WO2018133147A1 - Oled封装方法与oled封装结构 - Google Patents

Oled封装方法与oled封装结构 Download PDF

Info

Publication number
WO2018133147A1
WO2018133147A1 PCT/CN2017/073728 CN2017073728W WO2018133147A1 WO 2018133147 A1 WO2018133147 A1 WO 2018133147A1 CN 2017073728 W CN2017073728 W CN 2017073728W WO 2018133147 A1 WO2018133147 A1 WO 2018133147A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant
inorganic layer
layer
organic layer
oled
Prior art date
Application number
PCT/CN2017/073728
Other languages
English (en)
French (fr)
Inventor
李文杰
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/509,196 priority Critical patent/US10181579B2/en
Publication of WO2018133147A1 publication Critical patent/WO2018133147A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an OLED packaging method and an OLED package structure.
  • OLED Organic Light Emitting Display
  • OLED has self-illumination, low driving voltage, high luminous efficiency, short response time, high definition and contrast ratio, near 180° viewing angle, wide temperature range, and flexible display.
  • a large-area full-color display and many other advantages have been recognized by the industry as the most promising display device.
  • OLED can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor matrix addressing.
  • PMOLED passive matrix OLED
  • AMOLED active matrix OLED
  • the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
  • the OLED device generally includes a substrate, an anode disposed on the substrate, a hole injection layer disposed on the anode, a hole transport layer disposed on the hole injection layer, and a light-emitting layer disposed on the hole transport layer.
  • the principle of illumination of OLED devices is that semiconductor materials and organic luminescent materials are driven by electric fields, causing luminescence by carrier injection and recombination.
  • an OLED device generally uses an indium tin oxide (ITO) electrode and a metal electrode as anodes and cathodes of the device, respectively.
  • ITO indium tin oxide
  • electrons and holes are injected from the cathode and the anode to the electron transport layer and the hole transport layer, respectively.
  • the electrons and holes migrate to the light-emitting layer through the electron transport layer and the hole transport layer, respectively, and meet in the light-emitting layer to form excitons and excite the light-emitting molecules, and the latter emits visible light through radiation relaxation.
  • the luminescent materials in OLED devices are usually polymers or small organic molecules.
  • the cathode materials are usually active metals with low work function such as magnesium and aluminum. These luminescent materials and cathode materials are very sensitive to water vapor and oxygen, and water/oxygen permeation.
  • the life of the OLED device is greatly reduced.
  • the OLED device In order to meet the requirements of the commercialization and stability of the OLED device, the OLED device has a very high requirement for the package effect, and the OLED device is required to have a service life of at least 10 4 hours or more.
  • the rate is less than 10 -6 g/m 2 /day, and the oxygen permeability is less than 10 -6 cc/m 2 /day (1 atm). Therefore, the package is in a very important position in the fabrication of OLED devices, which affects the yield of the product.
  • the traditional packaging technology includes: (1) cover plate encapsulation technology: coating the glass/metal on the package glass/metal with a UV-curable frame sealant, or a sealant and a desiccant (Dam&Fill) A relatively closed environment to isolate water and oxygen from entering; (2) Laser encapsulation technology: coating glass glue on the package glass, volatilizing the solvent to become glass powder, and after using the vapor deposition substrate and the package cover pair, use laser to melt Glass powder achieves bonding.
  • cover plate encapsulation technology coating the glass/metal on the package glass/metal with a UV-curable frame sealant, or a sealant and a desiccant (Dam&Fill) A relatively closed environment to isolate water and oxygen from entering;
  • Laser encapsulation technology coating glass glue on the package glass, volatilizing the solvent to become glass powder, and after using the vapor deposition substrate and the package cover pair, use laser to melt Glass powder achieves bonding.
  • the above conventional packaging technology can achieve an effective water/oxy
  • TFE Thin Film Encapsulation
  • the inorganic layer (the main component is silicon nitride, silicon oxide or aluminum oxide) is an effective barrier for water/oxygen, but some pinholes are generated during the preparation of the inorganic layer (Pinholes) Or a foreign matter (Particle) defect; and the organic layer (including some high molecular polymers, silicon-containing organic substances, resins, etc.) functions to cover defects of the inorganic layer, and can release stress between the inorganic layers to achieve planarization.
  • the organic layer including some high molecular polymers, silicon-containing organic substances, resins, etc.
  • a commonly used thin film encapsulation structure includes a plurality of inorganic layers 200 and a plurality of organic layers 300 alternately disposed on the OLED device 100 , the multilayer inorganic layer 200 and the plurality of organic layers 300 having the same area.
  • the advantage of the thin film encapsulation structure is that the preparation process is simple, and the deposition of the multi-layer inorganic layer 200 can be completed by a single mask, but the deposited inorganic layer 200 does not completely cover the organic layer 300, and the organic layer 300 can be terminated at the end. Contact with air provides moisture into the passage, which destroys the packaging.
  • another thin film encapsulation structure shown in FIG.
  • An object of the present invention is to provide an OLED packaging method capable of improving packaging effects. Save production costs.
  • Another object of the present invention is to provide an OLED package structure with good packaging effect and low production cost.
  • the present invention first provides an OLED packaging method, including the following steps:
  • Step 1 providing a substrate, on which an OLED device is formed
  • Step 2 forming a first frame seal on the substrate substrate around the OLED device, and curing the first sealant, the first sealant having a height greater than that of the OLED device height;
  • Step 3 forming a first inorganic layer on the OLED device, the first sealant and the base substrate, the first inorganic layer covering the OLED device and the first sealant, and the area of the first inorganic layer An area larger than a region enclosed by the first sealant in a horizontal direction;
  • Step 4 forming a first organic layer in a region of the first inorganic layer located inside the first sealant, and curing the first organic layer;
  • Step 5 forming a second inorganic layer on the first organic layer and the first inorganic layer, the second inorganic layer covering the first organic layer, and an area of the second inorganic layer is larger than the first The area of the organic layer.
  • the height of the first sealant is 3 ⁇ m to 20 ⁇ m, and the width of the first sealant is 0.1 mm to 5 mm;
  • the distance between the inner edge of the first sealant and the edge of the OLED device is 1 mm to 10 mm;
  • the composition of the first sealant includes at least one of a silicone resin and an acryl resin.
  • the distance between the edge of the first inorganic layer and the second inorganic layer and the outer edge of the first sealant in the horizontal direction is 50 ⁇ m to 2000 ⁇ m;
  • the thickness of the first inorganic layer and the second inorganic layer are respectively 100 nm to 1 ⁇ m;
  • the components of the first inorganic layer and the second inorganic layer respectively comprise at least one of an oxide of silicon, a nitride of silicon, and an oxide of aluminum;
  • the preparation methods of the first inorganic layer and the second inorganic layer respectively include at least one of plasma enhanced chemical vapor deposition, atomic layer deposition, and magnetron sputtering.
  • the first organic layer has a thickness of 500 nm to 5 ⁇ m;
  • composition of the first organic layer includes at least one of a silicone resin and polymethyl methacrylate
  • the method of preparing the first organic layer includes at least one of screen printing, spin coating, inkjet printing, and cast film formation.
  • the OLED packaging method further includes: step 6, forming at least one package unit on the second inorganic layer, the package unit comprising a second sealant and an area disposed inside the second sealant a second organic layer inside, and a third inorganic layer covering the second organic layer and the second sealant.
  • the present invention also provides an OLED package structure, comprising: a base substrate, an OLED device disposed on the base substrate, and a first sealant disposed on the base substrate and located around the OLED device a first inorganic layer on the OLED device, the first sealant and the base substrate, a first organic layer disposed on a region of the first inorganic layer located inside the first sealant, and a first organic layer disposed on the first inorganic layer The first organic layer and the second inorganic layer on the first inorganic layer;
  • the height of the first sealant is greater than the height of the OLED device; the first inorganic layer covers the OLED device and the first sealant, and the area of the first inorganic layer is larger than the first sealant An area of a region enclosed in the horizontal direction; the second inorganic layer covers the first organic layer, and an area of the second inorganic layer is larger than an area of the first organic layer.
  • the height of the first sealant is 3 ⁇ m to 20 ⁇ m, and the width of the first sealant is 0.1 mm to 5 mm;
  • the distance between the inner edge of the first sealant and the edge of the OLED device is 1 mm to 10 mm;
  • the composition of the first sealant includes at least one of a silicone resin and an acryl resin.
  • the distance between the edge of the first inorganic layer and the second inorganic layer and the outer edge of the first sealant in the horizontal direction is 50 ⁇ m to 2000 ⁇ m;
  • the thickness of the first inorganic layer and the second inorganic layer are respectively 100 nm to 1 ⁇ m;
  • the components of the first inorganic layer and the second inorganic layer respectively include at least one of an oxide of silicon, a nitride of silicon, and an oxide of aluminum.
  • the first organic layer has a thickness of 500 nm to 5 ⁇ m;
  • the composition of the first organic layer includes at least one of a silicone resin and polymethyl methacrylate.
  • the OLED package structure further includes: at least one package unit disposed on the second inorganic layer, the package unit includes a second sealant disposed in an area inside the second sealant a second organic layer, and a third inorganic layer covering the second organic layer and the second sealant.
  • the present invention also provides an OLED package structure, comprising: a base substrate, an OLED device disposed on the base substrate, and a first sealant disposed on the base substrate and located around the OLED device a first inorganic layer on the OLED device, the first sealant and the base substrate, a first organic layer disposed on a region of the first inorganic layer located inside the first sealant, and a first organic layer disposed on the first inorganic layer The first organic layer and the second inorganic layer on the first inorganic layer;
  • the height of the first sealant is greater than the height of the OLED device; the first inorganic layer covers the OLED device and the first sealant, and the area of the first inorganic layer is larger than the first sealant An area of a region enclosed in a horizontal direction; the second inorganic layer covers the first organic layer, and an area of the second inorganic layer is larger than an area of the first organic layer;
  • the height of the first sealant is 3 ⁇ m to 20 ⁇ m, and the width of the first sealant is 0.1 mm to 5 mm;
  • the distance between the inner edge of the first sealant and the edge of the OLED device is 1 mm to 10 mm;
  • composition of the first sealant comprises at least one of a silicone resin and an acryl resin
  • the distance between the edge of the first inorganic layer and the second inorganic layer and the outer edge of the first sealant in the horizontal direction is 50 ⁇ m to 2000 ⁇ m;
  • the thickness of the first inorganic layer and the second inorganic layer are respectively 100 nm to 1 ⁇ m;
  • the components of the first inorganic layer and the second inorganic layer respectively include at least one of an oxide of silicon, a nitride of silicon, and an oxide of aluminum.
  • the OLED packaging method provided by the present invention combines the sealant encapsulation technology and the thin film encapsulation technology, and the size of the organic layer can be limited by using a frame glue to encircle the organic layer, thereby ensuring each The organic layer is completely covered by the inorganic layer above it to improve the encapsulation effect.
  • a plurality of inorganic layers can be prepared by using a set of mask plates, which reduces the number of mask plates used and saves production costs.
  • the invention provides an OLED package structure, which combines a sealant encapsulation structure and a film encapsulation structure.
  • the size of the organic layer can be limited to ensure that each layer of the organic layer is The inorganic layer above is completely covered, and the encapsulation effect is good.
  • a plurality of inorganic layers can be prepared by using a set of mask plates, and the production cost is low.
  • FIG. 1 is a cross-sectional view showing a conventional thin film package structure
  • FIG. 2 is a cross-sectional view showing another conventional thin film package structure
  • FIG. 3 is a flow chart of an OLED packaging method of the present invention.
  • step 1 of the OLED packaging method of the present invention is a schematic diagram of step 1 of the OLED packaging method of the present invention.
  • step 2 of the OLED packaging method of the present invention is a schematic diagram of step 2 of the OLED packaging method of the present invention.
  • FIG. 6 is a schematic diagram of step 3 of the OLED packaging method of the present invention.
  • step 4 of the OLED packaging method of the present invention is a schematic diagram of step 4 of the OLED packaging method of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing a step 5 of the OLED packaging method of the present invention and a first embodiment of the OLED package structure of the present invention
  • FIG. 9 is a schematic cross-sectional view showing a step 6 of the OLED packaging method of the present invention and a second embodiment of the OLED package structure of the present invention.
  • the present invention provides an OLED packaging method, including the following steps:
  • Step 1 As shown in FIG. 4, a base substrate 10 is provided on which an OLED device 20 is formed.
  • the base substrate 10 is a TFT substrate.
  • Step 2 as shown in FIG. 5, a first sealant 31 is formed on the base substrate 10 around the OLED device 20, and the first sealant 31 is cured, the first The height of the sealant 31 is greater than the height of the OLED device 20.
  • the height of the first sealant 31 is 3 ⁇ m to 20 ⁇ m, and the width of the first sealant 31 is 0.1 mm to 5 mm.
  • a distance between an inner edge of the first sealant 31 and an edge of the OLED device 20 is 1 mm to 10 mm.
  • the composition of the first sealant 31 includes at least one of a silicone resin and an acrylic resin.
  • the curing manner of the first sealant 31 includes at least one of heat curing and UV curing.
  • the curing mode of the first sealant 31 is UV curing.
  • Step 3 as shown in FIG. 6, forming a first inorganic layer 41 on the OLED device 20, the first sealant 31, and the base substrate 10, the first inorganic layer 41 covering the OLED device 20 and the first
  • the sealant 31 has an area larger than an area of the first frame seal 31 in a horizontal direction.
  • a distance between an edge of the first inorganic layer 41 and an outer edge of the first sealant 31 is 50 ⁇ m to 2000 ⁇ m.
  • the first inorganic layer 41 has a thickness of 100 nm to 1 ⁇ m.
  • the method for preparing the first inorganic layer 41 includes plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD), and magnetron sputtering (Sputtering). At least one.
  • PECVD plasma enhanced chemical vapor deposition
  • ALD atomic layer deposition
  • Sputtering magnetron sputtering
  • the composition of the first inorganic layer 41 includes at least one of an oxide of silicon (Si), a nitride of silicon, and an oxide of aluminum (Al).
  • Step 4 as shown in FIG. 7, a first organic layer 51 is formed on the first inorganic layer 41 in a region inside the first sealant 31, and the first organic layer 51 is cured.
  • the first sealant 31 functions as a barrier against overflow, and limits the size of the first organic layer 51, ensuring that the subsequently fabricated second inorganic layer 42 can be completely completed.
  • the first organic layer 51 is covered to improve the packaging effect.
  • the first organic layer 51 has a thickness of 500 nm to 5 ⁇ m.
  • the preparation method of the first organic layer 51 includes at least one of screen printing, spin coating, inkjet printing, and cast film formation.
  • the composition of the first organic layer 51 is an organic resin.
  • the composition of the first organic layer 51 includes at least one of a silicone resin and polymethyl methacrylate.
  • the curing manner of the first organic layer 51 includes at least one of heat curing and UV curing.
  • the first organic layer 51 is cured by heat curing.
  • Step 5 as shown in FIG. 8, a second inorganic layer 42 is formed on the first organic layer 51 and the first inorganic layer 41, the second inorganic layer 42 covers the first organic layer 51, and the The area of the second inorganic layer 42 is larger than the area of the first organic layer 51.
  • the distance between the edge of the second inorganic layer 42 and the outer edge of the first sealant 31 in the horizontal direction is 50 ⁇ m to 2000 ⁇ m.
  • the second inorganic layer 42 has a thickness of 100 nm to 1 ⁇ m.
  • the method for preparing the second inorganic layer 42 includes at least one of plasma enhanced chemical vapor deposition, atomic layer deposition, and magnetron sputtering.
  • the composition of the second inorganic layer 42 includes at least one of an oxide of silicon, a nitride of silicon, and an oxide of aluminum.
  • the second inorganic layer 42 and the first inorganic layer 41 can be prepared by using the same mask, thereby reducing the number of masks used and saving production costs.
  • the OLED packaging method of the present invention may further include:
  • Step 6 as shown in FIG. 9 at least one package unit 60 is formed on the second inorganic layer 42 .
  • the package unit 60 includes a second sealant 32 and is disposed in an area inside the second sealant 32 .
  • the area of the third inorganic layer 43 is larger than the area of the area surrounded by the second sealant 32 in the horizontal direction.
  • the second sealant 32 is located at the periphery of the first sealant 31 in the horizontal direction.
  • the horizontal distance between the inner edge of the second sealant 32 and the edge of the OLED device 20 in the at least one package unit 60 is gradually increased from the upward direction of the base substrate 10.
  • the height of the second sealant 32 is 3 ⁇ m to 20 ⁇ m, and the width of the second sealant 32 is 0.1 mm to 5 mm.
  • the distance between the inner edge of the second sealant 32 and the edge of the OLED device 20 in the horizontal direction is 1 mm to 10 mm.
  • the composition of the second sealant 32 includes at least one of a silicone resin and an acryl resin.
  • the curing manner of the second sealant 32 includes at least one of heat curing and UV curing.
  • the curing mode of the second sealant 32 is UV curing.
  • the third inorganic layer 43 has a thickness of 100 nm to 1 ⁇ m.
  • the method for preparing the third inorganic layer 43 includes at least one of plasma enhanced chemical vapor deposition, atomic layer deposition, and magnetron sputtering.
  • the composition of the third inorganic layer 43 includes at least one of an oxide of silicon, a nitride of silicon, and an oxide of aluminum.
  • the second organic layer 52 has a thickness of 500 nm to 5 ⁇ m.
  • the preparation method of the second organic layer 52 includes at least one of screen printing, spin coating, inkjet printing, and cast film formation.
  • the component of the second organic layer 52 is an organic resin.
  • the composition of the second organic layer 52 comprises at least one of a silicone resin and polymethyl methacrylate.
  • the curing mode of the second organic layer 52 includes at least one of heat curing and UV curing.
  • the second organic layer 52 is cured by heat curing.
  • the third inorganic layer 43 can be prepared by using the same mask plate as the first inorganic layer 41 and the second inorganic layer 42 to reduce the number of masks used and save production costs.
  • Steps 1 to 5 of the OLED packaging method of the present invention are described in detail below in conjunction with two preferred embodiments.
  • Step 1 As shown in FIG. 4, a base substrate 10 is provided on which an OLED device 20 is formed.
  • Step 2 As shown in FIG. 5, a first sealant 31 is formed on the base substrate 10 around the OLED device 20, and the first sealant 31 is cured.
  • the height of the first sealant 31 is 3 ⁇ m to 6 ⁇ m; the width of the first sealant 31 is 0.1 mm to 3 mm;
  • the distance between the inner edge of the first sealant 31 and the edge of the OLED device 20 is 1.0 mm to 1.5 mm;
  • the main component of the first sealant 31 is an acrylic resin
  • the curing mode of the first sealant 31 is UV curing.
  • the energy density of the UV light is 3000 mJ/cm 2 to 5000 mJ/cm 2
  • the UV irradiation time is 30 s to 100 s.
  • Step 3 as shown in FIG. 6, forming a first inorganic layer 41 on the base substrate 10 and the OLED device 20, the first inorganic layer 41 covering the OLED device 20 and the first sealant 31, and
  • the area of the first inorganic layer 41 is larger than the area of the area surrounded by the first sealant 31 in the horizontal direction.
  • the main component of the first inorganic layer 41 is a nitride of silicon
  • the preparation method of the first inorganic layer 41 is plasma enhanced chemical vapor deposition; the process parameters of the plasma enhanced chemical vapor deposition are: using silyl (SiH 4 ) and ammonia (NH 3 ) as reaction gases, The purity of silane and ammonia is more than 99.99%, the auxiliary ionized gas is argon (Ar) (purity is 99.99%), the RF power is 10W-500W, the deposition chamber pressure is 10Pa ⁇ 20Pa, and the deposition rate is 3nm/s. ⁇ 20nm / s, deposition time 20min ⁇ 60min.
  • the process parameters of the plasma enhanced chemical vapor deposition are: using silyl (SiH 4 ) and ammonia (NH 3 ) as reaction gases, The purity of silane and ammonia is more than 99.99%, the auxiliary ionized gas is argon (Ar) (purity is 99.99%), the RF power is 10W-500W, the deposition chamber pressure is 10P
  • Step 4 as shown in FIG. 7, a first organic layer 51 is formed on the first inorganic layer 41 in a region inside the first sealant 31, and the first organic layer 51 is cured.
  • the preparation method of the first organic layer 51 is inkjet printing
  • the main component of the first organic layer 51 is a silicone resin, preferably, the viscosity of the silicone resin is 10 cps to 20 cps;
  • the first organic layer 51 has a thickness of 500 nm to 800 nm.
  • Step 5 as shown in FIG. 8, a second inorganic layer 42 is formed on the first organic layer 51 and the first inorganic layer 41, the second inorganic layer 42 covers the first organic layer 51, and the The area of the second inorganic layer 42 is larger than the area of the first organic layer 51.
  • Step 1 As shown in FIG. 4, a base substrate 10 is provided on which an OLED device 20 is formed.
  • Step 2 As shown in FIG. 5, a first sealant 31 is formed on the base substrate 10 around the OLED device 20, and the first sealant 31 is cured.
  • the height of the first sealant 31 is 10 ⁇ m to 15 ⁇ m; the width of the first sealant 31 is 1mm to 2mm;
  • the distance between the inner edge of the first sealant 31 and the edge of the OLED device 20 is 1.5 mm to 2 mm;
  • the main component of the first sealant 31 is a silicone resin
  • the curing mode of the first sealant 31 is thermal curing, and the conditions of thermal curing are: heating temperature 60 ° C to 90 ° C, heating time 30 min to 100 min.
  • Step 3 as shown in FIG. 6, forming a first inorganic layer 41 on the base substrate 10 and the OLED device 20, the first inorganic layer 41 covering the OLED device 20 and the first sealant 31, and
  • the area of the first inorganic layer 41 is larger than the area of the area surrounded by the first sealant 31 in the horizontal direction.
  • the main component of the first inorganic layer 41 is a nitride of silicon
  • the preparation method of the first inorganic layer 41 is plasma enhanced chemical vapor deposition; the process parameters of the plasma enhanced chemical vapor deposition are: using silyl (SiH 4 ) and ammonia (NH 3 ) as reaction gases, The purity of silane and ammonia is more than 99.99%, the auxiliary ionized gas is argon (Ar) (purity is 99.99%), the RF power is 10W-500W, the deposition chamber pressure is 10Pa ⁇ 20Pa, and the deposition rate is 3nm/s. ⁇ 20nm / s, deposition time 20min ⁇ 60min.
  • the process parameters of the plasma enhanced chemical vapor deposition are: using silyl (SiH 4 ) and ammonia (NH 3 ) as reaction gases, The purity of silane and ammonia is more than 99.99%, the auxiliary ionized gas is argon (Ar) (purity is 99.99%), the RF power is 10W-500W, the deposition chamber pressure is 10P
  • Step 4 as shown in FIG. 7, a first organic layer 51 is formed on the first inorganic layer 41 in a region inside the first sealant 31, and the first organic layer 51 is cured.
  • the first organic layer 51 is prepared by screen printing; the main component of the first organic layer 51 is polymethyl methacrylate;
  • the first organic layer 51 has a thickness of 1 ⁇ m to 2 ⁇ m;
  • the curing mode of the first organic layer 51 is thermal curing, and the conditions of thermal curing are: heating temperature 60 ° C to 90 ° C, heating time 30 min to 90 min.
  • Step 5 as shown in FIG. 8, a second inorganic layer 42 is formed on the first organic layer 51 and the first inorganic layer 41, the second inorganic layer 42 covers the first organic layer 51, and the The area of the second inorganic layer 42 is larger than the area of the first organic layer 51.
  • the above OLED packaging method combines the sealant encapsulation technology and the thin film encapsulation technology.
  • the size of the organic layer can be limited to ensure that each organic layer is completely covered by the inorganic layer above it. Covering, improving the packaging effect, at the same time, multiple inorganic layers can be prepared by using a set of mask plates, reducing the number of mask plates used and saving production costs.
  • the present invention further provides an OLED package structure, including: a substrate substrate 10 , an OLED device 20 disposed on the substrate substrate 10 , and a substrate 10 disposed on the substrate OLED 10 .
  • a first sealant 31 disposed on the OLED device 20, a first inorganic layer 41 disposed on the OLED device 20, the first sealant 31, and the base substrate 10 a first organic layer 51 in a region of the first inorganic layer 41 located inside the first sealant 31, and a second inorganic layer disposed on the first organic layer 51 and the first inorganic layer 41 42;
  • the height of the first sealant 31 is greater than the height of the OLED device 20; the first inorganic layer 41 covers the OLED device 20 and the first sealant 31, and the area of the first inorganic layer 41 is larger than An area of a region surrounded by the first sealant 31 in the horizontal direction; the second inorganic layer 42 covers the first organic layer 51, and an area of the second inorganic layer 42 is larger than the first organic layer The area of 51.
  • the base substrate 10 is a TFT substrate.
  • the height of the first sealant 31 is 3 ⁇ m to 20 ⁇ m, and the width of the first sealant 31 is 0.1 mm to 5 mm.
  • a distance between an inner edge of the first sealant 31 and an edge of the OLED device 20 is 1 mm to 10 mm.
  • the composition of the first sealant 31 includes at least one of a silicone resin and an acrylic resin.
  • the distance between the edge of the first inorganic layer 41 and the second inorganic layer 42 and the outer edge of the first sealant 31 in the horizontal direction is 50 ⁇ m to 2000 ⁇ m.
  • the thickness of the first inorganic layer 41 and the second inorganic layer 42 is 100 nm to 1 ⁇ m, respectively.
  • the components of the first inorganic layer 41 and the second inorganic layer 42 respectively include at least one of an oxide of silicon, a nitride of silicon, and an oxide of aluminum.
  • the material, size, and projection position of the second inorganic layer 42 on the base substrate 10 are the same as those of the first inorganic layer 41.
  • the first organic layer 51 has a thickness of 500 nm to 5 ⁇ m.
  • the composition of the first organic layer 51 is an organic resin.
  • the composition of the first organic layer 51 includes at least one of a silicone resin and polymethyl methacrylate.
  • the OLED package structure may further include: at least one package unit 60 disposed on the second inorganic layer 42 , the package unit 60 includes a second sealant 32 , disposed at the A second organic layer 52 in a region inside the second sealant 32 and a third inorganic layer 43 covering the second organic layer 52 and the second sealant 32 are described.
  • the area of the third inorganic layer 43 is larger than the area of the area surrounded by the second sealant 32 in the horizontal direction.
  • the second sealant 32 is located at the periphery of the first sealant 31 in the horizontal direction.
  • the horizontal distance between the inner edge of the second sealant 32 and the edge of the OLED device 20 in the at least one package unit 60 is upward from the substrate substrate 10 in the upward direction. Gradually increase.
  • the height of the second sealant 32 is 3 ⁇ m to 20 ⁇ m, and the width of the second sealant 32 is 0.1 mm to 5 mm.
  • the distance between the inner edge of the second sealant 32 and the edge of the OLED device 20 in the horizontal direction is 1 mm to 10 mm.
  • the composition of the second sealant 32 includes at least one of a silicone resin and an acryl resin.
  • the composition of the third inorganic layer 43 includes at least one of an oxide of silicon, a nitride of silicon, and an oxide of aluminum.
  • the third inorganic layer 43 has a thickness of 100 nm to 1 ⁇ m.
  • the material, size, and projection position of the third inorganic layer 43 on the base substrate 10 are the same as those of the first inorganic layer 41 and the second inorganic layer 42.
  • the component of the second organic layer 52 is an organic resin.
  • the composition of the second organic layer 52 comprises at least one of a silicone resin and polymethyl methacrylate.
  • the second organic layer 52 has a thickness of 500 nm to 5 ⁇ m.
  • the above OLED package structure combines the sealant package structure and the film package structure.
  • the size of the organic layer can be limited to ensure that each layer of the organic layer is completely covered by the inorganic layer above it. Covering, packaging effect is good, at the same time, a plurality of inorganic layers can be prepared by using a set of mask plates, and the production cost is low.
  • the present invention provides an OLED packaging method and an OLED package structure.
  • the OLED packaging method of the invention combines the sealant encapsulation technology and the thin film encapsulation technology, and the size of the organic layer can be limited by using a frame glue to encircle the organic layer to ensure that each layer of the organic layer is inorganic above it. The layer is completely covered to improve the packaging effect.
  • multiple inorganic layers can be prepared by using a set of mask plates, which reduces the number of mask plates used and saves production costs.
  • the OLED package structure of the invention combines the sealant package structure and the film package structure, and the size of the organic layer can be limited by using the frame glue to encircle the organic layer, thereby ensuring that each layer of the organic layer is inorganic above it. The layer is completely covered, and the encapsulation effect is good. At the same time, a plurality of inorganic layers can be prepared by using a set of mask plates, and the production cost is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管显示装置(OLED)封装方法与OLED封装结构,结合了框胶封装技术和薄膜封装技术,通过采用框胶(31、32)对有机层(51、52)进行围堰,可对有机层(51、52)的尺寸进行限制,保证每一层有机层(51、52)均被其上方的无机层(42、43)完全覆盖,提高了封装效果,同时,多个无机层(41、42、43)可以采用一套掩膜板进行制备,减少了掩膜板的使用数量,节约了生产成本。

Description

OLED封装方法与OLED封装结构 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED封装方法与OLED封装结构。
背景技术
有机发光二极管显示装置(Organic Light Emitting Display,OLED)具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
OLED器件通常包括:基板、设于基板上的阳极、设于阳极上的空穴注入层、设于空穴注入层上的空穴传输层、设于空穴传输层上的发光层、设于发光层上的电子传输层、设于电子传输层上的电子注入层、及设于电子注入层上的阴极。OLED器件的发光原理为半导体材料和有机发光材料在电场驱动下,通过载流子注入和复合导致发光。具体的,OLED器件通常采用氧化铟锡(ITO)电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,电子和空穴分别经过电子传输层和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
柔性OLED是OLED器件的重要研究方向。OLED器件中的发光材料通常为聚合物或有机小分子,阴极材料通常为功函数较低的活泼金属如镁铝等,这些发光材料与阴极材料对水汽和氧气非常敏感,水/氧的渗透会大大缩减OLED器件的寿命,为了达到商业化对于OLED器件的使用寿命和稳定性的要求,OLED器件对于封装效果的要求非常高,通常要求OLED器件的使用寿命至少在104小时以上,水汽透过率小于10-6g/m2/day,氧气穿透率小于10-6cc/m2/day(1atm),因此封装在OLED器件的制作中处于非常 重要的位置,是影响产品良率的关键因素之一。
传统的封装技术包括:(1)盖板封装技术:在封装玻璃/金属上涂覆可以紫外(UV)固化的框胶、或框胶及填充干燥剂(Dam&Fill)后经过固化后为发光器件提供一个相对密闭的环境,从而隔绝水氧进入;(2)镭射封装技术:在封装玻璃上涂布玻璃胶,挥发溶剂后成为玻璃粉,待蒸镀基板和封装盖板对组后,使用激光熔化玻璃粉实现黏合。以上传统的封装技术可以达到有效的水/氧阻隔效果,但是会增加器件的厚度和重量,因此不利于制备柔性OLED。
近些年,应运而生的薄膜封装(Thin Film Encapsulation,TFE)技术巧妙地克服了传统封装技术的弊端,不需要使用封装盖板和框胶来封装OLED器件,而是采用薄膜封装替代传统的玻璃封装,可以实现大尺寸器件的封装、并且使得器件轻薄化。所谓的薄膜封装,即在基板的OLED区表面形成无机-有机交替层,以沉积薄膜的方式来阻隔水氧。在薄膜封装结构中,无机层(主要成分为硅的氮化物、硅的氧化物或铝的氧化物)为水/氧的有效阻挡层,但是在制备无机层过程中会产生一些针孔(Pinholes)或异物(Particle)缺陷;而有机层(包括一些高分子聚合物、含硅有机物、树脂等)的作用就是覆盖无机层的缺陷,并且可以释放无机层之间的应力,实现平坦化。
常用的薄膜封装结构如图1所示,包括在OLED器件100上交替设置的多层无机层200与多层有机层300,所述多层无机层200与多层有机层300的面积相等,该薄膜封装结构的优点为制备工艺简单,只需单套掩膜板(Mask)即可完成多层无机层200的沉积,但是所沉积的无机层200没有完全覆盖有机层300,有机层300末端能够接触到空气,提供水汽进入通道,从而破坏封装效果。因此出现了另一种薄膜封装结构(如图2所示),其包括在OLED器件100’上交替设置的多层无机层200’与多层有机层300’,该薄膜封装结构要求每一层有机层300’上方的无机层200’的面积均大于该有机层300’的面积,从而实现每一层有机层300’都能够完全被其上方的无机层200’覆盖,避免水汽从有机层300’进入器件内部,然而,由于从OLED器件100’向上的方向上所述多层无机层200’的面积逐渐增大,因此需要多套掩膜板来完成多层无机层200’的沉积,制备过程中需要多次调换掩膜板,工艺复杂,容易引入不可控因素。
发明内容
本发明的目的在于提供一种OLED封装方法,能够提高封装效果,同 时节约生产成本。
本发明的目的还在于提供一种OLED封装结构,封装效果好,且生产成本低。
为实现上述目的,本发明首先提供一种OLED封装方法,包括如下步骤:
步骤1、提供一衬底基板,在所述衬底基板上形成OLED器件;
步骤2、在所述衬底基板上于所述OLED器件的周围形成一圈第一框胶,并对所述第一框胶进行固化,所述第一框胶的高度大于所述OLED器件的高度;
步骤3、在所述OLED器件、第一框胶及衬底基板上形成第一无机层,所述第一无机层覆盖所述OLED器件与第一框胶,且所述第一无机层的面积大于所述第一框胶在水平方向上围成的区域的面积;
步骤4、在所述第一无机层上位于所述第一框胶内侧的区域内形成第一有机层,并对所述第一有机层进行固化;
步骤5、在所述第一有机层与第一无机层上形成第二无机层,所述第二无机层覆盖所述第一有机层,且所述第二无机层的面积大于所述第一有机层的面积。
所述第一框胶的高度为3μm~20μm,所述第一框胶的宽度为0.1mm~5mm;
所述第一框胶的内侧边缘与所述OLED器件边缘之间的距离为1mm~10mm;
所述第一框胶的成分包括硅树脂与亚克力树脂中的至少一种。
在水平方向上所述第一无机层及第二无机层的边缘与所述第一框胶的外侧边缘之间的距离均为50μm~2000μm;
所述第一无机层与第二无机层的厚度分别为100nm~1μm;
所述第一无机层与第二无机层的成分分别包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种;
所述第一无机层与第二无机层的制备方法分别包括等离子体增强化学气相沉积、原子层沉积与磁控溅射中的至少一种。
所述第一有机层的厚度为500nm~5μm;
所述第一有机层的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种;
所述第一有机层的制备方法包括丝网印刷、旋涂、喷墨打印、及流延成膜中的至少一种。
可选的,所述OLED封装方法还包括:步骤6、在所述第二无机层上形成至少一个封装单元,所述封装单元包括第二框胶、设于所述第二框胶内侧的区域内的第二有机层、以及覆盖所述第二有机层与第二框胶的第三无机层。
本发明还提供一种OLED封装结构,包括:衬底基板、设于所述衬底基板上的OLED器件、设于所述衬底基板上且位于所述OLED器件周围的第一框胶、设于所述OLED器件、第一框胶及衬底基板上的第一无机层、设于所述第一无机层上位于所述第一框胶内侧的区域内的第一有机层、以及设于所述第一有机层与第一无机层上的第二无机层;
所述第一框胶的高度大于所述OLED器件的高度;所述第一无机层覆盖所述OLED器件与第一框胶,且所述第一无机层的面积大于所述第一框胶在水平方向上围成的区域的面积;所述第二无机层覆盖所述第一有机层,且所述第二无机层的面积大于所述第一有机层的面积。
所述第一框胶的高度为3μm~20μm,所述第一框胶的宽度为0.1mm~5mm;
所述第一框胶的内侧边缘与所述OLED器件边缘之间的距离为1mm~10mm;
所述第一框胶的成分包括硅树脂与亚克力树脂中的至少一种。
在水平方向上所述第一无机层及第二无机层的边缘与所述第一框胶的外侧边缘之间的距离均为50μm~2000μm;
所述第一无机层与第二无机层的厚度分别为100nm~1μm;
所述第一无机层与第二无机层的成分分别包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种。
所述第一有机层的厚度为500nm~5μm;
所述第一有机层的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种。
可选的,所述OLED封装结构还包括:设于所述第二无机层上的至少一个封装单元,所述封装单元包括第二框胶、设于所述第二框胶内侧的区域内的第二有机层、以及覆盖所述第二有机层与第二框胶的第三无机层。
本发明还提供一种OLED封装结构,包括:衬底基板、设于所述衬底基板上的OLED器件、设于所述衬底基板上且位于所述OLED器件周围的第一框胶、设于所述OLED器件、第一框胶及衬底基板上的第一无机层、设于所述第一无机层上位于所述第一框胶内侧的区域内的第一有机层、以及设于所述第一有机层与第一无机层上的第二无机层;
所述第一框胶的高度大于所述OLED器件的高度;所述第一无机层覆盖所述OLED器件与第一框胶,且所述第一无机层的面积大于所述第一框胶在水平方向上围成的区域的面积;所述第二无机层覆盖所述第一有机层,且所述第二无机层的面积大于所述第一有机层的面积;
其中,所述第一框胶的高度为3μm~20μm,所述第一框胶的宽度为0.1mm~5mm;
所述第一框胶的内侧边缘与所述OLED器件边缘之间的距离为1mm~10mm;
所述第一框胶的成分包括硅树脂与亚克力树脂中的至少一种;
其中,在水平方向上所述第一无机层及第二无机层的边缘与所述第一框胶的外侧边缘之间的距离均为50μm~2000μm;
所述第一无机层与第二无机层的厚度分别为100nm~1μm;
所述第一无机层与第二无机层的成分分别包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种。
本发明的有益效果:本发明提供的一种OLED封装方法,结合了框胶封装技术和薄膜封装技术,通过采用框胶对有机层进行围堰,可对有机层的尺寸进行限制,保证每一层有机层均被其上方的无机层完全覆盖,提高封装效果,同时,多个无机层可以采用一套掩膜板进行制备,减少了掩膜板的使用数量,节约生产成本。本发明提供的一种OLED封装结构,结合了框胶封装结构和薄膜封装结构,通过采用框胶对有机层进行围堰,可对有机层的尺寸进行限制,保证每一层有机层均被其上方的无机层完全覆盖,封装效果好,同时,多个无机层可以采用一套掩膜板进行制备,生产成本低。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为现有的一种薄膜封装结构的剖视示意图;
图2为现有的另一种薄膜封装结构的剖视示意图;
图3为本发明的OLED封装方法的流程图;
图4为本发明的OLED封装方法的步骤1的示意图;
图5为本发明的OLED封装方法的步骤2的示意图;
图6为本发明的OLED封装方法的步骤3的示意图;
图7为本发明的OLED封装方法的步骤4的示意图;
图8为本发明的OLED封装方法的步骤5的示意图暨本发明的OLED封装结构的第一实施例的剖视示意图;
图9为本发明的OLED封装方法的步骤6的示意图暨本发明的OLED封装结构的第二实施例的剖视示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图3,本发明提供一种OLED封装方法,包括如下步骤:
步骤1、如图4所示,提供一衬底基板10,在所述衬底基板10上形成OLED器件20。
具体的,所述衬底基板10为TFT基板。
步骤2、如图5所示,在所述衬底基板10上于所述OLED器件20的周围形成一圈第一框胶31,并对所述第一框胶31进行固化,所述第一框胶31的高度大于所述OLED器件20的高度。
具体的,所述第一框胶31的高度为3μm~20μm,所述第一框胶31的宽度为0.1mm~5mm。
具体的,所述第一框胶31的内侧边缘与所述OLED器件20边缘之间的距离为1mm~10mm。
具体的,所述第一框胶31的成分包括硅树脂与亚克力树脂中的至少一种。
具体的,所述第一框胶31的固化方式包括热固化与UV固化中的至少一种,优选的,所述第一框胶31的固化方式为UV固化。
步骤3、如图6所示,在所述OLED器件20、第一框胶31及衬底基板10上形成第一无机层41,所述第一无机层41覆盖所述OLED器件20与第一框胶31,且所述第一无机层41的面积大于所述第一框胶31在水平方向上围成的区域的面积。
具体的,所述第一无机层41的边缘与所述第一框胶31的外侧边缘之间的距离为50μm~2000μm。
具体的,所述第一无机层41的厚度为100nm~1μm。
具体的,所述第一无机层41的制备方法包括等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)、原子层沉积(Atomic Layer Deposition,ALD)与磁控溅射(Sputtering)中的至少一种。
具体的,所述第一无机层41的成分包括硅(Si)的氧化物、硅的氮化物、及铝(Al)的氧化物中的至少一种。
步骤4、如图7所示,在所述第一无机层41上位于所述第一框胶31内侧的区域内形成第一有机层51,并对所述第一有机层51进行固化。
在第一有机层51的制备过程中,所述第一框胶31起到围堰防溢流的作用,并且限制了第一有机层51的尺寸,保证后续制作的第二无机层42能够完全覆盖该第一有机层51,提高封装效果。
具体的,所述第一有机层51的厚度为500nm~5μm。
具体的,所述第一有机层51的制备方法包括丝网印刷、旋涂、喷墨打印、及流延成膜中的至少一种。
具体的,所述第一有机层51的成分为有机树脂。优选的,所述第一有机层51的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种。
具体的,所述第一有机层51的固化方式包括热固化与UV固化中的至少一种,优选的,所述第一有机层51的固化方式为热固化。
步骤5、如图8所示,在所述第一有机层51与第一无机层41上形成第二无机层42,所述第二无机层42覆盖所述第一有机层51,且所述第二无机层42的面积大于所述第一有机层51的面积。
具体的,在水平方向上所述第二无机层42的边缘与所述第一框胶31的外侧边缘之间的距离为50μm~2000μm。
具体的,所述第二无机层42的厚度为100nm~1μm。
具体的,所述第二无机层42的制备方法包括等离子体增强化学气相沉积、原子层沉积与磁控溅射中的至少一种。
具体的,所述第二无机层42的成分包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种。
具体的,所述第二无机层42与第一无机层41可以采用相同的掩膜板制备完成,从而减少掩膜板的使用数量,节约生产成本。
可选的,本发明的OLED封装方法还可以包括:
步骤6、如图9所示,在所述第二无机层42上形成至少一个封装单元60,所述封装单元60包括第二框胶32、设于所述第二框胶32内侧的区域内的第二有机层52、以及覆盖所述第二有机层52与第二框胶32的第三无机层43。
具体的,所述第三无机层43的面积大于所述第二框胶32在水平方向上围成的区域的面积。
优选的,在水平方向上所述第二框胶32位于所述第一框胶31的外围。
优选的,从所述衬底基板10向上的方向上,所述至少一个封装单元60中的第二框胶32的内侧边缘与所述OLED器件20边缘之间的水平距离逐渐增大。
具体的,所述第二框胶32的高度为3μm~20μm,所述第二框胶32的宽度为0.1mm~5mm。
具体的,在水平方向上所述第二框胶32的内侧边缘与所述OLED器件20边缘之间的距离为1mm~10mm。
具体的,所述第二框胶32的成分包括硅树脂与亚克力树脂中的至少一种。
具体的,所述第二框胶32的固化方式包括热固化与UV固化中的至少一种,优选的,所述第二框胶32的固化方式为UV固化。
具体的,所述第三无机层43的厚度为100nm~1μm。
具体的,所述第三无机层43的制备方法包括等离子体增强化学气相沉积、原子层沉积与磁控溅射中的至少一种。
具体的,所述第三无机层43的成分包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种。
具体的,所述第二有机层52的厚度为500nm~5μm。
具体的,所述第二有机层52的制备方法包括丝网印刷、旋涂、喷墨打印、及流延成膜中的至少一种。
具体的,所述第二有机层52的成分为有机树脂。优选的,所述第二有机层52的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种。
具体的,所述第二有机层52的固化方式包括热固化与UV固化中的至少一种,优选的,所述第二有机层52的固化方式为热固化。
具体的,所述第三无机层43可以与所述第一无机层41及第二无机层42采用相同的掩膜板制备完成,从而减少掩膜板的使用数量,节约生产成本。
以下结合两个优选实施例对本发明的OLED封装方法的步骤1至步骤5进行详细阐述。
实例一:
步骤1、如图4所示,提供一衬底基板10,在所述衬底基板10上形成OLED器件20。
步骤2、如图5所示,在所述衬底基板10上于所述OLED器件20的周围形成一圈第一框胶31,并对所述第一框胶31进行固化。
所述第一框胶31的高度为3μm~6μm;所述第一框胶31的宽度为0.1mm~3mm;
所述第一框胶31的内侧边缘与所述OLED器件20边缘之间的距离为1.0mm~1.5mm;
所述第一框胶31的主要成分为亚克力树脂;
所述第一框胶31的固化方式为UV固化,UV固化过程中,UV光的能量密度为3000mJ/cm2~5000mJ/cm2,UV照射时间为30s~100s。
步骤3、如图6所示,在所述衬底基板10及OLED器件20上形成第一无机层41,所述第一无机层41覆盖所述OLED器件20与第一框胶31,且所述第一无机层41的面积大于所述第一框胶31在水平方向上围成的区域的面积。
所述第一无机层41的主要成分为硅的氮化物;
所述第一无机层41的制备方法为等离子体增强化学气相沉积;所述等离子体增强化学气相沉积的工艺参数为:以甲硅烷(SiH4)和氨气(NH3)为反应气体,甲硅烷和氨气的纯度均大于99.99%,辅助电离气体为氩气(Ar)(纯度为99.99%),射频电源功率为10W~500W,沉积腔的压强为10Pa~20Pa,沉积速率为3nm/s~20nm/s,沉积时间20min~60min。
步骤4、如图7所示,在所述第一无机层41上位于所述第一框胶31内侧的区域内形成第一有机层51,并对所述第一有机层51进行固化。
所述第一有机层51的制备方法为喷墨打印;
所述第一有机层51的主要成分为硅树脂,优选的,所述硅树脂的粘度为10cps~20cps;
所述第一有机层51的厚度为500nm~800nm。
步骤5、如图8所示,在所述第一有机层51与第一无机层41上形成第二无机层42,所述第二无机层42覆盖所述第一有机层51,且所述第二无机层42的面积大于所述第一有机层51的面积。
实例二:
步骤1、如图4所示,提供一衬底基板10,在所述衬底基板10上形成OLED器件20。
步骤2、如图5所示,在所述衬底基板10上于所述OLED器件20的周围形成一圈第一框胶31,并对所述第一框胶31进行固化。
所述第一框胶31的高度为10μm~15μm;所述第一框胶31的宽度为 1mm~2mm;
所述第一框胶31的内侧边缘与所述OLED器件20边缘之间的距离为1.5mm~2mm;
所述第一框胶31的主要成分为硅树脂;
所述第一框胶31的固化方式为热固化,热固化的条件为:加热温度60℃~90℃,加热时间30min~100min。
步骤3、如图6所示,在所述衬底基板10及OLED器件20上形成第一无机层41,所述第一无机层41覆盖所述OLED器件20与第一框胶31,且所述第一无机层41的面积大于所述第一框胶31在水平方向上围成的区域的面积。
所述第一无机层41的主要成分为硅的氮化物;
所述第一无机层41的制备方法为等离子体增强化学气相沉积;所述等离子体增强化学气相沉积的工艺参数为:以甲硅烷(SiH4)和氨气(NH3)为反应气体,甲硅烷和氨气的纯度均大于99.99%,辅助电离气体为氩气(Ar)(纯度为99.99%),射频电源功率为10W~500W,沉积腔的压强为10Pa~20Pa,沉积速率为3nm/s~20nm/s,沉积时间20min~60min。
步骤4、如图7所示,在所述第一无机层41上位于所述第一框胶31内侧的区域内形成第一有机层51,并对所述第一有机层51进行固化。
所述第一有机层51的制备方法为丝网印刷;所述第一有机层51的主要成分为聚甲基丙烯酸甲酯;
所述第一有机层51的厚度为1μm~2μm;
所述第一有机层51的固化方式为热固化,热固化的条件为:加热温度60℃~90℃,加热时间30min~90min。
步骤5、如图8所示,在所述第一有机层51与第一无机层41上形成第二无机层42,所述第二无机层42覆盖所述第一有机层51,且所述第二无机层42的面积大于所述第一有机层51的面积。
上述OLED封装方法,结合了框胶封装技术和薄膜封装技术,通过采用框胶对有机层进行围堰,可对有机层的尺寸进行限制,保证每一层有机层均被其上方的无机层完全覆盖,提高封装效果,同时,多个无机层可以采用一套掩膜板进行制备,减少了掩膜板的使用数量,节约生产成本。
请参阅图8,基于上述OLED封装方法,本发明还提供一种OLED封装结构,包括:衬底基板10、设于所述衬底基板10上的OLED器件20、设于所述衬底基板10上且位于所述OLED器件20周围的第一框胶31、设于所述OLED器件20、第一框胶31及衬底基板10上的第一无机层41、设 于所述第一无机层41上位于所述第一框胶31内侧的区域内的第一有机层51、以及设于所述第一有机层51与第一无机层41上的第二无机层42;
所述第一框胶31的高度大于所述OLED器件20的高度;所述第一无机层41覆盖所述OLED器件20与第一框胶31,且所述第一无机层41的面积大于所述第一框胶31在水平方向上围成的区域的面积;所述第二无机层42覆盖所述第一有机层51,且所述第二无机层42的面积大于所述第一有机层51的面积。
具体的,所述衬底基板10为TFT基板。
具体的,所述第一框胶31的高度为3μm~20μm,所述第一框胶31的宽度为0.1mm~5mm。
具体的,所述第一框胶31的内侧边缘与所述OLED器件20边缘之间的距离为1mm~10mm。
具体的,所述第一框胶31的成分包括硅树脂与亚克力树脂中的至少一种。
具体的,在水平方向上所述第一无机层41及第二无机层42的边缘与所述第一框胶31的外侧边缘之间的距离均为50μm~2000μm。
具体的,所述第一无机层41与第二无机层42的厚度分别为100nm~1μm。
具体的,所述第一无机层41与第二无机层42的成分分别包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种。
优选的,所述第二无机层42的材料、尺寸及在衬底基板10上的投影位置与所述第一无机层41相同。
具体的,所述第一有机层51的厚度为500nm~5μm。
具体的,所述第一有机层51的成分为有机树脂。优选的,所述第一有机层51的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种。
请参阅图9,可选的,所述OLED封装结构还可以包括:设于所述第二无机层42上的至少一个封装单元60,所述封装单元60包括第二框胶32、设于所述第二框胶32内侧的区域内的第二有机层52、以及覆盖所述第二有机层52与第二框胶32的第三无机层43。
具体的,所述第三无机层43的面积大于所述第二框胶32在水平方向上围成的区域的面积。
优选的,在水平方向上所述第二框胶32位于所述第一框胶31的外围。
优选的,从所述衬底基板10向上的方向上,所述至少一个封装单元60中的第二框胶32的内侧边缘与所述OLED器件20边缘之间的水平距离逐 渐增大。
优选的,所述第二框胶32的高度为3μm~20μm,所述第二框胶32的宽度为0.1mm~5mm。
具体的,在水平方向上所述第二框胶32的内侧边缘与所述OLED器件20边缘之间的距离为1mm~10mm。
具体的,所述第二框胶32的成分包括硅树脂与亚克力树脂中的至少一种。
具体的,所述第三无机层43的成分包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种。
具体的,所述第三无机层43的厚度为100nm~1μm。
优选的,所述第三无机层43的材料、尺寸及在衬底基板10上的投影位置与所述第一无机层41、及第二无机层42相同。
具体的,所述第二有机层52的成分为有机树脂。优选的,所述第二有机层52的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种。
具体的,所述第二有机层52的厚度为500nm~5μm。
上述OLED封装结构,结合了框胶封装结构和薄膜封装结构,通过采用框胶对有机层进行围堰,可对有机层的尺寸进行限制,保证每一层有机层均被其上方的无机层完全覆盖,封装效果好,同时,多个无机层可以采用一套掩膜板进行制备,生产成本低。
综上所述,本发明提供一种OLED封装方法与OLED封装结构。本发明的OLED封装方法,结合了框胶封装技术和薄膜封装技术,通过采用框胶对有机层进行围堰,可对有机层的尺寸进行限制,保证每一层有机层均被其上方的无机层完全覆盖,提高封装效果,同时,多个无机层可以采用一套掩膜板进行制备,减少了掩膜板的使用数量,节约生产成本。本发明的OLED封装结构,结合了框胶封装结构和薄膜封装结构,通过采用框胶对有机层进行围堰,可对有机层的尺寸进行限制,保证每一层有机层均被其上方的无机层完全覆盖,封装效果好,同时,多个无机层可以采用一套掩膜板进行制备,生产成本低。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种OLED封装方法,包括如下步骤:
    步骤1、提供一衬底基板,在所述衬底基板上形成OLED器件;
    步骤2、在所述衬底基板上于所述OLED器件的周围形成一圈第一框胶,并对所述第一框胶进行固化,所述第一框胶的高度大于所述OLED器件的高度;
    步骤3、在所述OLED器件、第一框胶及衬底基板上形成第一无机层,所述第一无机层覆盖所述OLED器件与第一框胶,且所述第一无机层的面积大于所述第一框胶在水平方向上围成的区域的面积;
    步骤4、在所述第一无机层上位于所述第一框胶内侧的区域内形成第一有机层,并对所述第一有机层进行固化;
    步骤5、在所述第一有机层与第一无机层上形成第二无机层,所述第二无机层覆盖所述第一有机层,且所述第二无机层的面积大于所述第一有机层的面积。
  2. 如权利要求1所述的OLED封装方法,其中,所述第一框胶的高度为3μm~20μm,所述第一框胶的宽度为0.1mm~5mm;
    所述第一框胶的内侧边缘与所述OLED器件边缘之间的距离为1mm~10mm;
    所述第一框胶的成分包括硅树脂与亚克力树脂中的至少一种。
  3. 如权利要求1所述的OLED封装方法,其中,在水平方向上所述第一无机层及第二无机层的边缘与所述第一框胶的外侧边缘之间的距离均为50μm~2000μm;
    所述第一无机层与第二无机层的厚度分别为100nm~1μm;
    所述第一无机层与第二无机层的成分分别包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种;
    所述第一无机层与第二无机层的制备方法分别包括等离子体增强化学气相沉积、原子层沉积与磁控溅射中的至少一种。
  4. 如权利要求1所述的OLED封装方法,其中,所述第一有机层的厚度为500nm~5μm;
    所述第一有机层的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种;
    所述第一有机层的制备方法包括丝网印刷、旋涂、喷墨打印、及流延 成膜中的至少一种。
  5. 如权利要求1所述的OLED封装方法,还包括:步骤6、在所述第二无机层上形成至少一个封装单元,所述封装单元包括第二框胶、设于所述第二框胶内侧的区域内的第二有机层、以及覆盖所述第二有机层与第二框胶的第三无机层。
  6. 一种OLED封装结构,包括:衬底基板、设于所述衬底基板上的OLED器件、设于所述衬底基板上且位于所述OLED器件周围的第一框胶、设于所述OLED器件、第一框胶及衬底基板上的第一无机层、设于所述第一无机层上位于所述第一框胶内侧的区域内的第一有机层、以及设于所述第一有机层与第一无机层上的第二无机层;
    所述第一框胶的高度大于所述OLED器件的高度;所述第一无机层覆盖所述OLED器件与第一框胶,且所述第一无机层的面积大于所述第一框胶在水平方向上围成的区域的面积;所述第二无机层覆盖所述第一有机层,且所述第二无机层的面积大于所述第一有机层的面积。
  7. 如权利要求6所述的OLED封装结构,其中,所述第一框胶的高度为3μm~20μm,所述第一框胶的宽度为0.1mm~5mm;
    所述第一框胶的内侧边缘与所述OLED器件边缘之间的距离为1mm~10mm;
    所述第一框胶的成分包括硅树脂与亚克力树脂中的至少一种。
  8. 如权利要求6所述的OLED封装结构,其中,在水平方向上所述第一无机层及第二无机层的边缘与所述第一框胶的外侧边缘之间的距离均为50μm~2000μm;
    所述第一无机层与第二无机层的厚度分别为100nm~1μm;
    所述第一无机层与第二无机层的成分分别包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种。
  9. 如权利要求6所述的OLED封装结构,其中,所述第一有机层的厚度为500nm~5μm;
    所述第一有机层的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种。
  10. 如权利要求6所述的OLED封装结构,还包括:设于所述第二无机层上的至少一个封装单元,所述封装单元包括第二框胶、设于所述第二框胶内侧的区域内的第二有机层、以及覆盖所述第二有机层与第二框胶的第三无机层。
  11. 一种OLED封装结构,包括:衬底基板、设于所述衬底基板上的 OLED器件、设于所述衬底基板上且位于所述OLED器件周围的第一框胶、设于所述OLED器件、第一框胶及衬底基板上的第一无机层、设于所述第一无机层上位于所述第一框胶内侧的区域内的第一有机层、以及设于所述第一有机层与第一无机层上的第二无机层;
    所述第一框胶的高度大于所述OLED器件的高度;所述第一无机层覆盖所述OLED器件与第一框胶,且所述第一无机层的面积大于所述第一框胶在水平方向上围成的区域的面积;所述第二无机层覆盖所述第一有机层,且所述第二无机层的面积大于所述第一有机层的面积;
    其中,所述第一框胶的高度为3μm~20μm,所述第一框胶的宽度为0.1mm~5mm;
    所述第一框胶的内侧边缘与所述OLED器件边缘之间的距离为1mm~10mm;
    所述第一框胶的成分包括硅树脂与亚克力树脂中的至少一种;
    其中,在水平方向上所述第一无机层及第二无机层的边缘与所述第一框胶的外侧边缘之间的距离均为50μm~2000μm;
    所述第一无机层与第二无机层的厚度分别为100nm~1μm;
    所述第一无机层与第二无机层的成分分别包括硅的氧化物、硅的氮化物、及铝的氧化物中的至少一种。
  12. 如权利要求11所述的OLED封装结构,其中,所述第一有机层的厚度为500nm~5μm;
    所述第一有机层的成分包括硅树脂与聚甲基丙烯酸甲酯中的至少一种。
  13. 如权利要求11所述的OLED封装结构,还包括:设于所述第二无机层上的至少一个封装单元,所述封装单元包括第二框胶、设于所述第二框胶内侧的区域内的第二有机层、以及覆盖所述第二有机层与第二框胶的第三无机层。
PCT/CN2017/073728 2017-01-18 2017-02-16 Oled封装方法与oled封装结构 WO2018133147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/509,196 US10181579B2 (en) 2017-01-18 2017-02-16 Organic light-emitting diode (OLED) encapsulation methods and OLED encapsulation structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710036058.5 2017-01-18
CN201710036058.5A CN106684259B (zh) 2017-01-18 2017-01-18 Oled封装方法与oled封装结构

Publications (1)

Publication Number Publication Date
WO2018133147A1 true WO2018133147A1 (zh) 2018-07-26

Family

ID=58859214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073728 WO2018133147A1 (zh) 2017-01-18 2017-02-16 Oled封装方法与oled封装结构

Country Status (3)

Country Link
US (1) US10181579B2 (zh)
CN (1) CN106684259B (zh)
WO (1) WO2018133147A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570573A (en) * 2017-12-15 2019-07-31 Lg Display Co Ltd Lighting device and display apparatus

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110147B (zh) * 2018-01-08 2021-02-02 京东方科技集团股份有限公司 一种电致发光显示面板、其封装方法及显示装置
JP6983084B2 (ja) * 2018-02-07 2021-12-17 株式会社ジャパンディスプレイ 有機el表示装置
CN108365135A (zh) * 2018-02-11 2018-08-03 武汉华星光电半导体显示技术有限公司 Oled封装方法与oled封装结构
CN108511629A (zh) 2018-05-31 2018-09-07 京东方科技集团股份有限公司 Oled显示基板及其制作方法、显示装置
CN109065744B (zh) * 2018-07-10 2020-03-17 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其封装方法
CN109103343B (zh) * 2018-07-12 2020-06-16 武汉华星光电半导体显示技术有限公司 Oled显示面板封装构件及oled显示装置
CN109461823B (zh) * 2018-08-30 2020-11-10 昆山国显光电有限公司 封装结构及封装器件
CN109238940A (zh) * 2018-09-29 2019-01-18 汉能新材料科技有限公司 一种封装薄膜水汽透过率测试方法
CN111916473A (zh) * 2019-05-07 2020-11-10 上海和辉光电有限公司 薄膜封装器件及其制作方法
JP2021034261A (ja) * 2019-08-27 2021-03-01 株式会社ジャパンディスプレイ 表示装置
CN110649183A (zh) * 2019-09-02 2020-01-03 武汉华星光电半导体显示技术有限公司 一种显示面板的制作方法
CN110707242A (zh) 2019-09-02 2020-01-17 武汉华星光电半导体显示技术有限公司 一种显示面板的制作方法
CN111477656B (zh) * 2020-03-16 2023-01-31 福建华佳彩有限公司 一种amoled面板的胶层的加工方法
CN111948833A (zh) * 2020-08-14 2020-11-17 Tcl华星光电技术有限公司 三维立体显示装置及制造方法
CN113013352B (zh) * 2021-01-29 2023-07-21 固安翌光科技有限公司 一种薄膜封装结构及有机光电器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900681A (zh) * 2015-06-09 2015-09-09 上海天马有机发光显示技术有限公司 有机发光显示面板及其形成方法
US20150270231A1 (en) * 2009-09-15 2015-09-24 Industrial Technology Research Institute Package of environmental sensitive element
CN105304676A (zh) * 2015-09-22 2016-02-03 深圳市华星光电技术有限公司 柔性有机电致发光器件的封装结构、柔性显示装置
CN105895827A (zh) * 2016-06-28 2016-08-24 京东方科技集团股份有限公司 一种有机发光显示器件及其封装方法、显示装置
CN205789979U (zh) * 2016-05-30 2016-12-07 鄂尔多斯市源盛光电有限责任公司 一种有机发光显示器件面板、显示设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7696683B2 (en) * 2006-01-19 2010-04-13 Toppan Printing Co., Ltd. Organic electroluminescent element and the manufacturing method
KR20120065049A (ko) * 2010-12-10 2012-06-20 삼성모바일디스플레이주식회사 유기발광 표시장치 및 그 제조 방법
TWI515937B (zh) * 2013-05-15 2016-01-01 緯創資通股份有限公司 有機光電元件之封裝結構以及封裝方法
CN103972414A (zh) * 2014-04-29 2014-08-06 京东方科技集团股份有限公司 一种有机电致发光器件及其封装方法
US20160322603A1 (en) * 2015-04-30 2016-11-03 EverDisplay Optonics (Shanghai) Limited Display structure and manufacturing method of display device
CN104795509A (zh) * 2015-05-07 2015-07-22 京东方科技集团股份有限公司 一种oled器件的封装方法及封装结构、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150270231A1 (en) * 2009-09-15 2015-09-24 Industrial Technology Research Institute Package of environmental sensitive element
CN104900681A (zh) * 2015-06-09 2015-09-09 上海天马有机发光显示技术有限公司 有机发光显示面板及其形成方法
CN105304676A (zh) * 2015-09-22 2016-02-03 深圳市华星光电技术有限公司 柔性有机电致发光器件的封装结构、柔性显示装置
CN205789979U (zh) * 2016-05-30 2016-12-07 鄂尔多斯市源盛光电有限责任公司 一种有机发光显示器件面板、显示设备
CN105895827A (zh) * 2016-06-28 2016-08-24 京东方科技集团股份有限公司 一种有机发光显示器件及其封装方法、显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570573A (en) * 2017-12-15 2019-07-31 Lg Display Co Ltd Lighting device and display apparatus
GB2570573B (en) * 2017-12-15 2020-11-04 Lg Display Co Ltd Lighting device and display apparatus
US11038142B2 (en) 2017-12-15 2021-06-15 Lg Display Co., Ltd. Lighting device and display apparatus

Also Published As

Publication number Publication date
CN106684259A (zh) 2017-05-17
US10181579B2 (en) 2019-01-15
CN106684259B (zh) 2018-08-14
US20180233700A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018133147A1 (zh) Oled封装方法与oled封装结构
WO2018133146A1 (zh) Oled封装方法与oled封装结构
WO2019157814A1 (zh) Oled封装方法与oled封装结构
JP5837191B2 (ja) オプトエレクトロニクス素子のためのカプセル化構造及びオプトエレクトロニクス素子をカプセル化するための方法
WO2016101395A1 (zh) 柔性oled显示器件及其制造方法
WO2019085115A1 (zh) Oled封装方法与oled封装结构
CN208904069U (zh) 一种显示基板和显示装置
US20120080671A1 (en) Organic el display device and method for manufacturing the same
US10446790B2 (en) OLED encapsulating structure and manufacturing method thereof
WO2016086535A1 (zh) Oled封装结构及其封装方法
WO2015055029A1 (zh) Oled显示屏及制造方法、显示装置及填充胶的填充方法
WO2011001573A1 (ja) 有機el表示装置およびその製造方法
WO2017161628A1 (zh) Oled基板的封装方法与oled封装结构
WO2019200668A1 (zh) 一种oled的封装结构及封装方法
WO2019071703A1 (zh) Qled器件的封装方法及封装结构
TWI559589B (zh) 有機發光二極體之薄膜封裝
WO2012063445A1 (ja) 有機el表示装置およびその製造方法
WO2020199268A1 (zh) 一种oled封装结构及oled封装方法
WO2013027262A1 (ja) 有機発光パネル及びその製造方法
WO2013150713A1 (ja) 有機el表示装置およびその製造方法
WO2023103095A1 (zh) 显示面板及其制备方法、显示终端
JP2003272830A (ja) 電気素子封止方法、パッケージ及び表示素子
KR101649757B1 (ko) 유기전계발광소자 및 그 제조방법
JP6925425B2 (ja) Oledディスプレイのパッケージ方法、及びoledディスプレイ
KR20090120227A (ko) 유기발광소자 및 이의 제작 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15509196

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892396

Country of ref document: EP

Kind code of ref document: A1