WO2021097768A1 - 一种模壳制造生产线以及模壳制造方法 - Google Patents
一种模壳制造生产线以及模壳制造方法 Download PDFInfo
- Publication number
- WO2021097768A1 WO2021097768A1 PCT/CN2019/120013 CN2019120013W WO2021097768A1 WO 2021097768 A1 WO2021097768 A1 WO 2021097768A1 CN 2019120013 W CN2019120013 W CN 2019120013W WO 2021097768 A1 WO2021097768 A1 WO 2021097768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sand
- module
- dipping
- slurry
- production line
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/12—Treating moulds or cores, e.g. drying, hardening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C11/00—Moulding machines characterised by the relative arrangement of the parts of same
- B22C11/02—Machines in which the moulds are moved during a cycle of successive operations
- B22C11/04—Machines in which the moulds are moved during a cycle of successive operations by a horizontal rotary table or carrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C13/00—Moulding machines for making moulds or cores of particular shapes
- B22C13/08—Moulding machines for making moulds or cores of particular shapes for shell moulds or shell cores
- B22C13/085—Moulding machines for making moulds or cores of particular shapes for shell moulds or shell cores by investing a lost pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C25/00—Foundry moulding plants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/008—Manipulators for service tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G47/00—Article or material-handling devices associated with conveyors; Methods employing such devices
- B65G47/74—Feeding, transfer, or discharging devices of particular kinds or types
- B65G47/90—Devices for picking-up and depositing articles or materials
- B65G47/905—Control arrangements
Definitions
- This application relates to the field of precision casting, in particular to a shell-making production line and a method for manufacturing the shell.
- the production process of investment casting is mainly divided into wax pressing, wax repair, tree assembly, shell making, shell roasting, pouring, shelling, post-processing, inspection, etc.
- the shell making process mainly includes dipping, sanding and drying.
- the traditional shell making process usually adopts manual operation. During the dipping operation, the operator holds the metal support rod and puts the wax module tree into the slurry bucket to pull up and down and rotate, so that the coating can completely cover the outer surface of the wax mold; after the investment is dipped, the sand is sprinkled. Manually hold the investment tree group into the sand shower, rotate, tilt and other actions to make the sand spread evenly, and dry it after the sand spreading is finished.
- the purpose of this application is to provide a shell-making production line, the production line comprising: a transmission device for batch transmission of modules; a robotic arm device for loading and unloading the modules relative to the transmission device, and at least two subsequent Holding the module in the process; the mechanical arm device can move to correspond to different working positions; the dipping device is used for dipping the slurry of the transmission module; the sand spraying device is used for dipping the sand of the module.
- the production line further includes a control center, which has a signal connection with the transmission device and the robotic arm device, and is used to move the transmission device and the robotic arm device to cooperate with each other according to instructions.
- a control center which has a signal connection with the transmission device and the robotic arm device, and is used to move the transmission device and the robotic arm device to cooperate with each other according to instructions.
- the dipping device includes at least two slurry buckets; the control center also has a signal connection with the dipping device, and is used to control the movement of the dipping device according to instructions so that the slurry is filled with the corresponding type of slurry.
- the pulp bucket is switched to the designated position.
- control center also has a signal connection with the sand leaching device for controlling the sand leaching device containing the corresponding type of sand to move to a designated position according to instructions.
- this application provides a sorting type dust-free sand washing machine, which includes a lower sand hopper, a screen, a silo, a dust suction device, a lower dust suction port and a filtering device; the filtering device consists of a belt filter , A waste collection box, a cleaning box, a scraper and a drying device; it is characterized in that the lower sand hopper is a rectangular container with an upward opening, and the lower sand hopper on the top layer faces the lower screen with its downward outlet.
- a silo is arranged inside the lower part of the screen; the dust suction device is arranged on the front side wall of the lower sand hopper to form the first fixed-point dust suction structure in the sand falling stage of the lower sand hopper; the lower dust suction port is arranged in the lower sand hopper
- the left and right side walls between the screen and the screen constitute the second fixed-point dust collection structure in the sand falling stage; the filter device is located directly under the lower sand bucket, and the belt filter screen is cyclically driven by the transmission device.
- the flat section of the belt filter screen is placed on the screen;
- the waste collection box and the cleaning box are rectangular containers with upward openings, and are respectively installed at the bottom of one end of the belt filter in the circulating direction, in the waste collection box
- the drying device is placed at the bottom of the sand leaching machine, and it is parallel to the newly cleaned belt filter section of the output of the cleaning box, forming a pair of belt filter Net fixed-point air-drying structure.
- the surface of the belt filter is coated with a non-stick coating.
- the surface of the belt filter is provided with a polytetrafluoroethylene resin coating.
- the width of the scraper is at least equal to the width of the belt filter.
- the dipping device includes a turntable that can be controlled to rotate, and at least two buckets are provided on the turntable; The pulp bucket is switched to the designated position.
- the dipping device further includes a rotating base provided for one or more of the at least two pulp buckets, and the rotation of the rotating base can drive the pulp bucket to rotate.
- the sand showering device includes an electric walking mechanism
- the control center is used to control the sand showering device containing the corresponding type of sand to move to a specified position through the electric walking mechanism.
- Another aspect of the present application provides a method for manufacturing a mold case based on a production line.
- the method includes: placing a number of modules on a transmission device; transmitting the modules to an operating station through the transmission device; The group removes from the conveying device, and completes the dipping and sand dipping operation at one or more operating stations; loads the module to the conveying device through the robotic arm device; conveys the module to the drying process through the conveying device to Carry out drying treatment.
- the removal of the module from the conveying device by the mechanical arm device and the completion of the dipping and sand-sprinkling operations at one or more operating stations includes: controlling the mechanical arm device to clamp and take it from the conveying device Module, and complete the first layer of grout and the first layer of sand in the slurry bucket containing the corresponding type of slurry and the sand spraying machine with the corresponding type of sand; control the robotic arm device to complete the slurry and sand spray Put the module on the transfer device, and control the dipping device and the sand spraying device to switch the corresponding slurry bucket and sand spraying machine respectively to prepare the module for the operation of the next layer of dipping and the next layer of sand.
- control robot arm device clamps the module from the conveying device, and completes the first layer of dipping and dipping in a slurry bucket containing a corresponding type of slurry and a sand shower containing a corresponding type of sand.
- the first layer of sand spraying includes: controlling the dipping device to switch the slurry bucket containing the first layer of slurry to move to a specified position; controlling the sand spraying device to switch the sand spraying machine containing the first layer of sand to move to the specified position; controlling the machinery
- the arm device clamps the module from the transfer device, and rotates to the position of the slurry bucket to perform the first layer of slurry operation, and rotates to the position of the sand shower to perform the first layer of sand leaching operation.
- the robotic arm device controls the rotation of the module.
- the method of the drying treatment includes: when the wind blows on the module suspended on the conveying device, the module rotates to achieve uniform air drying.
- a dipping device capable of automatically switching pulp buckets, characterized in that the dipping device includes: a controllable rotating turntable on which at least two pulp buckets are provided; and a control The device is used to control the rotation of the turntable based on instructions to switch one of the buckets to a designated position.
- the dipping device further includes a rotating base provided for one or more of the at least two pulp buckets, and the rotation of the rotating base can drive the pulp bucket to rotate.
- the controller is further configured to control the rotation of the rotating base according to instructions, so as to realize the rotation of the bucket.
- Fig. 1 is a system block diagram of a shell-making production line according to some embodiments of the present application
- Fig. 2 is a schematic structural diagram of a shell-making production line according to some embodiments of the present application.
- Fig. 3 is a schematic structural diagram of a mechanical arm device according to some embodiments of the present application.
- FIG. 4 is a schematic diagram of the structure of the robot arm of the robot arm device shown in FIG. 3;
- Figure 5 is a schematic diagram of a dipping device according to some embodiments of the present application.
- Figure 6 is a schematic structural diagram of another dipping device and its online rail changing device according to some embodiments of the present application.
- Figure 7 is a side view of the dipping device and its online rail changing device shown in Figure 6;
- Fig. 8 is a top view of the dipping device and its online rail changing device shown in Fig. 6;
- Figure 9 is a schematic diagram of a sand shower according to some embodiments of the present application.
- Fig. 10 is a schematic structural diagram of an exemplary sand shower according to some embodiments of the present application.
- Figure 11 is a left side view of the sand shower shown in Figure 10;
- Fig. 12 is a schematic diagram of the overall structure of another exemplary sand shower according to some embodiments of the present application.
- Figure 13 is a three-dimensional schematic diagram of the main frame of the sand shower shown in Figure 12;
- Figure 14 is a three-dimensional schematic diagram of the dust removal structure of the sand shower shown in Figure 12;
- Figure 15 is a three-dimensional schematic diagram of the filter device of the sand shower shown in Figure 12;
- Figure 16 is a drying device for precision casting shells according to some embodiments of the present application.
- Figure 17 is a side view of the drying device shown in Figure 16;
- FIG. 18 is a drying production line device with module rotation according to some embodiments of the present application.
- Figure 19 is a schematic front view of the drying production line device shown in Figure 18;
- Fig. 20 is a schematic side view of the drying production line device shown in Fig. 18;
- Figure 21 is a schematic structural diagram of a rotatable hanger according to some embodiments of the present application.
- Figure 22 is a schematic side view of the rotatable hanger shown in Figure 21;
- FIG. 23 is an enlarged schematic diagram of a partial structure of the rotatable hanger shown in FIG. 21;
- Figure 24 is an enlarged schematic view of the A-A cross-sectional structure in Figure 23;
- 25-27 are structural schematic diagrams of the positioning and rotation-stopping device for the suspension mold shell of the transmission chain according to some embodiments of the present application.
- Fig. 28 is a schematic structural diagram of a drive for assisting the rotation of the drying line suspension hanger according to some embodiments of the present application.
- Figure 29 is a side view of the structure shown in Figure 28;
- Figure 30 is a top view of the structure shown in Figure 28;
- FIG. 31 is a flowchart of a method for manufacturing a mold shell based on a shell manufacturing line according to some embodiments of the present application.
- Fig. 32 is a flow chart of the first layer of dipping and sand leaching operations in the shell-making production line according to some embodiments of the present application.
- the embodiments of the present application can be applied to the shell making process in investment casting.
- the shell making process may include the dipping, sand dipping, and drying processes of the modules in sequence.
- One module can perform multiple sets of dipping, sand dipping, and drying processes. Each process is carried out in sequence.
- the application scenarios of the shell-making production line and shell-making method of the present application are just some examples or embodiments of the present application. For those of ordinary skill in the art, they can also Apply this application to other similar scenarios based on these drawings.
- Fig. 1 is a system block diagram of a shell-making production line according to some embodiments of the present application.
- the shell-making production system 10 can be used to complete the shell-making process.
- the shell production system 10 may include: a transmission module 11, a control module 12, an operation module 13 and a detection module 14.
- the transmission module 11 is used to transport the processed and manufactured objects to different stations on the production line, such as one or more devices for processing and production in the operation module 13 to perform corresponding process processing.
- the transmission module 11 may receive a control instruction from the control module to move or stop or move at a specified speed.
- the transmission module 11 may move at a constant speed or at a non-uniform speed.
- the transmission module 11 can transmit at a uniform speed.
- the transmission module 11 in order to cooperate with various processes on the production line, the transmission module 11 may transmit at a non-uniform speed.
- the transmission module 11 may transmit processed objects in batches.
- the same batch can transmit at least 20 modules; more preferably, at least 50 modules; more preferably, at least 100 modules; more preferably, at least 1000 modules.
- one transmission point in the transmission module can simultaneously transmit at least two modules; preferably; at least three; preferably, at least four.
- the transmission module 11 may include a transmission device 110.
- the transmission device 110 may have a chain or belt structure, distributed along the production line.
- the conveying device 110 may include a track laid on the ground, and in conjunction with a carrier with a walking structure, the processed and manufactured object placed on the carrier can be conveyed to a designated station on the production line; for another example, the conveying device may Including a support and a transmission chain erected on the support.
- the transmission chain can be driven by a motor to transport the suspended processed and manufactured objects to the designated stations on the production line; for another example, the transmission device can include a support table and a setting The conveyor belt on the support table, the conveyor belt moves, can transfer the processed objects placed on it to the designated station; for example, the transmission device may only include a carrier with an electronically controlled walking mechanism, such as an electric trolley, which can be pre-determined Set the movement path of the electric trolley so that the electric trolley can transfer the processed objects loaded on it to the designated station.
- an electronically controlled walking mechanism such as an electric trolley
- the control module 12 may have signal connections with other modules of the system 10 to receive status signals or detection signals of other modules, and output control instructions to other modules to control the operations of other modules.
- the control module 12 can control other modules to work in an orderly manner according to a certain timing, so that the modules cooperate with each other to realize automated production.
- control module 12 may include an independent server or a server group.
- the server group may be centralized or distributed (for example, the processing device 110 may be a distributed system).
- the control module 12 may be local or remote.
- the control module 12 may communicate with the transmission module 11, the operation module 13, or the detection module 14 through a network.
- the control module 12 may be executed on a cloud platform.
- the cloud platform may include one or any combination of private cloud, public cloud, hybrid cloud, community cloud, decentralized cloud, internal cloud, etc.
- the control module 12 may include one or more sub-processing devices (for example, a single-core processor or a multi-core processor).
- control module 12 may include a central processing unit (CPU), an application specific integrated circuit (ASIC), an application specific instruction processor (ASIP), a graphics processing unit (GPU), a physical processor (PPU), a digital signal processor ( DSP), Field Programmable Gate Array (FPGA), Editable Logic Circuit (PLD), Controller, Microcontroller Unit, Reduced Instruction Set Computer (RISC), Microprocessor, etc. or any combination of the above.
- CPU central processing unit
- ASIC application specific integrated circuit
- ASIP application specific instruction processor
- GPU graphics processing unit
- PPU physical processor
- DSP digital signal processor
- FPGA Field Programmable Gate Array
- PLD Editable Logic Circuit
- Controller Microcontroller Unit
- RISC Reduced Instruction Set Computer
- the operation module 13 is responsible for completing specific processing and manufacturing procedures, and may include various types of equipment capable of processing and manufacturing the processed object.
- the equipment can be arranged upstream or downstream of the production line based on the processing and manufacturing sequence of the production process.
- these devices may include, but are not limited to, a robotic arm device, a slurry dipping device, a sand showering device, a drying device, and the like.
- the mechanical arm device can be used to realize the loading and unloading of the module relative to the transmission device, and to hold the module in at least the subsequent two processes of dipping and sanding; the mechanical arm device can move to correspond to different processes.
- Bit The dipping device is used for the transmission module to provide the corresponding type of slurry dipping.
- the sand leaching device is used to provide the sand leaching material of the corresponding type of the module.
- the drying device is used for module drying.
- the detection module 14 is used to collect and detect the operation data and/or information of other modules in the system 10, so as to provide the control module 12 with relevant data and/or information.
- the detection module 14 may include one or more sensors.
- the sensor may include one or a combination of a speed sensor, an acceleration sensor, a displacement sensor, a pedal force sensor, a torque sensor, a pressure sensor, a battery temperature sensor, and a humidity sensor.
- the detection module may also determine the positioning information of the modules related to the system 10 based on the positioning technology. For example, the position information of the electric car in the transmission module.
- the positioning technology may be based on Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), Compass Navigation System (COMPASS), Beidou Navigation Satellite System, Galileo Positioning System, Quasi-Zenith Satellite System (QZSS), etc. Positioning.
- GPS Global Positioning System
- GLONASS Global Navigation Satellite System
- COMPASS Compass Navigation System
- Beidou Navigation Satellite System Galileo Positioning System
- QZSS Quasi-Zenith Satellite System
- Fig. 2 is a schematic structural diagram of a shell-making production line according to some embodiments of the present application. It can be understood that the schematic diagram of the production line structure shown in FIG. 2 is an implementation of the system 10 shown in FIG. 1 in a specific production scenario.
- the shell making production line 100 may include a transmission device 110, a robotic arm device 120, a slurry dipping device 130, a sand showering device 140 and a control center 160.
- a transmission device 110 may include a transmission device 110, a robotic arm device 120, a slurry dipping device 130, a sand showering device 140 and a control center 160.
- each device module in the shell production line will be described in detail with reference to the embodiment of the shell production line in FIG. 2.
- the transmission device 110 may be used for a batch transmission module (for example, the module 1000 shown in FIG. 1). Among them, the module can be obtained at least partially from a plurality of wax pattern welding group trees.
- the transmission device 110 can transmit modules in a combination of parallel transmission and serial transmission, where parallel transmission can be understood as the transmission device can transmit multiple modules at one position on the transmission line, or A transmission method in which one hanger device can hang at least two modules; serial transmission can be understood as the transmission line of the transmission device is equipped with module hangers at different positions to realize continuous batch transmission.
- the parallel transmission modules include at least two modules, preferably at least three modules, and more preferably, at least four modules.
- the at least two modules transmitted in parallel may be the same or different. Among them, the same or different here can be understood as a comparison of at least two modules in shape or processing technology.
- the processing technology can be understood as including one or more of the processing technology such as dipping, sanding, and drying of the module.
- the number of modules that can be serially transmitted in the shell-making production line includes at least one hundred modules, preferably at least five hundred modules, preferably at least one thousand modules.
- the transmission device may transmit modules at a uniform speed or at a non-uniform speed. Preferably, the transmission device adopts uniform transmission to improve the efficiency of the system and the degree of coordination between the transmission device and other operating procedures. In some embodiments, the transmission speed of the transmission device is adjustable in order to achieve better coordination with subsequent processes.
- the time spent in each process is different.
- the drying process may take longer than the dipping process and the sand leaching process.
- the transmission device The conveying speed can be adjusted according to the completion of the drying process. After the drying process is completed, an instruction can be sent to the transmission device to allow the transmission device to continue the transmission or increase the speed.
- a waiting or waiting time instruction can be sent to the transmission device.
- the waiting here can be understood as the suspension or stop of the transmission device.
- the time of the drying process does not require the conveying device to wait or decelerate, and the conveying device can also maintain a constant transmission speed.
- sending the instruction to the transmission device may be performed manually, that is, manually observing the drying effect, and sending an instruction to increase the speed or wait according to the drying result.
- the drying effect can also be automatically detected by the detection device, and the detected drying result is sent to the control center, and the control center sends instructions to the controller of the transmission device according to the drying result to control the movement state of the transmission device .
- the drying effect can be determined by detecting the humidity of the object to be dried (eg, module).
- the control center may estimate the time when the drying is completed based on the humidity value detected by the detection device and the current drying environment.
- the transmission device can also adopt a step-by-step transmission mode.
- the transmission device can run at a constant speed for a period of time, wait for a period of time, and then run at a constant speed for a period of time, and wait for a period of time, that is, according to the go-stop-go-stop mode To transfer.
- the conveying device can be operated at a constant speed for a period of time. After a period of time, there will be a batch of modules that enter the drying process. At this time, the transmission device can be paused or shut down to wait.
- the waiting time is set according to the completion time of the drying process.
- the conveying device can continue to run, and then convey a batch of modules for dipping and sanding operations.
- the conveying device waits again.
- the drying device includes one or more fans arranged near the transmission line, wherein the position layout of the plurality of fans can be set along the direction of the transmission line. In this embodiment, the effect of step-by-step transmission is Especially prominent.
- the transmission device 110 may include a transmission chain and a plurality of suspension parts connected to the transmission chain.
- the suspension part is used to suspend the module, and the transmission chain is used to drive the module to the designated working position.
- the transmission chain may have more than one bending part, so that more modules can be transmitted in a certain space.
- the transmission chain and the suspension part may be connected by a lifting ring, which passes through a first through hole provided in the transmission chain and a second through hole provided in the suspension part.
- the suspension part may be provided with a loading part for loading the module.
- the module may be provided with a fixing part that cooperates with the loading part of the suspension part.
- the loading member may include a loading slot, and the inner size of the loading slot and the outer size of the fixing portion of the module cooperate with each other to fix the module.
- the fixing part may be in a cross shape, and the outer dimension of the transverse part and the inner dimension of the loading slot are matched with each other to fix the module.
- the shell-making production line 100 further includes a control center 160.
- the control center has a signal connection with the transmission device and the robotic arm device, and is used to move the transmission device and the robotic arm device to cooperate with each other according to instructions.
- the instruction can be understood as a program control code stored in the memory of the control center 160 in advance.
- the control center 160 can precisely control the movement cooperation of the robotic arm device and the transmission device to realize when and where the robotic arm device picks up the module from the transmission device or hangs the module on the transmission device. on.
- control center 160 can control the time interval between the movement and stop of the transmission device according to the instruction, and control the mechanical arm device 120 to load and unload the module at the corresponding station during the time interval when the transmission device is stopped.
- the interval can be calculated according to the time spent by the robotic arm device 120 in each station, and the time spent by the robotic arm device 120 in each station can be obtained based on actual measurement and statistics.
- the dipping device and the sand showering device may not be controlled by the control center 160, that is, no electrical signal connection is made with the control center.
- the gripping module of the mechanical arm device rotates to the designated station
- the dipping or sand dipping can be performed manually; the dipping device or the sand dipping device can also be controlled by manual operation to perform the corresponding operation; or The operation of dipping and dipping sand is completed by manual operation of related equipment.
- control center 160 may also be connected to the slurrying device and the sand showering device with electrical signals, for moving the transmission device, the robotic arm device, the slurrying device, and the sand showering device to cooperate with each other according to instructions. In order to realize the fully automatic mode of the entire production line.
- control center 160 may also be connected to one of the dipping device and the sand showering device for controlling one of the dipping device and the sand showering device to be able to cooperate with the transmission device and the robotic arm device.
- control center 160 may be a programmable logic control center, and the control method of the control center 160 includes but is not limited to a PLC control method.
- the control center 160 can control other components in the shell production line 100.
- the control center 160 can control the start and stop of the transmission device 110, and can also control the transmission speed of the transmission device 110.
- the control center 160 may also control the operation actions of the mechanical arm device 120.
- the operation action may include, but is not limited to, the movement and rotation of each operation part of the mechanical arm device 120.
- the control center 160 can control the waist structure of the robotic arm device 120 to rotate a certain angle.
- the control center 160 may control the arm structure of the mechanical arm device 120 to move up and down.
- control center 160 may control the hand structure of the robotic arm device 120 to rotate.
- control center can also control the operation of the dipping device 130.
- control center 160 can control the dipping device 130 to switch the slurry bucket.
- control center 160 can also control the operation of the sand shower 140.
- the control center 160 may control the sand shower device 140 to switch the sand shower.
- the robotic arm device 120 is used to hold one or more modules to complete the processing and manufacturing of the modules at different workstations.
- the robotic arm device 120 can be understood as a high-precision, multiple-input and multiple-output, highly nonlinear, and highly coupled complex system.
- the robotic arm device 120 may include multiple working directions, and each of the working directions may include multiple arm structures and multiple hand structures.
- the mechanical arm device 120 has more than two movable connecting parts, and a driving part for driving the movable connecting parts to move. Wherein, each movable connection part has one or more moving directions, so that the robot arm device 120 can have the aforementioned multiple working directions.
- the mechanical arm device 120 may also include a rotatable main body (or called a waist structure).
- One or more arm structures may be provided on the main body, and one or more hand structures may be provided on the arm structure. They are connected through the movable connecting part.
- the robotic arm device 120 can be used to perform one or more operation actions of the shell production line. Each working direction of the robotic arm device 120 can correspond to a station of the shell-making production line.
- the stations include at least a pick-up station, a first station and a second station.
- the pick-up station may be a station for realizing the loading and unloading of the module relative to the transmission device.
- the first station may be a station for dipping the module.
- the second station may be a station for performing sand washing operation on the module.
- the station may also include an auxiliary station.
- the auxiliary station can be used to perform auxiliary functions, for example, pre-processing the module before dipping.
- the pick-up station may be the same station or two different stations.
- the four stations of the robotic arm device may include a module pick-up station, a module hang-back station, a dipping station, and a sand shower station; it may also include a lift-off station, The first dipping station, the second dipping station, and the sand showering station; may also include the picking and hanging station, the dipping station, the first sand showering station, and the second sand showering station.
- the three stations of the robotic arm device may include a pick-up station, a dipping station, and a sand shower station.
- other stations of the robotic arm device can also be arranged in any combination according to the above-mentioned operation process.
- the operation of removing and hanging modules can be placed on one station or on two stations;
- the multi-layer dipping operation can be placed on one station or on different stations;
- the multi-layer sand leaching operation is placed on one station or multiple stations, specifically, it can be arranged according to the number of stations and the sequence of the operation process. For example, it is possible to place operation processes with similar operation sequences on adjacent stations.
- the robotic arm device 120 can operate one module at any station, or can operate two or more modules at the same time to improve production efficiency.
- the suspension part of the transmission device may include a corresponding number of sub-suspending parts, and each of the sub-suspending parts can be used to suspend one module.
- the robotic arm device 120 may include a three-way six-arm structure.
- the three-way six-arm structure may include three groups of robotic arms distributed around three different orientations, and each orientation robotic arm group corresponds to a station, and the station is switched by the overall rotation of the robotic arm group.
- Each robotic arm group can include two robotic arms, and each robotic arm can be used to operate a module.
- the "three-way" in the "three-way six-arm" can be understood as three stations, such as the pick-up station, the grout station, and the sand shower station as described above; three stations There are two mechanical arms corresponding to two modules on each station in the middle, this is "six arms”.
- the robotic arm device 120 may also include a four-way eight-arm structure.
- the four-way eight-arm structure may include four groups of robotic arms distributed around four different orientations, and each orientation robotic arm group corresponds to a station, and the station is switched by the overall rotation of the robotic arm group.
- Each robotic arm group can include two robotic arms, and each robotic arm can be used to operate a module.
- the "four directions" in the "four directions and eight arms" can be understood as four stations, such as the picking and hanging station, the dipping station, the sand dipping station, and the auxiliary station (such as the dipping station) mentioned above.
- each of the four stations includes two mechanical arms, that is, "eight arms”.
- the robotic arm device may also include three-way nine-arms and four-way twelve-arms, that is, each station corresponds to three robotic arms, and three modules can be clamped at the same time.
- the robotic arm device may include five, six or more workstations.
- two, three, four, or more modules can be simultaneously operated on each station, corresponding to the number of robot arms on each station.
- the mechanical arm device may also include five-direction ten-arm, five-direction fifteen-arm, five-direction twenty-arm, etc.; six-direction twelve-arm, six-direction eighteen-arm, and six-direction twenty-arm.
- the number of "directions” corresponds to the number of stations of the robotic arm, and the number of "arms” corresponds to the sum of the number of modules that can be operated on all stations. According to this logical expansion, the robotic arm device can have more forms, which will not be repeated here.
- the number of robot arms on each station of the robot arm device may be the same or different. In order to achieve consistency of operation, preferably, the number of robot arms on each station is the same. In some embodiments, the structure of at least two robot arms on the same station of the robot arm device may be the same or different. In some embodiments, the structure of the robot arm between at least two workstations may be the same or different.
- the robotic arm device 120 can achieve multiple degrees of freedom movement, and the multiple degrees of freedom movement can be driven by the driving part through the waist structure, arm structure, and hand structure of the robotic arm device 120. achieve.
- the robotic arm device may also include a robotic arm that can rotate between different operating positions to implement corresponding process operations.
- the structure of the robotic arm may include the aforementioned robotic arm structure.
- the robotic arm may also adopt other robotic arm structures to obtain more degrees of freedom.
- the robotic arm may include shoulder joint rotation. Part, elbow joint rotation part, wrist joint rotation part, and the big arm connecting the shoulder joint rotation part and the elbow joint rotation part, the small arm connecting the elbow joint rotation part and the wrist joint rotation part, and the hand connected to the wrist joint rotation part
- the robotic arm structure also includes a rotating base that can drive the entire robotic arm to rotate, so that the robotic arm can move to more operating positions.
- a rotating base that can drive the entire robotic arm to rotate, so that the robotic arm can move to more operating positions.
- the rotation angle of the rotating base is relatively easier to control, it can also make the robotic arm Obtain higher position movement accuracy.
- the mechanical arm device in the present application may also include other types or structures of mechanical arm forms, as long as the mechanical arm can realize grabbing articles and can move animal articles to a specified position, it can be used in this application.
- 3 to 4 are schematic structural diagrams of a mechanical arm device 120 according to some embodiments of the present application.
- the mechanical arm device 120 includes a base 1210 part and a main body 1220 part capable of rotating relative to the base part, and a plurality of mechanical arms 1230 are installed on the main body part.
- the rotation of the main body part relative to the base part can drive the mechanical arm to rotate and switch between different workstations.
- the rotating connection part 1221 of the main body part relative to the base part can be understood as the above-mentioned waist structure.
- the mechanical arm includes at least a swing arm 1231, which can pivot in one or more planes relative to the main body.
- the swing arm 1231 can be in a direction relative to the axis of the main body.
- the swing arm 1231 can swing in a plane perpendicular to the axis of the main body, and for another example, the swing arm 1231 can swing in any plane intersecting with the axis of the main body.
- the swing arm 1231 can swing along the direction C in FIG. 3.
- the angular range of the swing may include 0°-360°, preferably, the angular range of the swing may include 0°-330°, preferably, the angular range of the swing may include 0°-300°, preferably
- the angle range of the swing may include 0°-270°, preferably, the angle range of the swing may include 0°-240°, preferably, the angle range of the swing may include 0°-210°, preferably
- the angular range of the swing may include 0°-180°, preferably, the angular range of the swing may include 0°-150°, preferably, the angular range of the swing may include 0°-120°,
- the angle range of the swing may include 0°-90°.
- the mechanical arm may further include a lifting arm 1232, and the lifting arm 1232 is movably disposed relative to the main body 1220 in the axial direction of the main body 1220.
- the lifting arm 1232 can move up and down relative to the main body 1220 along the A direction in FIG. 3.
- the lifting arm 1232 may be movably connected to the main body 1220 through a moving rail 1222 provided on the main body 1220.
- the swing arm 1231 may be connected to the main body 1220 through a lifting arm 1232, and the swing arm 1231 and the lifting arm 1232 are rotatably connected, so that the swing arm 1231 can be opposite to each other.
- the main body 1220 moves up and down, and can also rotate relative to the main body 1220.
- the mechanical arm 1230 further includes an extension arm (not shown in the figure), and the extension arm may be disposed on the swing arm 1231.
- the extension arm may be fixedly arranged relative to the lifting arm 1232 and extend outward relative to the center of the main body 1220.
- the extension arm extends outward in the horizontal direction.
- an extension arm may be disposed between the lifting arm 1232 and the swing arm 1231, and the swing arm 1231 is rotatably disposed on the extension arm and can be arranged along the extension of the extension arm. Move back and forth in the direction (direction B as shown in FIG. 3) to realize the adjustment of the horizontal distance of the swing arm 1231 relative to the main body 1220.
- the arm structure of the mechanical arm device includes the arm and a rotating connection part 1221 that realizes the rotation of the arm.
- the arm portion includes one or more of the above-mentioned swing arm 1231, lifting arm 1232, and extension arm.
- the hand structure 1233 of the robotic arm device is connected to the arm structure for clamping and picking up the module 1000.
- the hand structure 1233 includes a hand 12331, a connection structure 12332 between the hand and the arm, and a finger structure 12333 of the gripping module.
- the connection between the hand and the arm may include a fixed connection or a relative rotation connection.
- the hand is rotatably connected with the arm.
- the rotatable connection may include the following two situations: one is that the hand rotates relative to a certain axis of its own (direction D as shown in FIG.
- the rotation axis of the hand rotation is parallel or coaxial with the center line of the arm.
- the shape center of the module is parallel or coaxial with the axis of the hand and/or arm.
- the driving part of the mechanical arm device 120 includes a waist driver for driving the movement of the waist mechanism, and an arm driver for driving the movement of the arm.
- the driving part further includes a hand driver for driving hand movement.
- the waist driver may include a motor, and the movement of the waist mechanism is driven by the rotation of the motor, that is, the main body is driven to rotate relative to the base.
- the arm driver includes one or more driving motors, which are respectively used to drive the swing of the swing arm and the movement of the lifting arm and/or the extension.
- the movement of the swing arm 1231, the lifting arm 1232, and the extension arm may be realized by one driving motor, or may be realized by multiple motors.
- the driver may include a pneumatic driver or an electric driver.
- the drive adopts an electric drive, that is, a motor, it may include a stepper motor or a servo motor.
- the main body part can rotate 360° relative to the rotating connection part of the base part, so that each working direction of the mechanical arm device 120 can be switched between the various stations of the shell-making production line.
- the robot arm can drive the module to rotate from the dipping station to the sanding station.
- the 360° rotation may be rotated by a certain angle each time, and rotated 360° through a number of rotations (such as 3 times or 4 times).
- the mechanical arm device can realize the movement of the module at the same station through the movement of the arm structure and the hand structure.
- the arm structure can tilt and lift the module to a certain height, or vertically lift the module to a certain height.
- the robotic arm device can switch between different workstations of the robotic arm through the waist structure.
- the waist structure can drive the module to rotate from the dipping station to the sand showering station.
- the rotation of the hand structure can drive the rotation of the module to realize the rotation of the module.
- the rotation of the module can realize the sufficient slurry of the module and the excess slurry on the surface of the module to fall off.
- the dipping device 130 may correspond to the first station of the robotic arm device 120, for providing a corresponding type of slurry, corresponding to the dipping operation of the module.
- the dipping device 130 may include one or more slurry buckets.
- the one or more slurries can contain one or more different slurries.
- the control center 160 when the control center 160 is connected to the dipping device 130 by electrical signals, the control center 160 can control the dipping device 130 according to instructions to automatically switch the slurry bucket. In some embodiments, the switching of the slurry bucket can also be realized manually and separately through the controller of the dipping device.
- the operator can use the corresponding control button to switch the slurry bucket containing the corresponding type of slurry in the dipping device to Corresponding position to prepare for dipping operation.
- the dipping device and its switching structure will be described in detail below in conjunction with different embodiments and the drawings.
- FIG. 5 is a schematic diagram of a dipping device 130 according to some embodiments of the present application.
- the dipping device 130 may include at least two slurries (for example, the slurries 210 shown in FIG. 5) for holding slurries, each of which corresponds to a dipping process (also corresponding to a Slurry).
- the dipping device 130 can be used to move based on a control command to switch the slurry bucket containing the corresponding type of slurry to a station corresponding to the dipping process.
- some modules need to go through three dipping processes corresponding to the surface layer, the second layer, and the back layer of the module.
- the dipping device 130 may include a surface layer slurry for containing surface layer slurry. Bucket, two-layer slurry bucket for holding two-layer slurry and back layer slurry bucket for holding back-layer slurry.
- each bucket can be arranged around a center position (for example, position 200 in FIG. 5). When a dipping process using a specified type of slurry is performed, each bucket can rotate around the center position as a whole. Rotate the slurry bucket containing the specified type of slurry to the station corresponding to the dipping process.
- the dipping device 130 may include a turntable 220 that can be controlled to rotate. At least two buckets (for example, bucket 210 in FIG. 5) may be provided on the turntable, and the turntable may be used to rotate based on a control command. Realize the switch of the slurry bucket containing the corresponding type of slurry to the station corresponding to the dipping process.
- the dipping device 130 may further include a rotating base disposed on at least one slurry bucket, and the rotating base can rotate based on a control command to drive the slurry bucket to rotate, so that sufficient slurry dipping on the surface of the module can be achieved.
- the dipping device 130 may have a signal connection with the control center 160 to control the movement of the dipping device 130 based on the control command of the control center 160, for example, to control the rotation of the turntable and/or the rotating base.
- the dipping device 130 itself may also be integrated with a controller to control the movement of the dipping device 130 based on the control instructions of the controller, for example, to control the rotation of the turntable and/or the rotating base.
- the dipping device 130 can also switch the slurry bucket through an online rail changing device.
- the online rail changing device may include a base, a flatbed car, a slurry bucket, a longitudinal side rail, a longitudinal short rail, a transverse rail, a longitudinal long rail, and a floor car.
- the base is an underground multi-groove type member.
- the longitudinal long rail and the longitudinal short rail are laid in the middle of the base, and a position for installing the transverse rail is reserved at the joint of the two rails.
- the longitudinal side rails are arranged on both sides of the longitudinal short rails, and the longitudinal short rails are flush with the extending ends of the longitudinal side rails, and the inward extending ends of the longitudinal side rails stop at the transverse rails.
- the installation height of the transverse rail is lower than the longitudinal rail, and the height difference is equal to the net height of the floor car.
- the upper plane of the floor car is provided with two bridge rails, and the length of the bridge rails is equal to the reserved space between the longitudinal long rail and the longitudinal short rail.
- the floor car equipped with rollers only moves along the transverse rail. It will be described in detail below in conjunction with the drawings.
- 6 to 8 are schematic diagrams of another dipping device 130 and its online rail changing device according to some embodiments of the present application.
- the online slurry bucket rail changing device shown in FIGS. 6 to 8 includes a base 1310, a flatbed cart 1320, a bucket 1330, a longitudinal side rail 1340, a longitudinal short rail 1350, a horizontal rail 1360, a longitudinal long rail 1370, and a floor car 1380.
- the flatbed cart 1320 and the floor cart 1380 are carriers for realizing the track change of the pulp bucket 1330, and are essentially a tool cart equipped with an electric device to travel along the track.
- the upper plane of the flatbed cart 1320 in this embodiment is a rectangular plate, and the four corners of the bottom surface are equipped with rollers according to the gauge of the longitudinal long rail 1370 or the longitudinal short rail 1350 or the longitudinal side rail 1340.
- the base 1310 is an underground multi-groove component.
- the base 1310 has built-in three vertical and one horizontal straight groove track seats.
- the central longitudinal straight groove and the horizontal straight groove are perpendicular to each other, and the cross section of each groove is upwards. Rectangular slot.
- the longitudinal long rail 1370 and the longitudinal short rail 1350 are laid in the middle of the base 1310, and a position for installing the transverse rail 1360 is reserved at the joint of the two rails.
- the extended end of the longitudinal long rail 1370 is located on the side of the matched mechanical arm device 120, and the barrier-free environment is convenient for the flatbed cart 1320 to carry the pulp bucket 1330 into the operation area of the mechanical arm device 120.
- longitudinal side rails 1340 parallel to each other are laid at equal intervals on both sides of the longitudinal short rails 1350.
- two longitudinal side rails 1340 are laid, which are arranged in the left and right sides of the longitudinal short rails 1350.
- the extending ends of the longitudinal short rails 1350 and the longitudinal side rails 1340 are flush.
- the inwardly extending ends of the longitudinal side rails 1340 on both sides end at the transverse rails 1360, forming a vertically crossing rail structure.
- the installation height of the transverse rail 1360 is lower than that of all longitudinal rails, and the height difference is equal to the net height of the supporting floor car 1380.
- the floor car 1380 is a special car used to connect the transfer flat car 1320, and its upper plane is fixedly connected with two bridge rails 1381 with the same specifications as the longitudinal long rail 1370.
- the length of the bridge rail 1381 is equal to the longitudinal long rail 1370 and the longitudinal short rail. Space between 1350 is reserved, and bridge rails 1381 are arranged longitudinally.
- the four corners of the bottom surface of the floor car 1380 are also equipped with rollers, and the floor car 1380 only moves linearly along the horizontal rail 1360.
- the slurry bucket 1330 is arranged in three positions.
- the middle slurry bucket 1330 is used for hanging the surface layer of the shell
- the left side slurry bucket 1330 is used for the second layer slurry hanging
- the right side slurry bucket 1330 is used for hanging slurry on the second layer of the shell.
- the three-layer mold shell is mortared.
- the slurry bucket 1330 for the slurry after being transitioned by the floor car 1380, travels along the longitudinal long rail 1370 to the position shown by the dashed line in FIG. 6, that is, the robot arm device 120, for surface layer slurry-hanging operation.
- the electronically controlled centered flatbed truck 1320 returns to the original station and stands by. Start the floor car 1380 to move to the left end of the transverse rail 1360 according to the program, and then the left flat car 1320 carries the bucket 1330 to the floor car 1380, and then moves along with the floor car 1380 to the middle section of the transverse rail 1360, and waits for the floor car 1380 to get on.
- the bridge rail 1381 is connected to the gap between the longitudinal long rail 1370 and the longitudinal short rail 1350, so that the flatbed truck 1320 carries the slurry bucket 3 with the two-layer slurry inside to drive to the robotic arm device 120.
- the surrounding area is barrier-free and convenient for two-layer hanging. Pulp operation. After the second floor is finished, the flatbed truck 1320 on the left side of the electronic control returns to the original station and stands by. The subsequent action sequence of the right pulp bucket 1330 is the same as that of the left pulp bucket 1330, so the description will not be repeated.
- This embodiment realizes the orderly displacement of the pulp buckets 1330 in multiple positions to the robot arm device hand by changing the rails, and the robot arm device hand implements the slurry hanging operation centrally, which not only guarantees the slurry hanging quality, but also gives full play to the continuous homogenization of the robot arm.
- this device adopts a relatively concentrated slurry hanging method, and there is no pollution problem of the slurry between adjacent slurry buckets during slurry hanging, so the slurry quality is stable and reliable, and the production efficiency is high, which is especially suitable for production line matching.
- the sand leaching device 140 may correspond to the second station of the robotic arm device 120, and is used to provide a corresponding type of sand material corresponding to the sand leaching operation of the module.
- the sand leaching device 140 may include one or more sand leaching machines for providing one or more different types of sand materials to the module to meet corresponding sand leaching requirements.
- the sand leaching device may include a plurality of sand leaching machines, and each sand leaching machine is equipped with different types of sand materials.
- the sand leaching device may also include a sand leaching machine, but the sand leaching machine contains different types of sand materials, and corresponding types of sand materials can be provided according to the sand leaching requirements of the module.
- the sand shower 140 when the control center 160 is electrically connected to the sand shower 140, the sand shower 140 can automatically switch the sand showers containing different types of sand materials according to instructions; in some In an embodiment, the sand leaching device 140 can also switch different types of sand materials in the same sand leaching machine to a usable state according to instructions.
- FIG. 9 is a schematic diagram of a sand shower 140 according to some embodiments of the present application.
- the sand leaching device 140 may include a plurality of sand leaching machines (for example, the sand leaching machine 310 in FIG. 9) provided with different types of sand materials, and the type and mold of the sand used by each sand leaching machine The type of slurry used in the last dipping process of the group is matched, and the sand shower that provides the corresponding type of sand can be used to switch to the station corresponding to the sand dipping process based on control instructions.
- sand leaching machines for example, the sand leaching machine 310 in FIG. 9
- the type and mold of the sand used by each sand leaching machine The type of slurry used in the last dipping process of the group is matched, and the sand shower that provides the corresponding type of sand can be used to switch to the station corresponding to the sand dipping process based on control instructions.
- the sand leaching device 140 may include an electric walking mechanism 320, which may be used to switch the sand leaching machine that provides the corresponding type of sand to a station corresponding to the sand leaching process.
- the electric walking mechanism 320 may include a track for guiding the movement trajectory of the sand shower and a motor that provides the power required for the movement of the sand shower.
- the sand leaching device 140 may have a signal connection with the control center 160 to switch the sand leaching device 140 that provides the corresponding type of sand to a station corresponding to the sand leaching process based on the control instruction of the control center 160, for example , Controlling the electric walking mechanism 320 to drive the sand spraying machine that provides the corresponding type of sand material to move to the station corresponding to the sand spraying process.
- the sand leaching device 140 itself may also be integrated with a corresponding controller to control the movement of the sand leaching device 140 to a station corresponding to the sand leaching process based on the control instructions of the own controller, for example, to control electric walking.
- the mechanism 320 drives the sand leaching machine that provides the corresponding type of sand material to move to the station corresponding to the sand leaching process.
- the sand spraying device 140 can also use a turntable to switch sand spraying machines containing different types of sand materials.
- the specific solution can be borrowed from the switching method of the dipping device in Figure 5 above. , Put sand showers with different sand materials on different turntables, and switch between different sand showers by switching the rotation of the turntable.
- 10 to 11 are schematic diagrams of an exemplary sand shower according to some embodiments of the present application.
- the sand spraying machine includes: a vertical bucket elevator 1410, a sand box 1420, a motor 1440, a cover 1450, a main shaft 1460, a sand spraying drum 1480, and a hopper 1490.
- the vertical bucket elevator 1410 is equipped with agitator 1500 to transport the raw materials to the top of the vertical bucket elevator 1410; the sand box 1420, the sand spraying cylinder 1480 and the hopper 1490 are fixedly connected to the same side of the vertical bucket elevator 1410 from top to bottom.
- the hopper 1490 is fixedly connected to the silo of the vertical bucket elevator 1410, and its bottom is in communication with the silo of the vertical bucket elevator 1410; the sand box 1420 is an upwardly open box, placed on the vertical bucket elevator 1410 Below the top outlet 1411.
- the cover 1450 is arranged between the sand box 1420 and the hopper 1490, and is a semi-closed structure, which surrounds the sand showering cylinder 1480 and the hopper 1490, and is open toward the front of the working position underneath.
- the motor 1440 is fixedly connected to the top plate of the casing 1450, and its downward output shaft penetrates the top plate of the casing 1450 and is connected to the main shaft 1460.
- the lower end of the main shaft 1460 is provided with several strip-shaped flat scrapers 1470.
- the lower end of the main shaft 1460 is provided with three flat scrapers 1470 evenly distributed in the circumferential direction with the central axis of the main shaft 1460 as the center; the flat scrapers 1470 are arranged at Pour the sand in the cylinder 1480.
- the discharge port 1421 at the bottom of the sand box 1420 penetrates through the top plate of the casing 1450 and is placed above the opening above the sand shower 1480; the bottom of the sand shower 1480 is provided with a sand screen 1530; the upper part of the sand box 1420 is equipped with an inclined screen 1430 The side wall of the sand box 1420 is provided with an opening corresponding to the lower end of the screen 1430, and a trash box 1510 is provided below the opening.
- the upper suction port is arranged on the upper part of the side wall of the sand box 1420 and communicates with the inner cavity of the sand box 1420.
- the lower suction port is provided on the side wall of the casing 1450 above the hopper 1490. , Communicate with the inner cavity of the housing 1450.
- Fig. 12 is a schematic diagram of the overall structure of another exemplary sand shower according to some embodiments of the present application.
- Figs. 13, 14, and 15 are respectively a three-dimensional schematic diagram of the main frame and a three-dimensional dust removal structure of the sand shower shown in Fig. 12 Schematic diagram and three-dimensional diagram of the filtering device
- the sand shower may include a lower sand hopper 410, a screen 420, a silo 430, a dust suction device 440, a lower dust suction port 450 and a filter device 460.
- the filtering device 460 may include a belt filter 461, a waste collection box 462, a cleaning box 463, a scraper 464, and a drying device 465.
- the lower sand hopper 410 may include a rectangular container with an upward opening.
- the lower sand hopper 410 located on the top layer may face a lower screen 420 with a downward outlet, and a silo 430 may be provided on the side under the screen 420.
- the dust suction device 440 may be arranged on the front side wall of the lower sand bucket 410 to form the first fixed-point dust suction structure for the lower sand bucket 410 during the sand falling stage.
- the lower dust suction port 450 can be arranged on the left and right side walls between the lower sand bucket 410 and the screen 420 to form a second fixed-point dust suction structure in the sand falling stage.
- the filter device 460 may be located directly below the lower sand hopper 410, and the belt filter 461 of which is configured can be cyclically driven by the transmission device, and the upper plane of the belt filter 461 erected in a frame shape is placed on the screen 420.
- the open rectangular containers for waste are respectively installed at the bottom of one end of the belt filter 461 in the circulation direction, and a scraper 464 is provided between the open portion of the waste collection box 462 and the belt filter 461.
- the drying device 465 can be arranged at the bottom of the sand shower, which is parallel to the newly cleaned belt filter 461 section of the cleaning box 463, forming a fixed-point air drying structure for the belt filter 461.
- the belt filter 461 is located directly below the lower sand hopper 410, and the sand poured from the mold shell and the scattered slurry fall naturally on the belt filter 461, and most of the sand penetrates the belt.
- the type filter 461 falls on the lower sieve 420, and the sieved sand is sent to the silo 430 for standby.
- the dripping slurry and sand are stuck on the belt filter 461 to form the soybean greens.
- the width of the plate 464 is equal to the width of the belt filter 461, so all the soybean greens are scraped off.
- the belt filter 461 that continues to be driven enters the cleaning box 463 to be cleaned, thereby removing the remaining slurry. Because the surface of the belt filter 461 is coated with PTFE, the surface is not wet, although the surface of the cleaned belt filter 461 is not wet, the belt filter 461 is still dried to ensure the belt type The filter screen 461 is always recycled in a dry state.
- the belt filter 461 continuously circulates and forms a relative movement with the stationary scraper 464. Once the belt filter 461 drops the slurry and adheres to the sand, the soybean greens are formed, and the soybean greens are scraped off by the scraper 464 during the circulation of the belt filter.
- This structure has good scraping timeliness, high efficiency and excellent quality.
- there are two dust removal structures in the sand leaching section which can prevent the fine sand dust from overflowing during sand leaching, which significantly improves the working environment and is beneficial to the physical and mental health of the operators.
- the module needs to complete the multi-layer dipping operation and the multi-layer sanding operation.
- the module needs to be dried after each layer of dipping operation and sanding operation is completed. After the module is fully dried, the next layer of dipping operation and sanding operation can be carried out.
- the shell-making production line 100 may further include a drying device, which may be used to perform a drying process on the modules on the conveying device that have gone through the dipping process (and the sand showering process).
- the way of drying may include air drying and/or drying.
- the drying device may include a plurality of fans and/or heating devices arranged in various positions of the conveying device.
- the suspension part for suspending the module in the transmission device may include a base and a rotating part.
- the base is connected with a transmission chain for driving the movement of the module
- the rotating part is used for loading the module
- the rotating part can rotate relative to the base.
- the rotating part on which the module is suspended can rotate relative to the base under the action of the drying device (for example, the wind of a fan), that is, the module can rotate on its own. During the rotation of the module, the module can be fully dried through rotation.
- the base and the transmission chain may be connected by a lifting ring.
- the rotating part may include a loading slot.
- control center 160 may also be electrically signaled to the drying device, for controlling the interaction of the transmission device, the mechanical arm device, and the drying device according to instructions. For example, when the module suspended on the conveying device passes through the drying device, the control center 160 can control the activation of the drying device.
- the start and stop time of the drying device can also be controlled by the control center 160. The start and stop time can be calculated based on the time spent by the robotic arm device 120 at each station, and the time spent by the robotic arm device 120 at each station It can be obtained according to actual measurement and statistics.
- the start and stop time of the drying device can also be controlled by a controller integrated in the drying device. For example, the controller can control the start and stop time of the drying device according to whether the module is detected in the drying area.
- Figures 16-17 show a drying device used for precision casting of shells according to some embodiments of the present application.
- the drying device for the shell production line shown in FIGS. 16-17 includes a drying room 510, a rail 520, a suspension chain 530, a fan 540, and a driver 550.
- the drying room 510 is a house with a rectangular plane, and the surrounding walls are provided with a thermal insulation layer.
- the drying room 510 is divided into three interconnected and parallel drying areas, namely three connected rooms, the initial drying area 511 located at the top of FIG. 16 and the enhanced drying area 512 located in the middle.
- the lower part is the curing and drying zone 513.
- the track 520 is a circular track, and the track 520 erected outside the drying room 510 is used for loading and unloading the module 1000.
- the rails 520 in the drying room 510 are bent and erected along the length of the three drying sections, and the rails 520 between adjacent drying sections are also erected by bending, thus forming a multi-channel connecting the inside and outside of the drying room 510 Curved ring road.
- the suspension chain 530 is an endless chain that runs along the track 520.
- the suspension chain 530 is configured with hangers 531 in sections, and the module 1000 runs with the hangers 531.
- the fans 540 are arranged between the adjacent straight sections of the suspension chain 530.
- the fans 540 arranged in a horizontal sequence are parallel to the straight sections of the suspension chain 530.
- the arranged fans 540 face the module 1000, and all fans 540 have the same wind direction.
- the wind direction of the fan 540 is uniformly blowing from the downward direction in FIG. 16 to the upward direction.
- the driver 550 is a special component of the present invention for increasing the drying speed and improving the uniformity of drying. It is arranged on the same side of the straight section of the suspension chain 530.
- the output end of the driver 550 passes through the outer wall of the hanger 531 configured by the friction suspension chain 530 to cause the module 1000 traveling with the suspension chain 530 to rotate in the same direction.
- the rotation speed of the module 1000 in this embodiment is 8 revolutions/min. Since the dried module 1000 continues to rotate while walking in the drying room 510, there are no windward and leeward sides during the drying process, so the drying uniformity of the module 1000 is greatly improved.
- a drying production line that rotates the modules can be further used to dry the modules.
- the drying production line of the module rotation may include a drying room, a track, a suspension chain, a fan, and a drive.
- the drying room is divided into single-digit connected and parallel drying intervals, and each drying interval is set to have different temperature values.
- a passageway for rails and hanging chains is reserved on the wall on one side of the drying room.
- the track is a circular track, the track in the drying room is bent and erected along the length direction of the drying section, and the track between adjacent drying sections is also bent and erected.
- the suspension chain is an endless chain that runs along a track.
- the suspension chain is configured with hangers in sections, and the module runs with the hangers.
- the fans are arranged between adjacent straight sections of the suspension chain, and all fans have the same wind direction.
- the driver is arranged on one side of the suspension chain and relies on friction to drive the module to rotate.
- Figures 18-19 show a drying production line device with a rotating module according to some embodiments of the present application.
- Figures 18-19 show a drying production line with a module rotating. It is a chain transfer production line.
- the structure includes a track 610, a pulley 620, a reducer 630, a belt 640, a fixed seat 650, and a driver 660. , Base 670 and hook 680.
- the rail 610 is a basic member, and its cross section is similar to a channel steel cross section.
- the suspended rail 610 faces downward with the open side, and axially displaceable bases 670 are suspended in the grooves of the rail 610 at equal intervals.
- the base 670 is a rectangular plate, and each base 670 is provided with two downwardly facing rectangular openings.
- the hook 680 is a carrier for suspending the workpiece module 690.
- a hook 680 shaped like a C is suspended in a preset rectangular opening of the base 670.
- the hook 680 faces downward with one side of the opening and is provided with two coaxially opposed inner hooks.
- a vertical rotating shaft structure 681 composed of a friction wheel, an upper cover, a core shaft, a bearing and a bearing seat is provided in the middle of the solid side of the hook 680 facing upward.
- the upper cover located on the top of the shaft structure 681 is suspended from the base 670, the built-in bearing is matched with the bearing seat and the mandrel, and the lower end of the vertical mandrel is connected to the hook 680.
- the bearing in this embodiment is a flat ball bearing, and the load of the core bearing carrying the hook 680 and the workpiece module 690 is borne by the bearing.
- This friction pair is rolling friction, so the hook 680 rotates very flexibly.
- the power for the rotation of the hook 680 is introduced by the friction wheel, and the friction wheel configured in the structure fits with the bearing seat gap, and each can rotate freely.
- the fixed base 650 is a strip-shaped member arranged on the outside of the rail 610.
- drivers 660 are arranged at the distance between the workpiece modules 1000 suspended on the rail 610, and each driver 660 is equipped with a belt 620.
- a total of six drivers 660 are configured on a fixed base 650.
- a speed reducer 630 is arranged at a central position outside the fixed seat 650.
- the pulley 620 arranged at the output end of the speed reducer 630 drives the drivers 660 arranged in sequence on both sides through the belt 640. Once the rotating driver 660 contacts the friction wheel, the stationary friction wheel When kinetic energy is obtained, the hook 680 is driven to rotate, and the workpiece module 1000 suspended by the hook 680 also rotates.
- the pulley 620 configured by the reducer 630 and the driver 660 has a double structure, and the diameters of the two wheels are the same, so all the hooks 680 rotate at the same speed.
- the workpiece module 1000 which moves and rotates with the drying production line in the drying chamber, is always in a dynamic position and promotes the rapid precipitation of moisture in the slurry, so that each part is easy to be uniformly dried.
- this continuous flow drying production form is also more than three times higher than the prior art batch drying production efficiency, which fully meets the mass production requirements.
- the drying production line device with the rotating module may include a rotatable hanger.
- the rotatable hanger may include a base, a hook, a friction wheel, an upper cover, a mandrel, a bearing and a bearing seat.
- the base is a rectangular plate, and at least two rectangular grooves with downward openings are provided on the bottom side of each base.
- a pair of equal-length open inner hooks are formed on both sides of the notch reserved on the bottom side of the hook, and the upper side of the hook is arranged at a center position to form a shaft structure composed of an upper cover, a core shaft, a bearing and a bearing seat.
- the grooves preset on the upper end surface of the upper cover are engaged with the base and connected by bolts, so that the hook is suspended in the notch of the base and can rotate with the mandrel.
- the mandrel is connected with the friction wheel, and the friction wheel rubs with the external V-belt during the traveling process to obtain kinetic energy and rotate with the mandrel, so that the workpiece module suspended by the hook rotates synchronously.
- 21-24 are schematic diagrams of the structure of a rotatable hanger according to some embodiments of the present application.
- the rotatable hanger shown in Figures 21-24 is a hanger used for precision casting to suspend a workpiece module. It includes a base 710, a hook 720, a friction wheel 730, an upper cover 740, a mandrel 750, a bearing 760 and a bearing 770.
- the base 710 is a carrier member of the hanger, and is a rectangular plate placed horizontally and vertically.
- the bases 710 arranged sequentially in the module drying production line are connected by a chain.
- Each base 710 serves as a transmission unit. In this embodiment, two rectangular grooves with symmetrical positions and openings facing downward are opened on the bottom side of the base 710, and the grooves are used for arranging the hooks 720.
- the inner hook 721 has an open structure, and its shape is shown in Figure 23 and Figure 24.
- the connection between the hook 720 and the base 710 adopts a rotating shaft connection structure, so that the hanging hook 720 rotates on a fixed axis.
- the upper cover 740, the core shaft 750, the bearing 760 and the bearing seat 770 are arranged in a central position on the upper side of the hook 720 to form a rotating shaft structure.
- the upper end surface of the upper cover 740 is preset with a groove for fitting with the base 710, and the two are fitted and installed and then connected by bolts, thereby forming the hook 720.
- the structure of the 710 gap can be rotated with the mandrel 750.
- a friction wheel 730 is fitted with a coaxial gap on the bearing seat 770.
- the friction wheel 730 is only connected to the core shaft 750, and the hook 720 travels with the base 710.
- the friction wheel 730 introduces power to drive the mandrel 750 to rotate.
- a pattern is pressed on the outer circle of the friction wheel 730 with a large diameter to increase the friction coefficient and ensure that the hook 720 has sufficient continuous rotation power.
- the rotatable hanger can be stopped at any time during use, so that other devices of the shell production line 100 (such as the robotic arm device 120) can operate the modules suspended on the hanger.
- the rotation prevention can be realized by a positioning and rotation prevention device for the suspension mold shell of the transmission chain.
- the positioning and rotation preventing device for the suspension form of the transmission chain may include a column pile, a track, a base, a brake rod, a sensor and a hanger.
- the track is a strip-shaped track, and the bases connected in series transversely drive along the track.
- the two downward rectangular notches of the base are respectively equipped with hangers, the base is suspended in the track by means of a runner with built-in hangers, and the hangers and the hung mold shell rotate relative to the base together.
- the brake lever is arranged on the side of the track near the manipulator, the height of which is in the middle of the base and parallel to the track, and the bent sections at both ends are arranged outwards.
- the sensor is installed in the center of the base near the upper edge, and the sensing area faces the manipulator.
- the pile is a flexible rod that hangs downward, and its fixed end is installed at the front end of the track unloading area, that is, the open port in front of the brake rod.
- 25-27 are schematic structural diagrams of the positioning and rotation-stopping device for the suspension form of the transmission chain according to some embodiments of the present application.
- the positioning and rotation prevention device for the suspension form of the transmission chain shown in Figs. 25-27 includes a pillar 810, a rail 820, a base 830, a brake lever 840, a sensor 850 and a hanger 860.
- the track 820 is a strip-shaped track made of channel steel with an opening facing downward, and the layout of the track 820 satisfies the drying process and the matching drying room.
- the horizontally traversed track 820 has both straight sections and circular arcs.
- Fig. 25 is only a schematic structural diagram of a section of the unloading area of the drying production line.
- the base 830 is a sheet-shaped member and is a carrier of the hanger 860.
- the base 830 is suspended in the track by means of the wheels 861 of the built-in hanger 860, and the built-in hanger 860 and the hanging module 1000 rotate relative to the base 830 together.
- the base 830 in the present application is connected in series in a horizontal sequence, thereby forming a chain transmission structure, creating conditions for continuous production.
- the hanger 860 rotates, which can overcome the problem of uneven drying of the hanger 860 suspension module 1000.
- the hanger 860 and the suspended module 1000 entering the unloading area are still in a rotating state under the action of inertia, so that the matching manipulator 880 cannot obtain the accurate position signal of the module 1000 to be unloaded, and cannot accurately extract the dried module 1000. ⁇ module 1000.
- the present application is equipped with parallel brake levers 840 at the front side of the track 820 facing the matching manipulator 880.
- the brake lever 840 is a slender member with outward bending angles at both ends.
- the bending l 100mm
- the acute angles at both ends are equal.
- the acute angle ⁇ 30°.
- a sensor 850 is installed on the board surface of the base 830 to prepare the matching manipulator 880 for positioning and picking.
- the sensor 850 used in this embodiment is a positioning sensor, which is directly installed at the center and the upper edge of the base 830, and the sensing area faces the matching manipulator 880.
- the pile 810 is a flexible rod that hangs down, and its fixed end is installed at the front end of the unloading area of the track 820, that is, at the front open port of the brake rod 840.
- the column 810 in this embodiment is a cylindrical compression spring with sufficient elasticity and flexibility. It has a buffer effect on the transmission hanger 860 in the structure.
- the translational hanger 860 is easy to realize rapid positioning, and it is convenient for the supporting manipulator 880 to quickly and accurately remove the module 1000 suspended by the hanger 860. Therefore, when the application is actually used, in addition to significantly improving the unloading efficiency, it also reduces motion noise and improves the working environment.
- the rotatable hanger may further include a drive that drives the rotation.
- the drive may include a main shaft, a large pulley, a bracket, a pin shaft, a transmission wheel, a belt, and a small pulley.
- the two ends of the main shaft arranged on the bracket are respectively equipped with a large pulley and a small pulley to form a coaxial rotating structure on both sides of the bracket.
- Two drive wheels positioned by pin shafts are symmetrically arranged on the extension plate on one side of the bracket.
- the small pulley and the drive wheel are located on the same side of the bracket, and the drive wheel is located on the side of the hanger.
- the belt loop is wound around the small pulley and two transmission wheels to form an isosceles triangle belt transmission structure.
- the outer wall of the belt at the bottom of the isosceles triangle contacts the outer wall of the hanger hanging on one side, and the hanger is driven by the friction of movement. With rotation.
- Figures 28-30 are schematic structural diagrams of a drive for assisting the rotation of the drying line suspension hanger according to some embodiments of the present application.
- the drive for assisting the rotation of the drying line suspension hanger shown in FIGS. 28-30 includes a main shaft 910, a large pulley 920, a bracket 930, a pin 940, a transmission wheel 950, a belt 960, and a small pulley 970.
- the driver is installed in the module drying production line, and is installed in sections on the side of the rail where the hanger travels.
- the driver is powered by a large pulley 920, and adjacent drivers are linked by belts.
- the bracket 930 is a main frame and is a T-shaped member. The horizontally long plate surface is penetrated by a vertical main shaft 910 at the center position.
- One end of the main shaft 910 is equipped with a large pulley 920 and the other end is equipped with a small pulley 970.
- a coaxial rotating structure on both sides of the bracket 930 is formed.
- the overhanging plate on one side of the bracket 930 is perpendicular to the horizontal strip surface, and two transmission wheels 950 positioned by the pin shaft 940 are symmetrically arranged on the outer end of the plate.
- the small pulley 970 and the two transmission wheels 950 are located on the bracket 930.
- the transmission wheel 950 is located on the side of the hanger 980 to form a reduction transmission structure. Therefore, the outer diameter D of the drive wheel 950 is smaller than the outer diameter of the matched hanger 980, which is 20mm smaller in this embodiment.
- the transmission wheel 950 in the present application does not directly contact the outer circle of the hanger 980, and the outer wall of the rubber belt 960 wound by the transmission wheel 950 is used for friction transmission.
- the belt 960 is a rubber V-belt with an isosceles trapezoid in cross section. In the structure, the belt 960 loops around the small pulley 970 and the two transmission wheels 950 to form an isosceles triangle belt transmission structure.
- the outer wall of the belt 960 located at the bottom of the isosceles triangle contacts the outer wall of the one-side suspension hanger 980, and the hanger 980 is driven to rotate through movement friction. Since the hanging tool 980 increases the rotational movement during the movement, the hanging tool 980 drives the hanging module to rotate together. In the drying room, due to the rotation of the dried modules, uniform drying conditions are obtained for all parts, so the drying quality of the modules is guaranteed, which creates a good basic condition for improving the quality of castings.
- FIG. 31 is a flowchart of a method for manufacturing a mold shell based on the shell production line 100 according to some embodiments of the present application.
- Step 3110 put several modules on the transmission device.
- the module may be a wax module tree.
- the module may include multiple sets of wax molds.
- the module may include a crossbar for suspension.
- the transmission device may be a device that transmits modules to different stations. The transmission device can be stopped when the module is transferred to one or more stations, so that the module can perform corresponding operations at the station.
- the transmission device may include a suspension mechanism matched with the module for suspending the module. In some embodiments, putting several modules on the transmission device can be understood as putting several modules on the suspension mechanism of the transmission device. In some embodiments, one suspension mechanism can transmit multiple modules at a time, and the transmission device has multiple suspension mechanisms. One of the suspension mechanisms can be hung with the modules first, and then the next suspension mechanism can be hung. Group operations.
- the suspension mechanism may include a rotating mechanism, and the module can rotate on the suspension mechanism to facilitate the drying of the module.
- the modules may be suspended on the transmission device in groups of two, that is, two modules are transmitted at a time.
- step 3110 may be executed by the feeding mechanism controller to control the feeding mechanism.
- the feeding mechanism controller may be electrically signaled to the control center, and the control center sends related instructions to the feeding mechanism controller to realize the movement control of the feeding mechanism.
- the feeding mechanism may be an actuator that can automatically suspend the module on the transmission device controlled by a program.
- the feeding mechanism may be an automatic feeding table or a manipulator.
- step 3110 may also be performed manually. For example, the operator on the site can manually hang the module to the transmission device.
- step 3120 the module is transferred to the operating station through the transfer device.
- the operating station may be a working area for performing specific process operations for the module.
- the operating station may be a pick-up station of a mechanical arm.
- the transmission device may include a motion state and a parking state.
- the motion state of the transmission device may be controlled by a corresponding controller, for example, a PLC controller.
- the controller of the transmission device is electrically signaled to the aforementioned control center, so that the control center can control the movement of the transmission device according to related instructions.
- the controller of the transmission device can control the start and stop of the movement of the transmission device, control the movement speed of the transmission device, control the stop position of the transmission device and the residence time at the position.
- the transfer device will stop the module after transferring the module to the operating station, and the robot arm device will perform subsequent operations on the module.
- a temperature and humidity monitoring and regulating system is provided in the operating space of the transmission device. The temperature and humidity monitoring and adjustment system can detect the temperature and humidity of the environment where the module is located in real time, and adjust when the temperature or humidity exceeds a limited range to ensure that the module is in the best operating environment.
- step 3130 the module is removed from the conveying device by the mechanical arm device, and the operation of dipping and sanding is completed at one or more operating stations.
- the robot arm device can remove the module and complete the subsequent processes, such as dipping and/or sanding.
- the transmission device may stay at a designated position to facilitate the mechanical arm device to reliably pick up the module.
- the residence time of the transmission device at the designated position can be adjusted according to the structure of the robotic arm device, or can be adjusted according to the number of parallel transmission modules.
- the designated position may be understood as a pick-up station of the robotic arm device.
- the removal of the module from the transmission device by the robotic arm device may be that after the module is transferred to the pick-up station, the robotic arm picks up the module at the pick-up station.
- step 3130 and step 3140 may be controlled by a controller (for example, a PLC controller) of the robot arm device to execute the robot arm device at one or more workstations.
- the controller of the robotic arm device may be electrically signaled to the control center, so that the control center can control the movement of the robotic arm device according to related instructions.
- the dipping operation may include a dipping action and a dripping action.
- the auxiliary station and the first station may jointly complete the dipping operation. For example, for some special parts, where the dipping process takes a long time, the dipping action can be performed on the auxiliary station, and the dripping action can be performed on the first station.
- the gripping module of the robotic arm device to perform the dipping operation may include: the robotic arm device implements the removal of the module from the suspension chain of the transmission device through the bending of the arm at the module removal station, Then rotate to the dipping station through the waist mechanism.
- the mechanical arm that grips the module first extends the arm downward so that the module can touch the slurry inside the slurry bucket.
- the extension direction of the arm of the robotic arm can be vertically downward, that is, the arm of the robotic arm is parallel to the axis of rotation of the waist of the robotic arm, so that the module can be completely immersed in the slurry vertically downwards;
- the arm of the robotic arm can also be at a certain angle with the above-mentioned axis of rotation.
- the module is placed in the slurry bucket obliquely, and then the robotic arm drives the module to rotate, which can also realize the external surface of the module. Dip the paste evenly.
- the angle may range from 20° to 80°, preferably, it may be 30° to 70°, preferably, it may be 40° to 60°, and preferably, it may be 45°.
- the mechanical arm will take the module out of the slurry bucket and lift it upwards to shower the paddle.
- the robot arm forms an angle with the axis during the showering process to obtain a better showering effect.
- the range of the angle between the mechanical arm and the axis during the showering process may be 0°-90°, preferably, it may be 20°-80°, preferably, it may be 30°-70° Preferably, it may be 40°-60°, preferably, it may be 45°.
- the gripping module of the mechanical arm device rotates around the waist axis to the sand showering station for sand showering.
- the mechanical arm device extends the clamped module under the sand material in the sand leaching machine, and then the sand material is sanded toward the area where the module is located. In this process , The mechanical arm can drive the module to rotate to achieve uniform sand leaching.
- the placement angle of the module in the sand leaching process can be inclined upward or downward.
- the downward or upward inclination angle range relative to the vertical direction may be in the range of 0° to 90°.
- the angle range may be 30° to 90°, preferably, the angle range may be 30° to 90°, and preferably, the angle range may be 40° to 60°.
- the dipping operation may include multiple layers of dipping, such as 3-7 layers. Each dipping operation performs a layer of dipping in the multi-layer dipping.
- the multilayer dipping paste can be divided into a surface layer (such as the first layer), a second layer (such as the second layer) and a back layer (such as 3-7 layers).
- the sand leaching operation may include sand leaching multiple times.
- the robotic arm device picks up one or more modules from the conveying device
- the slurrying operation and/or sand dipping operation can be performed at one or more workstations.
- the mechanical arm device can hold one or more modules in the same station for paddle dip operation and sand dipping operation, or it may perform dip operation on one station and another station.
- the sand leaching operation can also be performed on at least two stations, or the sand leaching operation can be performed on at least two stations.
- the number of sand leaching operations and the number of layers of dipping slurry may or may not correspond to each other. For the specific operations performed by each operating station, please refer to the relevant description in Figure 5 of this manual.
- Step 3140 load the module to the transmission device through the robotic arm device.
- the module loaded on the conveying device may be a module after the sand leaching operation is completed.
- the sand leaching operation can be any layer of sand leaching operation.
- the robotic arm grips the module to the pick-up station.
- the PLC controller can be triggered to control the robotic arm to hang the module back to the transmission device.
- the starting action can be performed manually (for example, the corresponding operation button is manually controlled); it can also be performed by the control center according to related instructions.
- loading on the transmission device can be understood as the mechanical arm device putting the module back on the suspension mechanism of the transmission device.
- the transmission device in step 3140 and the transmission device in the previous step may be the same transmission device or different transmission devices. That is to say, the transmission device a transports the module to the operating station of the mechanical arm device, and the mechanical arm device removes the module from the transmission device a to perform related operations. After the operation is completed, the robot arm device can load the module to the conveying device a or the conveying device b, and then the conveying device a or the conveying device b transports the module to complete the subsequent operation process.
- step 3150 the module is transferred to the drying process through the transfer device for drying treatment.
- the module entering the drying process may be a module after the sand leaching operation is completed.
- the sand leaching operation can be any layer of sand leaching operation.
- the time of the drying step may be 2 to 3 hours.
- the drying process is realized by a drying device.
- the drying device may be a device that controls temperature, humidity, and air flow.
- a temperature and humidity monitoring device may be provided in the drying device.
- the drying device may include several air conditioners and fans, and the temperature of the air conditioner and the rotation speed of the fan are controlled by the PLC controller to control the drying process.
- the fan may be a fan with a preset speed adjustment gear, and the PLC controller may adjust different wind speed gears to dry the module according to the monitored drying degree of the module.
- the controller of the drying equipment can also be connected to the control center by electrical signals.
- the control center can calculate the time for the mechanical arm device to load the module onto the transmission device and calculate the time according to the transmission speed. The time when the module is transferred to the drying device can be determined, and the drying device can be controlled to turn on when the module is transferred to a nearby location.
- the control center can set or adjust the transmission mode of the transmission device according to the completion of the drying process.
- the transmission mode may include uniform transmission and step transmission. The transmission speed of uniform transmission, the operation speed of step transmission, the running time and the waiting time can all be preset in the instruction sent to the control center.
- the control center can also adjust the operating status of the transmission device based on the drying effect detected in the actual situation.
- the method of the drying treatment includes: when the wind blows on the module suspended on the conveying device, the module rotates to achieve uniform air drying. The rotation of the module can be realized by a rotating device on the transmission device. After the module is dried, it enters the subsequent process. The subsequent process can be to carry out the next layer of slurry, or to complete the shell making.
- step 3130 can be divided into two steps 3130-1 and 3130-2, in which the slurry dipping operation is performed in 3130-1, and the sand leaching operation is performed in 3130-2.
- step 3130 and step 3140 can be combined into one step, and the robot arm sequentially performs the operations of removing the module, dipping the slurry, dipping the sand, and hanging back the transmission device on the module.
- both the module and the mold shell can be understood as a mold shell product to be processed or processed, for example, a wax mold.
- Fig. 32 is a flow chart of the first layer of dipping and sand leaching operations in the shell-making production line according to some embodiments of the present application.
- the removal of the module from the conveying device by the mechanical arm device and the completion of the dipping and sand dipping operation at one or more operating stations may include a multi-layer dipping and sand dipping operation.
- the multi-layer dipping and sand dipping operation may be a 3-7 layer dipping and sand dipping operation. After each layer of the multi-layer dipping and sanding operations is completed, the next layer of dipping and sanding operations can be performed.
- the same operation steps can be used for the multi-layer dipping and sand dipping operations.
- the materials used in the multi-layer dipping and sanding operations may be different.
- the first-layer dipping and sand leaching operations of the mold shell in the automated shell-making production line can be controlled by the control center according to related control instructions, that is, the control center can control the robotic arm device to transmit according to the related instructions. Remove the module from the device, and clamp the module to the designated station for the corresponding dipping and sand dipping operations.
- the entire control process of the first layer of dipping and sand dipping operations will be described below.
- the operation of dipping slurry and dipping sand can be carried out by reference, and will not be repeated.
- the method may include the following steps:
- Step 3210 Control the mechanical arm device to clamp the module from the transmission device.
- Each arm structure of the mechanical arm device may further include a wrist structure and a hand structure.
- the mechanical arm device can control its arm structure to move the hand structure to the module on the transmission device.
- the hand structure may include a clamping device for grabbing the module and fixing the module on the hand structure.
- the clamping device may be a pneumatic clamping mechanism. After the robot arm device clamps the module, the arm structure can be controlled to move the hand structure with the module fixed to the lowest height position, so that the robot arm device can perform steering operation.
- Step 3220 control the mechanical arm to rotate the module to the first station, and switch the slurry bucket containing the first layer of slurry to move to the dipping station, and perform the dipping operation on the module.
- the first station may be a station for dipping the module.
- the first station may correspond to a station where the four-way eight-arm mechanical arm device is turned by 180°.
- the first station may also correspond to a station where the three-way six-arm mechanical arm device is turned 120°.
- the mechanical arm device is turned from its waist under the control of the PLC system, and the module is turned to the first station.
- the first station is provided with a dipping device as described in Figure 2 of this specification.
- the PLC system can be understood as the aforementioned control center.
- the dipping device can switch the slurries while the mechanical arm device is turning, and move the slurries containing the first layer of slurry to the dipping station. In some embodiments, the switching of the bucket can also be performed when the robot arm picks up the module.
- the robot arm device controls its arm to sink the module into the slurry bucket, and the slurry completely submerges the module. Carry out the dipping action.
- the module can be inclined or vertical.
- the mechanical arm device controls the rotation of the wrist structure to drive the module to rotate. The rotation may be rotation in the same direction.
- the rotation of the wrist structure of the mechanical arm device can run in parallel with the movement of the arm structure, which improves the efficiency of the mechanical arm.
- the time for the dipping operation of the module may be 20-30 seconds.
- the mechanical arm device controls its arm structure to lift the module to the top of the dipping bucket to perform the dripping action.
- the robot arm device controls the wrist structure to rotate in alternate directions and drives the module to perform the same rotation.
- the rotation in alternate directions may be two rotations in the forward and reverse directions.
- the time of the dripping action may be 20-30 seconds.
- the total time of the dipping operation may be 55-60 seconds.
- the area of the dipping device can also be equipped with a video monitoring device. During the dipping process, if the module falls off the slurry bucket, the video monitoring device can be used to detect and issue a warning to notify the staff to take care of it. .
- Step 3230 control the mechanical arm to rotate the dipped module to the second station, and control the sand spraying machine containing the first layer of sand to move to the sand spraying station, and perform sand leaching operation on the module.
- the second station may be a station for performing sand washing operation on the module.
- the second station may correspond to a station where the four-way eight-arm mechanical arm device is turned by 270°.
- the second station may also correspond to a station where the three-way six-arm mechanical arm device turns 240°.
- the mechanical arm device is turned from its waist under the control of the PLC system, and the module is turned from the first station to the second station.
- the second station is provided with a sand showering device as described in Figure 9 of this specification.
- the arm structure of the robotic arm can lower the module to the lowest height and wait for the completion of the switching of the sand showering device.
- the sand leaching device may include a plurality of sand leaching machines.
- the second station area may be matched with a guide rail for one or more sand showers to move.
- the sand spraying machine is controlled by the PLC system to move on the guide rail.
- the sand shower containing the first layer of sand is moved to the second station.
- the mechanical arm device controls its arm structure to lift the module to the sand spraying position of the sand spraying machine to spray the sand on the module.
- the robot arm device After the sand leaching is completed, the robot arm device lowers the module from the sand leaching machine to the lowest position.
- the sand sprayer moves to another location for waiting, such as a waiting area.
- the total time of the sand leaching operation may be 55-60 seconds.
- Step 3240 control the mechanical arm to rotate the sand-sprinkled module to the pick-up station, and hang the sand-sprinkled module back to the transmission device.
- the waist of the robotic arm device is turned to turn the working direction of the module to the 0° position.
- the mechanical arm device triggers the unhooking action, and the arm structure of the mechanical arm lifts the module and suspends it to the transmission device.
- the completion of the first-layer dipping and sand-sprinkling operations of the shell in the shell production line may also include rotating the module to an auxiliary station to perform auxiliary operations.
- the auxiliary station may be a station corresponding to a 90° turn of the four-way eight-arm manipulator.
- the auxiliary operation may include, but is not limited to, pre-soaking the module, pre-processing operation before dipping the module, and the like.
- step 3220 can be divided into three steps 3220-1, 3220-2, and 3220-3.
- step 3220-1 the bucket switch is performed, and in step 3220-2, the mechanical arm device is rotated.
- step 3230 can also be divided into three steps 3230-1, 3230-2, and 3230-3.
- step 3230-1 the robot arm device is rotated, and the sand shower is switched in 3230-2. -3 to carry out sand leaching operation.
- the possible beneficial effects of the shell-making production line disclosed in this application include, but are not limited to: (1) High degree of automation, requiring only a small amount of manual operation, which greatly saves labor costs; (2) Multiple actions of the mechanical arm device It can be executed in parallel, which greatly improves the operating efficiency; (3) Accurately control the details of the dipping and sand leaching operation of each layer, and the shell-making effect is good; (4) The module rotates during the transmission and drying process, and the module is dried evenly.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Coating Apparatus (AREA)
- Manipulator (AREA)
- Casting Devices For Molds (AREA)
- Press Drives And Press Lines (AREA)
- Forging (AREA)
Abstract
本申请涉及一种模壳制造生产线以及模壳制造方法,所述生产线包括传输装置,用于批量传输模组;机械臂装置,用于实现模组相对所述传输装置的装卸,以及在至少后续两个工序中握持所述模组;所述机械臂装置能够运动以对应不同工位;沾浆装置,用于所述传输模组沾浆;淋砂装置,用于所述模组淋砂。
Description
本申请涉及精密铸造领域,尤其涉及一种制壳生产线及其模壳制造方法。
熔模铸造的生产流程主要分为压蜡、修蜡、组树、制壳、型壳焙烧、浇注、脱壳、后处理、检验等。其中,制壳工艺主要包括沾浆、淋砂和干燥。传统的制壳工艺通常采用人工操作。沾浆操作时操作人员手握金属支撑杆将蜡模组树放入到浆桶内上下拉动和转动,以使涂料能够完全覆盖蜡模外表面;熔模沾浆后再进行撒砂,操作时人工手持熔模树组伸入到淋砂机内,进行转动、倾斜等动作,使撒砂均匀,撒砂结束后进行烘干。重复上述操作多次,即可在熔模表面涂敷多层耐火材料,形成型壳。在制壳过程中,操作工人劳动强度大,工作效率低,工作环境恶劣,由于涂料中含有粘结剂等化学制剂,操作工人还会受到化学制剂的侵害,同时撒砂时砂尘也会对操作工人造成一定的损害,严重损害操作工人的身体健康。因此,需要提出一种能够降低操作人员的劳动强度,提高工作效率的制壳生产线。
发明内容
本申请的目的在于提供一种制壳生产线,所述生产线包括:传输装置,用于批量传输模组;机械臂装置,用于实现模组相对所述传输装置的装卸,以及在至少后续两个工序中握持所述模组;所述机械臂装置能够运动以对应不同工位;沾浆装置,用于所述传输模组沾浆;淋砂装置,用于所述模组淋砂。
在一些实施例中,所述生产线还包括控制中心,与所述传输装置与 所述机械臂装置均具有信号连接,用于根据指令使所述传输装置与所述机械臂装置运动以相互配合。
在一些实施例中,所述沾浆装置包括至少两个浆桶;所述控制中心还与所述沾浆装置具有信号连接,用于根据指令控制沾浆装置运动使盛有对应类型浆料的浆桶切换至指定位置。
在一些实施例中,所述控制中心还与所述淋砂装置具有信号连接,用于根据指令控制盛有对应类型砂料的淋砂装置运动至指定位置。
本申请一方面提供了一种分拣式无尘淋砂机,它包括下砂斗、筛网、料仓、吸尘装置、下吸尘口和过滤装置;所述过滤装置由带式滤网、废料收集箱、清洗箱、刮板和干燥装置组成;其特征在于:所述下砂斗为朝上敞口的矩形容器,位于顶层的下砂斗朝下出口对着下设的筛网,在筛网的下方内侧设有料仓;所述吸尘装置安置在下砂斗前侧壁上,构成对下砂斗落砂阶段第一道定点吸尘结构;所述下吸尘口安置在下砂斗与筛网之间左右侧壁上,构成对落砂阶段第二道定点吸尘结构;所述过滤装置位于下砂斗的正下方,它配置的带式滤网由传动装置循环驱动,按框形架设的带式滤网上平面一段置于筛网之上;所述废料收集箱和清洗箱均为朝上敞口的矩形容器,分别安装在带式滤网循环方向一端底部,在废料收集箱的敞口部与带式滤网之间设有刮板;所述干燥装置安置在淋砂机的底部,它与清洗箱输出刚清洗过的带式滤网段相平行,构成对带式滤网定点风干结构。
在一些实施例中,所述带式滤网表面外涂不沾水涂层。
在一些实施例中,所述带式滤网表面设有聚四氟乙烯树脂涂层。
在一些实施例中,所述刮板宽度至少等于带式滤网的宽度。
在一些实施例中,所述沾浆装置包括可控制旋转的转盘,所述转盘上设置有至少两个浆桶;所述转盘用于基于控制指令进行旋转以实现将盛有对应类型浆料的浆桶切换至指定位置。
在一些实施例中,所述沾浆装置还包括给所述至少两个浆桶中的一个或多个设置的旋转底座,所述旋转底座的旋转能够带动浆桶自转。
在一些实施例中,所述淋砂装置包括电动行走机构,所述控制中心用于通过电动行走机构控制盛有对应类型砂料的淋砂装置运动至指定位置。
本申请又一方面提供了一种基于生产线的模壳制造方法,所述方法包括:把若干模组放到传输装置上;通过传输装置将模组传输到操作工位;通过机械臂装置将模组从传输装置上取下,并在一个或多个操作工位上完成沾浆及淋砂操作;通过机械臂装置将模组装载到传输装置;通过传输装置将模组传输至干燥工序,以进行干燥处理。
在一些实施例中,所述通过机械臂装置将模组从传输装置上取下,并在一个或多个操作工位上完成沾浆及淋砂操作包括:控制机械臂装置从传输装置夹取模组,并在盛有对应类型浆料的浆桶和盛有对应类型砂料的淋砂机内完成第一层沾浆和第一层淋砂;控制机械臂装置将完成沾浆和淋砂的模组放到传输装置上,并控制沾浆装置和淋砂装置分别切换对应的浆桶和淋砂机,以备模组进行下一层沾浆和下一层淋砂的操作。
在一些实施例中,所述控制机械臂装置从传输装置夹取模组,并在盛有对应类型浆料的浆桶和盛有对应类型砂料的淋砂机内完成第一层沾浆和第一层淋砂包括:控制沾浆装置切换盛有第一层浆料的浆桶运动至指定位置;控制淋砂装置切换盛有第一层砂料的淋砂机运动至指定位置;控制机械臂装置从所述传输装置上夹取模组,并转动到所述浆桶所在位置进行第一层沾浆操作,以及转动到所述淋砂机所在位置进行第一层淋砂操作。
在一些实施例中,在所述沾浆操作和所述淋砂操作的过程中,所述机械臂装置控制所述模组自转。
在一些实施例中,所述干燥处理的方式包括:当风吹到悬挂在所述传输装置上的模组时,所述模组自转以实现均匀风干。
本申请又一方面提供了一种能够自动切换浆桶的沾浆装置,其特征在于,所述沾浆装置包括:可控制旋转的转盘,所述转盘上设置有至少两个浆桶;以及控制器,用于基于指令控制所述转盘的转动以实现将其中一个浆桶切换至指定位置。
在一些实施例中,所述沾浆装置还包括给所述至少两个浆桶中的一个或多个设置的旋转底座,所述旋转底座的旋转能够带动浆桶自转。
在一些实施例中,所述控制器还用于根据指令控制所述旋转底座的旋转,进而实现所述浆桶的自转。
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的一种制壳生产线的系统框图;
图2是根据本申请的一些实施例所示的制壳生产线的结构示意图;
图3是根据本申请一些实施例所示的机械臂装置的结构示意图;
图4是图3所示机械臂装置的机械臂的结构示意图;
图5是根据本申请的一些实施例所示的一种沾浆装置的示意图;
图6是根据本申请一些实施例所示的另一种沾浆装置及其在线变轨装置的结构示意图;
图7是图6所示沾浆装置及其在线变轨装置的侧视图;
图8是图6所示沾浆装置及其在线变轨装置的俯视图;
图9是根据本申请的一些实施例所示的淋砂装置的示意图;
图10是根据本申请的一些实施例所示的一种示例性淋砂机的结构示意图;
图11是图10所示淋砂机的左视图;
图12是根据本申请的一些实施例所示的另一种示例性淋砂机的整体结构示意图;
图13是图12所示淋砂机的主体框架立体示意图;
图14是图12所示淋砂机的除尘结构立体示意图;
图15是图12所示淋砂机的过滤装置立体示意图;
图16是根据本申请的一些实施例所示的一种用于精密铸造制壳的干燥装置;
图17是图16所示干燥装置的侧视图;
图18是根据本申请的一些实施例所示的一种模组旋转的干燥生产线装置;
图19是图18所示干燥生产线装置的正面示意图;
图20是图18所示干燥生产线装置的侧视示意图;
图21是根据本申请的一些实施例所示一种可旋式挂具的结构示意图;
图22是图21所示可旋式挂具的侧视示意图;
图23是图21所示可旋式挂具的局部结构放大示意图;
图24是图23中A-A剖面结构放大示意图;
图25~27是根据本申请的一些实施例所示的传动链悬吊模壳定位止旋装置的结构示意图;
图28是根据本申请的一些实施例所示的一种助烘干线悬吊挂具旋转的驱动器的结构示意图;
图29是图28所示结构的侧视图;
图30是图28所示结构的俯视图;
图31是根据本申请的一些实施例所示的基于制壳生产线的模壳制造方法的流程图;以及
图32是根据本申请的一些实施例所示的制壳生产线完成第一层沾浆及淋砂操作的流程图。
这里将详细地对示例性实施例或实施方式进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。
本申请的实施例可以应用于熔模铸造中的制壳工艺。制壳工艺可以包括依次进行的模组的沾浆、淋砂和干燥工序,一个模组可以进行多组沾浆、淋砂和干燥工序。各工序依次进行关于模组和各工序的详细内容,可以参照后文的描述。应当理解的是,本申请的制壳生产线及制壳方法的应用场景仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于 其它类似情景。
图1是根据本申请一些实施例所示的一种制壳生产线的系统框图。
制壳生产系统10可以用于完成制壳工艺。制壳生产系统10可以包括:传输模块11、控制模块12、操作模块13以及检测模块14。
其中,传输模块11用于将被加工制造对象运送到生产线上的不同工位,如操作模块13中的一个或多个用于加工、生产的装置处,以进行相应的工序加工。在一些实施例中,传输模块11可以接收控制模块的控制指令运动或停止或按照指定速度运动。传输模块11可以匀速运动也可以不匀速运动。为提高系统效率,优选的,所述传输模块11可以匀速传输。在一些实施例中,为与生产线上各工序配合,传输模块11可以不匀速传输。在一些实施例中,传输模块11可以批量传输被加工对象。例如同一批次可以传输至少20个模组;更优选的,至少50个模组;更优选的,至少传输100个以上模组;更优选的,至少传输1000个以上模组。在一些实施例中,传输模块中的一个传输点位可以同时传输至少两个模组;优选地;至少三个;优选地,至少四个。
传输模块11可以包括传输装置110。在一些实施例中,传输装置110可以具有链式或带式结构,沿生产线分布。仅作为示例,传输装置110可以包括布设在地面上的轨道,配合具有行走结构的载体,可以将放置在所述载体上的被加工制造对象输送至生产线上指定工位;又例如,传输装置可以包括支架以及架设在支架上的传输链,传输链可以在电机的驱动下运动,将其上的悬挂的被加工制造对象输送至生产线上指定工位;再例如,传输装置可以包括支撑台以及设置于支撑台上的传输带,传输带运动,可以将放置在其上的被加工对象传输到指定工位;又例如,传输装置可以仅包括具有电控行走机构的载体,如电动小车,可以预先设定好电动小车的运动路径,以使得电动小车能把装载在其上的被加工对象传输至指定工位。
控制模块12可以与系统10的其他各模块具有信号连接,以接收其他模块的状态信号或检测信号,以及向其他模块输出控制指令,控制其他各模块工作。例如,控制模块12可以按照一定时序控制其他模块有序工作,使各模块相互配合,实现自动化生产。
在一些实施例中,控制模块12可以包括独立的服务器或者服务器组。该服务器组可以是集中式的或者分布式的(如:处理设备110可以是分布系统)。在一些实施例中,控制模块12可以是本地的或者远程的。例如,控制模块12可通过网络与传输模块11、操作模块13或检测模块14通信。在一些实施例中,控制模块12可在云平台上执行。例如,该云平台可包括私有云、公共云、混合云、社区云、分散式云、内部云等中的一种或其任意组合。在一些实施例中,控制模块12可以包含一个或多个子处理设备(如:单核处理器或多核处理器)。仅仅作为范例,控制模块12可包含中央处理器(CPU)、专用集成电路(ASIC)、专用指令处理器(ASIP)、图形处理器(GPU)、物理处理器(PPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、可编辑逻辑电路(PLD)、控制器、微控制器单元、精简指令集电脑(RISC)、微处理器等或以上任意组合。
操作模块13负责完成具体的加工、制造工序,可以包括能够对被加工对象进行加工、制造的各类设备。所述设备可以基于生产工艺的加工、制造顺序布设于生产线的上游或下游。在一些实施例中,这些设备可以包括但不限于机械臂装置、沾浆装置、淋砂装置、干燥装置等。其中,机械臂装置可以用于实现模组相对所述传输装置的装卸,以及在至少后续沾浆、淋砂两个工序中握持所述模组;所述机械臂装置能够运动以对应不同工位。沾浆装置用于所述传输模组提供对应类型的浆料沾浆。淋砂装置用于提供对应类型的所述模组淋砂砂料。干燥装置用于模组干燥。
检测模块14用于采集和检测系统10中其他模块的工作的运行数据和/ 或信息,以便向控制模块12提供相关数据和/或信息。在一些实施例中,检测模块14可以包括一个或多个传感器。在一些实施例中,传感器可以包括速度传感器、加速度传感器、位移传感器、踏力传感器、力矩传感器、压力传感器、电池温度传感器、湿度传感器等中的一种或几种的组合。在一些实施例中,检测模块还可以基于定位技术确定与系统10相关的模块的定位信息。例如,传输模块中电动小车的位置信息等。在一些实施例中,定位技术可以基于全球定位系统(GPS)、全球导航卫星系统(GLONASS)、指南针导航系统(COMPASS)、北斗导航卫星系统、伽利略定位系统、准天顶卫星系统(QZSS)等进行定位。
图2是根据本申请的一些实施例所示的制壳生产线的结构示意图。可以理解,图2所述的生产线结构示意图是将图1所示的系统10在具体生产场景中的实现。
如图2所示,制壳生产线100可以包括传输装置110、机械臂装置120、沾浆装置130、淋砂装置140和控制中心160。下面将结合图2中制壳生产线的实施例来详细阐述制壳生产线中的各个装置模块。
传输装置
在一些实施例中,传输装置110可以用于批量传输模组(例如,图1所示模组1000)。其中,模组可以至少部分地由多个蜡模焊接组树得到。在一些实施例中,传输装置110传输模组的方式可以采用并行传输和串行传输结合的方式,其中,并行传输可以理解为传输装置在传输线的一个位置可以对多个模组进行传输,或者一个挂具装置能够挂至少两个模组的传输方式;串行传输可以理解为传输装置的传输线在不同位置设有模组挂具以实现连续批量传输。在一些实施例中,并行传输的模组包括至少两个模组,优选地,包括至少三个模组,更优选地,包括至少四个模组。在一些实施例中,并行传输的至少两个模组可以相同也可以不同。其中,此处的相 同或不同可以理解为至少两个模组在形状上或加工工艺上的比较。在一些实施例中,加工工艺可以理解为包括模组的沾浆,淋砂,干燥等加工工艺中的一个或多个。在一些实施例中,制壳生产线能够实现串行传输的模组个数包括至少一百个模组,优选地,包括至少五百个模组优选地,包括至少一千个模组。在一些实施例中,所述传输装置传输模组时可以是匀速传输,也可以非匀速地传输。优选地,传输装置采用匀速传输,以提高系统效率以及传输装置与其他操作工序之间的配合度。在一些实施例中,所述传输装置的传输速度可调节,为了实现与后续工艺更好的配合。
在一些实施例中,每个工序所花费的时间不同,例如,干燥工序所需要的时间可能要比沾浆工序和淋砂工序的时间要长,为了保持整个产线的步调一致,传输装置的传输速度可以根据干燥工序的完成情况来进行调节。当干燥工序完成后,可以给传输装置发一个指令,让传输装置继续传输或提高速度。当干燥工序还没有完成或者还需要一定时间才能完成时,可以给传输装置发送一个等待或等待时间的指令。此处的等待可以理解为传输装置暂停或停止运行。在一些实施例中,由于被干燥件的数量和/或干燥装置的干燥速度的原因,干燥工序的时间不需要传输装置等待或减速时,传输装置也可以保持匀速传输。
在一些实施例中,给传输装置发送指令,可以是人工执行,即人工观察干燥效果,并根据干燥结果发送提速或等待的指令。在一些实施例中,也可以通过检测装置自动检测干燥效果,并将检测到的干燥结果发送给控制中心,由控制中心根据干燥结果发送指令给传输装置的控制器,以控制传输装置的运动状态。在一些实施例中,可以通过检测被干燥件(如,模组)的湿度来判断干燥效果。在一些实施例中,控制中心可以根据检测装置检测到的湿度值以及当前的干燥环境来预估干燥完成的时间。
在一些实施例中,传输装置还可以采用步进传输方式,传输装置可 以匀速运行一段时间,等待一段时间,然后再匀速运行一段时间,等待一段时间,即按照走-停-走-停的模式进行传输。在一些实施例中,当生产线从第一个工序开始加工时,由于干燥工序位于沾浆和淋砂之后,所以刚开始时,可以传输装置可以进行匀速一段时间。一段时间过后会产生一批进入干燥工序的模组,这时传输装置可以暂停或停机等待,等待的时间根据干燥工序的完成时间来设定。当这一批模组干燥完成或基本干燥完成后,传输装置可以继续运行,再传输一批模组进行沾浆、淋砂操作,当要进行干燥时,传输装置再进行等待。在一些实施例中,干燥装置包括设置在传输线附近的一个或多个风扇,其中,多个风扇的位置布局可以沿着传输线的走向来设定,在这种实施例中,步进传输的效果尤为突出。
在一些实施例中,传输装置110可以包括传输链和连接于传输链的多个悬挂部。其中,悬挂部用于悬挂模组,传输链用于带动模组运动到指定的工作位置。在一些实施例中,传输链可以具有一个以上弯折部,以在一定空间内能够传输更多模组。在一些实施例中,传输链和悬挂部可以通过吊环连接,该吊环穿过设置于传输链的第一通孔和设置于悬挂部的第二通孔。在一些实施例中,悬挂部可以设置有用于装载模组的装载部。在一些实施例中,模组可以设置有与悬挂部的装载件互相配合的固定部。在一些实施例中,装载件可以包括装载槽,该装载槽的内尺寸与模组的固定部的外尺寸互相配合以固定模组。在一些实施例,固定部可以呈十字型,其横向部分的外尺寸与装载槽的内尺寸互相配合以固定模组。
控制中心
在一些实施例中,为了实现对生产线的自动化控制,所述制壳生产线100还包括控制中心160。在一些实施例中,所述控制中心与所述传输装置和所述机械臂装置均具有信号连接,用于根据指令使所述传输装置与所述机械臂装置运动以相互配合。在一些实施例中,所述指令可以理解为预 先存储在该控制中心160的存储器中程序控制编码。在一些实施例中,控制中心160能够精确地控制机械臂装置与传输装置的运动配合,以实现机械臂装置在什么时间,什么位置摘取传输装置上的模组或将模组挂到传输装置上。例如,控制中心160可以根据指令,控制传输装置运动和停止的时间间隔,并在传输装置停止的时间间隔内控制机械臂装置120在对应工位装卸模组,其中,传输装置运动和停止的时间间隔可以根据机械臂装置120在各工位耗费的时间计算,机械臂装置120在各工位耗费的时间可以根据实际测量和统计得到。
在一些实施例中,沾浆装置和淋砂装置可以不受控制中心160的控制,即不与控制中心进行电信号连接。在一些实施例中,机械臂装置夹取模组旋转到指定工位时,可以由人工进行沾浆或淋砂;也可以由人工操作控制沾浆装置或淋砂装置来执行对应操作;也可以由人工操作相关设备来完成沾浆和淋砂操作。
在一些实施例中,控制中心160也可以与沾浆装置和淋砂装置进行电信号连接,用于根据指令使所述传输装置、机械臂装置、沾浆装置和淋砂装置运动以相互配合,以实现整个生产线的全自动模式。
在一些实施例中,控制中心160也可以与沾浆装置和淋砂装置中的一个电信号连接,用于控制沾浆装置和淋砂装置中的一个能够与传输装置和机械臂装置相互配合。
在一些实施例中,所述控制中心160可以是可编程逻辑控制中心,所述控制中心160的控制方式包括但不限于PLC控制方式。所述控制中心160可以对制壳生产线100中的其他组件进行控制。在一些实施例中,控制中心160可以控制传输装置110启动以及停止,也可以控制传输装置110的传输速度。在一些实施例中,控制中心160还可以控制机械臂装置120的操作动作。所述操作动作可以包括但不限于机械臂装置120各操作部位 的移动和转动。例如,控制中心160可以控制机械臂装置120的腰部结构转动一定的角度。又例如,控制中心160可以控制机械臂装置120的臂部结构上下运动。还例如,控制中心160可以控制机械臂装置120的手部结构进行旋转。在一些实施例中,控制中心还可以控制沾浆装置130的操作动作。例如,控制中心160可以控制沾浆装置130对浆桶进行切换。在一些实施例中,控制中心160还可以控制淋砂装置140的操作动作。例如,控制中心160可以控制淋砂装置140对淋砂机进行切换。
机械臂装置
在一些实施例中,机械臂装置120用于握持一个或多个模组,以在不同工位处完成模组的加工制造。机械臂装置120可以理解为高精度,多输入多输出、高度非线性、强耦合的复杂系统。在一些实施例中,所述机械臂装置120可以包括多个工作方向,所述每个工作方向上可以包括多个臂部结构和多个手部结构。在一些实施例中,所述机械臂装置120具有两个以上的可活动连接部,以及用于驱动所述可活动连接部运动的驱动部。其中,每个可活动连接部具有一个或以上的运动方向,以便机械臂装置120可以具有前述多个工作方向。例如,所述机械臂装置120还可以包括可旋转的主体(或称为腰部结构),主体上可以设置一个或多个臂部结构,臂部结构上设置一个或多个手部结构,各结构之间通过所述可活动连接部连接。所述机械臂装置120可以用于执行一个或多个制壳生产线的操作动作。所述机械臂装置120的每个工作方向可以对应制壳生产线的一个工位。所述工位至少包括摘挂工位、第一工位和第二工位。所述摘挂工位可以是用于实现模组相对所述传输装置的装卸的工位。所述第一工位可以是对模组进行沾浆操作的工位。所述第二工位可以是对模组进行淋砂操作的工位。在一些实施例中,所述工位还可以包括辅助工位。所述辅助工位可以用于执行辅助功能,例如,对模组进行沾浆前的预处理。在一些实施例中,所述摘 挂工位可以是同一个工位,也可以是两个不同的工位。在一些实施例中,所述机械臂装置的四个工位可以包括模组摘取工位、模组挂回工位、沾浆工位和淋砂工位;也可以包括摘挂工位、第一沾浆工位、第二沾浆工位以及淋砂工位;也可以包括摘挂工位、沾浆工位、第一淋砂工位以及第二淋砂工位。在一些实施例中,所述机械臂装置的三个工位可以包括摘挂工位、沾浆工位、淋砂工位。在一些实施例中,当机械臂装置具有更多的工位时,也可以对机械臂装置的其他工位按照上述操作工艺进行任意地组合安排。例如,可以把摘挂模组操作放在一个工位上或者放在两个工位上;可以把多层沾浆操作放在一个工位上,也可以放在不同的工位上;还可以把多层淋砂操作放在一个工位或者多个工位上,具体地可以结合工位的个数以及操作工艺的顺序还安排。例如,可以把操作顺序相近的操作工艺放在相邻的工位上。
在一些实施例中,机械臂装置120在任一工位可以操作一个模组,也可以同时操作两个或更多模组以提高生产效率。当机械臂装置120在任一工位同时操作一个以上模组时,传输装置的悬挂部可以包括对应数量的子悬挂部,其中每个子悬挂部可以用于悬挂一个模组。
在一些实施例中,以在一个工位同时操作两个模组为例,机械臂装置120可以包括三向六臂结构。三向六臂结构可以包括环绕分布于三个不同方位的三组机械臂,每个方位机械臂组对应一个工位,通过机械臂组的整体旋转切换工位。每个机械臂组可以包括两个机械臂,每个机械臂可以用于操作一个模组。在一些实施例中,“三向六臂”中的“三向”可以理解为三个工位,例如前文所述的摘挂工位、沾浆工位和淋砂工位;三个工位中每个工位上又设有对应两个模组的两个机械臂,此为“六臂”。
在一些实施例中,以在一个工位同时操作两个模组为例,机械臂装置120也可以包括四向八臂结构。四向八臂结构可以包括环绕分布于四个 不同方位的四组机械臂,每个方位机械臂组对应一个工位,通过机械臂组的整体旋转切换工位。每个机械臂组可以包括两个机械臂,每个机械臂可以用于操作一个模组。对应地,“四向八臂”中的“四向”可以理解为四个工位,例如前文所述的摘挂工位、沾浆工位、淋砂工位以及辅助工位(如沾浆前进行预处理的工位);四个工位中每个工位包括两个机械臂,即形成“八臂”。在一些实施例中,机械臂装置还可以包括三向九臂,四向十二臂,即每个工位对应三个机械臂,可以同时夹取三个模组。在一些实施例中,所述机械臂装置可以包括五个、六个以及更多工位。在一些实施例中,每个工位上可以同时操作两个、三个、四个以及更多模组,对应为每个工位上机械臂的个数。对应地,在不同的实施例中,机械臂装置还可以包括五向十臂、五向十五臂、五向二十臂等;六向十二臂、六向十八臂、六向二十四臂等。其中,“向”的个数对应于机械臂的工位个数,“臂”的个数对应所有工位上可操作的模组个数的总和。按照这个逻辑扩展,机械臂装置还可以有更多的形式,在此不再赘述。
在一些实施例中,机械臂装置的每个工位上的机械臂个数可以相同,也可以不同。为了实现操作的一致性,优选地,每个工位上机械臂的个数相同。在一些实施例中,机械臂装置的同一个工位上的至少两个机械臂结构可以相同,也可以不同。在一些实施例中,至少两个工位之间的机械臂结构可以相同,也可以不同。
在一些实施例中,机械臂装置120可以实现多个自由度的运动,所述多个自由度的运动可以通过机械臂装置120的腰部结构、臂部结构及手部结构在驱动部的带动下实现。
在一些实施例中,为了节省空间,机械臂装置也可以包括一个机械臂,该机械臂能够在不同操作工位之间旋转,以实现对应的工序操作。该机械臂的结构可以包括前文所述的机械臂结构,在一些实施例中,该机械 臂还可以采用其他的机械手结构,以获得更多的自由度,例如,该机械臂可以包括肩关节旋转部、肘关节旋转部、腕关节旋转部,以及连接肩关节旋转部和肘关节旋转部的大臂、连接肘关节旋转部与腕关节旋转部的小臂,以及与腕关节旋转部连接的手部,通过上述多个关节旋转部以及大小臂的相对位置调整能够实现手部在多个操作工位之间的运动。例如,该机械臂结构还包括能够带动整个机械臂转动的旋转座,以使机械臂能够运动至更多的操作位置,另外,由于旋转座的旋转角度相对更容易控制,进而也可以使机械臂获得更高的位置运动精度。
本申请中的机械臂装置还可以包括其他类型或结构的机械臂形式,只要该机械臂能够实现抓取物品,且能够带动物品运动至指定位置,均可以在本申请中使用。
图3~图4是根据本申请的一些实施例所示的一种机械臂装置120的结构示意图。
在一些实施例中,机械臂装置120包括底座1210部分和能够相对底座部分旋转的主体1220部分,所述主体部分上安装有若干个机械臂1230。所述主体部分相对所述底座部分的旋转能够实现带动机械臂在不同工位间的转动切换。所述主体部分相对所述底座部分的旋转连接部1221可以理解为上述腰部结构。在一些实施例中,所述机械臂至少包括摆动臂1231,所述摆动臂能够相对所述主体部在一个或多个平面内轴摆动,例如,摆动臂1231能够在与所述主体部轴线方向平行的一个或多个平面内摆动,又例如摆动臂1231能够在与所述主体部轴线垂直的平面内摆动,再例如摆动臂1231能够在与所述主体部轴线相交的任意平面内摆动。优选的,摆动臂1231可以沿图3中C方向摆动。所述摆动的角度范围可以包括0°~360°,优选地,所述摆动的角度范围可以包括0°~330°,优选地,所述摆动的角度范围可以包括0°~300°,优选地,所述摆动的角度范围可以包括0° ~270°,优选地,所述摆动的角度范围可以包括0°~240°,优选地,所述摆动的角度范围可以包括0°~210°,优选地,所述摆动的角度范围可以包括0°~180°,优选地,所述摆动的角度范围可以包括0°~150°,优选地,所述摆动的角度范围可以包括0°~120°,优选地,所述摆动的角度范围可以包括0°~90°。
在一些实施例中,所述机械臂还可以包括升降臂1232,所述升降臂1232相对所述主体1220部分沿所述主体1220部分的轴线方向可移动地设置。具体的,升降臂1232可以沿图3中A方向相对于主体1220上下移动。在一些实施例中,所述升降臂1232可以通过设置在所述主体1220部上的移动轨道1222与所述主体1220部可移动地连接。在一些实施例中,所述摆动臂1231可以通过升降臂1232与所述主体1220部连接,所述摆动臂1231与所述升降臂1232可旋转地连接,以使得所述摆动臂1231既能够相对所述主体1220部上下移动,也能够相对所述主体1220部转动。
在一些实施例中,所述机械臂1230还包括延伸臂(图中未示出),所述延伸臂可以设置在摆动臂1231上。例如,延伸臂可以相对所述升降臂1232固定设置,且相对所述主体1220部分的中心向外延伸,优选地,所述延伸臂沿水平方向向外延伸。在一些实施例中,延伸臂可以设置在所述升降臂1232与所述摆动臂1231之间,所述摆动臂1231可转动地设置在所述延伸臂上,且能够沿所述延伸臂的延伸方向来回移动(如图3所示B方向),以实现摆动臂1231相对所述主体1220部分水平距离的调节。
在一些实施例中,所述机械臂装置的臂部结构包括所述臂部以及实现所述臂部转动的旋转连接部1221。所述臂部包括上述摆动臂1231、升降臂1232、延伸臂中的一个或多个。
在一些实施例中,所述机械臂装置的手部结构1233与所述臂部结构连接,用于夹取模组1000。在一些实施例中,所述手部结构1233包括手部 12331、其与所述臂部的连接结构12332以及夹取模组的手指结构12333。在一些实施例中,手部与臂部的连接方式可以包括固定连接,也可以包括相对转动连接。优选地,所述手部相对所述臂部可转动地连接。在一些实施例中,所述可转动地连接可以包括如下两种情况:一种是所述手部相对自身的某一轴线进行旋转(如图3所示D方向),即自转;另一种是所述手部相对所述手部与所述臂部的连接轴进行旋转。在一些实施例中,所述手部自转的旋转轴线与所述臂部的中心线平行或同轴。在一些实施例中,当手指结构夹取模组时,所述模组的形状中心与所述手部和/或臂部的轴线平行或同轴。
在一些实施例中,所述机械臂装置120的驱动部包括用于驱动腰部机构运动的腰部驱动器,用于驱动臂部运动的臂部驱动器。在一些实施例中,所述驱动部还包括驱动手部运动的手部驱动器。在一些实施例中,所述腰部驱动器可以包括电机,通过所述电机的旋转驱动所述腰部机构的运动,即驱动所述主体部相对底座部的转动。在一些实施例中,所述臂部驱动器包括一个或一个以上驱动电机,分别用于驱动所述摆动臂的摆动,所述升降臂和/或所述延伸部的移动。在一些实施例中,所述摆动臂1231、升降臂1232、延伸臂的运动可以通过一个驱动电机来实现,也可以通过多个电机来实现。优选地,可以通过多个驱动电机实现,例如,三个臂分别对应不同的驱动电机,或者三个臂中的两个臂共用一个驱动电机。在一些实施例中,所述驱动器可以包括气动驱动器,也可以包括电动驱动器。当所述驱动器采用电动驱动器,即电机时,则可以包括步进电机,也可以包括伺服电机。
在一些实施例中,主体部分相对所述底座部分的旋转连接部可以进行360°的转动,使得机械臂装置120的每一个工作方向在制壳生产线的各工位之间切换。例如,可以实现机械臂带动模组从沾浆工位旋转至淋砂 工位。在一些实施例中,所述360°的转动可以是每次转动一定角度,通过若干次数(如3次或4次)的转动旋转360°。在一些实施例中,所述机械臂装置可以通过臂部结构和手部结构的运动以实现对模组在同一工位上的运动。例如,臂部结构可以将模组倾斜举起至某一高度,也可以将模组竖直举起至一定的高度。在一些实施例中,所述机械臂装置可以通过腰部结构实现机械臂在不同工位间的切换,例如,通过腰部结构可以带动模组从沾浆工位旋转至淋砂工位。在一些实施例中,当手指结构夹取模组时,所述手部结构的自转能够带动模组转动进而实现模组自转。例如,在模组向下浸没于浆桶的浆液中和使模组向上脱离液面情形中,模组自转分别能够实现模组的充分沾浆和使模组表面多余的浆液脱落。
沾浆装置
在一些实施例中,沾浆装置130可以对应所述机械臂装置120的第一工位,用于提供对应类型的浆料,对应模组的沾浆操作。所述沾浆装置130可以包括一个或多个浆桶。所述一个或多个浆桶可以盛放一种或多种不同的浆料。在一些实施例中,当控制中心160与所述沾浆装置130电信号连接时,所述控制中心160能够根据指令控制沾浆装置130实现对所述浆桶进行自动切换。在一些实施例中,也可以人工单独地通过沾浆装置的控制器来实现浆桶的切换。例如,当操作人员发现机械臂装置已经从传输装置上摘取模组即将进入沾浆工序时,操作人员可以通过对应的控制按钮来实现沾浆装置中盛有对应类型浆料的浆桶切换至对应位置,以备沾浆操作。下面将结合不同实施例及其附图来对沾浆装置及其切换结构进行具体说明。
图5是根据本申请的一些实施例所示的一种沾浆装置130的示意图。
在一些实施例中,沾浆装置130可以包括至少两个用于盛放浆料的浆桶(例如,图5所示浆桶210),每个浆桶对应一道沾浆工序(也对应一 种浆料)。沾浆装置130可以用于基于控制指令运动以使盛放有对应类型浆料的浆桶切换至与沾浆工序对应的工位。例如,一些模组需要经过与模组的面层、二层、背层一一对应的三道沾浆工序,相应地,沾浆装置130可以包括用于盛放面层浆料的面层浆桶、用于盛放二层浆料的二层浆桶和用于盛放背层浆料的背层浆桶。
在一些实施例中,各浆桶可以相对一中心位置(例如,图5中位置200)环绕设置,当执行使用指定类型浆料的沾浆工序时,各浆桶可以整体绕该中心位置旋转以使盛放指定类型浆料的浆桶旋转至与沾浆工序对应的工位。在一些实施例中,沾浆装置130可以包括可控制旋转的转盘220,转盘上可以设置有至少两个浆桶(例如,图5中浆桶210),转盘可以用于基于控制指令进行旋转以实现将盛有对应类型浆料的浆桶切换至与沾浆工序对应的工位。
在一些实施例中,沾浆装置130还可以包括设置于至少一个浆桶的旋转底座,该旋转底座能够基于控制指令进行旋转以带动浆桶自转,如此可以实现模组表面的充分沾浆。
在一些实施例中,沾浆装置130可以与控制中心160具有信号连接,以基于控制中心160的控制指令控制沾浆装置130的运动,例如,控制转盘和/或旋转底座的旋转。在一些实施例中,沾浆装置130自身也可以集成有控制器,以基于自身控制器的控制指令控制沾浆装置130的运动,例如,控制转盘和/或旋转底座的旋转。
在一些实施例中,所述沾浆装置130也可以通过在线变轨装置进行浆桶切换。所述在线变轨装置可以包括基座、平板车、浆桶、纵向侧轨、纵向短轨、横向轨、纵向长轨和底板车。所述基底为地埋式多槽型构件。所述纵向长轨和纵向短轨道铺设在基座中部,在两轨对接处预留安装横向轨的位置。所述纵向侧轨安置纵向短轨两侧,纵向短轨和纵向侧轨外伸端齐平, 纵向侧轨道的内伸端止于横向轨。所述横向轨安装高度低于纵向轨道,其高度差等于底板车的净高度。所述底板车上平面设有两根桥轨,桥轨长度等于纵向长轨与纵向短轨之间预留间距。配置滚轮的底板车仅沿横向轨移动。下面将结合附图对其进行详细介绍。
图6~8是根据本申请一些实施例所示的另一种沾浆装置130及其在线变轨装置的示意图。
图6~8所示的浆桶在线变轨装置,它包括基座1310、平板车1320、浆桶1330、纵向侧轨1340、纵向短轨1350、横向轨1360、纵向长轨1370和底板车1380。所述平板车1320和底板车1380是实现浆桶1330变轨的载体,其实质是一种配置电动装置沿轨道行驶的工具车。本实施例中的平板车1320上平面为矩形板块,底面四角按纵向长轨1370或纵向短轨1350或纵向侧轨1340的轨距配置滚轮。所述基座1310是地埋式多槽型构件,本基座1310内置三纵一横直槽型轨道座,居中的纵向直槽与横向直槽垂直交叉,每只槽的截面均为开口朝上的矩形槽。所述纵向长轨1370和纵向短轨1350铺设在基座1310中部,在两轨对接处预留安装横向轨1360的位置。纵向长轨1370的外伸端位于配套的机械臂装置120一侧,无障碍环境便于平板车1320载着浆桶1330进入机械臂装置120的作业区内。为了实现多工位浆桶在线变轨,在纵向短轨1350两侧等间距铺设相互平行的纵向侧轨1340,本实施例共铺设两根纵向侧轨1340,分列在纵向短轨1350左右两侧,在这种对称轨道结构中,纵向短轨1350和纵向侧轨1340的外伸端即起始端齐平。另外,两侧纵向侧轨道1340的内伸端止于横向轨1360,形成垂直交叉的轨道结构。为了便于交叉行驶,所述横向轨1360安装高度低于所有纵向轨,其高度差等于配套底板车1380的净高度。所述底板车1380是用于接驳中转平板车1320的专用车,其上平面固定连接两根与纵向长轨1370相同规格的桥轨1381,桥轨1381的长度等于纵向长轨1370与 纵向短轨道1350之间预留间距,而且桥轨1381为纵向排列。底板车1380底面四角也配置滚轮,底板车1380仅沿横向轨1360直线移动。
本实施例在三个位置上配置浆桶1330,居中的浆桶1330用于模壳面层挂浆,左侧的浆桶1330用于模壳二层挂浆,右侧的浆桶1330用于模壳三层挂浆。使用时,首先由底板车1380行驶至横向轨1360中段,利用桥轨1381补缺实现纵向长轨1370与纵向短轨1350对接,接着电控位于纵向短轨1350上的平板车1320载着内蓄面层浆料的浆桶1330,经底板车1380过渡后沿纵向长轨1370行驶至图6虚线所示位置处,即机械臂装置120处,用于面层挂浆作业。待面层挂浆结束,电控居中的平板车1320返回原工位待命。按程序启动底板车1380位移至横向轨1360左端,然后左侧的平板车1320载着浆桶1330行驶至底板车1380上,再随底板车1380一并位移至横向轨1360中段,待底板车1380上的桥轨1381对接纵向长轨1370与纵向短轨1350之间的缺口,使平板车1320载着内蓄二层浆料的浆桶3行驶到机械臂装置120处,周边无障碍便于作二层挂浆作业。待二层挂浆结束,电控左侧的平板车1320返回原工位待命。之后的右侧浆桶1330动作顺序同左侧浆桶1330一样,故不重复描述。
本实施例通过变轨实现多个位置浆桶1330有序位移至机械臂装置手处,由机械臂装置手就近集中实施挂浆作业,这样既保证了挂浆质量,又充分发挥机械手连续均质作业的能力。另外,此装置采用相对集中挂浆办法,挂浆时没有相邻浆桶之间浆料的污染问题,所以挂浆质量稳定、可靠,而且生产效率高,特别适合生产线配套。
淋砂装置
在一些实施例中,淋砂装置140可以对应所述机械臂装置120的第二工位,用于提供对应类型的砂料,对应模组的淋砂操作。在一些实施例中,所述淋砂装置140可以包括一个或多个淋砂机,用于给所述模组提供 一种或多种不同类型的砂料以实现对应的淋砂需求。在一些实施例中,淋砂装置可以包括多个淋砂机,每个淋砂机装有不同类型的砂料。在一些实施中,淋砂装置也可以包括一个淋砂机,但该淋砂机内装有不同类型的砂料,可以根据模组的淋砂需要提供对应类型的砂料。
在一些实施例中,当控制中心160与所述淋砂装置140电信号连接时,所述淋砂装置140可以根据指令对装有不同类型砂料的所述淋砂机进行自动切换;在一些实施例中,所述淋砂装置140也可以根据指令对同一台淋砂机内的不同类型砂料进行切换至可使用状态。
图9是根据本申请的一些实施例所示的淋砂装置140的示意图。
在一些实施例中,淋砂装置140可以包括多个提供装有不同类型砂料的淋砂机(例如,图9中淋砂机310),每个淋砂机使用的砂料的类型与模组最近一次经历的沾浆工序使用的浆料的类型匹配,提供对应类型砂料的淋砂机可以用于基于控制指令切换至与淋砂工序对应的工位。
在一些实施例中,淋砂装置140可以包括电动行走机构320,该电动行走机构320可以用于将提供对应类型砂料的淋砂机切换至与淋砂工序对应的工位。在一些实施例中,电动行走机构320可以包括用于引导淋砂机的运动轨迹的轨道和提供淋砂机运动所需动力的电机。
在一些实施例中,淋砂装置140可以与控制中心160具有信号连接,以基于控制中心160的控制指令将提供对应类型砂料的淋砂装置140切换至与淋砂工序对应的工位,例如,控制电动行走机构320驱动提供对应类型砂料的淋砂机运动至与淋砂工序对应的工位。在一些实施例中,淋砂装置140自身也可以集成有对应的控制器,以基于自身控制器的控制指令控制淋砂装置140的运动至与淋砂工序对应的工位,例如,控制电动行走机构320驱动提供对应类型砂料的淋砂机运动至与淋砂工序对应的工位。
在一些实施例中,可互相参照地,淋砂装置140也可以采用设置转 盘的方式来切换盛有不同类型砂料的淋砂机,具体的方案可借用前述图5中沾浆装置的切换方式,将装有不同砂料的淋砂机放在不同的转盘上,通过切换转盘的旋转来实现对不同淋砂机的切换。
关于淋砂机相关结构的更多描述,下面将结合不同实施例的相关附图来进行详细说明。
图10~11是根据本申请的一些实施例所示的一种示例性淋砂机的结构示意图。
所述淋砂机包括:立式斗提机1410、砂箱1420、电机1440、罩壳1450、主轴1460、淋砂筒1480和料斗1490。
立式斗提机1410设有搅龙1500将原料输送至立式斗提机1410顶部;砂箱1420、淋砂筒1480和料斗1490自上而下固定连接在立式斗提机1410的同一侧;料斗1490固定连接在立式斗提机1410的料仓上,其底部与立式斗提机1410的料仓相通;砂箱1420为一向上开口的箱体,置于立式斗提机1410顶部出料口1411的下方。
罩壳1450设置在砂箱1420和料斗1490之间,为半封闭结构,将淋砂筒1480和料斗1490包围其中,其下面、朝向工作位置的前面敞开。
电机1440固定连接在罩壳1450顶板上,其朝下的输出轴贯穿罩壳1450顶板与主轴1460连接。
主轴1460的下端设有数个条状的平面刮刀1470,本实施例中,主轴1460的下端设有3个以主轴1460的中心轴线为中心、周向均匀分布的平面刮刀1470;平面刮刀1470设置于淋砂筒1480内。
砂箱1420底部的出料口1421贯穿罩壳1450顶板置于淋砂筒1480上方开口的上方;淋砂筒1480底部设有筛砂网1530;砂箱1420内上部设有倾斜放置的筛网1430;砂箱1420侧壁上对应筛网1430的低端位置设有开口,开口的下方设有垃圾箱1510。
罩壳1450两侧设有竖置的吸尘管1520,其上端吸口设置在砂箱1420侧壁上部,与砂箱1420内腔连通,其下端吸口设置在料斗1490上方的罩壳1450侧壁上,与罩壳1450内腔连通。
图12是根据本申请的一些实施例所示的另一种示例性淋砂机的整体结构示意图,图13、14、15分别是图12所示淋砂机的主体框架立体示意图、除尘结构立体示意图和过滤装置立体示意图。
如图12至15所示,淋砂机可以包括下砂斗410、筛网420、料仓430、吸尘装置440、下吸尘口450和过滤装置460。过滤装置460可以包括带式滤网461、废料收集箱462、清洗箱463、刮板464和干燥装置465。下砂斗410可以包括朝上敞口的矩形容器,位于顶层的下砂斗410可以朝下出口对着下设的筛网420,在筛网420的下方内可以侧设有料仓430。吸尘装置440可以安置在下砂斗410前侧壁上,构成对下砂斗410落砂阶段第一道定点吸尘结构。下吸尘口450可以安置在下砂斗410与筛网420之间左右侧壁上,构成对落砂阶段第二道定点吸尘结构。过滤装置460可以位于下砂斗410的正下方,其配置的带式滤网461可以由传动装置循环驱动,按框形架设的带式滤网461上平面一段置于筛网420之上。所述废料敞口的矩形容器,分别安装在带式滤网461循环方向一端底部,在废料收集箱462的敞口部与带式滤网461之间设有刮板464。干燥装置465可以安置在淋砂机的底部,其与清洗箱463输出刚清洗过的带式滤网461段相平行,构成对带式滤网461定点风干结构。
上述结构中,带式滤网461位于下砂斗410的正下方,制模壳的淋砂和零星滴落的浆料自然落在带式滤网461上,其中有大部分的砂透过带式滤网461落至下层的筛网420上,经筛选后的砂便送入到料仓430中备用。另一方面滴落的浆料和砂被粘在带式滤网461上形成浆豆坯,随着带式滤网461传动使浆豆被刮板464刮落至废料收集箱462内,由于刮板464 宽度和带式滤网461宽度相等,故所有的浆豆坯全部被刮落。继续传动的带式滤网461则进入清洗箱463内被清洗,从而去除残留的浆料。由于带式滤网461表面外涂了聚四氟乙烯,表面不沾水,尽管清洗过的带式滤网461表面不沾水,仍然对带式滤网461作干燥处理,这样可确保带式滤网461一直以干燥状态循环使用。
上述结构中,带式滤网461持续循环运动,与静止的刮板464形成相对运动。一旦带式滤网461滴落了浆料并粘附砂,即形成浆豆坯,浆豆坯随带式滤网循环过程中被刮板464刮落。此结构刮削及时性好、效率高、质量优。再加上在淋砂段设有两道除尘结构,淋砂时可避免细微砂尘外溢,由此显著改善了工作环境,有利于操作工的身心健康。
在一些实施例中,模组需要完成多层沾浆操作及多层淋砂操作。模组每完成一层沾浆操作和淋砂操作后需要对模组进行干燥,模组充分干燥后可以进行下一层沾浆操作和淋砂操作。
在一些实施例中,制壳生产线100还可以包括干燥装置,干燥装置可以用于对传输装置上经过沾浆工序(和淋砂工序)的模组执行干燥工序。在一些实施例中,干燥的方式可以包括风干和/或烘干。在一些实施例中,干燥装置可以包括设置于传输装置的各个方位的多个风扇和/或加热设备。
在一些实施例中,所述传输装置中用于悬挂模组的悬挂部可以包括基座和旋转部。其中,基座与用于带动模组运动的传输链连接,旋转部用于装载模组,所述旋转部能够相对所述基座旋转。在一些实施例中,悬挂有模组的旋转部在干燥装置的作用(例如,风扇的风力作用)下能够相对所述基座旋转,即实现了模组自转。在模组自转的过程中,所述模组能够通过自转得到充分干燥。
在一些实施例中,参照对传输链和悬挂部的连接方式的相关描述,基座和传输链可以通过吊环连接。在一些实施例中,参照对传输链和悬挂 部的连接方式的相关描述,旋转部可以包括装载槽。
在一些实施例中,控制中心160也可以与干燥装置电信号连接,用于根据指令控制传输装置、机械臂装置与干燥装置的相互配合。例如,当悬挂在传输装置上的模组经过干燥装置时,控制中心160能够控制干燥装置的启动。在一些实施例中,干燥装置的启停时间也可以通过控制中心160控制,该启停时间可以根据机械臂装置120在各工位耗费的时间计算,机械臂装置120在各工位耗费的时间可以根据实际测量和统计得到。在一些实施例中,干燥装置的启停时间也可以通过集成在干燥装置中的控制器控制。例如,该控制器可以根据是否在干燥区域内检测到模组来控制干燥装置的启停时间。
下面将结合不同实施例对应的附图来对上述干燥装置、实现模组自转的相关结构进行详细描述。
图16~17是根据本申请的一些实施例所示的一种用于精密铸造制壳的干燥装置。
图16~17所示的用于制壳生产线的干燥装置,它包括烘干房510、轨道520、悬挂链530、风扇540和驱动器550。所述烘干房510是一种平面呈矩形的房屋,四周墙壁设有保温层。本实施例中烘干房510内分隔成三个相联通且相互平行的烘干区间,即三间联体房,位于图16上方的为初始干燥区间511,位于中间的为强化干燥区间512,下方的为固化干燥区间513。在初始干燥区间511和固化干燥区间513左侧墙壁上,各留一只供轨道520和悬挂链530通过的通道,预留通道的墙壁外侧为装卸区间。所述轨道520为环形道,架设在烘干房510外侧的轨道520用于装卸模组1000。处在烘干房510内的轨道520顺三个烘干区间长度方向折弯架设,相邻烘干区间之间的轨道520也通过折弯架设,由此形成沟通烘干房510内外的多道弯环形道。所述悬挂链530是一种沿轨道520行走的环形链,悬挂链 530按节配置挂具531,模组1000随挂具531行走。所述风扇540安置在悬挂链530相邻直行段之间,横向依次排列的风扇540与悬挂链530直行段相平行,排列的风扇540对着模组1000,所有的风扇540风向一致,本实施例中风扇540的风向一律从图16下方向上方吹。所述驱动器550是本实用新型用于提高干燥速度,改善干燥均匀性的专用部件,它安置在悬挂链530直行段同一侧。驱动器550的输出端通过摩擦悬挂链530配置的挂具531外壁,促成随悬挂链530行走的模组1000作同一方向旋转运动,本实施例模组1000的旋转速度为8转/min。由于被干燥的模组1000在烘干房510内一边行走,一边持续旋转,因此在干燥过程中不存在迎风面和背风面,所以大大提高模组1000的干燥均匀性。
在一些实施例中,为了进一步提高模组干燥的均匀性,可以进一步使用一种模组旋转的干燥生产线对模组进行干燥。所述模组旋转的干燥生产线可以包括烘干房、轨道、悬挂链、风扇和驱动器。所述烘干房分隔成个位数相联通且相平行的烘干区间,每个烘干区间内设温度值不等。烘干房一侧墙壁上预留供轨道和悬挂链通过的通道。所述轨道是环形道,处在烘干房内的轨道顺烘干区间长度方向折弯架设,相邻烘干区间之间的轨道也采用折弯架设。所述悬挂链是一种沿轨道行走的环形链,悬挂链按节配置挂具,模组随挂具行走。所述风扇安置在悬挂链相邻直行段之间,所有风扇风向一致。所述驱动器安置在悬挂链一侧,靠摩擦驱动模组旋转。
图18~19是根据本申请的一些实施例所示的一种模组旋转的干燥生产线装置。
图18~19所示的是一节模组旋转的干燥生产线,它是一种链式传递方式的生产线,结构中包括轨道610、皮带轮620、减速机630、皮带640、固定座650、驱动器660、基座670和挂钩680。所述轨道610是基础构件,它的横截面形似槽钢横截面,悬置的轨道610以开口的一面朝下,在轨道 610槽内等间距悬挂可轴向位移的基座670。基座670是一块矩形板块,每块基座670设有两只朝下的矩形开口。所述挂钩680是悬挂工件模组690的载体,形似C形的挂钩680悬挂在基座670预置的矩形开口中,挂钩680以开口的一边朝下,设有两只同轴相对的内钩,内钩端部横截面为敞口朝上的V形,本实施例V形夹角α=90°。挂钩680朝上的实边中部设有由摩擦轮、上盖、芯轴、轴承和轴承座组成的竖置转轴结构681。位于转轴结构681顶部的上盖与基座670作悬挂连接,内置的轴承与轴承座和芯轴配合,竖置的芯轴下端连接挂钩680。本实施例中的轴承为平面滚珠轴承,芯轴承载挂钩680及工件模组690的载荷由轴承承担,此摩擦副为滚动摩擦,故挂钩680旋转很灵活。挂钩680旋转的动力由摩擦轮引入,结构中配置的摩擦轮与轴承座间隙套合,各自可自由旋转。但是,外置的摩擦轮与芯轴相连接,随挂钩680位移的摩擦轮与固定座650上间隔安置的驱动器660接触而产生旋转。由于摩擦轮、芯轴和挂钩680是联体结构,故摩擦轮带动挂钩680一并旋转。所述固定座650是一种安置在轨道610外侧的条形构件,在固定座650上按轨道610悬挂的工件模组1000间距设置驱动器660,每只驱动器660都配置皮带620,本实施例中一节固定座650上共配置六只驱动器660。另外,在固定座650外侧居中位置配置减速机630,减速机630输出端配置的皮带轮620通过皮带640驱动两侧顺序排列的驱动器660,旋动的驱动器660一旦接触摩擦轮,使静止的摩擦轮获得动能而驱动挂钩680作旋转运动,挂钩680悬挂的工件模组1000也一并旋转。本申请中减速机630和驱动器660配置的皮带轮620为双联结构,两只轮直径相等,因此所有的挂钩680旋转速度相等。在干燥室中随干燥生产线位移且旋转的工件模组1000,因位置始终处于动态之中,促进浆料中所含水分快速析出,所以各部易得到均匀干燥。本申请实际使用除工件模组1000干燥质量一致性好外,这种持续流动干燥生产形式,也比现有技术分批干燥 生产效率高三倍以上,完全满足批量生产要求。
进一步的,所述模组旋转的干燥生产线装置可以包括一种可旋式挂具。所述可旋式挂具可以包括基座、挂钩、摩擦轮、上盖、芯轴、轴承和轴承座。所述基座为矩形板块,每块基座的底侧边上至少开设两只开口朝下的矩形槽。所述挂钩底边预留的缺口两侧形成一对等长的开放式内钩,挂钩上边居中位置配置由上盖、芯轴、轴承和轴承座组成转轴结构。所述上盖上端面预置的凹槽与基座嵌合并用螺栓连接,由此构成挂钩悬挂在基座缺口中可随芯轴转动。芯轴与摩擦轮连接,摩擦轮在行进过程中与外置的三角皮带摩擦获得动能而随芯轴旋转,使得持钩悬挂的工件模组同步旋转。
图21~24是根据本申请的一些实施例所示一种可旋式挂具的结构示意图。
图21~24所示的可旋式挂具是用于精密铸造悬挂工件模组的挂具,它包括基座710、挂钩720、摩擦轮730、上盖740、芯轴750、轴承760和轴承770。所述基座710是挂具的载体构件,是一块横向竖放的矩形板块,在模组干燥生产线中顺序排列的基座710采用链式连接。每块基座710作为一个传动单元,本实施例中基座710底侧边上开设两只位置对称且开口朝下的矩形槽,该槽用于安置挂钩720。所述挂钩720形C形板框,底边居中预留的缺口两侧形成一对等长的内钩721,两只内钩721供工件模组1000悬挂。为了便于顺利悬挂或拿取工件模组1000,内钩721为开放式结构,其形状如图23和图24所示,A-A剖面为V形,V形的夹角α在45°~90°范围内选取,本实施例V形夹角α=90°。挂钩720与基座710的连接处采用转轴连接结构,以便悬挂的持钩720定轴旋转。本申请在挂钩720上边居中位置配置由上盖740、芯轴750、轴承760和轴承座770组成转轴结构。为了实现挂钩720悬挂到基座710上,所述上盖740上端面预置与基座710相嵌合的凹槽,两者嵌合安装后用螺栓连接,由此构成挂钩720 悬挂在基座710缺口中可随芯轴750转动结构。本申请为了做到挂钩720随基座710行走时持续旋转,在轴承座770上同轴间隙套装摩擦轮730,此结构中摩擦轮730仅与芯轴750连接,挂钩720随基座710行走过程中由摩擦轮730引入动力驱动芯轴750而旋转。为了进一步增强摩擦轮730的摩擦效果,本实施例在摩擦轮730大直径外圆上压制花纹,以增加摩擦系数,确保挂钩720有足够的持续旋转动力。
本实施例中的挂钩720在随基座710行进过程中,靠摩擦轮730与外置的三角皮带摩擦获得动能而随芯轴750旋转,使得挂钩720悬挂的工件模壳780同步旋转。在干燥过程中,工件模壳780位置不固定,使得各部得到相同的干燥条件。因此,大大提高工件模壳780的干燥质量和干燥效率。
进一步的,所述可旋式挂具在使用过程在可以随时止旋,以便于制壳生产线100的其他装置(如机械臂装置120)对挂具上悬挂的模组进行操作。所述止旋可以由一种传动链悬吊模壳定位止旋装置实现。所述传动链悬吊模壳定位止旋装置可以包括柱桩、轨道、基座、制动杆、传感器和挂具。所述轨道为条形轨,横向串连接的基座沿轨道传动。所述基座两只朝下的矩形缺口中分别配装挂具,基座借助内置挂具的转轮悬吊在轨道中,挂具和所挂的模壳一并相对于基座旋转。所述制动杆安置在轨道靠机械手一侧,其高度处在基座中部并与轨道相平行,两端折弯段朝外安置。所述传感器安装在基座居中靠上边沿处,感应区面对机械手。所述柱桩为朝下垂挂的柔性杆件,其固定端的安装位置在轨道卸载区前端,即制动杆前敞口端口部。
图25~27是根据本申请的一些实施例所示的传动链悬吊模壳定位止旋装置的结构示意图。
图25~27所示的传动链悬吊模壳定位止旋装置,它包括柱桩810、轨 道820、基座830、制动杆840、传感器850和挂具860。所述轨道820为槽钢制成开口朝下的条形轨,其走向布置满足干燥工艺及配套的干燥房。水平横置的轨道820既有直线段,也有圆弧弯,图25仅是烘干生产线卸载区的一段结构示意图。所述基座830为片状构件,是挂具860的载体。基座830借助内置挂具860的转轮861悬吊在轨道之中,内置的挂具860和所挂的模组1000一并相对于基座830旋转。本申请中的基座830采用横向顺序串连接,由此形成链式传动结构,为持续生产创造条件。在干燥过程中挂具860旋转,可克服挂具860悬吊模组1000干燥不匀的问题。但是,进入卸载区的挂具860和悬吊的模组1000在惯性的作用下仍然处于旋转状态,使得配套的机械手880得到不到待卸载模组1000的准确位置信号,不能准确摘取已干燥的模组1000。为了解决摘取难题,本申请在轨道820前侧面对配套的机械手880处,配置相平行的制动杆840。如图26所示,制动杆840为两端设有朝外的折弯角的细长杆件,本实施例杆长L=850mm,折弯l=100mm,两端折弯的锐角相等,优选锐角α=30°。安装制动杆840时将两端折弯段朝外安置,这样就构成一种两端均留敞口式导向制动结构,便于随挂具860导入的模组1000止旋。为了便于配套的机械手880准确地摘取已完成干燥处理且止旋的模组1000,在基座830的板面上配装传感器850,以备配套机械手880定位摘取。本实施例所用传感器850是一种定位传感器,直接安装在基座830居中靠上边沿处,感应区面对配套的机械手880。所述柱桩810为下垂挂的柔性杆件,它固定端的安装位置处在轨道820卸载区前端,即制动杆840前敞口端口部。本实施例中的柱桩810是一节圆柱形压缩弹簧,具有足够的弹性和柔性,在结构中对传输的挂具860起到缓冲作用,一方面减少随挂具860导入的模组1000止旋前的冲击力,有利于减小后续制动杆840的止旋负荷,平移的挂具860易实现快速定位,便于配套的机械手880快速并准确摘取挂具860吊挂的模组1000。因此, 本申请实际使用时,除显著提高卸载效率外,还减少运动噪声,改善工作环境。
一些实施例中,所述可旋式挂具还可以包括驱动器旋转的驱动器。所述驱动器可以包括主轴、大皮带轮、支架、销轴、传动轮、皮带和小皮带轮。所述支架上配置的主轴两端分别配装大皮带轮和小皮带轮,组成支架两边同轴转动结构。支架一侧外伸板块上对称安置两只由销轴定位的传动轮,小皮带轮和传动轮位于支架同一侧,其中的传动轮位于挂具一侧。所述皮带圈绕小皮带轮和两只传动轮,形成一种等腰三角形的带式传动结构,位于等腰三角形底边的皮带外壁与一侧悬吊的挂具外壁接触,经运动摩擦驱动挂具旋转。
图28~30是根据本申请的一些实施例所示的一种助烘干线悬吊挂具旋转的驱动器的结构示意图。
图28~30所示的助烘干线悬吊挂具旋转的驱动器,它包括主轴910、大皮带轮920、支架930、销轴940、传动轮950、皮带960和小皮带轮970。该驱动器安装在模组烘干生产线中,分段安装在供挂具行走的轨道一侧,驱动器由大皮带轮920引入动力,相邻驱动器之间通过皮带联动。所述支架930是主体骨架,呈T形构件,其中的横向长条板面在居中位置处被垂直的主轴910贯穿,主轴910一端配装大皮带轮920,另一端配装小皮带轮970,由此组成支架930两边同轴转动结构。位于支架930一侧的外伸板块与横向长条板面相垂直,该板块外端板面上对称安置两只由销轴940定位的传动轮950,小皮带轮970和两只传动轮950位于支架930的同一侧,其中的传动轮950位于挂具980一侧,组成减速传动结构,因此传动轮950的外径D比配套的挂具980外圆直径小,本实施例小20mm。为了提高摩擦效率和减少运动噪声,本申请中传动轮950不直接接触挂具980外圆,而且借助传动轮950缠绕的橡胶质皮带960外壁作摩擦传动。所述 皮带960是一种横截面为等腰梯形的橡胶三角带。结构中皮带960圈绕小皮带轮970和两只传动轮950,形成一种等腰三角形的带式传动结构,本实施例中等腰三角形的夹角为α=30°。结构中位于等腰三角形底边的皮带960外壁与一侧悬吊挂具980外壁接触,经运动摩擦驱动挂具980旋转。由于挂具980在移动过程中增加旋转运动,使得挂具980带动所吊模组一同旋转。在烘干房中,由于被干燥的模组旋转,使得各部得到均匀干燥条件,因此模组干燥质量得到保障,为提高铸件质量创造了良好的基础条件。
图31是根据本申请的一些实施例所示的基于制壳生产线100的模壳制造方法的流程图。
步骤3110,把若干模组放到传输装置上。
所述模组可以是蜡模组树。所述模组可以包括多组蜡模。在一些实施例中,所述模组上可以包括用于悬挂的横杆。所述传输装置可以是传送模组至不同工位的装置。所述传输装置可以在模组传输至一个或多个工位时进行停车,以便模组在该工位执行相应的操作。所述传输装置上可以包括与模组相配合的悬挂机构,用于悬挂模组。在一些实施例中,把若干模组放到传输装置上可以理解为把若干模组放到传输装置的悬挂机构上。在一些实施例中,一个悬挂机构一次能够传输多个模组,所述传输装置具有多个悬挂机构,可以先把其中一个悬挂机构上挂满模组,然后再对下一个悬挂机构进行挂模组操作。在一些实施例中,所述悬挂机构可以包括旋转机构,模组悬挂于悬挂机构上可以自转,便于模组干燥。在一些实施例中,所述模组可以是两两一组悬挂于传输装置上的,即一次传输两个模组。
在一些实施例中,步骤3110可以由供料机构控制器来控制供料机构执行。在一些实施例中,供料机构控制器可以与控制中心电信号连接,由控制中心发送相关指令给供料机构控制器以实现对供料机构的运动控制。在一些实施例中,所述供料机构可以是通过程序控制的能够自动将模组悬 挂于传输装置上的执行机构。在一些实施例中,所述供料机构可以是自动供料台,也可以是机械手。在一些实施例中,步骤3110也可以由人工执行。例如,可以由现场的操作工人手动将模组悬挂到传输装置上。
步骤3120,通过传输装置将模组传输到操作工位。
所述操作工位可以是为模组执行特定工艺操作的工作区域。所述操作工位可以是机械臂的摘挂工位。所述传输装置可以包括运动状态和停车状态,在一些实施例中,所述传输装置的运动状态可以由对应的控制器控制,例如,PLC控制器。在一些实施例中,所述传输装置的控制器与前文所述的控制中心电信号连接,以使控制中心能够根据相关指令对传输装置的运动进行控制。在一些实施例中,传输装置的控制器可以控制传输装置运动的启动和停止,控制传输装置的运动速度,控制传输装置的停止位置以及在该位置的停留时间。在一些实施例中,所述传输装置将模组传输至操作工位后将停车,并由机械臂装置对模组执行后续操作。在一些实施例中,所述传输装置的操作空间中设置有温湿度监控及调节系统。所述温湿度监控及调节系统可以实时检测模组所处环境的温度及湿度,并在温度或湿度超出限定范围后进行调节,以确保模组处于最佳的操作环境。
步骤3130,通过机械臂装置将模组从传输装置上取下,并在一个或多个操作工位上完成沾浆及淋砂操作。
在一些实施例中,当传输装置将模组传输到指定位置后,可以由机械臂装置取下模组,并完成后续的工艺,例如,沾浆和/或淋砂。在一些实施例中,所述传输装置可以在指定位置停留一下,以方便机械臂装置能够对模组进行可靠地摘取。在一些实施例中,所述传输装置在所述指定位置的停留时间可以根据机械臂装置的结构来进行调整,也可以根据并行传输的模组个数来进行调整。在一些实施例中,所述指定位置可以理解为机械臂装置的摘挂工位。在一些实施例中,所述机械臂装置将模组从传输装置 上取下可以是模组被传输到摘挂工位后,由机械臂在摘挂工位对模组进行摘取。在一些实施例中,步骤3130和步骤3140可以由机械臂装置的控制器(例如PLC控制器)控制机械臂装置在一个或多个工位上执行。在一些实施例中,机械臂装置的控制器可以与控制中心电信号连接,以使控制中心能够根据相关指令对机械臂装置的运动进行控制。
在一些实施例中,所述沾浆操作可以包括沾浆动作和滴浆动作。在一些实施例中,所述辅助工位和第一工位可以共同完成沾浆操作。例如,对于一些特殊零件,沾浆需要比较长的时间,则可以在辅助工位上进行沾浆动作,在第一工位上进行滴浆动作。
在一些实施例中,所述机械臂装置夹取模组进行沾浆操作可以包括:机械臂装置在模组摘取工位上通过手臂的弯曲实现从传输装置的悬挂链上摘取模组,然后通过腰部机构旋转至沾浆工位。在进行沾浆时,夹取模组的机械臂先将手臂向下伸展,以使得模组能够碰到浆桶里面的浆料。在一些实施例中,机械臂的手臂伸展方向可以是竖直向下的,即机械臂的手臂与机械臂腰部的旋转轴线平行,以使模组能够竖直向下地完全浸没在浆料中;在一些实施例中,机械臂的手臂也可以与上述旋转轴线成一定角度,这时模组是倾斜地放入浆桶中,然后机械臂带动模组自转也可以实现对模组的外表面进行均匀沾浆。在一些实施例中,所述角度的范围可以是20°~80°,优选地,可以是30°~70°,优选地,可以是40°~60°,优选地,可以是45°。
在一些实施例中,上述沾浆动作完成之后,机械臂会将模组取出浆桶,并向上举起进行淋桨。在一些实施例中,淋桨过程中机械臂与所述轴线成一定角度,以获得较好的淋桨效果。在一些实施例中,所述淋桨过程中机械臂与所述轴线的角度范围可以是0°~90°,优选地,可以是20°~80°,优选地,可以是30°~70°,优选地,可以是40°~60°,优选地, 可以是45°。
在一些实施例中,沾浆操作完成后,机械臂装置夹取模组绕腰部轴线旋转至淋砂工位进行淋砂。在一些实施例中,在淋砂过程中,所述机械臂装置将夹取的模组伸入至淋砂机中砂料的下方,然后砂料在向模组所在区域下沙,在这个过程中,机械臂可带动模组自转,以实现均匀淋砂。在一些实施例中,所述模组在淋砂过程中的放置角度可以向上倾斜也可以向下倾斜。在一些实施例中,相对竖直方向的向下或向上的倾斜角度范围可以在0°~90°内。优选地,所述角度范围可以是30°~90°,优选地,所述角度范围可以是30°~90°,优选地,所述角度范围可以是40°~60°。
在一些实施例中,所述沾浆操作可以包括多层沾浆,如3~7层。每一次沾浆操作进行多层沾浆中的一层沾浆。所述多层沾浆可以分为面层(如第1层)、二层(如第2层)和背层(如3~7层)。所述淋砂操作可以包括多次淋砂。在一些实施例中,机械臂装置从传输装置摘取一个或多个模组后,可以在一个或多个工位上进行沾浆操作和/或淋砂操作。在一些实施例中,机械臂装置可以夹持一个或多个模组在同一个工位上进行沾桨操作和淋砂操作,也可以在一个工位上进行沾浆操作,在另一个工位上进行淋砂操作,也可以在至少两个工位上进行沾浆操作,也可以在至少两个工位上进行淋砂操作。在一些实施例中,所述淋砂操作的淋砂次数和沾浆的层数可以相对应,也可以不对应。关于各操作工位所执行的具体操作可以参见本说明书图5部分的相关描述。
步骤3140,通过机械臂装置将模组装载到传输装置。
在一些实施例中,所述装载到传输装置的模组可以是完成淋砂操作后的模组。所述淋砂操作可以是任意一层淋砂操作。例如,模组在完成第一层淋砂操作后,机械臂夹持模组转至摘挂工位,此时可以触发PLC控制器控制机械臂将模组挂回传输装置。在一些实施例中,所述出发动作可以 由人工执行(例如,人为控制对应的操作按钮);也可以由控制中心根据相关指令执行。在一些实施例中,装载到传输装置可以理解为机械臂装置将模组放回至传输装置的悬挂机构上。
在一些实施例中,步骤3140中的传输装置与前述步骤(例如,步骤3110或3120或3130)中的传输装置可以是同一个传输装置,也可以是不同的传输装置。也就是说,传输装置a运输模组至机械臂装置的操作工位处,机械臂装置从传输装置a上取下模组进行相关操作。完成操作后,机械臂装置可以将模组装载至传输装置a,也可以将模组装载至传输装置b,然后传输装置a或传输装置b运输模组完成后续的操作工序。
步骤3150,通过传输装置将模组传输至干燥工序,以进行干燥处理。
所述进入干燥工序的模组可以是完成淋砂操作后的模组。所述淋砂操作可以是任意一层淋砂操作。所述干燥工序的时间可以是2~3个小时。所述干燥处理由干燥装置实现。所述干燥装置可以是控制温度、湿度及空气流动的装置。在一些实施例中,所述干燥装置内可以设置有温度及湿度监控装置。在一些实施例中,所述干燥装置可以包括若干空调和风扇,通过PLC控制器控制调节空调的温度及风扇转速对干燥工序进行控制。所述风扇可以是预设调速档位的风扇,PLC控制器可以根据监测到的模组干燥程度调整不同的风速档位对模组进行干燥。在一些实施例中,所述干燥设备的控制器也可以与控制中心电信号连接,在一些实施例中,控制中心可以计算机械臂装置将模组装载至传输装置上的时间,并根据传输速度可以确定所述模组传输至干燥装置的时间,并在所述模组传输至其附近位置时控制干燥装置进行开启。在一些实施例中,控制中心可以根据干燥工序的完成情况来设定或调节传输装置的传输模式。所述传输模式可以包括匀速传输、步进传输,其中,匀速传输的传输速度,步进传输的运行速度、运行时间和等待时间,都可以在发送给控制中心的指令中预先设定。在一些是 时候了中,控制中心也可以实际情况中检测到的干燥效果来调节传输装置的运行状态。在一些实施例中,所述干燥处理的方式包括:当风吹到悬挂在所述传输装置上的模组时,所述模组自转以实现均匀风干。所述模组的自转可以由传输装置上的转动装置实现。所述模组完成干燥后进入后续工序。所述后续工序可以是进行下一层沾浆,也可以是完成制壳。
应当注意的是,上述有关流程3100的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程3100进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤3130可以是拆分为两个步骤3130-1和3130-2,在3130-1中进行沾浆操作,在3130-2中进行淋砂操作。又例如,步骤3130和步骤3140可以合并为一个步骤,由机械臂依次对模组执行取下模组、沾浆、淋砂及挂回传输装置的操作。本说明书的一个或多个实施例中,模组和模壳都可以理解为待加工或加工好的模壳产品,例如,蜡模。
图32是根据本申请的一些实施例所示的制壳生产线完成第一层沾浆及淋砂操作的流程图。
在一些实施例中,所述通过机械臂装置将模组从传输装置上取下,并在一个或多个操作工位上完成沾浆及淋砂操作可以包括多层沾浆及淋砂操作。所述多层沾浆及淋砂操作可以是3-7层沾浆及淋砂操作。所述多层沾浆及淋砂操作的每一层完成后可以进行下一层沾浆及淋砂操作。在一些实施例中,所述多层沾浆及淋砂操作可以使用相同的操作步骤。在一些实施例中,所述多层沾浆及淋砂操作所使用的材料可以是不同的。
在一些实施例中,自动化的制壳生产线中完成模壳的第一层沾浆及淋砂操作可以由控制中心根据相关的控制指令来控制,即控制中心可以根据相关指令控制机械臂装置从传输装置上摘取模组,并夹取模组至指定工位上进行对应的沾浆、淋砂操作,下面将对第一层沾浆、淋砂操作的整个 控制流程进行描述,后面各层的沾浆、淋砂操作可参照执行,不再赘述。在一些实施例中,所述方法可以包括以下步骤:
步骤3210,控制机械臂装置从所述传输装置上夹取模组。
所述机械臂装置的每个臂部结构上可以进一步包括腕部结构和手部结构。所述机械臂装置可以控制其臂部结构将手部结构移动至传输装置上的模组处。所述手部结构上可以包括夹紧装置,用于抓取模组并将模组固定在手部结构上。在一些实施例,所述夹紧装置可以是气动夹紧机构。所述机械臂装置夹取模组后,可以控制其臂部结构将固定有模组的手部结构移动至高度最低的位置,以便机械臂装置进行转向操作。
步骤3220,控制机械臂将模组转动至第一工位,并切换盛有第一层浆料的浆桶运动至沾浆工位,对模组进行沾浆操作。
所述第一工位可以是对模组进行沾浆的工位。在一些实施例中,所述第一工位可以对应于四向八臂机械臂装置转向180°的工位。所述第一工位也可以对应于三向六臂机械臂装置转向120°的工位。所述机械臂装置在PLC系统的控制下由其腰部进行转向,将模组转至第一工位。所述第一工位上设置有如本说明书图2所描述的沾浆装置。在一些实施例,所述PLC系统可以理解为前文所述的控制中心。所述模组在转至第一工位时,机械臂的臂部结构可以将模组举起一定高度以免与沾浆装置发生碰撞。所述沾浆装置可以自动切换浆桶。在一些实施例中,所述沾浆装置可以在机械臂装置转向的同时进行浆桶切换,将盛有第一层浆料的浆桶运动至沾浆工位。在一些实施例中,浆桶切换也可以是在机械臂摘挂模组时进行切换。
在一些实施例中,所述模组移动至切换好的浆桶上方后,由机械臂装置控制其臂部将模组下沉至浆桶中,并使浆料完全淹没模组,对模组进行沾浆动作。所述下沉时,模组可以是倾斜的,也可以是竖直的。模组沉入浆料中后,机械臂装置控制其腕部结构转动,带动模组自转。所述自转可 以是沿同一个方向的转动。所述机械臂装置腕部结构的转动可以与臂部结构的运动并行运行,提高机械臂的效率。所述对模组进行沾浆动作的时间可以是20~30秒。所述沾浆动作完成后,机械臂装置控制其臂部结构将模组举起至沾浆桶上方进行滴浆动作。机械臂装置在举起模组的过程中以及模组上升至最高位置后,机械臂装置控制其腕部结构进行方向交替的转动,并带动模组进行同样的转动。在一些实施例中,所述方向交替的转动可以是正反各两圈的转动。所述滴浆动作的时间可以是20~30秒。在一些实施例中,所述沾浆操作的总用时可以是55~60秒。在一些实施例中,所述沾浆装置区域还可以设置视频监控装置,在沾浆过程中,如果发生模组脱落至浆桶时,可以通过视频监控装置发现并发出警告,通知工作人员进行处理。
步骤3230,控制机械臂将沾浆后的模组转动至第二工位,并控制盛有第一层砂料的淋砂机运动至淋砂工位,对模组进行淋砂操作。
所述第二工位可以是对模组进行淋砂操作的工位。在一些实施例中,所述第二工位可以对应于四向八臂机械臂装置转向270°的工位。所述第二工位也可以对应于三向六臂机械臂装置转向240°的工位。所述机械臂装置在PLC系统的控制下由其腰部进行转向,将模组由第一工位转至第二工位。所述第二工位上设置有如本说明书图9所描述的淋砂装置。在一些实施例中,所述模组在转至第二工位时,机械臂的臂部结构可以将模组下放至最低高度并等待淋砂装置切换完成。所述淋砂装置可以包括多个淋砂机。所述第二工位区域可以配套设置有供一个或多个淋砂机移动的导轨。所述淋砂机由PLC系统控制在导轨上移动。在一些实施例中,当模组转至第二工位时,所述盛有第一层砂料的淋砂机移动至第二工位。当盛有第一层砂料的淋砂机就位后,机械臂装置控制其臂部结构将模组举起至淋砂机的淋砂位置,对模组进行淋砂。淋砂完成后,机械臂装置将模组从淋砂机 中放下至最低位置。淋砂机移动至其他位置进行等待,如等待区域。在一些实施例中,所述淋砂操作的总用时可以是55~60秒。
步骤3240,控制机械臂将淋砂后的模组转动至摘挂工位,将淋砂后的模组挂回传输装置。
在一些实施例中,模组完成淋砂操作后,机械臂装置的腰部进行转向,将模组所在的工作方向转至0°位置。模组转至0°位置后,机械臂装置触发摘挂动作,机械臂的臂部结构将模组举起,悬挂至传输装置。
在一些实施例中,制壳生产线完成模壳的第一层沾浆及淋砂操作还可以包括将模组转动至辅助工位,进行辅助操作。所述辅助工位可以是对应于四向八臂机械臂转向90°的工位。所述辅助操作可以包括但不限于对模组进行预浸泡操作、对模组进行沾浆前的预处理操作等。
应当注意的是,上述有关流程3200的描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以对流程3200进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。例如,步骤3220可以拆分为三个步骤3220-1、3220-2和3220-3,在步骤3220-1中进行浆桶切换,在步骤3220-2中进行转动机械臂装置,在3220-3中执行沾浆操作。又例如,步骤3230也可以拆分为三个步骤3230-1、3230-2和3230-3,在步骤3230-1中进行转动机械臂装置,在3230-2中进行切换淋砂机,在3230-3中进行淋砂操作。
本申请所披露的制壳生产线可能带来的有益效果包括但不限于:(1)自动化程度高,只需要极少量人工操作,极大的节省人工成本;(2)机械臂装置的多个动作可以并行执行,极大提高了操作效率;(3)准确控制每层沾浆及淋砂操作细节,制壳效果好;(4)传输及干燥过程中模组自转,模组干燥均匀。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡 在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (12)
- 一种模壳制造生产线,所述生产线包括:传输装置,用于批量传输模组;机械臂装置,用于实现模组相对所述传输装置的装卸,以及在至少后续两个工序中握持所述模组;所述机械臂装置能够运动以对应不同工位;沾浆装置,用于所述传输模组沾浆;淋砂装置,用于所述模组淋砂。
- 根据权利要求1所述的生产线,其特征在于,所述生产线还包括控制中心,与所述传输装置与所述机械臂装置均具有信号连接,用于根据指令使所述传输装置与所述机械臂装置运动以相互配合。
- 根据权利要求2所述的生产线,其特征在于,所述沾浆装置包括至少两个浆桶;所述控制中心还与所述沾浆装置具有信号连接,用于根据指令控制沾浆装置运动使盛有对应类型浆料的浆桶切换至指定位置。
- 根据权利要求2所述的生产线,其特征在于,所述控制中心还与所述淋砂装置具有信号连接,用于根据指令控制盛有对应类型砂料的淋砂装置运动至指定位置。
- 根据权利要求3所述的生产线,其特征在于,所述沾浆装置包括可控制旋转的转盘,所述转盘上设置有至少两个浆桶;所述转盘用于基于控制指令进行旋转以实现将盛有对应类型浆料的浆桶切换至指定位置。
- 根据权利要求5所述的生产线,其特征在于,所述沾浆装置还包括给所述至少两个浆桶中的一个或多个设置的旋转底座,所述旋转底座的旋转能够带动浆桶自转。
- 根据权利要求4所述的生产线,其特征在于,所述淋砂装置包括电动行走机构,所述控制中心用于通过电动行走机构控制盛有对应类型砂料的淋砂装置运动至指定位置。
- 一种基于生产线的模壳制造方法,所述方法包括:把若干模组放到传输装置上;通过传输装置将模组传输到操作工位;通过机械臂装置将模组从传输装置上取下,并在一个或多个操作工位上完成沾浆及淋砂操作;通过机械臂装置将模组装载到传输装置;通过传输装置将模组传输至干燥工序,以进行干燥处理。
- 根据权利要求8所述的方法,其特征在于,所述通过机械臂装置将模组从传输装置上取下,并在一个或多个操作工位上完成沾浆及淋砂操作包括:控制机械臂装置从传输装置夹取模组,并在盛有对应类型浆料的浆桶和盛有对应类型砂料的淋砂机内完成第一层沾浆和第一层淋砂;控制机械臂装置将完成沾浆和淋砂的模组放到传输装置上,并控制沾浆装置和淋砂装置分别切换对应的浆桶和淋砂机,以备模组进行下一层沾浆和下一层淋砂的操作。
- 根据权利要求9所述的方法,其特征在于,所述控制机械臂装置从传输装置夹取模组,并在盛有对应类型浆料的浆桶和盛有对应类型砂料的淋砂机内完成第一层沾浆和第一层淋砂包括:控制沾浆装置切换盛有第一层浆料的浆桶运动至指定位置;控制淋砂装置切换盛有第一层砂料的淋砂机运动至指定位置;控制机械臂装置从所述传输装置上夹取模组,并转动到所述浆桶所在位置进行第一层沾浆操作,以及转动到所述淋砂机所在位置进行第一层淋砂操作。
- 根据权利要求10所述的方法,其特征在于,在所述沾浆操作和所述淋砂操作的过程中,所述机械臂装置控制所述模组自转。
- 根据权利要求8所述的方法,其特征在于,所述干燥处理的方式包括:当风吹到悬挂在所述传输装置上的模组时,所述模组自转以实现均匀风干。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19953251.6A EP3978160B1 (en) | 2019-11-21 | 2019-11-21 | Mold shell manufacturing production line |
PCT/CN2019/120013 WO2021097768A1 (zh) | 2019-11-21 | 2019-11-21 | 一种模壳制造生产线以及模壳制造方法 |
CN201980102386.8A CN114728328A (zh) | 2019-11-21 | 2019-11-21 | 一种模壳制造生产线以及模壳制造方法 |
TW109140805A TWI775219B (zh) | 2019-11-21 | 2020-11-20 | 一種模殼製造生產線以及模殼製造方法 |
US17/646,872 US11484938B2 (en) | 2019-11-21 | 2022-01-04 | Production lines and methods for ceramic shell making |
US18/051,499 US11890670B2 (en) | 2019-11-21 | 2022-10-31 | Production lines and methods for ceramic shell making |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/120013 WO2021097768A1 (zh) | 2019-11-21 | 2019-11-21 | 一种模壳制造生产线以及模壳制造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/646,872 Continuation US11484938B2 (en) | 2019-11-21 | 2022-01-04 | Production lines and methods for ceramic shell making |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021097768A1 true WO2021097768A1 (zh) | 2021-05-27 |
Family
ID=75980327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/120013 WO2021097768A1 (zh) | 2019-11-21 | 2019-11-21 | 一种模壳制造生产线以及模壳制造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11484938B2 (zh) |
EP (1) | EP3978160B1 (zh) |
CN (1) | CN114728328A (zh) |
TW (1) | TWI775219B (zh) |
WO (1) | WO2021097768A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113996766A (zh) * | 2021-11-02 | 2022-02-01 | 易优特(山东)机械科技有限公司 | 一种全自动蜡模制壳生产系统及其方法 |
CN115519072B (zh) * | 2022-10-28 | 2023-06-13 | 济南高仕机械制造有限公司 | 一种用于铸造的蜡树自动淋沙手臂 |
CN118386104A (zh) * | 2024-05-27 | 2024-07-26 | 天津市海棠科技有限公司 | 一种用于生产线的智能工业机械臂 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011241085A (ja) * | 2010-05-21 | 2011-12-01 | Pcs Japan:Kk | 精密鋳造用ハンガーコンベアの制御方法および制御装置 |
CN205008540U (zh) * | 2015-10-09 | 2016-02-03 | 西安航天发动机厂 | 一种多功高效的熔模精密铸造机械手制壳单元 |
CN205020748U (zh) * | 2015-09-30 | 2016-02-10 | 石家庄博欧金属制品有限公司 | 一种熔模铸造用辅助浇注机械手 |
CN107486546A (zh) * | 2017-09-19 | 2017-12-19 | 盐城工学院 | 一种四工位双臂制壳装置及其控制、工作方法 |
CN109807289A (zh) * | 2019-03-20 | 2019-05-28 | 浙江宁巍机械科技有限公司 | 一种智能悬挂制壳生产线 |
CN209209673U (zh) * | 2018-12-14 | 2019-08-06 | 潍坊宝龙精密铸件有限公司 | 一种精密铸造制壳涂装线 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1084214A (zh) * | 1964-01-31 | |||
TW221803B (zh) * | 1989-10-06 | 1994-03-21 | Lanko Side Ind Technics Corp | |
JP2842504B2 (ja) * | 1993-08-25 | 1999-01-06 | 三菱電機株式会社 | ワックスツリーコーティング装置及び方法 |
US5465780A (en) * | 1993-11-23 | 1995-11-14 | Alliedsignal Inc. | Laser machining of ceramic cores |
JP2825086B2 (ja) * | 1996-08-29 | 1998-11-18 | 三菱マテリアル株式会社 | スラリー供給装置 |
US6453210B1 (en) * | 1998-07-23 | 2002-09-17 | Vulcan Engineering Company, Inc. | Autonomous control method and process for an investment casting shell |
CN102950261A (zh) * | 2011-08-27 | 2013-03-06 | 泰州金鼎精密铸造有限公司 | 硅溶胶制壳自动淋砂系统 |
CN202367168U (zh) * | 2011-12-05 | 2012-08-08 | 萧于盛 | 自动沾浆淋砂机 |
CN202621829U (zh) | 2012-05-24 | 2012-12-26 | 东营市东胜铸业有限责任公司 | 三臂制壳机械手 |
CN104226921A (zh) | 2014-08-20 | 2014-12-24 | 泰州鑫宇精密铸造有限公司 | 精密铸造蜡模面层淋砂机 |
TWM503957U (zh) | 2015-04-08 | 2015-07-01 | Mu Ching Automation Co Ltd | 垂直循環閘門式淋砂機 |
US11786961B2 (en) * | 2015-10-13 | 2023-10-17 | Metal Casting Technology, Inc. | Investment mold slurry curtain apparatus |
CN105251941A (zh) * | 2015-11-24 | 2016-01-20 | 广兴机械科技(惠州)有限公司 | 一种沾浆设备 |
CN205341815U (zh) * | 2015-11-25 | 2016-06-29 | 泰州鑫宇精工股份有限公司 | 新型智能化精密铸造制壳悬链输送生产线 |
CN105562607B (zh) | 2016-03-08 | 2017-07-07 | 湖州南丰机械制造有限公司 | 一种用于熔模铸造的环形淋砂机 |
CN205702299U (zh) | 2016-03-30 | 2016-11-23 | 东营福浩精铸科技有限公司 | 精铸制壳淋砂浮砂除尘一体机 |
CN205763653U (zh) | 2016-06-27 | 2016-12-07 | 霍山县忠福机电科技有限公司 | 一种滚筒淋砂机 |
CN106180560A (zh) * | 2016-07-21 | 2016-12-07 | 东营市东胜机械自动化有限公司 | 一种三臂制壳装置及制壳方法 |
CN206997692U (zh) * | 2017-03-22 | 2018-02-13 | 东营市东胜机械自动化有限公司 | 一种四臂制壳装置 |
CN207205198U (zh) * | 2017-07-19 | 2018-04-10 | 江健良 | 融蜡模壳制壳整机 |
CN108296444A (zh) * | 2017-11-27 | 2018-07-20 | 张文胜 | 制壳机械手 |
TWI641460B (zh) * | 2017-12-29 | 2018-11-21 | 達詳自動化股份有限公司 | Shell mold elastic automatic manufacturing system and manufacturing method thereof |
CN207952531U (zh) * | 2017-12-30 | 2018-10-12 | 武义尔威自动化设备有限公司 | 间歇式多工位制壳机 |
CN108246988A (zh) * | 2018-03-16 | 2018-07-06 | 泰州鑫宇精工股份有限公司 | 多工位浆桶在线变轨装置 |
CN208067255U (zh) | 2018-03-16 | 2018-11-09 | 泰州鑫宇精工股份有限公司 | 可旋式挂具 |
CN207971385U (zh) | 2018-03-16 | 2018-10-16 | 泰州鑫宇精工股份有限公司 | 模壳旋转的干燥生产线 |
CN108356233A (zh) * | 2018-03-16 | 2018-08-03 | 泰州鑫宇精工股份有限公司 | 配置旋转式挂钩的模壳干燥生产线 |
CN207957025U (zh) | 2018-03-16 | 2018-10-12 | 泰州鑫宇精工股份有限公司 | 传动链悬吊模壳定位止旋装置 |
CN109365750A (zh) * | 2018-12-18 | 2019-02-22 | 南通海泰科特精密材料有限公司 | 一种涡轮蜡模淋砂生产线 |
CN109870289B (zh) | 2019-04-11 | 2024-04-09 | 中国空气动力研究与发展中心高速空气动力研究所 | 一种t型平尾颤振模型保护装置及其应用 |
-
2019
- 2019-11-21 CN CN201980102386.8A patent/CN114728328A/zh active Pending
- 2019-11-21 WO PCT/CN2019/120013 patent/WO2021097768A1/zh unknown
- 2019-11-21 EP EP19953251.6A patent/EP3978160B1/en active Active
-
2020
- 2020-11-20 TW TW109140805A patent/TWI775219B/zh active
-
2022
- 2022-01-04 US US17/646,872 patent/US11484938B2/en active Active
- 2022-10-31 US US18/051,499 patent/US11890670B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011241085A (ja) * | 2010-05-21 | 2011-12-01 | Pcs Japan:Kk | 精密鋳造用ハンガーコンベアの制御方法および制御装置 |
CN205020748U (zh) * | 2015-09-30 | 2016-02-10 | 石家庄博欧金属制品有限公司 | 一种熔模铸造用辅助浇注机械手 |
CN205008540U (zh) * | 2015-10-09 | 2016-02-03 | 西安航天发动机厂 | 一种多功高效的熔模精密铸造机械手制壳单元 |
CN107486546A (zh) * | 2017-09-19 | 2017-12-19 | 盐城工学院 | 一种四工位双臂制壳装置及其控制、工作方法 |
CN209209673U (zh) * | 2018-12-14 | 2019-08-06 | 潍坊宝龙精密铸件有限公司 | 一种精密铸造制壳涂装线 |
CN109807289A (zh) * | 2019-03-20 | 2019-05-28 | 浙江宁巍机械科技有限公司 | 一种智能悬挂制壳生产线 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3978160A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3978160A4 (en) | 2022-05-18 |
EP3978160A1 (en) | 2022-04-06 |
CN114728328A (zh) | 2022-07-08 |
US20230078326A1 (en) | 2023-03-16 |
TWI775219B (zh) | 2022-08-21 |
US11890670B2 (en) | 2024-02-06 |
US20220126358A1 (en) | 2022-04-28 |
TW202120220A (zh) | 2021-06-01 |
US11484938B2 (en) | 2022-11-01 |
EP3978160B1 (en) | 2024-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI775219B (zh) | 一種模殼製造生產線以及模殼製造方法 | |
CN105709983B (zh) | 一种汽车刹车盘自动涂装装置 | |
CN103832840B (zh) | 砖坯码放机械手系统及控制方法 | |
CN111098401A (zh) | Crtsⅰ型双块式轨枕自动化智能无人生产线 | |
CN104944154B (zh) | 手套转移、码沓机械手系统及手套转移、码沓方法 | |
WO2022160573A1 (zh) | 高铁双块式轨枕生产线 | |
CN106825413A (zh) | 熔模铸造自动制壳设备 | |
CN105945223B (zh) | 模样自动粘接装置 | |
CN207139259U (zh) | 一种用于管道的一体化加工设备 | |
US8220523B2 (en) | Method and apparatus for manipulating investment casting mold handlers | |
CN212707349U (zh) | Crtsⅰ型双块式轨枕自动化智能无人生产线 | |
CN214107639U (zh) | 一种金属工件外壳的喷涂流水线装置 | |
CN104369266B (zh) | 一种漏粪板自动化生产线及其生产工艺 | |
CN106563790B (zh) | 梁式打箱机械手及其打箱方法 | |
CN206474316U (zh) | 可自动清洁挂具的4轴同步双模式喷涂机 | |
CN108840122A (zh) | 一种自动装车机 | |
CN202862380U (zh) | 一种卫生陶瓷泥坯周转、烘干、修整生产线 | |
CN205628422U (zh) | 一种汽车刹车盘自动涂装装置 | |
CN204825058U (zh) | 一种自动化取料送料机械手装置 | |
CN110116081A (zh) | 用于汽车止动器毂架焊合件的自动涂胶水机 | |
CN208717411U (zh) | 一种升级版热镀锌自动化流水线设备 | |
KR101830100B1 (ko) | 산업 부품용 자동 코팅장치 | |
CN214637684U (zh) | 一种具有吊装结构的自动化喷漆生产线 | |
CN216261648U (zh) | 离心浸透式涂层涂覆设备 | |
JP3109653B2 (ja) | 鋳鉄管用中子の自動塗装装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19953251 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019953251 Country of ref document: EP Effective date: 20211229 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |