一无机薄膜层、第一金属薄膜层、有机薄膜层、第二金属薄膜层和第二无机薄膜层。有机发光二极管显示装置的制作方法包括步骤:制作有机发光二极管、制作第一无机薄膜层、制作第一金属薄膜层、制作有机薄膜层、制作第二金属薄膜层和制作第二无机薄膜层。本发明可以有效改善有机薄膜层和无机薄膜层间的结合力,保证具有良好的水氧阻隔性能和抗弯折能力。

Description

有机发光二极管显示装置及其制作方法 技术领域
本发明涉及显示领域,尤其涉及一种有机发光二极管显示装置及其制作方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示装置具有驱动电压低、发光效率高、易于柔性兼容等诸多优点,被业界公认为是最有发展潜力的显示技术之一。但由于器件广泛采用对水氧敏感的有机材料,为了防止其受到水氧侵蚀,需要采取有效的封装手段。目前针对有机发光二极管显示器件较为成熟的封装方法为利用金属、玻璃盖板进行封装,但其无法适应柔性显示的发展需求。薄膜封装被认为是柔性显示取得突破的关键所在。无机金属氧化物薄膜具有良好的水汽和氧气阻隔性能,但其抗弯折性能差;有机薄膜具有良好的可延展性能,但阻隔能力不佳。相较而言,以铝为代表的某些纯金属薄膜具有良好的力学性能和水氧阻隔性能,有望实现其在柔性电子器件封装上的应用。
针对于纯金属薄膜的制备,现有的物理气相沉积(蒸镀、磁控溅射)手段成膜厚度难以精确控制,且薄膜缺陷位点(针孔等)密度大,并不适用于柔性显示器件的封装。尽管金属薄膜具有良好的水氧阻隔性能,但将其直接镀覆于器件表面时,易导致器件加载电压是形成短路。且单一的无机金属氧化物薄膜尽管具有一定的阻隔性能,但其抗弯折性能较差,更易由于应力集中产生裂纹,导致水氧的快速侵蚀而失效。因此,单独的无机膜层和金属膜层各有缺陷。
另外,现有封装层结构一般采用无机层-有机层-无机层交叠的形式。新兴的原子层沉积技术(ALD)可用于制备纳米级别的无机金属氧化物薄膜作为无机层,且制造的薄膜保形性好、台阶覆盖率高,已被广泛应用于大规模半导体制造领域。无机金属氧化物薄膜尽管具有一定的阻隔性能,但其抗弯折性能较差,更易由于应力集中产生裂纹,导致水氧的快速侵蚀而失效。并且无机层与有机层的结合力差,封装层结构稳定性差。
技术问题
本发明的目的是克服现有技术存在的缺陷,提供一种有机发光二极管显示装置及其制作方法,可解决现有技术无机金属氧化物薄膜抗弯折性能较差,更易由于应力集中产生裂纹,导致水氧的快速侵蚀而失效。并且解决现有技术无机层与有机层的结合力差,封装层结构稳定性差的技术问题。
技术解决方案
为了解决上述问题,本发明提供一种有机发光二极管显示装置,包括层叠设置的阵列基板、发光层和封装层,其中所述封装层包括层叠设置的第一无机薄膜层、第一金属薄膜层、有机薄膜层、第二金属薄膜层和第二无机薄膜层。具体地讲,所述发光层位于所述阵列基板上;所述封装层位于所述发光层背离所述阵列基板一侧;所述第一金属薄膜层位于所述第一无机薄膜层上;所述有机薄膜层位于所述第一金属薄膜层上;所述第二金属薄膜层位于所述有机薄膜层上;所述第二无机薄膜层位于所述第二金属薄膜层上。
进一步的,其中所述第一无机薄膜层和所述第二无机薄膜层通过原子层沉积方式制备。
进一步的,其中所述第一金属薄膜层和所述第二金属薄膜层的材料包括铝。
进一步的,其中所述第一金属薄膜层和所述第二金属薄膜层的厚度范围为50-150nm。
进一步的,其中所述有机薄膜层内包括掺杂颗粒,所述掺杂颗粒包括干燥剂颗粒和偶联剂。
本发明还提供一种有机发光二极管显示装置的制作方法,包括以下步骤:
制作有机发光二极管,其为提供一阵列基板,在所述阵列基板上制作发光层,所述阵列基板及所述发光层形成有机发光二极管;
制作第一无机薄膜层,其为在所述有机发光二极管的发光层背离所述阵列基板的一侧的表面上通过原子层沉积方式制备第一无机薄膜层;
制作第一金属薄膜层,其为在所述第一无机薄膜层上制备第一金属薄膜层;
制作有机薄膜层,其为在所述第一金属薄膜层的背离所述第一无机薄膜层一侧的表面上制备有机薄膜层;
制作第二金属薄膜层,其为在所述有机薄膜层上制备一层第二金属薄膜层;
制作第二无机薄膜层,其为在所述第二金属薄膜层上通过原子层沉积方式制备一层第二无机薄膜层,所述第二无机薄膜层完全包覆所述第二金属薄膜层。
进一步的,其中在制作所述第一金属薄膜层的步骤前,还包括,将所述制作完成的覆盖有第一无机薄膜层的有机发光二极管显示装置经过等离子体处理所述第一无机金属膜层的表面。
进一步的,其中在制作所述第二无机薄膜层的步骤之前,将制作完成的涂覆有所述第二金属薄膜层的有机发光二极管显示装置经过等离子体处理所述第二金属薄膜层背离有机薄膜层一侧的表面。
进一步的,其中所述第一金属薄膜层、第二金属薄膜层均采用原子沉积方法制备,其中,所述第一金属薄膜层、第二金属薄膜层的厚度均为50-150nm。
有益效果
本发明的有益效果在于,提供一种有机发光二极管显示装置及其制作方法,通过在无机薄膜层与有机薄膜层之间设置金属薄膜层的封装层结构,使封装层整体较为轻薄,可以有效改善有机薄膜层和无机薄膜层间的结合力,并避免单独使用无机膜层和金属膜层的缺陷,提高其稳定性,保证具有良好的水氧阻隔性能和抗弯折能力,满足柔性电子封装技术的要求。
附图说明
图1为本发明一实施例的有机发光二极管显示装置的结构示意图;
图2为本发明一实施例的有机发光二极管显示装置的制作流程图;
图3为完成图 2中步骤S1-S3的结构示意图;
图4为完成图 2中制作第二金属薄膜层步骤的结构示意图;
图5为完成图 2中制作有机薄膜层步骤的有机薄膜层进行紫外辐照固化处理后亲水性效果对比图。
图6为测试第一无机薄膜层的介电性能图。
图中部件标识如下:
10阵列基板、20发光层、30封装层,
31第一无机薄膜层、32第一金属薄膜层、33有机薄膜层、
34第二金属薄膜层、35第二无机薄膜层、36有机膜掩模边框,
100有机发光二极管显示装置、331掺杂颗粒。
本发明的实施方式
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明中,相同或相对应的部件用相同的附图标记表示而与图号无关,在说明书全文中,当“第一”、“第二”等措辞可用于描述各种部件时,这些部件不必限于以上措辞。以上措辞仅用于将一个部件与另一部件区分开。
请参阅图1所示,本发明一实施例提供一种有机发光二极管显示装置100,包括层叠设置的阵列基板10、发光层20和封装层30,具体地讲,所述发光层20位于所述阵列基板10上,所述封装层30位于所述发光层20背离所述阵列基板10一侧;其中所述封装层30包括层叠设置的第一无机薄膜层31、第一金属薄膜层32、有机薄膜层33、第二金属薄膜层34和第二无机薄膜层35。具体地讲,所述第一金属薄膜层32位于所述第一无机薄膜层31上,所述有机薄膜层33位于所述第一金属薄膜层32上,所述第二金属薄膜层34位于所述有机薄膜层33上,所述第二无机薄膜层35位于所述第二金属薄膜层34上。
在本实施例中,所述第一无机薄膜层31和所述第二无机薄膜层35包括无机金属氧化物薄膜或无机金属氮化物薄膜。具体地讲,所述第一无机薄膜层31和所述第二无机薄膜层35包括Al2O3、ZrO、HfO或SiNx。优选的,所述第一无机薄膜层31和所述第二无机薄膜层35为Al2O3,对Al2O3(氧化铝薄膜)表面进行等离子体清洗处理可改善其表面自由能,提高其表面的亲水性能,进而利于所述第一金属薄膜层32和所述第二金属薄膜层34在其表面的均匀沉积。并且Al2O3(氧化铝薄膜)由于其本身的致密性,使得Al2O3(氧化铝薄膜)具有较好的水氧阻隔性能,其可保护器件表面不被二次电子、离子等破坏。此外Al2O3(氧化铝薄膜)避免了所述第一金属薄膜层32直接与有机发光二极管显示装置100接触形成短路。
在本实施例中,所述第一无机薄膜层31和所述第二无机薄膜层35具有的介电常数为5-11,优选为7。为实现封装层的轻薄化以及其具有较好的水氧阻隔性能,所述第一无机薄膜层31和所述第二无机薄膜层35的厚度范围为0.02-0.05um。所述第一无机薄膜层31和所述第二无机薄膜层35均通过原子层沉积方式制备,原子层沉积技术可用于制备纳米级别的无机金属氧化物薄膜,且制造的薄膜保形性好、台阶覆盖率高,可广泛应用于大规模半导体制造领域。
在本实施例中,所述第一金属薄膜层32和所述第二金属薄膜层34的材料优选为铝,因为金属铝膜自身具有良好的水氧阻隔能力,其可通过自氧化形成致密的氧化铝层防止内层被继续侵蚀。当然,所述第一金属薄膜层32和所述第二金属薄膜层34的材料也可以为其他金属,例如铜,其均属于本发明保护范围。本实施例优选所述第一无机薄膜层31为氧化铝薄膜,所述第一金属薄膜层32为金属铝膜,金属铝膜自身还具有良好的柔性和可延展性,金属铝膜(所述第一金属薄膜层32和所述第二金属薄膜层34)能对无机薄膜(所述第一无机薄膜层31或所述第二无机薄膜层35)的缺陷位点进行有效解耦,二者结合就能保证稳定且有效的阻隔作用。并且所述第一金属薄膜层32位于所述第一无机薄膜层31与所述有机薄膜层33之间,所述第二金属薄膜层34位于所述有机薄膜层33与所述第二无机薄膜层35之间,可解决所述第一无机薄膜层31与所述有机薄膜层33结合以及所述有机薄膜层33与所述第二无机薄膜层35结合方式由于有机薄膜和无机薄膜性质的不同,其界面间的结合方式不同,某些有机薄膜和无机薄膜之间的结合力较弱,在外力作用下容易从界面层脱开,从而失去对器件的保护作用。此外,有机薄膜和无机薄膜在界面处的薄膜结构还可能由于二者的互相影响而发生改变,导致出现沉积薄膜均匀性差、透光性差等问题。通过在所述第一无机薄膜层31与所述有机薄膜层33之间设置所述第一金属薄膜层32,以及在所述有机薄膜层33与所述第二无机薄膜层35之间设置所述第二金属薄膜层34可提高叠层阻隔膜层间的结合力,可解决上述问题,从而实现对有机发光二极管显示装置100的可靠封装。
其中,所述第一金属薄膜层32和所述第二金属薄膜层34通过磁控溅射方式制备。所述第一金属薄膜层32和所述第二金属薄膜层34的厚度范围为50-150nm,优选为100nm。
在本实施例中,所述有机薄膜层33内包括掺杂颗粒331;所述掺杂颗粒331包括干燥剂颗粒和偶联剂。所述干燥剂颗粒包括但不限于氯化钙、五氧化二磷、高氯酸镁、无水碳酸钾或无水硫酸钙;所述干燥剂颗粒可用于吸收水汽,增强了所述有机薄膜层33的亲水性和阻隔水氧性能,若所述有机薄膜层33外层被侵蚀,侵蚀进入的水汽经过干燥剂颗粒吸收,可防止内层被继续侵蚀。所述偶联剂包括锆类偶联剂。其中所述有机薄膜层33的有机材料包括环氧树脂、聚二甲基硅氧烷(PDMS)或光刻胶。
请参阅图2所示,本发明一实施例提供一种有机发光二极管显示装置100的制作方法,包括步骤S1-S6。
请结合图2和图3所示,步骤S1为制作有机发光二极管,其为提供一阵列基板10,在所述阵列基板10上制作发光层20,所述阵列基板10及所述发光层20形成所述有机发光二极管。
请结合图2和图3所示,步骤S2为制作第一无机薄膜层,其为在所述有机发光二极管的发光层20背离所述阵列基板10的一侧的表面上制备所述第一无机薄膜层31。具体地讲,通过原子层沉积技术在所述有机发光二极管的发光层20上制备一层具有5-11介电常数的所述第一无机薄膜层31,所述第一无机薄膜层31包括无机金属氧化物薄膜或无机金属氮化物薄膜,具体包括Al2O3、ZrO、HfO或SiNx;所述第一无机薄膜层31的厚度范围为0.02-0.05 um。
请结合图2和图3所示,步骤S3为制作第一金属薄膜层,在所述第一无机薄膜层31上制备所述第一金属薄膜层32。在本实施例中,首先要将所述第一无机薄膜层31置于原子层沉积设备的真空反应腔体中,用等离子体(Plasma)处理以提高其表面活性;利用磁控溅射的方法在所述第一无机薄膜层31上制备一层50-150nm的所述第一金属薄膜层32;所述第一金属薄膜层32的材料包括铝。
如图3所示,为完成步骤S1-S3的半成品结构示意图。
在制作所述第一金属薄膜层的步骤S3前,还包括,将所述制作完成的覆盖有第一无机薄膜层31的有机发光二极管显示装置经过等离子体处理所述第一无机金属膜层32的表面。
对所述第一无机薄膜层31(氧化铝薄膜)表面进行等离子体清洗处理,可改善其表面的亲水性能,使第一金属薄膜层32(金属铝膜薄膜)吸附性提高,成膜更加均匀。其中,经过等离子体清洗后的第一无机薄膜层31处理时间越长,薄膜表面的亲水性越好。
通过磁控溅射技术在所述第一无机薄膜层31(氧化铝薄膜)表面制备一层纳米级的第一金属薄膜层32(金属铝膜薄膜),其具体工艺为溅射功率为2000-3000 W,溅射气压为0.5 Pa,而靶材和基底的距离为80 mm,Ar气流为170sccm,基底表面温度为90摄氏度。由于表面已经沉积了所述第一无机薄膜层31(氧化铝薄膜),其可保护器件表面不被二次电子、离子等破坏。此外所述第一无机薄膜层31(氧化铝薄膜)避免了第一金属薄膜层32(金属铝膜薄膜)直接与器件接触形成短路。
请结合图2和图4所示,步骤S4为制作有机薄膜层,在所述第一金属薄膜层32的背离所述第一无机薄膜层31一侧的表面上制备所述有机薄膜层33。具体地讲,配制一定浓度的有机溶液,并在溶液中掺杂一定比例的掺杂颗粒331,所述有机溶液中的有机物包括但不限于环氧树脂、聚二甲基硅氧烷或光刻胶,所述掺杂颗粒331包括干燥剂颗粒和偶联剂;所述干燥剂包括但不限于氯化钙、五氧化二磷、高氯酸镁、无水碳酸钾或无水硫酸钙;所述偶联剂包括但不限于锆类偶联剂;混合均匀后的有机溶液置于真空腔体中脱气;在所述第一金属薄膜层32两端覆盖一层静电吸附有机膜掩模边框36,将制备好的有机溶液滴于所述第一金属薄膜层32的表面,利用旋涂的方法在所述第一金属薄膜层32的表面形成一层有机薄膜层33,其厚度为1-2um之间,待所述有机薄膜层33涂敷均匀且待溶剂挥发后,去除所述有机膜掩模边框36,加热固化;将固化后的有机薄膜层33利用臭氧紫外灯进行臭氧/紫外辐照20 h固化处理。
如图4所示,为完成步骤S4的半成品结构示意图。
通过在所述有机薄膜层33中掺杂掺杂颗粒331和对有机薄膜进行紫外辐照处理的手段,增强了有机薄膜层33的亲水性和阻隔水氧性能。
如图5所示,为完成步骤S4的所述有机薄膜层33进行紫外辐照固化处理后亲水性效果对比图。将加热固化后的聚二甲基硅氧烷有机薄膜进行臭氧紫外灯辐照处理20 h后,与无臭氧紫外灯处理的薄膜相比,薄膜表面的静态接触角明显减小,亲水性有了明显提高。
请结合图2和图4所示,步骤S5为制作第二金属薄膜层,在所述有机薄膜层33上制备一层第二金属薄膜层34。在本实施例中,利用磁控溅射的方法在所述有机薄膜层33上制备一层50-150nm的第二金属薄膜层34;所述第二金属薄膜层34的材料包括铝。在本实施例中,所述第二金属薄膜层34的制作方法与所述第一金属薄膜层32的制作方法相同,均采用原子沉积方法制备,而且二者的材料也相同,所述第一金属薄膜层、第二金属薄膜层的厚度均为50-150nm。当然,在其他实施例中,所述第二金属薄膜层34与所述第一金属薄膜层32的材料可以根据实际需要而改变。
在制作所述第二无机薄膜层的步骤S5之前,将制作完成的涂覆有所述第二金属薄膜层34的有机发光二极管显示装置经过等离子体处理所述第二金属薄膜层34背离有机薄膜层33一侧的表面。
请结合图2和图1所示,步骤S6为制作第二无机薄膜层,在所述第二金属薄膜层34上制备一层第二无机薄膜层35,所述第二无机薄膜层35完全包覆所述第二金属薄膜层34。具体地讲,首先将所述第二金属薄膜层34置于原子层沉积设备的真空反应腔体中,用等离子体处理以提高其表面活性;通过原子层沉积技术在所述第二金属薄膜层34上制备所述第二无机薄膜层35,所述第二无机薄膜层35完全包覆所述第二金属薄膜层34,所述第二无机薄膜层35具有5-11介电常数,其包括无机金属氧化物薄膜或无机金属氮化物薄膜,具体包括Al2O3、ZrO、HfO或SiNx;所述第二无机薄膜层35的厚度范围为0.02-0.05um。可见,在本实施例中,所述第二无机薄膜层35与所述第一无机薄膜层31的成分相同。
如图6所示,为以氧化铝薄膜作为所述第一无机薄膜层31为例测试所述第一无机薄膜层31的介电性能,即对利用原子层沉积技术获取的氧化铝薄膜的介电性能进行测试。获得的氧化铝薄膜其经椭偏仪检测为20nm,通过逐渐增加薄膜两端的电压值,以检测薄膜的电流密度变化。确认其极端电压密度为8.7MV/cm,具有良好的介电性质。
本发明的优点在于,提供一种有机发光二极管显示装置及其制作方法,通过在无机薄膜层与有机薄膜层之间设置金属薄膜层,使封装层整体较为轻薄,可以有效改善有机薄膜层和无机薄膜层间的结合力,并避免单独使用无机膜层和金属膜层的缺陷,提高其稳定性,保证具有良好的水氧阻隔性能和抗弯折能力,满足柔性电子封装技术的要求。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种有机发光二极管显示装置,其中,包括
    阵列基板;
    发光层,位于所述阵列基板上;以及
    封装层,位于所述发光层背离所述阵列基板一侧;
    其中,所述封装层包括
    第一无机薄膜层;
    第一金属薄膜层,位于所述第一无机薄膜层上;
    有机薄膜层,位于所述第一金属薄膜层上;
    第二金属薄膜层,位于所述有机薄膜层上;以及
    第二无机薄膜层位于所述第二金属薄膜层上。
  2. 根据权利要求1所述的有机发光二极管显示装置,其中,所述第一无机薄膜层和所述第二无机薄膜层通过原子层沉积方式制备。
  3. 根据权利要求1所述的有机发光二极管显示装置,其中,所述第一金属薄膜层和所述第二金属薄膜层的材料包括铝。
  4. 根据权利要求1所述的有机发光二极管显示装置,其中,所述第一金属薄膜层和所述第二金属薄膜层的厚度范围为50-150nm。
  5. 根据权利要求1所述的有机发光二极管显示装置,其中,所述有机薄膜层内包括掺杂颗粒,所述掺杂颗粒包括干燥剂颗粒和偶联剂。
  6. 一种如权利要求1所述有机发光二极管显示装置的制作方法,包括以下步骤:
    制作有机发光二极管,其为提供一阵列基板,在所述阵列基板上制作发光层,所述阵列基板及所述发光层形成有机发光二极管;
    制作第一无机薄膜层,其为在所述有机发光二极管的发光层背离所述阵列基板的一侧的表面上通过原子层沉积方式制备第一无机薄膜层;
    制作第一金属薄膜层,其为在所述第一无机薄膜层上制备第一金属薄膜层;
    制作有机薄膜层,其为在所述第一金属薄膜层的背离所述第一无机薄膜层一侧的表面上制备有机薄膜层;
    制作第二金属薄膜层,其为在所述有机薄膜层上制备一层第二金属薄膜层;
    制作第二无机薄膜层,其为在所述第二金属薄膜层上过原子层沉积方式制备一层第二无机薄膜层,所述第二无机薄膜层完全包覆所述第二金属薄膜层。
  7. 根据权利要求6所述的有机发光二极管显示装置的制作方法,其中,
    在制作所述第一金属薄膜层的步骤前,还包括,将所述制作完成的覆盖有第一无机薄膜层的有机发光二极管显示装置经过等离子体处理所述第一无机金属膜层的表面。
  8. 根据权利要求6所述的有机发光二极管显示装置的制作方法,其中,
    在制作所述有机薄膜层的步骤中,包括,通过旋涂的方法将掺杂有干燥剂颗粒和偶联剂有机溶液涂覆在所述第一金属薄膜层背离所述无机金属一侧的表面上。
  9. 根据权利要求6所述的有机发光二极管显示装置的制作方法,其中,
    在制作所述第二无机薄膜层的步骤之前,将制作完成的涂覆有所述第二金属薄膜层的有机发光二极管显示装置经过等离子体处理所述第二金属薄膜层背离有机薄膜层一侧的表面。
  10. 根据权利要求6所述的有机发光二极管显示装置的制作方法,其中,
    所述第一金属薄膜层、第二金属薄膜层均采用原子沉积方法制备,所述第一金属薄膜层、第二金属薄膜层的厚度均为50-150nm。
PCT/CN2019/102016 2019-04-30 2019-08-22 有机发光二极管显示装置及其制作方法 WO2020220523A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/615,394 US20200411794A1 (en) 2019-04-30 2019-08-22 Organic light emitting diode display device and method of fabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910361105.2 2019-04-30
CN201910361105.2A CN110061150A (zh) 2019-04-30 2019-04-30 有机发光二极管显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2020220523A1 true WO2020220523A1 (zh) 2020-11-05

Family

ID=67321816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102016 WO2020220523A1 (zh) 2019-04-30 2019-08-22 有机发光二极管显示装置及其制作方法

Country Status (3)

Country Link
US (1) US20200411794A1 (zh)
CN (1) CN110061150A (zh)
WO (1) WO2020220523A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061150A (zh) * 2019-04-30 2019-07-26 武汉华星光电半导体显示技术有限公司 有机发光二极管显示装置及其制作方法
CN111129349A (zh) * 2019-12-26 2020-05-08 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN113629107B (zh) * 2021-07-19 2023-08-22 深圳市华星光电半导体显示技术有限公司 显示面板的制作方法、显示面板和显示装置
CN115117221A (zh) * 2022-06-28 2022-09-27 Tcl华星光电技术有限公司 显示面板及拼接显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304685A (zh) * 2015-11-30 2016-02-03 上海天马微电子有限公司 一种显示面板及其制作方法
CN106935726A (zh) * 2017-02-28 2017-07-07 深圳市华星光电技术有限公司 有机电致发光显示装置及其制作方法
CN110061150A (zh) * 2019-04-30 2019-07-26 武汉华星光电半导体显示技术有限公司 有机发光二极管显示装置及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302014B (zh) * 2017-07-17 2020-06-05 上海天马有机发光显示技术有限公司 一种有机发光显示面板,其显示装置及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304685A (zh) * 2015-11-30 2016-02-03 上海天马微电子有限公司 一种显示面板及其制作方法
CN106935726A (zh) * 2017-02-28 2017-07-07 深圳市华星光电技术有限公司 有机电致发光显示装置及其制作方法
CN110061150A (zh) * 2019-04-30 2019-07-26 武汉华星光电半导体显示技术有限公司 有机发光二极管显示装置及其制作方法

Also Published As

Publication number Publication date
CN110061150A (zh) 2019-07-26
US20200411794A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2020220523A1 (zh) 有机发光二极管显示装置及其制作方法
KR101385262B1 (ko) 무기 그레이디드 장벽 필름 및 그 제조 방법들
US9799854B2 (en) Multilayer film for encapsulating oxygen and/or moisture sensitive electronic devices
WO2018133147A1 (zh) Oled封装方法与oled封装结构
CN102437288A (zh) 有机电致发光器件的封装结构
WO2020206980A1 (zh) 柔性oled显示装置及制备方法
KR20090091556A (ko) 산소와 수분 투과의 차단 및 가스 배리어 특성 향상을 위한유/무기 복합 박막 보호층 및 그의 제조방법
WO2016208116A1 (ja) 二次電池の製造方法
WO2020083394A1 (zh) 电致发光器件、其制备方法及纳米晶墨水
JP2015103389A (ja) 有機el素子
Grover et al. Multilayer thin film encapsulation for organic light emitting diodes
JP4249519B2 (ja) ガスバリア性積層材の製造方法
JP5748069B2 (ja) ゲッター層を有する有機電界発光表示装置の製造方法
TW201721812A (zh) 複合阻障層及其製造方法
JP2007269957A (ja) ガスバリア性フィルムとその製造方法、およびそれを用いた画像表示素子
Minakata et al. 16.4: Fully R2R‐Processed Flexible OLEDs for Lighting
JP6903872B2 (ja) ガスバリアフィルム積層体の製造方法
JP6303835B2 (ja) 電子デバイス
US20210288275A1 (en) Flexible substrate, manufacturing method thereof, and organic light emitting display panel
CN103855316B (zh) 一种有机电致发光器件及其制备方法
JP2016171038A (ja) 電子デバイスの製造方法
WO2020134249A1 (zh) 封装薄膜和发光器件的封装方法以及发光装置
CN103855320A (zh) 一种有机电致发光器件及其制备方法
CN110943180A (zh) 一种柔性oled器件封装结构及其封装方法
JP2013020888A (ja) 封止膜形成方法、リチウム二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927547

Country of ref document: EP

Kind code of ref document: A1