CN114512326B - 一种高性能Pr基磁体的制备方法 - Google Patents
一种高性能Pr基磁体的制备方法 Download PDFInfo
- Publication number
- CN114512326B CN114512326B CN202210228458.7A CN202210228458A CN114512326B CN 114512326 B CN114512326 B CN 114512326B CN 202210228458 A CN202210228458 A CN 202210228458A CN 114512326 B CN114512326 B CN 114512326B
- Authority
- CN
- China
- Prior art keywords
- powder
- alloy
- hot pressing
- thermal deformation
- equal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0551—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/0555—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
- H01F1/0556—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/058—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0293—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种高性能Pr基磁体的制备方法,属于磁性材料技术领域。该制备方法包括:采用熔体快淬法制备Pr‑Fe基合金薄带和PrCu低熔点合金薄带,并在氢气正压气氛下的高能球磨过程中加入一定比例的Fe3C粉末、纯Pr粉和正庚烷,实现Pr‑Fe基合金的歧化反应,并获得颗粒尺寸小于300 nm的混合粉末;将纳米混合粉末进行强磁场辅助下的热压和热变形技术制得压坯,随后将压坯进行激光加热技术下的热处理,实现Pr2Fe14C硬磁相的组装结合形成和扩散的均匀化,获得高性能的Pr基磁体。本发明方法工艺简单,成型容易,降低了成本,有利于高性能磁体在更多永磁器件中的应用。
Description
技术领域
本发明涉及磁性材料技术领域,尤其涉及一种高性能Pr基磁体的制备方法。
背景技术
作为一种重要的功能材料,磁性材料在现代社会里扮演着极为重要的角色。特别是永磁材料的生产和开发应用程度是现代国家经济发展的标志之一。Nd-Fe-B永磁材料具有较高的室温各向异性场(H A=7T) 和高的饱和磁极化强度(J s=1.6 T),最大磁能积的理论值高达512 kJ/m3,被称为“磁王”,受到人们的普遍重视。另外,与 Nd2Fe14B磁体具有相同的晶体结构的RE2Fe14C(RE=Pr、Nd)也具有很好的内禀磁性。虽然RE2Fe14C的饱和磁化强度和居里温度比其硼化物略低,但是RE2Fe14C具有更高的磁晶各向异性,因此可以获得更大的矫顽力,具有代替包含重稀土Tb和Dy的Nd2Fe14B成为高矫顽力永磁体的潜力。
为此,本发明采用Pr2Fe14C相自组装合成生长和低熔点稀土元素相扩散制备高性能Pr2Fe14C永磁体的方式,在制备过程中,通过引入氢气正压气氛和正庚烷作为歧化辅助介质,实现Pr-Fe基合金的歧化反应,并在高能球磨的过程中,加入了一定粒度范围的Fe3C粉末和纯Pr粉,实现晶粒的细化;并在强磁场辅助下的热压和热变形及后续的激光下的热处理过程中,实现硬磁相的自组装合成和低熔点合金中稀土原子扩散的均匀化,从而显著提升Pr2Fe14C永磁体的矫顽力和磁能积。
发明内容
针对现有技术中存在的问题,本发明目的在于提供一种高性能Pr基磁体的制备方法。
本发明的高性能Pr基磁体的制备方法,包括如下步骤:
(1)采用熔体快淬法制备Pr-Fe基合金薄带,铜辊转速为5~40 m/s;其中,所述的Pr-Fe基合金为为按原子百分比的PraFebTM100-a-b,式中5≤a≤15,75≤b≤85,其余TM,TM为B,Ti,Co,Zr中的一种或几种;
(2)采用熔体快淬法制备按原子百分比的PrxCu100-x低熔点合金薄带,式中5≤x≤30,铜辊转速为5~25 m/s;
(3)将粒度范围为300~800目的Fe3C粉末和粒度范围为500~900目的纯Pr粉末与步骤(1)和步骤(2)获得的Pr-Fe基合金和PrCu低熔点合金按一定质量比例混合后放到高能球磨罐中,并加入10~30 mL的正庚烷作为歧化辅助介质,在氢气正压气氛下高能球磨1~15 h,实现Pr-Fe基合金的歧化反应,生成PrH2±x、Fe7C3和α-Fe相,最终获得颗粒尺寸小于300 nm并由Fe3C粉末、Pr粉末、Pr-Fe基粉体合金和PrCu低熔点粉体合金共同组成的混合粉末;
(4)将步骤(3)获得的纳米混合粉体进行强磁场辅助下的热压和热变形技术制得压坯;其中,所述强磁场辅助下的热压和热变形技术的磁场强度为3~7 T;热压温度为400~800 ℃,热压压力为150~500 MPa,热压时间为1~9 min;热变形温度为500~800 ℃,热变形压力为200~700 MPa,热变形时间为1~3 min,热变形量为65~85 %;
(5)将步骤(4)获得的压坯进行激光加热技术下的热处理,实现Pr2Fe14C硬磁相的组装结合形成和扩散的均匀化;所述激光加热技术的激光脉冲功率为1000~1500 W,光斑直接为1~5 mm,温度为600~850 ℃,激光脉冲持续时间为1~5 min。
进一步的,步骤(3)中所述的Pr-Fe基合金、PrCu低熔点合金、Fe3C粉末和Pr粉的质量比为1:0~0.1:0~0.1:0~0.1;所述的氢气正压气氛的正压强度为0.1~3 MPa。
与现有的技术相比,本发明具有如下优点和有益效果:本发明通过将Pr-Fe基合金、PrCu低熔点合金、Fe3C粉末和纯Pr粉按一定的比例在氢气正压气氛和正庚烷作为歧化辅助介质下进行高能球磨制备混合粉体,实现Pr-Fe基合金的歧化反应及各个粉末粒度的细化;并利用强磁场辅助下的热压和热变形及后续的激光下的热处理过程中,实现硬磁Pr2Fe14C相的自组装合成和低熔点合金中稀土原子向硬磁相Pr2Fe14C相扩散的均匀化,从而显著提升Pr2Fe14C永磁体的矫顽力和磁能积。
具体实施方式
下面将结合实施例对本发明做进一步的详细说明,但本发明并不仅仅局限于以下实施例。
实施例1
(1)采用熔体快淬法制备按原子百分比的Pr5Fe85B10合金薄带,铜辊转速为5 m/s;
(2)采用熔体快淬法制备按原子百分比的Pr5Cu95低熔点合金薄带,铜辊转速为5m/s;
(3)将Pr5Fe85B10合金、Pr5Cu95低熔点合金、粒度为300目的Fe3C粉末和粒度为900目的纯Pr粉末按质量比为1:0.03:0.09:0.03的比例混合后放到高能球磨罐中,并加入10 mL的正庚烷作为歧化辅助介质,在正压强度为0.1 MPa的氢气正压气氛下高能球磨1 h,实现Pr-Fe基合金的歧化反应,生成PrH2±x、Fe7C3和α-Fe相,最终获得颗粒尺寸小于280 nm并由Fe3C粉末、Pr粉末、Pr-Fe基粉体合金和PrCu低熔点粉体合金共同组成的混合粉末;
(4)将步骤(3)获得的纳米混合粉体进行强磁场辅助下的热压和热变形技术制得压坯;其中,所述强磁场辅助下的热压和热变形技术的磁场强度为3 T;热压温度为400 ℃,热压压力为150 MPa,热压时间为9 min;热变形温度为800 ℃,热变形压力为200 MPa,热变形时间为1 min,热变形量为85 %;
(5)将步骤(4)获得的压坯进行激光加热技术下的热处理,实现Pr2Fe14C硬磁相的组装结合形成和扩散的均匀化;所述激光加热技术的激光脉冲功率为1000 W,光斑直接为5mm,温度为850 ℃,激光脉冲持续时间为1 min,最终获得高性能Pr基磁体。
采用本发明制备的Pr基磁体经磁性能测试,剩磁为9.75 kG,矫顽力为17.9 kOe,磁能积为14.5 MGOe。
实施例2
(1)采用熔体快淬法制备按原子百分比的Pr10Fe80Ti10合金薄带,铜辊转速为25 m/s;
(2)采用熔体快淬法制备按原子百分比的Pr15Cu85低熔点合金薄带,铜辊转速为15m/s;
(3)将Pr10Fe80Ti10合金、Pr15Cu85低熔点合金、粒度为500目的Fe3C粉末和粒度为700目的纯Pr粉末按质量比为1:0.05:0.07:0.05的比例混合后放到高能球磨罐中,并加入20mL的正庚烷作为歧化辅助介质,在正压强度为2 MPa的氢气正压气氛下高能球磨7 h,实现Pr-Fe基合金的歧化反应,生成PrH2±x、Fe7C3和α-Fe相,最终获得颗粒尺寸小于200 nm并由Fe3C粉末、Pr粉末、Pr-Fe基粉体合金和PrCu低熔点粉体合金共同组成的混合粉末;
(4)将步骤(3)获得的纳米混合粉体进行强磁场辅助下的热压和热变形技术制得压坯;其中,所述强磁场辅助下的热压和热变形技术的磁场强度为5 T;热压温度为600 ℃,热压压力为300 MPa,热压时间为5 min;热变形温度为600 ℃,热变形压力为500 MPa,热变形时间为2 min,热变形量为75 %;
(5)将步骤(4)获得的压坯进行激光加热技术下的热处理,实现Pr2Fe14C硬磁相的组装结合形成和扩散的均匀化;所述激光加热技术的激光脉冲功率为1200 W,光斑直接为3mm,温度为750 ℃,激光脉冲持续时间为3 min,最终获得高性能Pr基磁体。
采用本发明制备的Pr基磁体经磁性能测试,剩磁为9.98 kG,矫顽力为19.7 kOe,磁能积为15.7 MGOe。
实施例3
(1)采用熔体快淬法制备按原子百分比的Pr15Fe82Co1.5Zr1.5合金薄带,铜辊转速为40 m/s;
(2)采用熔体快淬法制备按原子百分比的Pr30Cu70低熔点合金薄带,铜辊转速为25m/s;
(3)将Pr15Fe82Co1.5Zr1.5合金、Pr30Cu70低熔点合金、粒度为800目的Fe3C粉末和粒度为500目的纯Pr粉末按质量比为1:0.09:0.03:0.09的比例混合后放到高能球磨罐中,并加入30 mL的正庚烷作为歧化辅助介质,在正压强度为3 MPa的氢气正压气氛下高能球磨15h,实现Pr-Fe基合金的歧化反应,生成PrH2±x、Fe7C3和α-Fe相,最终获得颗粒尺寸小于150nm并由Fe3C粉末、Pr粉末、Pr-Fe基粉体合金和PrCu低熔点粉体合金共同组成的混合粉末;
(4)将步骤(3)获得的纳米混合粉体进行强磁场辅助下的热压和热变形技术制得压坯;其中,所述强磁场辅助下的热压和热变形技术的磁场强度为7 T;热压温度为800 ℃,热压压力为450 MPa,热压时间为3 min;热变形温度为500 ℃,热变形压力为700 MPa,热变形时间为3 min,热变形量为65 %;
(5)将步骤(4)获得的压坯进行激光加热技术下的热处理,实现Pr2Fe14C硬磁相的组装结合形成和扩散的均匀化;所述激光加热技术的激光脉冲功率为1500 W,光斑直接为1mm,温度为600 ℃,激光脉冲持续时间为5 min,最终获得高性能Pr基磁体。
采用本发明制备的Pr基磁体经磁性能测试,剩磁为10.99 kG,矫顽力为21.5 kOe,磁能积为16.6 MGOe。
Claims (2)
1.一种高性能Pr基磁体的制备方法,其特征在于包括如下步骤:
(1)采用熔体快淬法制备Pr-Fe基合金薄带,铜辊转速为5~40 m/s;其中,所述的Pr-Fe基合金为为按原子百分比的PraFebTM100-a-b,式中5≤a≤15,75≤b≤85,其余TM,TM为B,Ti,Co,Zr中的一种或几种;
(2)采用熔体快淬法制备按原子百分比的PrxCu100-x低熔点合金薄带,式中5≤x≤30,铜辊转速为5~25 m/s;
(3)将粒度范围为300~800目的Fe3C粉末和粒度范围为500~900目的纯Pr粉末与步骤(1)和步骤(2)获得的Pr-Fe基合金和PrCu低熔点合金按一定质量比例混合后放到高能球磨罐中,并加入10~30 mL的正庚烷作为歧化辅助介质,在氢气正压气氛下高能球磨1~15 h,实现Pr-Fe基合金的歧化反应,生成PrH2±x、Fe7C3和α-Fe相,最终获得颗粒尺寸小于300 nm并由Fe3C粉末、Pr粉末、Pr-Fe基粉体合金和PrCu低熔点粉体合金共同组成的混合粉末;
(4)将步骤(3)获得的纳米混合粉体进行强磁场辅助下的热压和热变形技术制得压坯;其中,所述强磁场辅助下的热压和热变形技术的磁场强度为3~7 T;热压温度为400~800℃,热压压力为150~500 MPa,热压时间为1~9 min;热变形温度为500~800 ℃,热变形压力为200~700 MPa,热变形时间为1~3 min,热变形量为65~85 %;
(5)将步骤(4)获得的压坯进行激光加热技术下的热处理,实现Pr2Fe14C硬磁相的组装结合形成和扩散的均匀化;所述激光加热技术的激光脉冲功率为1000~1500 W,光斑直接为1~5 mm,温度为600~850 ℃,激光脉冲持续时间为1~5 min。
2.根据权利要求1 所述的一种高性能Pr基磁体的制备方法,其特征在于:步骤(3)中所述的Pr-Fe基合金、PrCu低熔点合金、Fe3C粉末和Pr粉的质量比为1:0~0.1:0~0.1:0~0.1;所述的氢气正压气氛的正压强度为0.1~3 MPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210228458.7A CN114512326B (zh) | 2022-03-10 | 2022-03-10 | 一种高性能Pr基磁体的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210228458.7A CN114512326B (zh) | 2022-03-10 | 2022-03-10 | 一种高性能Pr基磁体的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114512326A CN114512326A (zh) | 2022-05-17 |
CN114512326B true CN114512326B (zh) | 2023-09-19 |
Family
ID=81553038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210228458.7A Active CN114512326B (zh) | 2022-03-10 | 2022-03-10 | 一种高性能Pr基磁体的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114512326B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016201944A1 (zh) * | 2015-06-16 | 2016-12-22 | 北京科技大学 | 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法 |
CN111564305A (zh) * | 2020-06-11 | 2020-08-21 | 泮敏翔 | 一种高性能复合磁体的制备方法 |
CN113421763A (zh) * | 2021-07-02 | 2021-09-21 | 泮敏翔 | 一种高性能纳米晶磁体的制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110853854B (zh) * | 2019-11-13 | 2021-03-16 | 北京工业大学 | 一种两步扩散法制备高性能双主相烧结混合稀土铁硼磁体的方法 |
-
2022
- 2022-03-10 CN CN202210228458.7A patent/CN114512326B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016201944A1 (zh) * | 2015-06-16 | 2016-12-22 | 北京科技大学 | 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法 |
CN111564305A (zh) * | 2020-06-11 | 2020-08-21 | 泮敏翔 | 一种高性能复合磁体的制备方法 |
CN113421763A (zh) * | 2021-07-02 | 2021-09-21 | 泮敏翔 | 一种高性能纳米晶磁体的制备方法 |
Non-Patent Citations (1)
Title |
---|
辊速和喷射压力对磁粉及热流变磁体的影响;赖彬;李岩峰;王会杰;汪旭超;李安华;朱明刚;李卫;张跃;功能材料;第45卷(第3期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114512326A (zh) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108922710B (zh) | 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法 | |
CN103426624B (zh) | 钕铁硼永磁体的制备方法 | |
CN111564305B (zh) | 一种高性能复合磁体的制备方法 | |
CN102368439A (zh) | 钕铁硼中添加重稀土氢化物制备高矫顽力永磁体的优化处理方法 | |
CN106158203A (zh) | 一种高矫顽力高稳定性钕铁硼磁体的制备方法 | |
CN111230127A (zh) | 一种复合磁性粉末的制备方法 | |
JP3822031B2 (ja) | 交換スプリング磁石粉末の製造方法 | |
CN114512326B (zh) | 一种高性能Pr基磁体的制备方法 | |
JPH06349612A (ja) | 磁性材料、その製造方法および使用方法 | |
CN112652433A (zh) | 一种各向异性复合磁体及其制备方法 | |
CN1022520C (zh) | 新型稀土-铁-氮永磁材料 | |
JPS62198103A (ja) | 希土類−鉄系永久磁石 | |
CN113539664A (zh) | 一种Sm基各向异性复合磁体的制备方法 | |
CN110246644B (zh) | 一种高性能多主相Ce基纳米晶磁体的制备方法 | |
CN113921263A (zh) | 一种含镧和钇的烧结钕铁硼永磁材料的制备方法 | |
CN114597046A (zh) | 一种高矫顽力Pr/Ce基磁体的制备方法 | |
CN1132399A (zh) | 双相稀土-铁-硼磁粉及其制备方法 | |
Cheng et al. | Structure and magnetic anisotropy of Sm2Fe17− x Al x C (x= 2–8) compounds prepared by arc melting | |
CN113782331B (zh) | 一种高性能双硬磁相纳米复合磁体的制备方法 | |
CN116364371A (zh) | 一种各向异性SmCo/NdFeB复合磁体的制备方法 | |
CN116525280A (zh) | 一种高性能各向异性SmCo/MnBi复合磁体的制备方法 | |
JPS60255941A (ja) | 希土類元素−遷移金属元素−亜金属合金磁石の製造方法 | |
CN114678204B (zh) | 一种高性能钐铁氮磁体的制备方法 | |
CN112466651B (zh) | 一种无稀土高性能复合磁体的制备方法 | |
CN116072366A (zh) | 一种高性能复合磁性粉末的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |