WO2020134249A1 - 封装薄膜和发光器件的封装方法以及发光装置 - Google Patents

封装薄膜和发光器件的封装方法以及发光装置 Download PDF

Info

Publication number
WO2020134249A1
WO2020134249A1 PCT/CN2019/108098 CN2019108098W WO2020134249A1 WO 2020134249 A1 WO2020134249 A1 WO 2020134249A1 CN 2019108098 W CN2019108098 W CN 2019108098W WO 2020134249 A1 WO2020134249 A1 WO 2020134249A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
barrier layer
surfactant
emitting device
light
Prior art date
Application number
PCT/CN2019/108098
Other languages
English (en)
French (fr)
Inventor
王劲
曹蔚然
钱磊
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US17/419,672 priority Critical patent/US20230165037A1/en
Publication of WO2020134249A1 publication Critical patent/WO2020134249A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations

Definitions

  • the present application relates to the field of light-emitting technology, and in particular to a packaging film and a light-emitting device packaging method and a light-emitting device.
  • Electroluminescent devices are semiconductor light-emitting devices based on organic or inorganic materials. Because of their advantages such as self-luminescence, wide viewing angle, high contrast, low power consumption, fast response, energy saving and environmental protection, they are regarded as the next generation of lighting And display device.
  • the functional layer material in the electroluminescent device structure is susceptible to penetration by water, oxygen, etc., leading to rapid aging, the device needs to be effectively packaged in practical applications to increase the service life.
  • thin film packaging technology uses inorganic materials such as A1 2 0 3 , SiO, SiN, etc. on the surface of the metal top electrode through magnetic sputtering or vacuum deposition to isolate the device from the external environment for packaging purposes. Although these inorganic materials show good water and oxygen barrier properties, pore/linear defects may be generated on the surface of the deposited material, which affects the reliability of the device package.
  • the purpose of the embodiments of the present application is to provide a packaging film and a packaging method of a light emitting device and a light emitting device, aiming to solve the problem that the packaging film on the existing light emitting device is prone to hole/linear defects and affect the reliability of the device packaging Technical issues.
  • an encapsulating film in a first aspect, includes N laminating units, each of the laminating units is composed of a barrier layer and a surfactant layer that are sequentially stacked, and in the encapsulating film, The barrier layer and the surfactant layer are alternately adjacent to each other; wherein, N is an integer greater than or equal to 1.
  • the packaging film includes 1-10 of the stacking unit.
  • the material of the barrier layer is selected from at least one of transition metals and transition metal oxides.
  • the transition metal is selected from at least one of Al, Ta, Nb, Ti, Zr, and Hf; and/or,
  • the transition metal oxide is selected from at least one of A1203, Ta205, Nb205, Ti02, Zr02, and Hf02.
  • the material of the surfactant layer is selected from at least one of alkyl phosphate and alkyl phosphate salt.
  • the alkyl phosphate is selected from monododecyl phosphate, monotetradecyl phosphate, monohexadecyl phosphate, monooctadecyl phosphate At least one; and/or,
  • the alkyl phosphate salt is selected from at least one of transition metal-containing alkyl phosphate ester salts and alkyl phosphate ammonium salts.
  • the surface of the surfactant layer in the Nth stacking unit of the encapsulation film facing away from the barrier layer is provided with a cured adhesive layer.
  • the material of the cured adhesive layer is at least one selected from the group consisting of photocurable adhesives, thermally cured adhesives and anaerobic cured adhesives; and/or,
  • the thickness of the cured adhesive layer is 500 nm-50 mm.
  • each of the surfactant layers includes 1-10 surfactant monolayers.
  • a second aspect provides a method for packaging a light emitting device, including the following steps:
  • a barrier layer is prepared on the top electrode of the light emitting device, and a surfactant layer is prepared on the barrier layer, the barrier layer and the surfactant layer constitute a laminated unit; [0024] Repeating the preparation steps of the stacking unit to form N stacking units on the top electrode of the light emitting device; where N is an integer greater than or equal to 1.
  • the step of preparing a cured adhesive layer on the surfactant layer in the N stacked units is further included.
  • the step of preparing a surfactant layer on the barrier layer includes: coating an alkyl phosphate solution or alkyl phosphate salt solution on the surface of the barrier layer, after removing the solvent To obtain the surfactant layer.
  • the step of preparing a barrier layer on the top electrode of the light-emitting device includes: depositing at least one material of a transition metal and a transition metal oxide on the top electrode to obtain The barrier layer.
  • a light-emitting device including a bottom electrode, a top electrode, and a light-emitting layer between the bottom electrode and the top electrode, an encapsulation film is provided on the top electrode, the The encapsulation film includes N lamination units, and each of the lamination units is composed of a barrier layer and a surfactant layer that are sequentially stacked. In the encapsulation film, the barrier layer and the surfactant layer are alternately adjacent to each other, and The barrier layer in the first stacking unit is adjacent to the top electrode; where N is an integer greater than or equal to 1.
  • the encapsulating film includes 1-10 of the stacking unit; and/or,
  • the material of the barrier layer is selected from at least one of transition metals and transition metal oxides; and/or,
  • the material of the surfactant layer is at least one selected from alkyl phosphates and alkyl phosphate salts.
  • Each of the surfactant layers includes 1-10 surfactant monolayers.
  • the surface of the surfactant layer in the Nth stacking unit of the encapsulation film facing away from the barrier layer is provided with a cured adhesive layer.
  • the cured adhesive layer is stacked with the Nth stacking unit, or the cured adhesive layer covers the top electrode and the quantum dot light-emitting layer and extends to the bottom electrode edge.
  • the material of the cured adhesive layer is at least one selected from the group consisting of photocurable adhesives, thermally cured adhesives and anaerobic cured adhesives; and/or,
  • the thickness of the cured adhesive layer is 500nm-50mm
  • the beneficial effects of the encapsulating film provided by the embodiments of the present application are as follows: the barrier layer in the encapsulating film is used to block water and oxygen in the environment from entering the device, and at the same time, the surfactant in the surfactant layer contains a hydrophilic group Groups and hydrophobic groups, the hydrophilic group of the surfactant can be combined with the barrier layer to avoid the pore layer or linear defect diffusion of the barrier layer, and the hydrophobic group of the surfactant makes the surfactant layer show good hydrophobicity It is also compatible with other organic materials (such as cured glue).
  • the encapsulating film can further effectively block water, and encapsulating light-emitting devices with the encapsulating film can be effective. To reduce the corrosion of water and oxygen on the functional layer of the light-emitting device, and significantly improve the life of the light-emitting device.
  • a layer of packaging film is prepared on the top electrode of the light emitting device, the packaging film is N stacking units (each stacking unit is arranged by stacking The composite encapsulation film composed of a barrier layer and a surfactant layer).
  • the surfactant layer can further effectively block water.
  • Such a packaging method of a light-emitting device can be effective To reduce the corrosion of water and oxygen on the functional layer of the light-emitting device, and significantly improve the life of the light-emitting device.
  • the beneficial effects of the light-emitting device provided by the embodiments of the present application are as follows:
  • the top electrode of the light-emitting device is encapsulated with a packaging film unique to the embodiments of the present application.
  • the encapsulation film can effectively reduce the corrosion of water and oxygen on the functional layer of the light-emitting device, and significantly improve the life of the light-emitting device.
  • FIG. 1 is a schematic structural diagram of a packaging film according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a packaging film according to an embodiment of the present application.
  • FIG. 3 is a surfactant layer formed by an alkyl phosphate or an alkyl phosphate salt and a transition metal (M) or a transition metal oxide (MO) in a barrier layer in the embodiment of the present application to form a stable M- 0-P bond reacted Cheng
  • FIG. 4 is a flowchart of a light emitting device packaging method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a package structure of an electroluminescent device according to Example 1 of the present application.
  • FIG. 6 is a schematic diagram of a package structure of an electroluminescent device according to Example 2 of the present application.
  • the encapsulation film includes N lamination units, and each of the lamination units is composed of a barrier layer and a surfactant layer that are sequentially stacked.
  • the barrier layer and the surfactant layer are alternately adjacent to each other; wherein, N is an integer greater than or equal to 1.
  • the encapsulation film provided in the embodiments of the present application is a multi-layer structure composite encapsulation film for encapsulating a light emitting device, and includes N lamination units (each lamination unit is composed of a barrier layer and a surfactant layer that are sequentially laminated Composition), the barrier layer in the encapsulation film is used to block the water and oxygen in the environment from entering the device, and at the same time, the surfactant in the surfactant layer contains a hydrophilic group and a hydrophobic group, the hydrophilic group of the surfactant The group can be combined with the barrier layer to avoid the diffusion of pores or linear defects in the barrier layer, and the hydrophobic group of the surfactant makes the surfactant layer not only show good hydrophobicity, but also can be combined with other organic materials (such as curing glue) Affinity, therefore, on the basis of the barrier layer that blocks water and oxygen, the surfactant layer can further effectively block water, and encapsulating the light-emitting device with the
  • N 1-10, that is, the packaging film includes 1-10 of the stacking unit, that is, in the embodiment of the present application, the packaging film includes a barrier layer and a surface that are sequentially stacked An active agent layer; or, the encapsulating film includes a first barrier layer, a first surfactant layer, a second barrier layer, and a second surfactant layer stacked in this order; or, the encapsulating film includes The first barrier layer, the first surfactant layer, the second barrier layer, the second surfactant layer, the third barrier layer and the third surfactant layer, etc., are sequentially stacked
  • the packaging film can be formed including 1 0 stacked units.
  • the surface of the surfactant layer in the Nth stacking unit of the encapsulation film facing away from the barrier layer is provided with a cured adhesive layer.
  • the barrier layer in the first stacking unit is adjacent to the top electrode, and by providing a cured adhesive layer on the surface of the surfactant layer in the Nth stacked unit, the cured adhesive layer can be in contact with the surface
  • the affinity of the hydrophobic groups in the active agent further improves the sealing of the device.
  • the encapsulating film is based on a barrier layer that blocks water and oxygen, and the surfactant layer further effectively blocks water, and through the curing adhesive layer on the surfactant Further organic encapsulation treatment on the layer will eventually extend the path of water and oxygen infiltrating into the device, which can further improve the life of the light emitting device.
  • the material of the curing adhesive layer is at least one of photo-curing adhesive, thermal-curing adhesive and anaerobic curing adhesive.
  • the thickness of the barrier layer is 10nm-4mm; when the packaging film includes 2-10 lamination units, in order to make the packaging film not too thick, each layer The thickness of the barrier layer is 10 nm to 100 nm. Regardless of the number of surfactant layers, each of the surfactant layers may include 1-10 surfactant monomolecular layers; and the thickness of the cured adhesive layer is 500 nm-50 mm, preferably 500-nm- 20mm, more preferably In this range, not only the light transmittance of the encapsulation film is guaranteed, but also the performance of isolating water and oxygen can be considered.
  • the material of the barrier layer is selected from at least one of transition metals and transition metal oxides; specifically, the transition metal is selected from Al, Ta, Nb, Ti , At least one of Zr and Hf, the transition metal oxide is selected from at least one of A1 2 0 3 , Ta 2 0 5 , Nb 2 0 5 , TiO 2 , ZrO 2 fPHfO 2; the surface activity
  • the material of the agent layer is at least one selected from the group consisting of alkyl phosphates and alkyl phosphate salts; specifically, the alkyl phosphates are monododecyl phosphate, monotetradecyl phosphate, monodecyl At least one of hexaalkyl phosphate and monooctadecyl phosphate; the alkyl phosphate salt is selected from at least one of transition metal-containing alkyl phosphate ester salts and alkyl phosphate ammonium
  • alkyl phosphate esters/alkyl phosphate salts can form a self-assembled monomolecular film on the surface of metals or metal oxides, especially can form a stable surface on transition metals or transition metal oxides.
  • the M-0-P bond (M is a transition metal) plays a passivating role on the surface of the transition metal or transition metal oxide, and has a further effect of blocking water and oxygen from the barrier layer composed of the transition metal or transition metal oxide .
  • the reaction process is shown in Figure 3.
  • an embodiment of the present application also provides a method for packaging a light emitting device, as shown in FIG. 4, including the following steps:
  • S01 providing a light emitting device
  • S02 preparing a barrier layer on the top electrode of the light-emitting device, preparing a surfactant layer on the barrier layer, the barrier layer and the surfactant layer constitute a stacking unit;
  • S03 repeating the preparation step of the stacking unit to form N stacking units on the top electrode of the light emitting device; where N is an integer greater than or equal to 1.
  • a layer of encapsulation film is prepared on the top electrode of the light-emitting device, the encapsulation film is N stacking units (each stacking unit is composed of barrier layers and Surfactant package), in this encapsulation film, on the basis of the barrier layer that blocks water and oxygen, the surfactant layer can further effectively block water.
  • the packaging method of a light emitting device can effectively reduce water and oxygen
  • the erosion of the functional layer of the light emitting device significantly increases the life span of the light emitting device.
  • the step of preparing a surfactant layer on the barrier layer includes: coating an alkyl phosphate solution or an alkyl phosphate salt solution on the surface of the barrier layer, after removing the solvent To obtain the surfactant layer.
  • an alkyl phosphate solution or an alkyl phosphate salt solution There are various methods for removing the solvent, either natural air drying or vacuum drying.
  • static drying is used. Specifically, the static time is 1-100 h ; more specifically, the alkane The phosphoric acid ester solution or the alkyl phosphoric acid salt solution is coated on the surface of the barrier layer, and after the static treatment, the steps of solvent cleaning and drying are further included.
  • the alkyl phosphate ester is at least one of monododecyl phosphate ester, monotetradecyl phosphate ester, monohexadecyl phosphate ester, and monooctadecyl phosphate ester;
  • the base phosphate salt is selected from at least one of transition metal-containing alkyl phosphate ester salts and alkyl phosphate ammonium salts.
  • the step of preparing a barrier layer on the top electrode of the light emitting device includes: depositing at least one material of a transition metal and a transition metal oxide on the top electrode to obtain The barrier layer.
  • the transition metal is selected from at least one of Al, Ta, Nb, Ti, Zr, and H
  • the transition metal oxide is selected from A1 2 0 3 , Ta 2 0 5 , Nb 2 0 5 , TiO 2. At least one of ZrO 2 and HfO 2 .
  • the method includes the steps of preparing a cured adhesive layer on the surfactant layer in the N stacked units.
  • the prepared cured adhesive layer can be compatible with the hydrophobic group in the surfactant to further improve the sealing performance of the device. Therefore, on the basis of the barrier layer that blocks water and oxygen, the surfactant layer further effectively blocks the encapsulation film Water, and further organic encapsulation treatment on the surfactant layer through the cured adhesive layer, and finally extend the path of water and oxygen infiltration into the device, can further improve the life of the light emitting device.
  • a method for packaging an electroluminescent device including the following steps:
  • the barrier layer is prepared on the cathode by means of magnetron sputtering or vacuum evaporation;
  • the solvent of the alkyl phosphate or alkyl phosphate salt solution is an alcoholic organic solvent such as ethanol and isopropanol; the drying method is natural air drying or vacuum drying;
  • the above packaging method implemented in this application is suitable for packaging a rigid substrate or a flexible substrate, the packaging material is cheap, and it is easy to mass-produce.
  • an embodiment of the present application further provides a light-emitting device, including a bottom electrode, a top electrode, and a light-emitting layer between the bottom electrode and the top electrode, the top electrode is provided with an encapsulation film,
  • the encapsulation film includes N lamination units, and each of the lamination units is composed of a barrier layer and a surfactant layer that are sequentially stacked.
  • the barrier layer and the surfactant layer are alternately adjacent to each other, Moreover, the barrier layer in the first stacking unit is adjacent to the top electrode; where N is an integer greater than or equal to 1.
  • a packaging film unique to the embodiment of the present application is encapsulated on the top electrode.
  • the packaging film can effectively reduce the corrosion of water and oxygen on the functional layer of the light-emitting device, and significantly improve the life of the light-emitting device.
  • the surface of the surfactant layer in the Nth lamination unit of the encapsulation film facing away from the barrier layer is provided with a cured adhesive layer; wherein, the cured adhesive layer is laminated with the Nth lamination unit Set, or The cured adhesive layer covers the top electrode and the quantum dot light emitting layer and extends to the edge of the bottom electrode.
  • the encapsulation film can finally extend the path of water and oxygen penetrating into the device, and encapsulating the light-emitting device with the encapsulation film can effectively reduce the corrosion of water and oxygen on the functional layer of the light-emitting device, and significantly increase the lifespan of the light-emitting device.
  • the material of the cured adhesive layer is at least one selected from the group consisting of photocurable adhesive, thermally cured adhesive and anaerobic cured adhesive; the thickness of the cured adhesive layer is 500 nm-50 mm.
  • Each surfactant layer includes 1-10 surfactant monolayers.
  • the material of the barrier layer is selected from at least one of transition metal and transition metal oxide; the material of the surfactant layer is selected from at least one of alkyl phosphate and alkyl phosphate salt.
  • the bottom electrode is a conductive rigid substrate or a conductive flexible substrate.
  • the top electrode is a non-transparent metal top electrode (silver, aluminum, gold, etc.) or a transparent top electrode (dielectric layer/metal layer/dielectric layer, etc.).
  • a packaging structure of an electroluminescent device as shown in FIG. 5, the device includes an anode substrate 1, a functional layer 2 in order from bottom to top (may include a hole transport layer and a quantum layer stacked from bottom to top Dot light emitting layer and electron transport layer), cathode 3 and encapsulation layer; the encapsulation layer includes a barrier layer 4, a surfactant layer 5 and a cured adhesive layer 6 in this order from the bottom to the above.
  • the encapsulation layer seals the anode substrate 1, the functional layer 2 and the cathode 3 in a closed space
  • the barrier layer 4 is a Ti0 2 film with a thickness of 100 nm
  • the surfactant layer 5 is a single layer and a single twelve
  • the cured adhesive layer 6 is a photocurable adhesive layer with a thickness of 1 mm.
  • a packaging structure of an electroluminescent device as shown in FIG. 6, the device includes an anode substrate 1, a functional layer 2 in order from bottom to top (may include a hole transport layer and a quantum layer stacked from bottom to top Dot light emitting layer and electron transport layer), cathode 3 and encapsulation layer; the encapsulation layer includes a barrier layer 4, a surfactant layer 5 and a cured adhesive layer 6 in this order from bottom to top.
  • the encapsulation layer seals the anode substrate 1, the functional layer 2 and the cathode 3 in a closed space, and the cured adhesive layer 6 is coated on the edges of the barrier layer 4, the surfactant layer 5 and the anode substrate 1
  • the sealant is cured with a sealant
  • the functional layer 2, the cathode 3, the barrier layer 4 and the surfactant layer 5 are sealed in a closed space.
  • the barrier layer 4 200 nm of Ta 2 0 5 film comprising a layer having a thickness of 50 nm and a layer of SiO 2 film thickness
  • the surface active agent layer 5 is a double-layer film is stearyl phosphate molecules
  • the The cured adhesive layer 6 is a thermally cured adhesive layer with a thickness of 5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

一种封装薄膜和发光器件的封装方法以及发光装置。所述封装薄膜包括N个层叠单元,每个所述层叠单元由依次层叠设置的阻隔层(4)和表面活性剂层(5)组成,所述封装薄膜中,所述阻隔层(4)与所述表面活性剂层(5)交替相邻;其中,N为大于或等于1的整数。用该封装薄膜封装发光器件可有效地减少水氧对发光器件功能层(2)的侵蚀,提高发光器件的寿命。

Description

封装薄膜和发光器件的封装方法以及发光装置
[0001] 本申请要求于 2018年 12月 29日在中国专利局提交的、 申请号为 2018116350215 、 发明名称为“封装薄膜和发光器件的封装方法以及发光装置”的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
[0002] 本申请涉及发光技术领域, 具体涉及一种封装薄膜和发光器件的封装方法以及 发光装置。
背景技术
[0003] 电致发光器件, 是基于有机或无机材料的半导体发光器件, 因其具有自发光、 广视角、 高对比度、 低电耗、 响应速度快和节能环保等优点, 被视为下一代照 明和显示设备。
[0004] 由于电致发光器件结构中功能层材料易受到水、 氧等渗入而导致迅速老化, 实 际应用中需要对器件进行有效封装, 以提高使用寿命。 目前, 薄膜封装技术采 用 A1 20 3、 SiO ,、 SiN ,等无机材料通过磁溅射或真空沉积等方法设置在金属顶电 极表面, 将器件与外界环境隔绝以达到封装目的。 虽然这些无机材料显示出良 好的隔绝水氧的特性, 但沉积材料表面可能产生孔状 /线性缺陷, 影响器件封装 的可靠性。
[0005] 因此, 相关技术有待改进。
发明概述
技术问题
[0006] 本申请实施例的目的在于提供一种封装薄膜和发光器件的封装方法以及发光装 置, 旨在解决现有发光器件上的封装薄膜容易产生孔状 /线性缺陷, 影响器件封 装的可靠性的技术问题。
问题的解决方案
技术解决方案
[0007] 为解决上述技术问题, 本申请实施例采用的技术方案是: [0008] 第一方面, 提供了一种封装薄膜, 所述封装薄膜包括 N个层叠单元, 每个所述 层叠单元由依次层叠设置的阻隔层和表面活性剂层组成, 所述封装薄膜中, 所 述阻隔层与所述表面活性剂层交替相邻; 其中, N为大于或等于 1的整数。
[0009] 在一个实施例中, 所述封装薄膜包括 1-10个所述层叠单元。
[0010] 在一个实施例中, 所述阻隔层的材料选自过渡金属和过渡金属氧化物中的至少 一种。
[0011] 在一个实施例中, 所述过渡金属选自 Al、 Ta、 Nb、 Ti、 Zr和 Hf中的至少一种; 和 /或,
[0012] 所述过渡金属氧化物选自 A1203、 Ta205、 Nb205、 Ti02、 Zr02和 Hf02中的至 少一种。
[0013] 在一个实施例中, 所述表面活性剂层的材料选自烷基磷酸酯和烷基磷酸酯盐中 的至少一种。
[0014] 在一个实施例中, 所述烷基磷酸酯选自单十二烷基磷酸酯、 单十四烷基磷酸酯 、 单十六烷基磷酸酯、 单十八烷基磷酸酯中的至少一种; 和 /或,
[0015] 所述烷基磷酸酯盐选自含过渡金属的烷基磷酸酯盐和烷基磷酸酯铵盐中的至少 一种。
[0016] 在一个实施例中, 所述封装薄膜的第 N个层叠单元中的表面活性剂层背离阻隔 层的表面设置有固化胶层。
[0017] 在一个实施例中, 所述固化胶层的材料选自光固化胶、 热固化胶和厌氧固化胶 中的至少一种; 和 /或,
[0018] 所述固化胶层的厚度为 500nm-50mm。
[0019] 在一个实施例中, 当 N=1时, 所述阻隔层的厚度为 10nm-4mm; 当 N=2-10时, 每层所述阻隔层的厚度为 10nm-100nm。
[0020] 在一个实施例中, 每层所述表面活性剂层包括 1-10层表面活性剂单分子层。
[0021] 第二方面, 提供了一种发光器件的封装方法, 包括如下步骤:
[0022] 提供发光器件;
[0023] 在所述发光器件的顶电极上制备一层阻隔层, 在所述阻隔层上制备一层表面活 性剂层, 所述阻隔层和表面活性剂层组成层叠单元; [0024] 重复所述层叠单元的制备步骤在所述发光器件的顶电极上形成 N个层叠单元; 其中, N为大于或等于 1的整数。
[0025] 在一个实施例中, 在所述发光器件的顶电极上形成 N个层叠单元的步骤之后, 还包括在 N个层叠单元中的表面活性剂层上制备固化胶层的步骤。
[0026] 在一个实施例中, 在所述阻隔层上制备表面活性剂层的步骤包括: 将烷基磷酸 酯溶液或烷基磷酸酯盐溶液涂覆在所述阻隔层的表面, 去溶剂后, 得到所述表 面活性剂层。
[0027] 在一个实施例中, 在所述发光器件的顶电极上制备一层阻隔层的步骤包括: 将 过渡金属和过渡金属氧化物中的至少一种材料沉积在所述顶电极上, 得到所述 阻隔层。
[0028] 第三方面, 提供一种一种发光装置, 包括底电极、 顶电极以及位于所述底电极 和所述顶电极之间的发光层, 所述顶电极上设置有封装薄膜, 所述封装薄膜包 括 N个层叠单元, 每个所述层叠单元由依次层叠设置的阻隔层和表面活性剂层组 成, 所述封装薄膜中, 所述阻隔层与所述表面活性剂层交替相邻, 且第 1个层叠 单元中的阻隔层与所述顶电极相邻; 其中, N为大于或等于 1的整数。
[0029] 在一个实施例中, 所述封装薄膜包括 1-10个所述层叠单元; 和 /或,
[0030] 所述阻隔层的材料选自过渡金属和过渡金属氧化物中的至少一种; 和 /或,
[0031] 所述表面活性剂层的材料选自烷基磷酸酯和烷基磷酸酯盐中的至少一种。
[0032] 在一个实施例中, 当 N=1时, 所述阻隔层的厚度为 10nm-4mm; 当 N=2-10时, 每层所述阻隔层的厚度为 10nm-100nm; 和 /或,
[0033] 每层所述表面活性剂层包括 1-10层表面活性剂单分子层。
[0034] 在一个实施例中, 所述封装薄膜的第 N个层叠单元中的表面活性剂层背离阻隔 层的表面设置有固化胶层。
[0035] 在一个实施例中, 所述固化胶层与第 N个层叠单元层叠设置, 或者所述固化胶 层包覆所述顶电极和所述量子点发光层并延伸至所述底电极的边缘。
[0036] 在一个实施例中, 所述固化胶层的材料选自光固化胶、 热固化胶和厌氧固化胶 中的至少一种; 和 /或,
[0037] 所述固化胶层的厚度为 500nm-50mm [0038] 本申请实施例提供的封装薄膜的有益效果在于: 该封装薄膜中的阻隔层用于阻 隔环境中水氧进入器件中, 同时, 该表面活性剂层中的表面活性剂含有亲水基 团和疏水基团, 表面活性剂的亲水基团可以与阻隔层结合, 避免阻隔层出现孔 状或线性缺陷扩散, 而表面活性剂的疏水基团使表面活性剂层既表现出良好的 疏水性, 又能与其他有机材料 (如固化胶) 亲和, 因此, 该封装薄膜在阻隔水 氧的阻隔层基础上, 表面活性剂层可以进一步有效阻挡水, 用该封装薄膜封装 发光器件可有效地减少水氧对发光器件功能层的侵蚀, 显著地提高发光器件的 寿命。
[0039] 本申请实施例提供的发光器件的封装方法的有益效果在于: 在发光器件的顶电 极上制备一层封装薄膜, 该封装薄膜即为 N个层叠单元 (每个层叠单元由依次层 叠设置的阻隔层和表面活性剂层组成) 的复合封装薄膜, 该封装薄膜中, 在阻 隔水氧的阻隔层基础上, 表面活性剂层可以进一步有效阻挡水, 这样的发光器 件的封装方法, 可以有效地减少水氧对发光器件功能层的侵蚀, 显著地提高发 光器件的寿命。
[0040] 本申请实施例提供的发光装置的有益效果在于: 发光装置的顶电极上封装有本 申请实施例特有的封装薄膜。 该封装薄膜可以有效地减少水氧对发光器件功能 层的侵蚀, 显著地提高发光器件的寿命。
发明的有益效果
对附图的简要说明
附图说明
[0041] 为了更清楚地说明本申请实施例中的技术方案, 下面将对实施例或示范性技术 描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 的前提下, 还可以根据这些附图获得其它的附图。
[0042] 图 1为本申请实施例的一种封装薄膜的结构示意图;
[0043] 图 2为本申请实施例的一种封装薄膜的结构示意图;
[0044] 图 3为本申请实施例中烷基磷酸酯或烷基磷酸酯盐形成的表面活性剂层与阻隔 层中的过渡金属 (M) 或过渡金属氧化物 (MO) 形成稳定的 M-0-P键的反应过 程;
[0045] 图 4为本申请实施例的一种发光器件的封装方法的流程图;
[0046] 图 5为本申请实施例 1的一种电致发光器件的封装结构示意图;
[0047] 图 6为本申请实施例 2的一种电致发光器件的封装结构示意图。 发明实施例
本发明的实施方式
[0048] 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本申请进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以 解释本申请, 并不用于限定本申请。
[0049] 本申请一些实施例提供一种封装薄膜, 如图 1所示, 所述封装薄膜包括 N个层叠 单元, 每个所述层叠单元由依次层叠设置的阻隔层和表面活性剂层组成, 所述 封装薄膜中, 所述阻隔层与所述表面活性剂层交替相邻; 其中, N为大于或等于 1的整数。
[0050] 本申请实施例提供的封装薄膜是一种用于封装发光器件的多层结构的复合封装 薄膜, 包括 N个层叠单元 (每个层叠单元由依次层叠设置的阻隔层和表面活性剂 层组成) , 该封装薄膜中的阻隔层用于阻隔环境中水氧进入器件中, 同时, 该 表面活性剂层中的表面活性剂含有亲水基团和疏水基团, 表面活性剂的亲水基 团可以与阻隔层结合, 避免阻隔层出现孔状或线性缺陷扩散, 而表面活性剂的 疏水基团使表面活性剂层既表现出良好的疏水性, 又能与其他有机材料 (如固 化胶) 亲和, 因此, 该封装薄膜在阻隔水氧的阻隔层基础上, 表面活性剂层可 以进一步有效阻挡水, 用该封装薄膜封装发光器件可有效地减少水氧对发光器 件功能层的侵蚀, 显著地提高发光器件的寿命。
[0051] 在一实施例中, N=l-10, 即所述封装薄膜包括 1-10个所述层叠单元, 即本申请 实施例中, 所述封装薄膜包括依次层叠设置的阻隔层和表面活性剂层; 或者, 所述封装薄膜包括依次层叠设置的第一层阻隔层、 第一层表面活性剂层、 第二 层阻隔层和第二层表面活性剂层; 或者, 所述封装薄膜包括依次层叠设置的第 一层阻隔层、 第一层表面活性剂层、 第二层阻隔层、 第二层表面活性剂层、 第 三层阻隔层和第三层表面活性剂层, 等等, 依次类推, 可以形成封装薄膜包括 1 0个层叠单元。
[0052] 在一实施例中, 如图 2所示, 所述封装薄膜的第 N个层叠单元中的表面活性剂层 背离阻隔层的表面设置有固化胶层。 封装薄膜用于封装发光器件时, 第 1个层叠 单元中的阻隔层与顶电极相邻, 通过在第 N个层叠单元中的表面活性剂层表面设 置固化胶层, 该固化胶层可以与表面活性剂中的疏水基团亲和, 进一步提高器 件的密封性, 因此, 该封装薄膜在阻隔水氧的阻隔层基础上, 表面活性剂层进 一步有效阻挡水, 并通过固化胶层在表面活性剂层上作进一步有机封装处理, 最终延长水氧渗入器件的路径, 可以进一步地提高发光器件的寿命。 而所述固 化胶层的材料选择光固化胶、 热固化胶和厌氧固化胶中的至少一种。
[0053] 当所述封装薄膜只包括一个层叠单元时, 所述阻隔层的厚度为 10nm-4mm; 当 所述封装薄膜包括 2-10个层叠单元, 为了使封装薄膜不能太厚, 每层所述阻隔层 的厚度为 lOnm-lOOnm。 而不管有多少层表面活性剂层, 每层所述表面活性剂层 可以包括 1-10层表面活性剂单分子层; 而所述固化胶层的厚度为 500nm-50mm, 优选为 500-nm-20mm, 更优选为
Figure imgf000008_0001
之间, 在该范围内既保证了封装薄膜的 透光性, 也能兼顾隔绝水氧性能。
[0054] 在一实施例中, 封装薄膜中, 所述阻隔层的材料选自过渡金属和过渡金属氧化 物中的至少一种; 具体地, 所述过渡金属选自 Al、 Ta、 Nb、 Ti、 Zr和 Hf中的至 少一种, 所述过渡金属氧化物选自 A1 20 3、 Ta 20 5、 Nb 20 5、 TiO 2、 ZrO 2fPHfO 2中的至少一种; 所述表面活性剂层的材料选自烷基磷酸酯和烷基磷酸酯盐中的 至少一种; 具体地, 所述烷基磷酸酯为单十二烷基磷酸酯、 单十四烷基磷酸酯 、 单十六烷基磷酸酯、 单十八烷基磷酸酯中的至少一种; 所述烷基磷酸酯盐选 自含过渡金属的烷基磷酸酯盐和烷基磷酸酯铵盐中的至少一种。
[0055] 烷基磷酸醋 /焼基磷酸酯盐作为一类两性表面活性剂, 可在金属或金属氧化物 表面形成自组装单分子膜, 特别是能在过渡金属或过渡金属氧化物表面形成稳 定的 M-0-P键 (M为过渡金属) , 对过渡金属或过渡金属氧化物表面起到钝化作 用, 对由过渡金属或过渡金属氧化物组成的阻隔层具有进一步地阻隔水氧的作 用。
[0056] 烷基磷酸酯或烷基磷酸酯盐形成的表面活性剂层与阻隔层中的过渡金属 (M) 或过渡金属氧化物 (MO) 形成稳定的 M-O-P键, 反应过程如图 3所示。
[0057] 另一方面, 本申请实施例还提供了一种发光器件的封装方法, 如图 4所示, 包 括如下步骤:
[0058] S01: 提供发光器件;
[0059] S02: 在所述发光器件的顶电极上制备一层阻隔层, 在所述阻隔层上制备一层 表面活性剂层, 所述阻隔层和表面活性剂层组成层叠单元;
[0060] S03: 重复所述层叠单元的制备步骤在所述发光器件的顶电极上形成 N个层叠 单元; 其中, N为大于或等于 1的整数。
[0061] 本申请实施例提供的发光器件的封装方法, 在发光器件的顶电极上制备一层封 装薄膜, 该封装薄膜即为 N个层叠单元 (每个层叠单元由依次层叠设置的阻隔层 和表面活性剂层组成) 的复合封装薄膜, 该封装薄膜中, 在阻隔水氧的阻隔层 基础上, 表面活性剂层可以进一步有效阻挡水, 这样的发光器件的封装方法, 可以有效地减少水氧对发光器件功能层的侵蚀, 显著地提高发光器件的寿命。
[0062] 在一实施例中, 在所述阻隔层上制备表面活性剂层的步骤包括: 将烷基磷酸酯 溶液或烷基磷酸酯盐溶液涂覆在所述阻隔层的表面, 去溶剂后, 得到所述表面 活性剂层。 去溶剂的方法有多种, 可以是自然风干干燥, 也可以是真空干燥, 本申请实施例中采用静置干燥, 具体地, 所述静置的时间为 l-100h; 更具体地, 将烷基磷酸酯溶液或烷基磷酸酯盐溶液涂覆在所述阻隔层的表面, 静置处理之 后, 还包括溶剂清洗和干燥的步骤。 具体地, 所述烷基磷酸酯为单十二烷基磷 酸酯、 单十四烷基磷酸酯、 单十六烷基磷酸酯、 单十八烷基磷酸酯中的至少一 种; 所述烷基磷酸酯盐选自含过渡金属的烷基磷酸酯盐和烷基磷酸酯铵盐中的 至少一种。
[0063] 在一实施例中, 在所述发光器件的顶电极上制备一层阻隔层的步骤包括: 将过 渡金属和过渡金属氧化物中的至少一种材料沉积在所述顶电极上, 得到所述阻 隔层。 具体地, 所述过渡金属选自 Al、 Ta、 Nb、 Ti、 Zr和 H冲的至少一种, 所 述过渡金属氧化物选自 A1 20 3、 Ta 20 5、 Nb 20 5、 TiO 2、 ZrO 2和 HfO 2中的至少 一种。
[0064] 在一实施例中, 在所述发光器件的顶电极上形成 N个层叠单元的步骤之后, 还 包括在 N个层叠单元中的表面活性剂层上制备固化胶层的步骤。 制备的该固化胶 层可以与表面活性剂中的疏水基团亲和, 进一步提高器件的密封性, 因此, 这 样的封装薄膜, 在阻隔水氧的阻隔层基础上, 表面活性剂层进一步有效阻挡水 , 并通过固化胶层在表面活性剂层上作进一步有机封装处理, 最终延长水氧渗 入器件的路径, 可以进一步地提高发光器件的寿命。
[0065] 本申请一实施例中, 提供了一种电致发光器件的封装方法, 包括以下步骤:
[0066] 1) 在阳极基板上制备功能层、 阴极, 得到发光器件;
[0067] 2) 通过磁控溅射或真空蒸镀的方式在阴极上制备阻隔层;
[0068] 3) 在阻隔层上涂覆烷基磷酸酯或烷基磷酸酯盐溶液, 保持溶液浸润组隔层表 面, 自组装时间为 1-100 h, 自组装完成后用溶剂润洗阻隔膜表面, 经干燥除去 溶剂即制备得到分子膜层;
[0069] 所述烷基磷酸酯或烷基磷酸酯盐溶液的溶剂为乙醇、 异丙醇等醇类有机溶剂; 所述干燥方式为自然风干干燥或真空干燥等方式;
[0070] 4) 在阻隔层、 分子膜层以及阳极基板边缘涂布固化胶, 进行框胶封装, 固化 后将功能层和阴极密封封装, 或在分子膜上通过溶液法沉积一层固化胶, 固化 后将功能层和阴极密封封装。
[0071] 本申请实施的上述封装方法适用于封装刚性基板或柔性基板, 封装材料廉价, 易于大规模生产。
[0072] 最后, 本申请实施例还提供一种发光装置, 包括底电极、 顶电极以及位于所述 底电极和所述顶电极之间的发光层, 所述顶电极上设置有封装薄膜, 所述封装 薄膜包括 N个层叠单元, 每个所述层叠单元由依次层叠设置的阻隔层和表面活性 剂层组成, 所述封装薄膜中, 所述阻隔层与所述表面活性剂层交替相邻, 且第 1 个层叠单元中的阻隔层与所述顶电极相邻; 其中, N为大于或等于 1的整数。
[0073] 本申请实施例提供的发光装置中, 在顶电极上封装有本申请实施例特有的封装 薄膜。 该封装薄膜可以有效地减少水氧对发光器件功能层的侵蚀, 显著地提高 发光器件的寿命。
[0074] 在一实施例中, 所述封装薄膜的第 N个层叠单元中的表面活性剂层背离阻隔层 的表面设置有固化胶层; 其中, 所述固化胶层与第 N个层叠单元层叠设置, 或者 所述固化胶层包覆所述顶电极和所述量子点发光层并延伸至所述底电极的边缘 。 该封装薄膜可以最终延长水氧渗入器件的路径, 用该封装薄膜封装发光器件 可有效地减少水氧对发光器件功能层的侵蚀, 显著地提高发光器件的寿命。 所 述固化胶层的材料选自光固化胶、 热固化胶和厌氧固化胶中的至少一种; 所述 固化胶层的厚度为 500nm-50mm。
[0075] 在一实施例中, 该发光装置中, 所述封装薄膜包括 1-10个所述层叠单元; iN= 1时, 所述阻隔层的厚度为 10nm-4mm; 当 N=2-10时, 每层所述阻隔层的厚度为 1 0nm-100nm。 而每层所述表面活性剂层包括 1-10层表面活性剂单分子层。 其中, 所述阻隔层的材料选自过渡金属和过渡金属氧化物中的至少一种; 所述表面活 性剂层的材料选自烷基磷酸酯和烷基磷酸酯盐中的至少一种。
[0076] 在一实施例中, 底电极为导电刚性基板或导电柔性基板。 顶电极为非透明金属 顶电极 (银、 铝、 金等) 或透明顶电极 (介质层 /金属层 /介质层等) 。
[0077] 本申请先后进行过多次试验, 现举一部分试验结果作为参考对申请进行进一步 详细描述, 下面结合具体实施例进行详细说明。
[0078] 实施例 1
[0079] 一种电致发光器件的封装结构, 如图 5所示, 该器件从下到上依次包括阳极基 板 1、 功能层 2 (可以包括从下到上层叠设置的空穴传输层、 量子点发光层和电 子传输层) 、 阴极 3以及封装层; 所述封装层从下到上述依次包括阻隔层 4、 表 面活性剂层 5以及固化胶层 6。 该封装层将阳极基板 1、 功能层 2和阴极 3密封在一 个封闭空间, 所述阻隔层 4是一层厚度为 100 nm的 Ti0 2膜, 所述表面活性剂层 5 为单层单十二烷基磷酸酯分子膜, 所述固化胶层 6是一层厚度为 1mm的光固化胶 层。
[0080] 实施例 2
[0081] 一种电致发光器件的封装结构, 如图 6所示, 该器件从下到上依次包括阳极基 板 1、 功能层 2 (可以包括从下到上层叠设置的空穴传输层、 量子点发光层和电 子传输层) 、 阴极 3以及封装层; 所述封装层从下到上依次包括阻隔层 4、 表面 活性剂层 5以及固化胶层 6。 所述封装层将阳极基板 1、 功能层 2和阴极 3密封在一 个封闭空间, 且固化胶层 6是在阻隔层 4、 表面活性剂层 5和阳极基板 1边缘涂布 固化胶框胶封装, 将所述功能层 2、 阴极 3、 阻隔层 4和表面活性剂层 5密封在一 个封闭空间。 所述阻隔层 4包括一层厚度为 50 nm的 SiO 2膜和一层厚度 200 nm的 Ta 20 5膜, 所述表面活性剂层 5为双层单十八烷基磷酸酯分子膜, 所述固化 胶层 6是一层厚度为 5 mm的热固化胶层。
[0082] 以上仅为本申请的可选实施例而已, 并不用于限制本申请。 对于本领域的技术 人员来说, 本申请可以有各种更改和变化。 凡在本申请的精神和原则之内, 所 作的任何修改、 等同替换、 改进等, 均应包含在本申请的权利要求范围之内。

Claims

权利要求书
[权利要求 i] 种封装薄膜, 其特征在于, 所述封装薄膜包括 N个层叠单元, 每个 所述层叠单元由依次层叠设置的阻隔层和表面活性剂层组成, 所述封 装薄膜中, 所述阻隔层与所述表面活性剂层交替相邻; 其中, N为大 于或等于 1的整数。
[权利要求 2] 如权利要求 1所述的封装薄膜, 其特征在于, 所述封装薄膜包括 1-10 个所述层叠单元。
[权利要求 3] 如权利要求 1所述的封装薄膜, 其特征在于, 所述阻隔层的材料选自 过渡金属和过渡金属氧化物中的至少一种。
[权利要求 4] 如权利要求 3所述的封装薄膜, 其特征在于, 所述过渡金属选自 A1、
Ta、 Nb、 Ti、 Zr和 Hf中的至少一种; 和 /或,
所述过渡金属氧化物选自 A1203、 Ta205、 Nb205、 Ti02、 Zr02和 Hf 02中的至少一种。
[权利要求 5] 如权利要求 1所述的封装薄膜, 其特征在于, 所述表面活性剂层的材 料选自烷基磷酸酯和烷基磷酸酯盐中的至少一种。
[权利要求 6] 如权利要求 5所述的封装薄膜, 其特征在于, 所述烷基磷酸酯选自单 十二烷基磷酸酯、 单十四烷基磷酸酯、 单十六烷基磷酸酯、 单十八烷 基磷酸酯中的至少一种; 和 /或,
所述烷基磷酸酯盐选自含过渡金属的烷基磷酸酯盐和烷基磷酸酯铵盐 中的至少一种。
[权利要求 7] 如权利要求 1所述的封装薄膜, 其特征在于, 所述封装薄膜的第 N个 层叠单元中的表面活性剂层背离阻隔层的表面设置有固化胶层。
[权利要求 8] 如权利要求 7所述的封装薄膜, 其特征在于, 所述固化胶层的材料选 自光固化胶、 热固化胶和厌氧固化胶中的至少一种; 和 /或, 所述固化胶层的厚度为 500nm-50mm。
[权利要求 9] 如权利要求 1所述的封装薄膜, 其特征在于, 当 N=1时, 所述阻隔层 的厚度为 10nm-4mm; 当 N=2-10时, 每层所述阻隔层的厚度为 10nm-l OOnm。
[权利要求 10] 如权利要求 1所述的封装薄膜, 其特征在于, 每层所述表面活性剂层 包括 1-10层表面活性剂单分子层。
[权利要求 11] 一种发光器件的封装方法, 其特征在于, 包括如下步骤:
提供发光器件;
在所述发光器件的顶电极上制备一层阻隔层, 在所述阻隔层上制备一 层表面活性剂层, 所述阻隔层和表面活性剂层组成层叠单元; 重复所述层叠单元的制备步骤在所述发光器件的顶电极上形成 N个层 叠单元; 其中, N为大于或等于 1的整数。
[权利要求 12] 如权利要求 11所述的发光器件的封装方法, 其特征在于, 在所述发光 器件的顶电极上形成 N个层叠单元的步骤之后, 还包括在 N个层叠单 元中的表面活性剂层上制备固化胶层的步骤。
[权利要求 13] 如权利要求 11所述的发光器件的封装方法, 其特征在于, 在所述阻隔 层上制备表面活性剂层的步骤包括: 将烷基磷酸酯溶液或烷基磷酸酯 盐溶液涂覆在所述阻隔层的表面, 去溶剂后, 得到所述表面活性剂层
[权利要求 14] 如权利要求 11所述的发光器件的封装方法, 其特征在于, 在所述发光 器件的顶电极上制备一层阻隔层的步骤包括: 将过渡金属和过渡金属 氧化物中的至少一种材料沉积在所述顶电极上, 得到所述阻隔层。
[权利要求 15] 一种发光装置, 包括底电极、 顶电极以及位于所述底电极和所述顶电 极之间的发光层, 其特征在于, 所述顶电极上设置有封装薄膜, 所述 封装薄膜包括 N个层叠单元, 每个所述层叠单元由依次层叠设置的阻 隔层和表面活性剂层组成, 所述封装薄膜中, 所述阻隔层与所述表面 活性剂层交替相邻, 且第 1个层叠单元中的阻隔层与所述顶电极相邻 ; 其中, N为大于或等于 1的整数。
[权利要求 16] 如权利要求 15所述的发光装置, 其特征在于, 所述封装薄膜包括 1-10 个所述层叠单元; 和 /或,
所述阻隔层的材料选自过渡金属和过渡金属氧化物中的至少一种; 和 /或, 所述表面活性剂层的材料选自烷基磷酸酯和烷基磷酸酯盐中的至少一 种。
[权利要求 17] 如权利要求 15所述的发光装置, 其特征在于, 当 N=1时, 所述阻隔层 的厚度为 10nm-4mm; 当 N=2-10时, 每层所述阻隔层的厚度为 10nm-l OOnm; 和 /或,
每层所述表面活性剂层包括 1-10层表面活性剂单分子层。
[权利要求 18] 如权利要求 15所述的发光装置, 其特征在于, 所述封装薄膜的第 N个 层叠单元中的表面活性剂层背离阻隔层的表面设置有固化胶层。
[权利要求 19] 如权利要求 18所述的发光装置, 其特征在于, 所述固化胶层与第 N个 层叠单元层叠设置, 或者所述固化胶层包覆所述顶电极和所述量子点 发光层并延伸至所述底电极的边缘。
[权利要求 20] 如权利要求 18所述的封装薄膜, 其特征在于, 所述固化胶层的材料选 自光固化胶、 热固化胶和厌氧固化胶中的至少一种; 和 /或, 所述固化胶层的厚度为 500nm-50mm。
PCT/CN2019/108098 2018-12-29 2019-09-26 封装薄膜和发光器件的封装方法以及发光装置 WO2020134249A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/419,672 US20230165037A1 (en) 2018-12-29 2019-09-26 Packaged filed, packaging method for light-emitting device, and ligth-emitting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811635021.5 2018-12-29
CN201811635021.5A CN111384223B (zh) 2018-12-29 2018-12-29 封装薄膜和发光器件的封装方法以及发光装置

Publications (1)

Publication Number Publication Date
WO2020134249A1 true WO2020134249A1 (zh) 2020-07-02

Family

ID=71129625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108098 WO2020134249A1 (zh) 2018-12-29 2019-09-26 封装薄膜和发光器件的封装方法以及发光装置

Country Status (3)

Country Link
US (1) US20230165037A1 (zh)
CN (1) CN111384223B (zh)
WO (1) WO2020134249A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004146A1 (ja) * 2022-06-30 2024-01-04 シャープディスプレイテクノロジー株式会社 発光素子、表示装置および発光素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872355A (en) * 1997-04-09 1999-02-16 Hewlett-Packard Company Electroluminescent device and fabrication method for a light detection system
TW200845314A (en) * 2007-01-26 2008-11-16 Vitex Systems Inc Three dimensional multilayer barrier and method of making
CN102299123A (zh) * 2011-05-20 2011-12-28 电子科技大学 一种光电子器件的封装方法
CN102651456A (zh) * 2012-03-27 2012-08-29 京东方科技集团股份有限公司 薄膜封装件、光电子器件及其封装方法
CN104377314A (zh) * 2014-09-26 2015-02-25 京东方科技集团股份有限公司 一种封装层、电子封装器件及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024834B (zh) * 2016-05-31 2020-03-03 京东方科技集团股份有限公司 Oled显示面板、显示装置及oled显示面板的制作方法
CN108461642A (zh) * 2017-02-17 2018-08-28 上海和辉光电有限公司 一种有机发光二极管器件的薄膜封装构件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872355A (en) * 1997-04-09 1999-02-16 Hewlett-Packard Company Electroluminescent device and fabrication method for a light detection system
TW200845314A (en) * 2007-01-26 2008-11-16 Vitex Systems Inc Three dimensional multilayer barrier and method of making
CN102299123A (zh) * 2011-05-20 2011-12-28 电子科技大学 一种光电子器件的封装方法
CN102651456A (zh) * 2012-03-27 2012-08-29 京东方科技集团股份有限公司 薄膜封装件、光电子器件及其封装方法
CN104377314A (zh) * 2014-09-26 2015-02-25 京东方科技集团股份有限公司 一种封装层、电子封装器件及显示装置

Also Published As

Publication number Publication date
US20230165037A1 (en) 2023-05-25
CN111384223A (zh) 2020-07-07
CN111384223B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP5263849B2 (ja) 酸素及び/又は水分に敏感な電子デバイスをカプセル封じするための多層膜
KR101689416B1 (ko) 전자 소자 및 전자 소자의 제조 방법
CN102437288A (zh) 有机电致发光器件的封装结构
JP5559542B2 (ja) ナノ粒子カプセル封入バリアスタック
CN101707237B (zh) 一种柔性有机电致发光器件的封装结构及其封装方法
TW201638259A (zh) 透明導電層層合用薄膜、該製造方法、及透明導電性薄膜
WO2020029351A1 (zh) 一种复合膜层及制作方法、oled显示面板的制作方法
WO2020206980A1 (zh) 柔性oled显示装置及制备方法
WO2011114882A1 (ja) 有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法
JP2007180014A (ja) 発光装置およびその製造方法
WO2020134249A1 (zh) 封装薄膜和发光器件的封装方法以及发光装置
US20200411794A1 (en) Organic light emitting diode display device and method of fabricating same
CN1575076A (zh) 平板显示装置及其制造方法
CN112259693A (zh) 显示面板及其制作方法
US20180138455A1 (en) Encapsulation method for oled lighting application
CN205016566U (zh) 有机发光显示装置
CN114242897A (zh) 一种钙钛矿光电器件的封装的方法
CN111244312A (zh) 一种显示面板及其制作方法
CN106920865A (zh) 量子点膜层结构的制作方法
CN112724444A (zh) 一种工业封装用超高阻隔薄膜及其制备方法
CN102651453B (zh) 用薄膜密封的有机发光二极管及其制造方法
CN109585056A (zh) 一种复合薄膜的制备方法
CN103427039A (zh) 有机电致发光器件及其制备方法
CN103594644A (zh) 有机电致发光器件及其制备方法
CN114695896A (zh) 一种电子器件的自组装高阻隔薄膜封装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906335

Country of ref document: EP

Kind code of ref document: A1