WO2021093363A1 - 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法 - Google Patents

一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法 Download PDF

Info

Publication number
WO2021093363A1
WO2021093363A1 PCT/CN2020/103272 CN2020103272W WO2021093363A1 WO 2021093363 A1 WO2021093363 A1 WO 2021093363A1 CN 2020103272 W CN2020103272 W CN 2020103272W WO 2021093363 A1 WO2021093363 A1 WO 2021093363A1
Authority
WO
WIPO (PCT)
Prior art keywords
main phase
diffusion
coarse powder
mass
heat treatment
Prior art date
Application number
PCT/CN2020/103272
Other languages
English (en)
French (fr)
Inventor
刘卫强
陈昊
岳明
尹彦涛
李玉卿
张红国
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2021093363A1 publication Critical patent/WO2021093363A1/zh
Priority to US17/520,452 priority Critical patent/US11742120B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM

Definitions

  • the invention provides a method for preparing a high-performance dual main phase sintered mixed rare earth iron boron magnet by a two-step diffusion method, which belongs to the technical field of rare earth magnetic material preparation.
  • the mixed rare earth contains a large amount of La, Ce, and La 2 Fe 14 B, The intrinsic magnetic properties of Ce 2 Fe 14 B are much lower than those of Pr and Nd. Therefore, the use of mixed rare earth to prepare magnets will cause the deterioration of the magnet properties, especially the severe decrease in coercivity.
  • thermal resistance evaporative deposition method such as patent 201710624106.2
  • magnetron sputtering method such as patent 201110242847.
  • rotary evaporation diffusion method such as patent 201710852677.1
  • the distance between the diffusion source and the diffused airflow ground powder is relatively long, and the airflow ground powder agglomerates more severely during heating, which will cause the diffusion effect to deteriorate, and it is limited to improve the performance of the final magnet.
  • the present invention first performs a two-step diffusion treatment on the (MM,Nd)-Fe-B hydrogen crushing powder with a higher amount of mixed rare earth substitution.
  • the first step is to diffuse the PrHoFe alloy, and evenly coat a layer of PrHo-rich powder on the surface of the powder particles.
  • the second step is to diffuse the ZrCu alloy, and coat the surface of the powder particles with a layer of Zr-rich high melting point alloy uniformly , To prevent the growth of MM-containing crystal grains during the sintering process and inhibit the inter-diffusion with the other main phase Pr/Nd 2 Fe 14 B in the dual main phase, thereby obtaining high coercivity; magnets prepared by this method It is cost-effective and is expected to replace medium and high-grade magnets.
  • the present invention provides a two-step diffusion method for preparing a high-performance dual-main phase sintered mixed rare earth iron-boron magnet.
  • the purpose is to perform a two-step diffusion on the (MM, Nd)-Fe-B hydrogen crushing powder with poor performance After treatment, the double alloy method is used to improve the magnetic properties of the final magnet, and a low-cost and high-performance magnet is obtained.
  • a two-step diffusion method for preparing high-performance dual main phase sintered mixed rare earth iron boron magnets characterized in that the main phase A is Pr/Nd 2 Fe 14 B phase, and the main phase B is (MM, Nd) 2 Fe 14 B Phase, the hydrogen crushed coarse powder of main phase B is subjected to two rotating diffusion treatments, and then mixed with the hydrogen crushed coarse powder of main phase A evenly.
  • the mass ratio of main phase A and main phase B is 1:9 ⁇ 5:5 (both The sum is 10).
  • the nominal composition of the main phase A is Pr/Nd x Fe 100-xyz M y B z (wt.%) (that is, Pr x Fe 100-xyz M y B z or Nd x Fe 100-xyz M y B z ),
  • the nominal composition of the main phase B is [MM a Nd 1-a ] x Fe 100-xyz M y B z (wt.%), MM is a mixed rare earth, and the mass percentage of each component is Ce:48-58%, La : 20-30%, Pr: 4-6%, Nd: 15-17%;
  • M is Nb, Ti, V, Co, Cr, Mn, Ni, Zr, Ga, Ag, Ta, Al, Au, Pb, One or more of Cu and Si;
  • x, x1, y, z satisfy the following relationship: 0 ⁇ a ⁇ 1, 25 ⁇ x ⁇ 35, 0.5 ⁇ y ⁇ 3, 0.3 ⁇ z ⁇ 1.5.
  • a two-step diffusion method for preparing high-performance dual-primary phase sintered mixed rare earth iron-boron magnets has the following steps:
  • the mass ratio of the two is 2:1 to 1:2
  • the inner cavity and the outer cavity are separated by a metal molybdenum mesh, and placed in a rotary heat treatment furnace at a certain speed (1-10r /min) and the diffusion heat treatment at 500-700°C for 3-6h to obtain the first diffused coarse powder
  • the outer wall of the coaxial double-layer circular barrel is the outer wall of the barrel, which is made of solid material
  • the coaxial inner layer is a metal molybdenum mesh cylinder composed of a metal molybdenum mesh, the annular cavity structure between the metal molybdenum mesh cylinder and the outer wall of the barrel is an outer cavity, and the cavity in the metal molybdenum mesh cylinder is an inner cavity. Cavity; the mesh diameter of the metal molybdenum mesh is less than 5
  • step (4) Place the first-stage diffusion coarse powder obtained after the first-stage diffusion treatment in step (4) and the ZrCu quick-setting flakes broken in step (2) respectively in the coaxial double-layer circular barrel
  • the second-step diffusion treatment is carried out in the inner cavity and the outer cavity to obtain the second-stage diffused coarse powder, the mass ratio of the two is 2:1 to 1:2, and it is put into a rotary heat treatment furnace at a certain speed (1-10r /min) and the diffusion heat treatment at 800-950°C for 2-5 hours, the rotary heat treatment furnace is connected with a glove box and filled with inert gas, so that the raw materials enter and exit the rotary heat treatment furnace for operation in the glove box;
  • step (6) The fine powder prepared in step (6) is again added with 0.01-5% by mass lubricant and 0.01-5% by mass antioxidant and mixed uniformly. Under the protection of inert gas, the uniformly mixed fine powder is placed in a magnetic field. Orientation molding in a magnetic field with a strength of 1.5-2.0T to obtain a compact, which is vacuum-encapsulated and then subjected to cold isostatic pressing; the above-mentioned mass percentage is the mass percentage of the fine powder in step (6);
  • step (7) Put the green body obtained in step (7) into a vacuum sintering furnace for sintering, keep it at a sintering temperature of 980-1080°C for 1-4 hours, and then cool it with argon air; in order to inhibit the mutual diffusion between the two phases Only low-temperature tempering heat treatment is performed on the dual main phase magnet, the tempering temperature is 400-600°C, and the time is 2-5h.
  • the composition and mass percentage of PrHoFe alloy are: the mass fraction of Pr is 40-80%, the mass fraction of Ho is 10-40%, and the mass fraction of Fe is 10-20%; the composition and mass percentage of ZrCu alloy are: Zr The mass fraction is 35-65%, and the mass fraction of Cu is 35-65%.
  • the lubricant is a conventional lubricant in the field
  • the anti-oxidant is a conventional anti-oxidant in the field.
  • the present invention has the following advantages:
  • the present invention adopts mixed rare earth (MM) to prepare sintered magnets, which realizes the comprehensive utilization of rare earth resources, reduces environmental pollution caused by separation and purification, and reduces production costs;
  • MM mixed rare earth
  • the present invention uses a two-step rotating diffusion method to diffuse PrHoFe alloy and ZrCu alloy with mixed rare earth (MM) hydrogen crushing coarse powder, which can coat a layer of PrHo-rich compound uniformly on the surface of the powder particles and utilize Pr 2 Fe 14 B and Ho 2 Fe 14 B have higher anisotropy fields to improve the coercivity, and can evenly coat a layer of Zr-rich high melting point alloy on the surface of the powder particles to prevent MM-containing crystals during the sintering process.
  • the grain growth and the suppression of inter-diffusion with the other main phase Pr/Nd 2 Fe 14 B in the dual main phase are also conducive to obtaining high coercivity;
  • the present invention uses two-step rotating diffusion (MM, Nd)-Fe-B hydrogen crushed coarse powder and Pr/Nd-Fe-B hydrogen crushed coarse powder to prepare dual main phase magnets, which solves the problem of (MM, Nd)-Fe-B hydrogen crushed coarse powder and Pr/Nd-Fe-B hydrogen crushed coarse powder.
  • the problem of low magnetocrystalline anisotropy field of Nd)-Fe-B alloy, the problem of the uneven size of the two-phase grains in the dual-main phase magnet, and the mutual diffusion of the two main phase grains in the subsequent sintering and heat treatment process The problem is that the magnetic properties of the final dual-phase magnets have been significantly improved;
  • the present invention adopts the method of rotating diffusion to diffuse PrHoFe alloy and ZrCu alloy with the hydrogen crushing coarse powder containing mixed rare earth (MM), which can realize mass production and increase production efficiency, and the operation is simple, and it is easy to realize industrial production. Alloy quick-setting flakes and ZrCu alloy quick-setting flakes can also be reused, greatly reducing production costs.
  • Figure 1 is a schematic diagram of a double-layer circular barrel used for diffusion in the present invention
  • the nominal composition of main phase A Pr 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) the nominal composition of main phase B (Nd 0.5 MM 0.5 ) 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) (La: 27.49wt.%, Ce: 53.93wt.%, Pr: 1.86wt.%, Nd: 16.72wt.% in MM), using 1.25m/s
  • the speed of the copper roller is used to prepare a quick-setting thin ribbon with two components A and B with a thickness of 210 ⁇ m.
  • the quick-setting ribbons of two components A and B are respectively subjected to hydrogen crushing. After dehydrogenation, the coarsely crushed magnetic powder is obtained, and then a lubricant with a mass ratio of 0.05% and an antioxidant of 0.1% are added, and the mixture is fully mixed and protected by an inert gas. Airflow milling is performed under the atmosphere to obtain airflow milling powders of two components A and B, with an average particle size X 50 of 2.10 ⁇ m.
  • a lubricant with a mass ratio of 0.1% and an antioxidant with a mass ratio of 0.2% to the airflow ground powder of the two components A and B, respectively, and mix them evenly.
  • the magnetic powder of two components is oriented and molded in a magnetic field with a magnetic field strength of 2.0T to obtain a compact, which is vacuum packaged and subjected to cold isostatic pressing and then placed in a vacuum sintering furnace for sintering.
  • the sintering temperature is 1060°C and 1050°C respectively.
  • argon air cooling is carried out, and then two-step tempering heat treatment is carried out for the first-stage tempering and the second-stage tempering.
  • the first-stage tempering temperature is 900°C for 3h; the second-stage tempering temperature is 450°C for 4h.
  • the nominal composition of main phase A Pr 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) the nominal composition of main phase B (Nd 0.5 MM 0.5 ) 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) (La: 27.49wt.%, Ce: 53.93wt.%, Pr: 1.86wt.%, Nd: 16.72wt.% in MM), using 1.25m/s
  • the speed of the copper roller is used to prepare a quick-setting thin ribbon with two components A and B with a thickness of 210 ⁇ m.
  • the quick-setting thin ribbons of two components A and B are hydrogen crushed, and coarse crushed magnetic powder is obtained after dehydrogenation.
  • Airflow milling is performed to obtain the airflow milling fine powders of C and D components respectively, and the average particle size X 50 is 2.10 ⁇ m.
  • a lubricant with a mass ratio of 0.1% and an antioxidant with a mass ratio of 0.2% to the airflow ground powder of the two components of C and D, respectively, and mix them evenly.
  • the magnetic powder of the composition is oriented and molded in a magnetic field with a magnetic field strength of 2.0T to obtain a green body.
  • the green body is vacuum packaged for cold isostatic pressing and then placed in a vacuum sintering furnace for sintering.
  • the sintering temperature is 1050°C for 2 hours and then argon is passed. Air cooling, and then only low temperature tempering heat treatment, tempering temperature is 450 °C, time 4h.
  • the nominal composition of main phase A Pr 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) the nominal composition of main phase B (Nd 0.5 MM 0.5 ) 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) (La: 27.49wt.%, Ce: 53.93wt.%, Pr: 1.86wt.%, Nd: 16.72wt.% in MM), using 1.25m/s
  • the speed of the copper roller is used to prepare a quick-setting thin ribbon with two components A and B with a thickness of 210 ⁇ m.
  • a vacuum induction quick-setting furnace was used to prepare quick-setting thin ribbons with nominal components of Pr 65 Ho 20 Fe 15 and Zr 55 Cu 45 , and coarsely crushed into small square pieces of about 1cm*1cm.
  • the quick-setting flakes of two components A and B are hydrogen crushed, and the coarsely crushed magnetic powder is obtained after dehydrogenation.
  • the hydrogen crushed coarse powder of component B and the crushed Pr 65 Ho 20 Fe 15 quick-setting flakes are respectively placed on the inner and outer layers of a double-layer circular barrel at a mass ratio of 1:1.
  • the inner and outer layers of the barrel are made of metal with a diameter of less than 5 ⁇ m.
  • the molybdenum mesh is separated and placed in a rotary heat treatment furnace at a speed of 5r/min at 630°C for 4h to perform the first diffusion heat treatment; then the hydrogen crushed coarse powder after the first diffusion heat treatment and the crushed Zr 55 Cu 45 speed
  • the condensate was put into a rotary heat treatment furnace with a mass ratio of 1:1 again at a speed of 5r/min at 885°C for 3h for the second step of diffusion heat treatment.
  • the heat treatment process described above first vacuumed the heat treatment furnace to 5 ⁇ 10 -3 Pa
  • the following is filled with argon to 65kPa, and performed in an argon protective atmosphere.
  • the rotary heat treatment furnace is connected with a glove box and is filled with inert gas, so that the raw materials enter and exit the rotary heat treatment furnace in the glove box.
  • a lubricant with a mass ratio of 0.1% and an antioxidant with a mass ratio of 0.2% to the airflow ground powder of the two components C1 and D1, and mix them evenly.
  • the two types of C1 and D1 The magnetic powder of the composition is oriented and molded in a magnetic field with a magnetic field strength of 2.0T to obtain a compact, which is vacuum packaged for cold isostatic pressing and then placed in a vacuum sintering furnace for sintering.
  • the sintering temperature is 1050°C for 2 hours and then argon is passed through. Air cooling, and then only low temperature tempering heat treatment, tempering temperature is 450 °C, time 4h.
  • the nominal composition of main phase A Pr 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) the nominal composition of main phase B (Nd 0.5 MM 0.5 ) 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) (La: 27.49wt.%, Ce: 53.93wt.%, Pr: 1.86wt.%, Nd: 16.72wt.% in MM), using 1.25m/s
  • the speed of the copper roller is used to prepare a quick-setting thin ribbon with two components A and B with a thickness of 210 ⁇ m.
  • a vacuum induction quick-setting furnace was used to prepare quick-setting thin ribbons with nominal components of Pr 65 Ho 20 Fe 15 and Zr 55 Cu 45 , and coarsely crushed into small square pieces of about 1cm*1cm.
  • the quick-setting flakes of two components A and B are subjected to hydrogen crushing, and the coarsely crushed magnetic powder is obtained after dehydrogenation.
  • the hydrogen crushed coarse powder of component B and the crushed Pr 65 Ho 20 Fe 15 quick-setting flakes are respectively placed on the inner and outer layers of a double-layer circular barrel at a mass ratio of 1:1.
  • the inner and outer layers of the barrel are made of metal with a diameter of less than 5 ⁇ m.
  • the molybdenum mesh is separated and placed in a rotary heat treatment furnace at a speed of 5r/min at 630°C for 4h to perform the first diffusion heat treatment; then the hydrogen crushed coarse powder after the first diffusion heat treatment and the crushed Zr 55 Cu 45 speed
  • the condensate was put into a rotary heat treatment furnace with a mass ratio of 1:1 again at a speed of 5r/min at 915°C for 3h for the second step of diffusion heat treatment.
  • the heat treatment process described above first evacuated the heat treatment furnace to 5 ⁇ 10 -3 Pa
  • the following is filled with argon to 65kPa, and performed in an argon protective atmosphere.
  • the rotary heat treatment furnace is connected with a glove box and is filled with inert gas, so that the raw materials enter and exit the rotary heat treatment furnace in the glove box.
  • Airflow milling is performed under an inert gas protective atmosphere to obtain airflow milling fine powders with two components of C2 and D2, with an average particle size X 50 of 2.10 ⁇ m.
  • a lubricant with a mass ratio of 0.1% and an antioxidant with a mass ratio of 0.2% to the airflow ground powder of C2 and D2 and mix them evenly.
  • the magnetic powder is oriented and molded in a magnetic field with a magnetic field strength of 2.0T to obtain a compact.
  • the compact is vacuum packaged for cold isostatic pressing and then placed in a vacuum sintering furnace for sintering. After holding the sintering temperature at 1050°C for 2 hours, argon is passed. Air cooling, then only low temperature tempering heat treatment, tempering temperature is 450 °C, time 4h.
  • the nominal composition of main phase A Pr 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) the nominal composition of main phase B (Nd 0.5 MM 0.5 ) 31.5 Fe bal Al 0.4 Cu 0.2 Co 1 Ga 0.2 Zr 0.22 B 0.98 (wt.%) (La: 27.49wt.%, Ce: 53.93wt.%, Pr: 1.86wt.%, Nd: 16.72wt.% in MM), using 1.25m/s
  • the speed of the copper roller is used to prepare a quick-setting thin ribbon with two components A and B with a thickness of 210 ⁇ m.
  • a vacuum induction quick-setting furnace was used to prepare quick-setting thin ribbons with nominal components of Pr 65 Ho 20 Fe 15 and Zr 55 Cu 45 , and coarsely crushed into small square pieces of about 1cm*1cm.
  • the quick-setting flakes of two components A and B are hydrogen crushed, and the coarsely crushed magnetic powder is obtained after dehydrogenation.
  • the hydrogen crushed coarse powder of component B and the crushed Pr 65 Ho 20 Fe 15 quick-setting flakes are respectively placed on the inner and outer layers of a double-layer circular barrel at a mass ratio of 1:1.
  • the inner and outer layers of the barrel are made of metal with a diameter of less than 5 ⁇ m.
  • the molybdenum mesh is separated and placed in a rotary heat treatment furnace at a speed of 5r/min at 630°C for 4h to perform the first diffusion heat treatment; then the hydrogen crushed coarse powder after the first diffusion heat treatment and the crushed Zr 55 Cu 45 speed
  • the condensate was put into a rotary heat treatment furnace with a mass ratio of 1:1 again at a speed of 10r/min at 915°C for 3 hours for the second step of diffusion heat treatment.
  • the heat treatment process was first evacuated to 5 ⁇ 10 -3 Pa in the heat treatment process.
  • the following is filled with argon to 65kPa, and performed in an argon protective atmosphere.
  • the rotary heat treatment furnace is connected with a glove box and is filled with inert gas, so that the raw materials enter and exit the rotary heat treatment furnace in the glove box.
  • a lubricant with a mass ratio of 0.1% and an antioxidant with a mass ratio of 0.2% to the airflow ground powder of C3 and D3 and mix them evenly.
  • the magnetic powder is oriented and molded in a magnetic field with a magnetic field strength of 2.0T to obtain a compact.
  • the compact is vacuum packaged for cold isostatic pressing and then placed in a vacuum sintering furnace for sintering. After holding the sintering temperature at 1050°C for 2 hours, argon is passed. Air cooling, then only low temperature tempering heat treatment, tempering temperature is 450 °C, time 4h.
  • the lubricants used in all the above comparative examples and examples are conventional lubricants in the field, and the antioxidants used are all conventional antioxidants in the field.
  • Table 1 The remanence, coercivity, maximum energy product and squareness of each magnet in the comparative example and the examples.

Abstract

一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,属于稀土磁性材料制备技术领域。两种主相合金的成分分别为RE-Fe-B(RE为Nd或Pr)和(Nd,MM)-Fe-B,MM为混合稀土。先以PrHoFe合金速凝片为扩散源,在(Nd,MM)-Fe-B氢破碎的粉末颗粒表面均匀地包覆一层富PrHo的化合物,利用Pr 2Fe 14B、Ho 2Fe 14B较高的各向异性场来提高矫顽力;然后以ZrCu合金速凝片为扩散源,在经第一步扩散后的粉末颗粒表面均匀地包覆一层富Zr层,阻止烧结过程中含MM主相晶粒的长大以及抑制与双主相中另一主相之间的互扩散,从而获得高矫顽力。

Description

一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法 技术领域:
本发明提供了一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,属于稀土磁性材料制备技术领域。
背景技术:
作为备受关注的第三代稀土永磁材料,烧结钕铁硼磁体因其具有优异的综合磁性能,在电子、电力机械、航天航空、交通运输等领域得到了广泛的应用,已经成为当今最重要的基础功能材料之一。然而,随着烧结钕铁硼磁体需求量的不断增加,消耗了大量的紧缺稀土元素Pr、Nd、Dy、Tb等,这也导致了其价格的上涨。因此使用高丰度稀土特别是未经分离的混合稀土来制备磁体,对于实现成本的控制、环境的保护和资源的平衡利用具有重大意义。混合稀土(MM,Misch-metal)是稀土原矿经初步处理后得到的产物,由La、Ce、Pr、Nd等元素组成,由于混合稀土中含有大量的La、Ce,而La 2Fe 14B、Ce 2Fe 14B的内禀磁性能远低于Pr和Nd,因此采用混合稀土制备磁体时,会导致磁体性能的恶化,特别是矫顽力严重下降。
对于提高钕铁硼磁体的矫顽力,主要是通过细化晶粒、晶界调控和晶界扩散技术。目前应用最广泛的是晶界扩散技术,主要是对烧结后的磁体扩散重稀土Dy、Tb或低熔点稀土合金。但是在扩散过程中,重稀土元素或低熔点合金在块状磁体基体中的扩散深度有限,使得晶界扩散技术存在一定的缺陷。因此通过一定的技术在粉末颗粒表面引入扩散元素来实现扩散源在粉末表面形成元素的扩散对于提高矫顽力效果更好,目前报道的主要是对气流磨细粉扩散Dy、Tb等重稀土元素,包括热阻蒸发沉积法(如专利201710624106.2)、磁控溅射法(如专利201110242847.7)和旋转蒸发扩散法(如专利201710852677.1),但是这些方法都是对气流磨粉末进行扩散,由于气流磨粉末颗粒细小容易导致粉末严重氧化影响磁体性能,同时扩散Dy、Tb等重稀土元素成本太高,对于热阻蒸发沉积法和磁控溅射法对设备要求较高且不易于控制成本和实现产业化;而对于旋转蒸发扩散法由于扩散源和被扩散的气流磨细粉距离较远,同时在加热时气流磨细粉团聚更加严重,因此会导致扩散效果变差,对提高最终磁体的性能有限。
为了制备高性能的混合稀土铁硼磁体,我们采用双合金法来制备磁体,但对于混合稀土取代量较高的(MM,Nd)-Fe-B主相来说,由于高的混合稀土含量导致其性能较差,特别是由于MM替代后磁晶各向异性场明显降低而导致矫顽力低,同时在烧结过程中晶粒也更容易长大,最重要的是双主相磁体在后续的烧结和热处理过程中会发生严重的互扩散导致磁体性能严重恶化。因此本发明首先对混合稀土取代量较高的(MM,Nd)-Fe-B氢破碎粉末进行两步扩散处理,第一步扩散PrHoFe合金,在粉末颗粒表面均匀的包覆一层富PrHo的化合物,利用Pr 2Fe 14B、Ho 2Fe 14B较高的各向异性场来提高矫顽力;第二步扩散ZrCu合金,在粉末颗粒表 面均匀的包覆一层富Zr的高熔点合金,阻止烧结过程中含MM的晶粒长大以及抑制与双主相中的另一主相Pr/Nd 2Fe 14B之间的互扩散,从而获得高矫顽力;采用该方法制备的磁体性价比高,且有望实现对中高档磁体的替代。
发明内容:
本发明提供了一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,目的是通过对性能较差的(MM,Nd)-Fe-B氢破碎粉末先进行两步扩散处理再通过双合金法来提高最终磁体的磁性能,得到低成本高性能的磁体。
一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,其特征在于主相A为Pr/Nd 2Fe 14B相,主相B为(MM,Nd) 2Fe 14B相,主相B的氢破碎粗粉经两次旋转扩散处理后再与主相A氢破碎粗粉混合均匀,主相A和主相B的质量比例为1:9~5:5(两者之和为10)。
主相A的名义成分为Pr/Nd xFe 100-x-y-zM yB z(wt.%)(即代表Pr xFe 100-x-y-zM yB z或Nd xFe 100-x-y-zM yB z),主相B的名义成分为[MM aNd 1-a] xFe 100-x-y-zM yB z(wt.%),MM为混合稀土,其中各成分的质量百分比为Ce:48-58%,La:20-30%,Pr:4-6%,Nd:15-17%;M为Nb、Ti、V、Co、Cr、Mn、Ni、Zr、Ga、Ag、Ta、Al、Au、Pb、Cu、Si中的一种或者几种;x、x1、y、z满足以下关系:0≤a≤1,25≤x≤35,0.5≤y≤3,0.3≤z≤1.5。
一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,其步骤如下:
(1)根据主相A的名义成分为Pr/Nd xFe 100-x-y-zM yB z、B的名义成分[MM aNd 1-a] xFe 100-x-y-zM yB z选择金属镨、混合稀土金属MM、其他金属M、金属钕、铁、铁硼合金放入坩埚中,真空下烘料完毕后充入氩气进行熔炼,然后浇到旋转的水冷铜辊上,铜辊转速1-4m/s,分别得到厚度为180-400μm的A、B两种成分的速凝薄带;
(2)采用真空感应速凝炉将PrHoFe合金和ZrCu合金分别制备成速凝薄带,然后粗破碎为(0.5-1.5)cm*(0.5-1.5)cm小方片;
(3)将步骤(1)中得到的A、B两种成分的速凝薄带分别进行氢破碎,脱氢后得到粗破碎的粗粉;
(4)将步骤(3)中成分B的氢破碎粗粉与步骤(2)中破碎的PrHoFe速凝片分别放置于一个同轴双层圆形料筒内层空腔和外层空腔中进行第一步扩散处理,两者的质量比为2∶1至1∶2,内层空腔和外层空腔采用金属钼网隔开,放入旋转热处理炉中以一定转速(1-10r/min)和500-700℃下进行扩散热处理3-6h,得到第一步扩散粗粉;所述的同轴双层圆形料筒的外层桶壁为料筒外壁,采用实料板材制成,同轴内层为金属钼网组成的金属钼网筒,金属钼网筒与料筒外壁之间的环形空腔结构为外层空腔,金属钼网筒内的腔体为内层空腔;金属钼网的网孔直径小于5μm;
(5)将步骤(4)中经第一步扩散处理后得到的第一步扩散粗粉与步骤(2)中破碎的ZrCu 速凝片分别放置于所述的同轴双层圆形料筒内层空腔和外层空腔中进行第二步扩散处理得到第二步扩散粗粉,两者质量比为2∶1至1∶2,放入旋转热处理炉中以一定转速(1-10r/min)和800-950℃下进行扩散热处理2-5h,所述旋转热处理炉连接有手套箱,并充有惰性气体,使原料进出旋转热处理炉在手套箱进行操作;
(6)将步骤(3)中A成分氢破碎粗粉和步骤(5)中经两步扩散处理后的第二步扩散粗粉混合,使得主相A和主相B的质量比例为1:9~5:5(两者之和为10);并添加0.01~5%质量比的润滑剂和0.01~5%质量比的防氧化剂,混合均匀后进行气流磨制粉,得到1~5μm的细粉;上述所述的质量百分比为占步骤(3)中A成分氢破碎粗粉和步骤(5)中经两步扩散处理后的第二步扩散粗粉两者之和的质量百分比;
(7)将步骤(6)制备的细粉再次添加0.01~5%质量比的润滑剂和0.01~5%质量比的防氧化剂混合均匀,在惰性气体保护下,将混合均匀的细粉在磁场强度为1.5-2.0T的磁场中取向成型,得到压坯,将压坯真空封装后进行冷等静压;上述所述的质量百分比为占步骤(6)细粉的质量百分比;
(8)将步骤(7)中得到的生坯放入真空烧结炉中进行烧结,在烧结温度980-1080℃保温1-4小时后通氩气风冷;为了抑制两相之间的互扩散对双主相磁体只进行低温回火热处理,回火温度为400-600℃,时间为2-5h。
PrHoFe合金的组成及质量百分比为:Pr的质量分数为40-80%,Ho的质量分数为10-40%,Fe的质量分数为10-20%;ZrCu合金的组成及质量百分比为:Zr的质量分数为35-65%,Cu的质量分数为35-65%。
润滑剂为本领域常规的润滑剂,防氧化剂为本领域常规的防氧化剂。
本发明与现有技术相比具有的优势:
(1)本发明采用混合稀土(MM)制备烧结磁体,实现了稀土资源的综合利用,减轻了分离提纯带来的环境污染,降低了生产成本;
(2)本发明采用两步旋转扩散的方法对含混合稀土(MM)的氢破碎粗粉扩散PrHoFe合金和ZrCu合金,既能在粉末颗粒的表面均匀包覆一层富PrHo的化合物,利用Pr 2Fe 14B、Ho 2Fe 14B较高的各向异性场来提高矫顽力,又能在粉末颗粒表面均匀的包覆一层富Zr的高熔点合金,阻止烧结过程中含MM的晶粒长大以及抑制与双主相中的另一主相Pr/Nd 2Fe 14B之间的互扩散,也有利于获得高矫顽力;
(3)本发明采用经两步旋转扩散后的(MM,Nd)-Fe-B氢破碎粗粉与Pr/Nd-Fe-B氢破碎粗粉混合制备双主相磁体,解决了(MM,Nd)-Fe-B合金磁晶各向异性场低的问题,双主相磁体中两相晶粒尺寸大小不均匀的问题,以及两种主相晶粒在后续烧结和热处理过程中的互扩散问 题,最终制备的双主相磁体磁性能得到了明显的提高;
(4)本发明采用旋转扩散的方法对含混合稀土(MM)的氢破碎粗粉扩散PrHoFe合金和ZrCu合金,可以实现大批量生产提高生产效率,并且操作简单,极易实现工业化生产,而PrHoFe合金速凝片和ZrCu合金速凝片也可重复使用,大幅降低生产成本。
附图说明:
图1为本发明中扩散所使用的双层圆形料筒示意图;
图中:1-料筒外壁,2-内层金属钼网,3-(MM,Nd)-Fe-B氢破碎粗粉,4-扩散所用的PrHoFe或ZrCu速凝片;
具体实施方式:
下面结合实施例和对比例对本发明作进一步说明,但本发明并不限于以下实施例。
对比例1:
根据主相A的名义成分Pr 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%),主相B的名义成分(Nd 0.5MM 0.5) 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%)(MM中La:27.49wt.%、Ce:53.93wt.%、Pr:1.86wt.%、Nd:16.72wt.%),采用l.25m/s的铜辊转速,制备得到厚度为210μm的A、B两种成分速凝薄带。
将A、B两种成分的速凝薄带分别进行氢破碎,脱氢后得到粗破碎磁粉,然后分别加入质量比为0.05%的润滑剂和0.1%的防氧化剂充分混合均匀后在惰性气体保护气氛下,进行气流磨,得到A、B两种成分的气流磨细粉,平均粒度X 50为2.10μm。
在手套箱中对A、B两种成分的气流磨细粉再次分别添加质量比为0.1%的润滑剂和0.2%的防氧化剂后充分混合均匀,在惰性气体保护气氛下,将A、B两种成分的磁粉在磁场强度为2.0T的磁场中取向成型,得到压坯,将压坯真空封装进行冷等静压后放入真空烧结炉中进行烧结,分别在烧结温度1060℃和1050℃保温2小时后通氩气风冷,然后进行一级回火和二级回火两步回火热处理,一级回火温度为900℃,时间3h;二级回火温度为450℃,时间4h。
将制备好的A、B两种成分的磁体放入BH测试仪中测试磁性能,结果如下:
磁体A:Br=13.69kG,Hcj=20.18kOe,(BH)max=45.72MGOe,Hk/Hcj=97.7%
磁体B:Br=12.29kG,Hcj=9.02kOe,(BH)max=36.86MGOe,Hk/Hcj=92.0%
对比例2:
根据主相A的名义成分Pr 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%),主相B的名义成分(Nd 0.5MM 0.5) 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%)(MM中La:27.49wt.%、Ce:53.93wt.%、Pr:1.86wt.%、Nd:16.72wt.%),采用l.25m/s的铜辊转速,制备得到厚度为210μm的A、B两种成分速凝薄带。
将A、B两种成分的速凝薄带进行氢破碎,脱氢后得到粗破碎磁粉。
将A、B两种成分氢破碎粗粉按质量比1:9和3:7分别混合,并加入质量比为0.05%的润滑剂和0.1%的防氧化剂充分混合均匀后在惰性气体保护气氛下进行气流磨,分别对应得到C、D两种成分的气流磨细粉,平均粒度X 50为2.10μm。
在手套箱中对C、D两种成分的气流磨细粉再次分别添加质量比为0.1%的润滑剂和0.2%的防氧化剂充分混合均匀,在惰性气体保护气氛下,将C、D两种成分的磁粉在磁场强度为2.0T的磁场中取向成型,得到生坯,将生坯真空封装进行冷等静压后放入真空烧结炉中进行烧结,在烧结温度1050℃保温2小时后通氩气风冷,然后只进行低温回火热处理,回火温度为450℃,时间4h。
将制备好的C、D两种成分的双主相磁体放入BH测试仪中测试磁性能,结果如下:
双主相磁体C:Br=12.53kG,Hcj=9.53kOe,(BH)max=38.11MGOe,Hk/Hcj=93.4%
双主相磁体D:Br=12.68kG,Hcj=12.05kOe,(BH)max=39.50MGOe,Hk/Hcj=94.2%
实施例1:
根据主相A的名义成分Pr 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%),主相B的名义成分(Nd 0.5MM 0.5) 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%)(MM中La:27.49wt.%、Ce:53.93wt.%、Pr:1.86wt.%、Nd:16.72wt.%),采用l.25m/s的铜辊转速,制备得到厚度为210μm的A、B两种成分速凝薄带。
采用真空感应速凝炉分别制备名义成分为Pr 65Ho 20Fe 15和Zr 55Cu 45的速凝薄带,并粗破碎为1cm*1cm左右的小方片。
将A、B两种成分的速凝片进行氢破碎,脱氢后得到粗破碎磁粉。
将成分B的氢破碎粗粉与破碎的Pr 65Ho 20Fe 15速凝片以1∶1的质量比分别放置于一个双层圆形料筒内外层,料筒内外层用直径小于5μm的金属钼网隔开,放入旋转热处理炉中以5r/min的转速在630℃保温4h进行第一步扩散热处理;然后将第一步扩散热处理后的氢破碎粗粉与破碎的Zr 55Cu 45速凝片再次以1∶1的质量比放入旋转热处理炉中以5r/min的转速在885℃保温3h进行第二步扩散热处理,上述热处理过程先将热处理炉抽真空至5×10 -3Pa以下再充氩气至65kPa,在氩气保护气氛中进行,所述旋转热处理炉连接有手套箱,并充有惰性气体,使原料进出旋转热处理炉在手套箱中进行。
将成分A的氢破碎粗粉与扩散后成分B的氢破碎粗粉分别按质量比1:9和3:7混合,并分别加入质量比为0.05%的润滑剂和0.1%的防氧化剂充分混合均匀后在惰性气体保护气氛下,进行气流磨,得到C1、D1两种成分的气流磨细粉,平均粒度X 50为2.10μm。
在手套箱中对C1、D1两种成分的气流磨细粉再次分别添加质量比为0.1%的润滑剂和 0.2%的防氧化剂充分混合均匀,在惰性气体保护气氛下,将C1、D1两种成分的磁粉在磁场强度为2.0T的磁场中取向成型,得到压坯,将压坯真空封装进行冷等静压后放入真空烧结炉中进行烧结,在烧结温度1050℃保温2小时后通氩气风冷,然后只进行低温回火热处理,回火温度为450℃,时间4h。
将制备好的C1、D1两种成分的双主相磁体放入BH测试仪中测试磁性能,结果如下:
双主相磁体C1:Br=12.65kG,Hcj=14.87kOe,(BH)max=39.76MGOe,Hk/Hcj=96.7%
双主相磁体D1:Br=12.92kG,Hcj=16.95kOe,(BH)max=41.31MGOe,Hk/Hcj=96.5%
实施例2:
根据主相A的名义成分Pr 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%),主相B的名义成分(Nd 0.5MM 0.5) 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%)(MM中La:27.49wt.%、Ce:53.93wt.%、Pr:1.86wt.%、Nd:16.72wt.%),采用l.25m/s的铜辊转速,制备得到厚度为210μm的A、B两种成分速凝薄带。
采用真空感应速凝炉分别制备名义成分为Pr 65Ho 20Fe 15和Zr 55Cu 45的速凝薄带,并粗破碎为1cm*1cm左右的小方片。
将A、B两种成分的速凝片进行氢破碎,脱氢后得到粗破碎磁粉。
将成分B的氢破碎粗粉与破碎的Pr 65Ho 20Fe 15速凝片以1∶1的质量比分别放置于一个双层圆形料筒内外层,料筒内外层用直径小于5μm的金属钼网隔开,放入旋转热处理炉中以5r/min的转速在630℃保温4h进行第一步扩散热处理;然后将第一步扩散热处理后的氢破碎粗粉与破碎的Zr 55Cu 45速凝片再次以1∶1的质量比放入旋转热处理炉中以5r/min的转速在915℃保温3h进行第二步扩散热处理,上述热处理过程先将热处理炉抽真空至5×10 -3Pa以下再充氩气至65kPa,在氩气保护气氛中进行,所述旋转热处理炉连接有手套箱,并充有惰性气体,使原料进出旋转热处理炉在手套箱中进行。
将成分A的氢破碎粗粉与扩散后成分B的氢破碎粗粉按质量比1:9和3:7混合,并加入质量比为0.05%的润滑剂和0.1%的防氧化剂充分混合均匀后在惰性气体保护气氛下,进行气流磨,得到C2、D2两种成分的气流磨细粉,平均粒度X 50为2.10μm。
在手套箱中对C2、D2两种成分的气流磨细粉再次添加质量比为0.1%的润滑剂和0.2%的防氧化剂充分混合均匀,在惰性气体保护气氛下,将C2、D2两种成分的磁粉在磁场强度为2.0T的磁场中取向成型,得到压坯,将压坯真空封装进行冷等静压后放入真空烧结炉中进行烧结,在烧结温度1050℃保温2小时后通氩气风冷,然后只进行低温回火热处理,回火温度为450℃,时间4h。
将制备好的C2、D2两种成分的双主相磁体放入BH测试仪中测试磁性能,结果如下:
双主相磁体C2:Br=12.71kG,Hcj=14.89kOe,(BH)max=39.92MGOe,Hk/Hcj=96.3%
双主相磁体D2:Br=12.94kG,Hcj=17.06kOe,(BH)max=41.57MGOe,Hk/Hcj=96.4%
实施例3:
根据主相A的名义成分Pr 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%),主相B的名义成分(Nd 0.5MM 0.5) 31.5Fe balAl 0.4Cu 0.2Co 1Ga 0.2Zr 0.22B 0.98(wt.%)(MM中La:27.49wt.%、Ce:53.93wt.%、Pr:1.86wt.%、Nd:16.72wt.%),采用l.25m/s的铜辊转速,制备得到厚度为210μm的A、B两种成分速凝薄带。
采用真空感应速凝炉分别制备名义成分为Pr 65Ho 20Fe 15和Zr 55Cu 45的速凝薄带,并粗破碎为1cm*1cm左右的小方片。
将A、B两种成分的速凝片进行氢破碎,脱氢后得到粗破碎磁粉。
将成分B的氢破碎粗粉与破碎的Pr 65Ho 20Fe 15速凝片以1∶1的质量比分别放置于一个双层圆形料筒内外层,料筒内外层用直径小于5μm的金属钼网隔开,放入旋转热处理炉中以5r/min的转速在630℃保温4h进行第一步扩散热处理;然后将第一步扩散热处理后的氢破碎粗粉与破碎的Zr 55Cu 45速凝片再次以1∶1的质量比放入旋转热处理炉中以10r/min的转速在915℃保温3h进行第二步扩散热处理,上述热处理过程先将热处理炉抽真空至5×10 -3Pa以下再充氩气至65kPa,在氩气保护气氛中进行,所述旋转热处理炉连接有手套箱,并充有惰性气体,使原料进出旋转热处理炉在手套箱中进行。
将成分A的氢破碎粗粉与扩散后成分B的氢破碎粗粉按质量比1:9和3:7混合,并加入质量比为0.05%的润滑剂和0.1%的防氧化剂充分混合均匀后在惰性气体保护气氛下,进行气流磨,得到C3、D3两种成分的气流磨细粉,平均粒度X 50为2.10μm。
在手套箱中对C3、D3两种成分的气流磨细粉再次添加质量比为0.1%的润滑剂和0.2%的防氧化剂充分混合均匀,在惰性气体保护气氛下,将C3、D3两种成分的磁粉在磁场强度为2.0T的磁场中取向成型,得到压坯,将压坯真空封装进行冷等静压后放入真空烧结炉中进行烧结,在烧结温度1050℃保温2小时后通氩气风冷,然后只进行低温回火热处理,回火温度为450℃,时间4h。
将制备好的C3、D3两种成分的双主相磁体放入BH测试仪中测试磁性能,结果如下:
双主相磁体C3:Br=12.76kG,Hcj=15.04kOe,(BH)max=40.13MGOe,Hk/Hcj=97.3%
双主相磁体D3:Br=13.03kG,Hcj=17.31kOe,(BH)max=42.05MGOe,Hk/Hcj=97.8%
上述所有的对比例和实施例中所用润滑剂均为本领域常规的润滑剂,所用防氧化剂均为本领域常规的防氧化剂。
表1 对比例和实施例中各磁体的剩磁、矫顽力、最大磁能积和方形度。
Figure PCTCN2020103272-appb-000001

Claims (5)

  1. 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,其特征在于,主相A为Pr/Nd 2Fe 14B相,主相B为(MM,Nd) 2Fe 14B相,主相B的氢破碎粗粉经两次旋转扩散处理后再与主相A氢破碎粗粉混合均匀,主相A和主相B的质量比例为1:9~5:5,两者之和为10。
  2. 按照权利要求1所述的一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,其特征在于,主相A的名义成分为Pr/Nd xFe 100-x-y-zM yB z(wt.%),主相B的名义成分为[MM aNd 1-a] xFe 100-x-y-zM yB z(wt.%),MM为混合稀土,其中各成分的质量百分比为Ce:48-58%,La:20-30%,Pr:4-6%,Nd:15-17%;M为Nb、Ti、V、Co、Cr、Mn、Ni、Zr、Ga、Ag、Ta、Al、Au、Pb、Cu、Si中的一种或者几种;x、x1、y、z满足以下关系:0≤a≤1,25≤x≤35,0.5≤y≤3,0.3≤z≤1.5。
  3. 按照权利要求1或2所述的一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,其特征在于,具体包括以下步骤:
    (1)根据主相A的名义成分为Pr/Nd xFe 100-x-y-zM yB z、B的名义成分[MM aNd 1-a] xFe 100-x-y-zM yB z选择金属镨、混合稀土金属MM、其他金属M、金属钕、铁、铁硼合金放入坩埚中,真空下烘料完毕后充入氩气进行熔炼,然后浇到旋转的水冷铜辊上,铜辊转速1-4m/s,分别得到厚度为180-400μm的A、B两种成分的速凝薄带;
    (2)采用真空感应速凝炉将PrHoFe合金和ZrCu合金分别制备成速凝薄带,然后粗破碎为(0.5-1.5)cm*(0.5-1.5)cm小方片;
    (3)将步骤(1)中得到的A、B两种成分的速凝薄带分别进行氢破碎,脱氢后得到粗破碎的粗粉;
    (4)将步骤(3)中成分B的氢破碎粗粉与步骤(2)中破碎的PrHoFe速凝片分别放置于一个同轴双层圆形料筒内层空腔和外层空腔中进行第一步扩散处理,两者的质量比为2∶1至1∶2,内层空腔和外层空腔采用金属钼网隔开,放入旋转热处理炉中以一定转速(1-10r/min)和500-700℃下进行扩散热处理3-6h,得到第一步扩散粗粉;所述的同轴双层圆形料筒的外层桶壁为料筒外壁,采用实料板材制成,同轴内层为金属钼网组成的金属钼网筒,金属钼网筒与料筒外壁之间的环形空腔结构为外层空腔,金属钼网筒内的腔体为内层空腔;金属钼网的网孔直径小于5μm;
    (5)将步骤(4)中经第一步扩散处理后得到的第一步扩散粗粉与步骤(2)中破碎的ZrCu速凝片分别放置于所述的同轴双层圆形料筒内层空腔和外层空腔中进行第二步扩散处理得到第二步扩散粗粉,两者的质量比为2∶1至1∶2,放入旋转热处理炉中以一定转速(1-10r/min)和800-950℃下进行扩散热处理2-5h,所述旋转热处理炉连接有手套箱,并充有惰性气体,使原料进出旋转热处理炉在手套箱进行操作;
    (6)将步骤(3)中A成分氢破碎粗粉和步骤(5)中经两步扩散处理后的第二步扩散粗粉混合,使得主相A和主相B的质量比例为1:9~5:5;并添加0.01~5%质量比的润滑剂和0.01~5%质量比的防氧化剂,混合均匀后进行气流磨制粉,得到1~5μm的细粉;上述所述的质量百分比为占步骤(3)中A成分氢破碎粗粉和步骤(5)中经两步扩散处理后的第二步扩散粗粉两者之和的质量百分比;
    (7)将步骤(6)制备的细粉再次添加0.01~5%质量比的润滑剂和0.01~5%质量比的防氧化剂混合均匀,在惰性气体保护下,将混合均匀的细粉在磁场强度为1.5-2.0T的磁场中取向成型,得到压坯,将压坯真空封装后进行冷等静压;上述所述的质量百分比为占步骤(6)细粉的质量百分比;
    (8)将步骤(7)中得到的生坯放入真空烧结炉中进行烧结,在烧结温度980-1080℃保温1-4小时后通氩气风冷;为了抑制两相之间的互扩散对双主相磁体只进行低温回火热处理,回火温度为400-600℃,时间为2-5h。
  4. 按照权利要求3所述的一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,其特征在于,PrHoFe合金的组成及质量百分比为:Pr的质量分数为40-80%,Ho的质量分数为10-40%,Fe的质量分数为10-20%。
  5. 按照权利要求3所述的一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法,其特征在于,ZrCu合金的组成及质量百分比为:Zr的质量分数为35-65%,Cu的质量分数为35-65%。
PCT/CN2020/103272 2019-11-13 2020-07-21 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法 WO2021093363A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/520,452 US11742120B2 (en) 2019-11-13 2021-11-05 Two-step diffusion method for preparing high-performance dual-main-phase sintered mischmetal-iron-boron magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911111736.5 2019-11-13
CN201911111736.5A CN110853854B (zh) 2019-11-13 2019-11-13 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/520,452 Continuation US11742120B2 (en) 2019-11-13 2021-11-05 Two-step diffusion method for preparing high-performance dual-main-phase sintered mischmetal-iron-boron magnet

Publications (1)

Publication Number Publication Date
WO2021093363A1 true WO2021093363A1 (zh) 2021-05-20

Family

ID=69601541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103272 WO2021093363A1 (zh) 2019-11-13 2020-07-21 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法

Country Status (3)

Country Link
US (1) US11742120B2 (zh)
CN (1) CN110853854B (zh)
WO (1) WO2021093363A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853854B (zh) 2019-11-13 2021-03-16 北京工业大学 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法
EP4066963A1 (en) 2021-03-29 2022-10-05 Jozef Stefan Institute Method of forming a starting material for producing rare earth permanent magnets from recycled materials and corresponding starting material
CN113871123A (zh) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 低成本稀土磁体及制造方法
CN114512326B (zh) * 2022-03-10 2023-09-19 中国计量大学 一种高性能Pr基磁体的制备方法
CN114899004A (zh) * 2022-06-01 2022-08-12 宁波铄腾新材料有限公司 一种制备高丰度鈰磁体n38sh的多相耦合方法及其设备
CN115007857B (zh) * 2022-06-09 2024-04-30 宁波中杭磁材有限公司 一种用于混合励磁同步电机的磁钢及其制备方法
CN117373767A (zh) * 2022-06-30 2024-01-09 浙江东阳东磁稀土有限公司 改性烧结钕铁硼永磁材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130038159A1 (en) * 2011-08-09 2013-02-14 Jinfang Liu Methods for sequentially laminating rare earth permanent magnets with suflide-based dielectric layer
CN109550945A (zh) * 2018-12-28 2019-04-02 内蒙古科技大学 一种利用白云鄂博共伴生原矿混合稀土制备的永磁材料及其制备方法
CN110047636A (zh) * 2019-04-17 2019-07-23 南京理工大学 一种高矫顽力富La/Ce烧结磁体的制备方法
CN110853854A (zh) * 2019-11-13 2020-02-28 北京工业大学 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY181243A (en) * 2006-03-03 2020-12-21 Hitachi Metals Ltd R-fe-b rare earth sintered magnet
CN101652820B (zh) * 2007-09-04 2012-06-27 日立金属株式会社 R-Fe-B系各向异性烧结磁铁
JP4888495B2 (ja) * 2009-01-20 2012-02-29 株式会社デンソー リニアソレノイド
WO2011004867A1 (ja) * 2009-07-10 2011-01-13 日立金属株式会社 R-Fe-B系希土類焼結磁石の製造方法および蒸気制御部材
EP2511920B1 (en) * 2009-12-09 2016-04-27 Aichi Steel Corporation Process for production of rare earth anisotropic magnet
US9478332B2 (en) * 2012-01-19 2016-10-25 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
CN104715876B (zh) * 2013-12-11 2019-05-10 北京中科三环高技术股份有限公司 一种混合稀土烧结永磁体及其制备方法
JP6733398B2 (ja) * 2016-07-27 2020-07-29 日立金属株式会社 R−t−b系焼結磁石の製造方法
CN107731437B (zh) * 2017-10-30 2019-10-15 北京工业大学 一种降低烧结钕铁硼薄片磁体不可逆损失的方法
KR102373412B1 (ko) * 2017-12-01 2022-03-14 현대자동차주식회사 희토류 영구자석 제조방법
CN114038641A (zh) * 2021-11-17 2022-02-11 山西御成新材料科技有限公司 一种含银的混合稀土铁硼烧结永磁体及其制备方法
CN114464443B (zh) * 2022-01-17 2024-02-06 北京工业大学 一种同时提高多主相LaCe基烧结永磁材料矫顽力和耐腐蚀性的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130038159A1 (en) * 2011-08-09 2013-02-14 Jinfang Liu Methods for sequentially laminating rare earth permanent magnets with suflide-based dielectric layer
CN109550945A (zh) * 2018-12-28 2019-04-02 内蒙古科技大学 一种利用白云鄂博共伴生原矿混合稀土制备的永磁材料及其制备方法
CN110047636A (zh) * 2019-04-17 2019-07-23 南京理工大学 一种高矫顽力富La/Ce烧结磁体的制备方法
CN110853854A (zh) * 2019-11-13 2020-02-28 北京工业大学 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法

Also Published As

Publication number Publication date
US11742120B2 (en) 2023-08-29
CN110853854A (zh) 2020-02-28
US20220059262A1 (en) 2022-02-24
CN110853854B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2021093363A1 (zh) 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法
EP3182423B1 (en) Neodymium iron boron magnet and preparation method thereof
JP7220300B2 (ja) 希土類永久磁石材料、原料組成物、製造方法、応用、モーター
WO2015078362A1 (zh) 一种低b的稀土磁铁
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
JP2017128793A (ja) 重希土類元素を含まない焼結Nd−Fe−B磁性体の製造方法
JP7101448B2 (ja) 焼結磁性体の製造方法
CN111145973B (zh) 一种含有晶界相的钐钴永磁体及其制备方法
JP7253071B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
WO2016086397A1 (zh) 镝氢化合物添加提高烧结钕铁硼磁体矫顽力的方法及产品
US20220044853A1 (en) NdFeB alloy powder for forming high-coercivity sintered NdFeB magnets and use thereof
CN112863848B (zh) 高矫顽力烧结钕铁硼磁体的制备方法
TWI738592B (zh) R-t-b系燒結磁體及其製備方法
CN108389711A (zh) 一种具有高矫顽力的烧结钕铁硼磁体的制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
WO2021223436A1 (zh) 一种高性能钕铁硼永磁材料及其制备方法
WO2019029000A1 (zh) 一种耐高温钕铁硼磁体及其制备方法
WO2023116234A1 (zh) 一种固液相分离扩散工艺制备高性能钕铁硼磁体的方法
JP2022031606A (ja) Nd-Fe-B系焼結磁性体の製造方法
WO2021258280A1 (zh) 一种无重稀土高性能钕铁硼永磁材料及其制备方法
WO2023124688A1 (zh) 钕铁硼磁体及其制备方法和应用
TW202127476A (zh) R-t-b系永磁材料、原料組合物、製備方法、應用
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法
CN114464443B (zh) 一种同时提高多主相LaCe基烧结永磁材料矫顽力和耐腐蚀性的方法
US20220102034A1 (en) Method for preparation of a sintered type NdFeB permanent magnet with an adjusted grain boundary

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887558

Country of ref document: EP

Kind code of ref document: A1