WO2021088883A1 - 一种投影屏幕以及投影系统 - Google Patents

一种投影屏幕以及投影系统 Download PDF

Info

Publication number
WO2021088883A1
WO2021088883A1 PCT/CN2020/126552 CN2020126552W WO2021088883A1 WO 2021088883 A1 WO2021088883 A1 WO 2021088883A1 CN 2020126552 W CN2020126552 W CN 2020126552W WO 2021088883 A1 WO2021088883 A1 WO 2021088883A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection screen
working surface
image beam
projection
side wall
Prior art date
Application number
PCT/CN2020/126552
Other languages
English (en)
French (fr)
Inventor
王霖
孙微
唐晓峰
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021088883A1 publication Critical patent/WO2021088883A1/zh
Priority to US17/735,685 priority Critical patent/US20220269159A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/09Multifaceted or polygonal mirrors, e.g. polygonal scanning mirrors; Fresnel mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens

Definitions

  • This application relates to the field of projection technology, in particular to a projection screen and a projection system.
  • the screen is an important factor affecting the projection display system, which has a great impact on the image quality of the projection display; the Fresnel reflection on the screen surface is positively related to the incident angle.
  • the brightness difference between the center area and the edge area of the screen surface is as high as more than 20%.
  • a polarizer array with gradual absorptivity is added to the optical system of the projector to form a projection distribution with a dark middle and a bright edge to compensate for the uneven brightness of the projection screen; in the prior art
  • Two projectors can also be used to compensate for brightness unevenness. But the above two methods do not involve the improvement of the screen itself, but to compensate for the brightness uniformity by changing the design of the projector.
  • the existing direct projection screen adopts the horizontal wire grid structure as shown in Figure 1, which can collimate the image beam incident at a large angle in the vertical direction, so that more image beams are reflected to the audience, as shown in Figure 2.
  • Figure 1 the horizontal wire grid structure
  • Figure 2 the horizontal wire grid structure
  • the ambient light can be reflected to the non-audience area and the screen contrast can be improved; but the screen structure cannot be accurate for the image beam in the horizontal direction Therefore, the image beam incident on the edge of the screen is reflected to the area outside the viewer's field of view, resulting in poor horizontal brightness uniformity of the screen.
  • the main problem to be solved by this application is to provide a projection screen and a projection system, which can improve the brightness uniformity of the projection screen.
  • the technical solution adopted in this application is to provide a projection screen which includes at least an optical structure layer and a reflective layer.
  • the optical structure layer includes a plurality of microstructure units, and each microstructure unit includes a first The side wall and the second side wall, the reflective layer covers at least part of the first side wall and the second side wall to form a first working surface and a second working surface; wherein the first working surface deflects the input image beam to At least part of the image light beam is transmitted to the field of view area and the second working surface, and the second working surface deflects the image light beam from the first working surface, so that the image light beam from the first working surface is transmitted to the field of view area.
  • a projection system including a projection light source and a projection screen, wherein the projection light source is used to generate an image beam, and the projection screen is used to receive the image beam.
  • the image beam is processed, and the processed image beam is reflected to the field of view area, and the projection screen is the above-mentioned projection screen.
  • the beneficial effect of the present application is that the projection screen includes an optical structure layer and a reflective layer.
  • the first working surface of the optical structure layer can deflect the image beam and transmit the incident image beam to the viewer's field of view area and
  • the second working surface, the second working surface can deflect the image beam and transmit the incident image beam to the field of view area, so as to achieve multi-directional deflection of the projection beam, which helps to improve the brightness uniformity of the projection screen , And the gain is higher, and the viewing angle is wider.
  • FIG. 1 is a schematic diagram of the structure of a direct projection screen in the vertical direction of the screen and the horizontal direction of the screen in the prior art;
  • FIG. 2 is a schematic diagram of the structure of the direct projection screen in the vertical direction of the screen and the thickness direction of the screen in the prior art
  • Fig. 3 is a schematic structural diagram of an embodiment of a projection screen provided by the present application.
  • FIG. 4 is a schematic diagram of the three-dimensional structure of the projection screen shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of another embodiment of a projection screen provided by the present application.
  • FIG. 6 is a schematic diagram of the structure of the microstructure unit in the embodiment shown in FIG. 5;
  • FIG. 7 is a schematic cross-sectional view of the microstructure unit shown in FIG. 6 along the horizontal direction of the projection screen;
  • FIG. 8 is a schematic diagram of the structure of the optical structure layer and the substrate in the embodiment shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the curve relationship between the second included angle and the depth of the optical structure layer in the embodiment shown in FIG. 5;
  • FIG. 10(a) is a schematic diagram of the structure of the projection screen in the embodiment shown in FIG. 5;
  • FIG. 10(b) is a schematic diagram of the structure of the microstructure unit in the embodiment shown in FIG. 5;
  • FIG. 10(c) is a schematic diagram of the structure of the light spot in the embodiment shown in FIG. 5;
  • FIG. 11 is a schematic diagram of the arrangement of microstructure units in the embodiment shown in FIG. 5;
  • FIG. 12 is another schematic diagram of the arrangement of microstructure units in the embodiment shown in FIG. 5;
  • FIG. 13 is another schematic diagram of the structure of the microstructure unit in the embodiment shown in FIG. 5;
  • FIG. 14 is a schematic cross-sectional view of the microstructure unit shown in FIG. 13 along the horizontal direction of the projection screen;
  • FIG. 15 is another schematic diagram of the structure of the microstructure unit in the embodiment shown in FIG. 5;
  • FIG. 16 is a schematic structural diagram of an embodiment of a projection system provided by the present application.
  • the current direct projection screen adopts a wire grid structure with the same horizontal or vertical structure, but this structure can only collimate the image beam in one direction, and because the image beam has different incident angles when it is incident on different positions on the screen, Therefore, the uncollimated light beam will deviate from the viewer's field of view and transmit, resulting in poor brightness uniformity of the projection screen and affecting the viewing experience.
  • FIG. 3 is a schematic structural diagram of an embodiment of a projection screen provided by the present application
  • FIG. 4 is a three-dimensional structural schematic diagram of the projection screen shown in FIG. 3.
  • the projection screen includes at least an optical structure layer 11 and a reflective layer 12.
  • the optical structure layer 11 includes a plurality of microstructure units, each of the microstructure units includes a first side wall and a second side wall, and the reflective layer covers at least part of the first side wall and the second side wall to form a first working surface 1111 and a second side wall. Two working surface 1112.
  • the first working surface 1111 deflects the input image beam, so that at least part of the image beam is transmitted to the field of view area and the second working surface 1112; the second working surface 1112 deflects the image beam from the first working surface 1111 , So that the image beam from the first working surface 1111 is transmitted to the field of view area.
  • the projection light source generates an image light beam and outputs the image light beam to the projection screen.
  • the projection light source can be a general projector, a short-throw projector or an ultra-short-throw projector, and the projection light beam emitted by the projection light source can pass through The gaps between the microstructure units are irradiated on the reflective layer 12 or directly on the microstructure units.
  • the projection screen in this embodiment includes an optical structure layer 11 and a reflective layer 12, and the reflective layer 12 covers at least part of the surface of the microstructure unit of the optical structure layer 11 to form a first working surface 1111 and a second working surface 1112;
  • the working surface 1111 can deflect the image beam. Under the action of the first working surface 1111, part of the image beam is transmitted to the second working surface 1112 and the field of view area.
  • the image beam transmitted to the second working surface 1112 is in the first working surface 1112. Under the action of the two working surfaces 1112, they are transmitted to the field of view area, which improves the brightness uniformity of the projection screen, and has high gain and wide viewing angle.
  • the projection light source generates image beams B1 and B2, and the projection beam B1 enters the microstructure unit, and the first working surface 1111 formed by the microstructure unit and the reflective layer 12 is directly reflected toward the field of view area.
  • the projection beam B2 enters the microstructure unit, and is reflected by the first working surface 1111 formed by the microstructure unit and the reflective layer 12 toward the second working surface 1112 formed by the microstructure unit and the reflective layer 12, and the second working surface 1112 will be The projection beam B2 is reflected toward the field of view area.
  • the image beam reflected by the screen is preferably a collimated beam, that is, the incident image beams B1 and B2 are reflected by the first working surface 1111 and the second working surface 1112. Folded to form collimated image beams B1 and B2.
  • FIG. 5 is a schematic structural diagram of another embodiment of a projection screen provided by the present application.
  • the projection screen 10 in this embodiment further includes a substrate 13 and a scattering layer 14.
  • a scattering layer 14 can be added on the side of the projection light source 20.
  • the substrate 13 is disposed on the side of the optical structure layer 11 away from the reflective layer 12, and the scattering layer 14 is disposed on the side of the substrate 13 away from the optical structure layer 11. That is, the projection screen 10 includes a stacked scattering layer 14 and a substrate. The material 13, the optical structure layer 11, and the reflective layer 12.
  • the scattering layer 14 includes at least one of a volume scattering film, an irregular surface scattering film or a regular microlens array film. That is, the scattering layer 14 may be a commercial scattering film structure: a volume scattering film, an irregular surface scattering film or a regular microlens array film. These types of scattering film materials can be used alone or superimposed, all of which can increase the visible range of the projection screen 10.
  • the material of the substrate 13 includes polyethylene terephthalate (PET, Polyethylene Terephthalate), polycarbonate (PC, Polycarbonate), polyvinyl chloride (PVC, Polyvinyl Chloride) or polymethyl methacrylate (PMMA, Polymethyl Methacrylate) and other organic materials.
  • PET Polyethylene Terephthalate
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PMMA polymethyl methacrylate
  • the microstructure unit in the optical structure layer 11 can be made on the master mold by precision lathe processing, laser engraving or microstructure development exposure, and then made by hot embossing or UV (Ultra Violet) glue transfer method.
  • the surface of the substrate 13 is transparent or gray.
  • the reflective layer 12 can be made of metal aluminum, silver with high reflectivity, or reflective paint with increased absorption/scattering particles on the outside of the optical structure layer 11 by means of magnetron sputtering, thermal evaporation, electron beam evaporation, and the like.
  • the deflection in this embodiment includes deflection in the horizontal direction and/or deflection in the vertical direction.
  • the first working surface 1111 is used to deflect part of the image beam in the vertical direction of the projection screen, so that the part of the image beam is collimated and transmitted to the field of view, or another part of the image beam is projected on the screen.
  • Deflection in the horizontal direction to guide the other part of the image beam to the second working surface 1112;
  • the second working surface 1112 is used to deflect another part of the image beam in the horizontal direction of the projection screen and/or the vertical direction of the projection screen, So that another part of the image beam is collimated and transmitted to the viewer's field of view.
  • the microstructure unit includes a vertical inclined wall, two vertical side walls intersecting the plane of the projection screen, and one with the projection screen surface.
  • Vertical side walls parallel to the plane and a bottom wall.
  • the vertical inclined wall is the first side wall
  • the two vertical side walls intersecting the plane where the projection screen is located are the second side walls.
  • the reflective layer 12 covers at least a part of the vertical inclined wall to form a first working surface 1111
  • two vertical side walls intersecting the plane where the projection screen is located are covered by the reflective layer 12 to form a second working surface 1112.
  • the included angle between the first working surface 1111 and the surface of the substrate 13 is a first angle ⁇ , and the multiple first angles ⁇ are not equal along the vertical direction of the projection screen, that is, the first angle of each microstructure unit
  • the vertical included angles between a working surface 1111 and the base material 13 are different, specifically, multiple first angles ⁇ at different vertical positions at the same horizontal position are not equal, or at the same vertical position at different horizontal positions
  • the plurality of first angles ⁇ are not equal, and the range of the first angle ⁇ may be 4°-12°.
  • different ⁇ angles are designed along the vertical direction of the projection screen to better achieve the collimation of the image beams emitted by the screen.
  • the incident angle of the image beam emitted by the projection system on the screen gradually increases, and it will be more difficult to achieve the collimated emission of the image beam with the same angle ⁇ .
  • the angle value of the ⁇ angle is designed to gradually increase, which can solve the problem of collimated emission of the image beam.
  • the micro structure unit further includes a third side wall 1113.
  • the bottom wall of the micro structure unit is a third side wall 1113.
  • the angle between the third side wall 1113 and the surface of the substrate 13 is a second angle ⁇ , and the second angle
  • the range of ⁇ is 40° ⁇ 90°; the value of the second angle ⁇ corresponding to each microstructure unit in the entire projection screen 10 may be equal or unequal; the depth Z of the microstructure unit is between the second angle ⁇
  • the corresponding relationship is shown in FIG. 9, and the value of the corresponding second angle ⁇ can be set according to the depth Z of the microstructure unit.
  • FIG. 10(a) is a front view of a projection screen 10 of a certain size.
  • the image beam and the projection screen The screen 10 has a certain angle in both the horizontal direction and the vertical direction. If only a wire grid structure in one direction is used, there will be a problem of poor brightness uniformity when viewed from a large angle.
  • the optical structure layer 11 in this embodiment is composed of a triangular prism structure, as shown in section 1 of FIG. 10(c), the first working surface 1111 collimates the projection beam in the vertical direction; FIG.
  • the second working surface 1112 deflects the image beam in the horizontal direction to another direction, forming a spot A without acting on the first
  • the image beams on the two working surfaces 1112 are reflected by the reflective layer 12 to form a spot B, and the two spots are superimposed to obtain a larger spot C; therefore, the triangular prism structure can not only improve the brightness uniformity of the projection screen 10, but also increase Viewing angle.
  • the microstructure units are arranged in an array in the horizontal direction of the projection screen and the vertical direction of the projection screen, that is, the microstructure units are arranged at intervals in the horizontal direction of the projection screen, and the microstructure units are arranged at intervals in the vertical direction of the projection screen 10 and adjacent to each other.
  • a reflective material is coated between the two microstructure units.
  • the microstructure unit is a triangular prism structure.
  • Figure 6 shows the case where the microstructure unit is a triangular prism structure.
  • the two vertical side walls that intersect the plane of the projection screen surface are the bottom surfaces of the triangular prism, and the vertical inclined walls are vertical parallel to the plane of the projection screen surface.
  • the side wall and the bottom wall are the sides of a triangular prism.
  • the microstructure units can be closely arranged in the vertical direction of the screen, without spaces, as shown in FIG. 11, or the microstructure units can also have certain intervals in the vertical direction of the screen, as shown in FIG. 12.
  • the two adjacent microstructure units can also be selectively coated, so that there is no reflective material between the two adjacent microstructure units and has a certain transmittance, so as to achieve The structure of the transflective projection screen 10.
  • the microstructure unit may also have an irregular structure. As shown in FIG. 13 and FIG. 14, the second working surface 1112 is not perpendicular to the surface of the projection screen 10. In this case, adjacent When there is no space between the vertical surfaces of the two microstructure units, they will not completely overlap, so that two adjacent microstructure units can be closely arranged.
  • the triangular prism structure shown in FIG. 6 has a limited ability to adjust the image beam in the horizontal direction.
  • the depth of the second working surface 1112 can be increased, and the microstructure unit is processed into the shape shown in FIG. 15.
  • the microstructure unit includes a triangular prism structure and a triangular prism structure.
  • the quadrangular prism structure attached to the sidewalls increases the depth of the second working surface 1112 and helps to improve the brightness uniformity of the projection screen 10. It should be understood that when the microstructure unit is the structure shown in FIG. 15, the microstructure unit further includes a top wall, and the sidewall used to form the second working surface 1112 also includes the sidewall of a quadrangular prism. Go into details again.
  • the projection screen 10 in this embodiment has a simple structure, low cost, high gain, and high brightness uniformity, and can be applied to projection products to ensure that the projection screen 10 has a better visual effect.
  • FIG. 16 is a schematic structural diagram of an embodiment of a projection system provided by the present application.
  • the projection system 160 includes a projection screen 10 and a projection light source 20.
  • the projection light source 20 is used to generate an image beam
  • the projection screen 10 is used to receive the image beam.
  • the image beam is processed, and the processed image beam is reflected to the field of view area.
  • the projection screen 10 is the projection screen 10 in the above-mentioned embodiment.
  • the projection screen 10 in the projection system 160 can adjust the reflected image beam in both horizontal and vertical directions, so that the brightness uniformity of the projection screen 10 is significantly improved, and a better visual effect is ensured.

Abstract

一种投影屏幕(10)以及投影系统(160),投影屏幕(10)至少包括光学结构层(11)与反射层(12),光学结构层(11)包括多个微结构单元,每个微结构单元包括第一侧壁和第二侧壁,反射层(12)覆盖至少部分第一侧壁和第二侧壁以形成第一工作面(1111)和第二工作面(1112);其中,第一工作面(1111)对输入的影像光束进行偏折,以使得至少部分影像光束传输至视场区域和第二工作面(1112),第二工作面(1112)对来自第一工作面(1111)的影像光束进行偏折,以使来自第一工作面(1111)的影像光束传输至视场区域。投影屏幕(10)的亮度均匀性能够被提高。

Description

一种投影屏幕以及投影系统 技术领域
本申请涉及投影技术领域,具体涉及一种投影屏幕以及投影系统。
背景技术
屏幕是影响投影显示系统的一个重要因素,其对投影显示的图像质量影响很大;屏幕表面的菲涅尔反射跟入射角度正相关,入射角度越大,菲涅尔反射越高,菲涅尔反射的光线大部分都不能进入到观众的视场中,造成了能量的浪费。同时,由于屏幕表面不均匀的菲涅尔反射导致了屏幕表面中心区域和边缘区域的亮度差高达20%以上。
为了提高屏幕的亮度均匀性,现有技术中在投影机光学系统中加入吸收率渐变的偏振片阵列,形成中间暗、边缘亮的投影分布来补偿投影屏幕的亮度不均匀性;现有技术中还可利用两台投影机来补偿亮度不均匀性。但以上两种方法都不涉及对屏幕本身的改善,而是通过改变投影机的设计来补偿亮度均匀性。
现有的直投屏幕采用如图1所示的水平线栅结构,该结构可以将大角度入射的影像光束在竖直方向进行准直,使更多的影像光束被反射至观众方向,如图2所示;同时由于线栅结构工作面的倾斜角度与影像光束入射角度相匹配,因此可以将环境光线反射向非观众区域,提高屏幕对比度;但是该屏幕结构不能对影像光束在水平方向起到准直的作用,因此入射在屏幕边缘位置的影像光束反射至观众视场外的区域,导致该屏幕的水平观看亮度均匀性差。
发明内容
本申请主要解决的问题是提供一种投影屏幕以及投影系统,能够提高投影屏幕的亮度均匀性。
为解决上述技术问题,本申请采用的技术方案是:提供一种投影屏幕,该投影屏幕至少包括光学结构层与反射层,光学结构层包括多个微结构单元,每个微结构单元包括第一侧壁和第二侧壁,反射层覆盖至少部分第一侧壁和第二侧壁以形成第一工作面和第二工作面;其中,第一工作面对输入的影像光束进行偏折,以使得至少部分影像光束传输至视场区域和第二工作面,第二工作面对来自第一工作面的影像光束进行偏折,以使来自第一工作面的影像光束传输至视场区域。
为解决上述技术问题,本申请采用的另一技术方案是:提供一种投影系统,该投影系统包括投影光源和投影屏幕,其中,投影光源用于产生影像光束,投影屏幕用于接收影像光束,对影像光束进行处理,并将处理后的影像光束反射至视场区域,投影屏幕为上述的投影屏幕。
通过上述方案,本申请的有益效果是:投影屏幕包括光学结构层以及反射层,光学结构层的第一工作面可对影像光束进行偏折,将入射的影像光束传输至观众的视场区域和第二工作面,第二工作面可对影像光束进行偏折,将入射的影像光束传输至视场区域,从而实现对投影光束进行多方向的偏折,有助于提高投影屏幕的亮度均匀性,且增益较高、视角较宽。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是现有技术中直投屏幕在屏幕竖直方向与屏幕水平方向的结构示意图;
图2是现有技术中直投屏幕在屏幕竖直方向与屏幕厚度方向的结构示意图;
图3是本申请提供的投影屏幕一实施例的结构示意图;
图4是图3所示的投影屏幕的立体结构示意图;
图5是本申请提供的投影屏幕另一实施例的结构示意图;
图6是图5所示的实施例中微结构单元的结构示意图;
图7是图6所示的微结构单元的沿投影屏幕水平方向的截面示意图;
图8是图5所示的实施例中光学结构层与基材的结构示意图;
图9是图5所示的实施例中第二夹角与光学结构层的深度之间的曲线关系示意图;
图10(a)是图5所示的实施例中投影屏幕的结构示意图;
图10(b)是图5所示的实施例中微结构单元的结构示意图;
图10(c)是图5所示的实施例中光斑的结构示意图;
图11是图5所示的实施例中微结构单元排布的结构示意图;
图12是图5所示的实施例中微结构单元排布的另一结构示意图;
图13是图5所示的实施例中微结构单元的另一结构示意图;
图14是图13所示的微结构单元的沿投影屏幕水平方向的截面示意图;
图15是图5所示的实施例中微结构单元的另一结构示意图;
图16是本申请提供的投影系统一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前直投屏幕中采用水平或竖直方向结构一致的线栅结构,但是这种结构只能对影像光束进行一个方向的准直,并且由于影像光束入射在屏幕不同位置时具有不同的入射角度,因此未经过准直的光束会偏离观众的视场区域传输,从而导致投影屏幕的亮度均匀性差,影响观看体验。
请参阅图3和图4,图3是本申请提供的投影屏幕一实施例的结构 示意图,图4是图3所示的投影屏幕的立体结构示意图,投影屏幕至少包括光学结构层11与反射层12。
光学结构层11包括多个微结构单元,每个微结构单元包括第一侧壁和第二侧壁,反射层覆盖至少部分第一侧壁和第二侧壁以形成第一工作面1111和第二工作面1112。
第一工作面1111对输入的影像光束进行偏折,以使得至少部分影像光束传输至视场区域和第二工作面1112;第二工作面1112对来自第一工作面1111的影像光束进行偏折,以使得来自第一工作面1111的影像光束传输至视场区域。
在一具体的实施例中,投影光源产生影像光束,并将影像光束输出至投影屏幕,投影光源可以为一般投影机、短焦投影机或超短焦投影机,投影光源发出的投影光束可穿过微结构单元之间的空隙照射在反射层12上或直接照射在微结构单元上。
本实施例中投影屏幕包括光学结构层11以及反射层12,反射层12覆盖在光学结构层11的微结构单元的至少部分表面上以形成第一工作面1111和第二工作面1112;第一工作面1111可对影像光束进行偏折,部分影像光束在第一工作面1111的作用下,被传输至第二工作面1112和视场区域,被传输至第二工作面1112的影像光束在第二工作面1112的作用下,被传输至视场区域,提高了投影屏幕的亮度均匀性,且增益高、视角宽。
例如,如图3和图4所示,投影光源产生影像光束B1和B2,投影光束B1射入微结构单元,被微结构单元和反射层12形成的第一工作面1111直接朝向视场区域反射出;投影光束B2射入微结构单元,被微结构单元和反射层12形成的第一工作面1111朝向微结构单元和反射层12形成的第二工作面1112反射,第二工作面1112再将投影光束B2朝向视场区域反射出。
需要说明的是,在常规的观看体验环境中,经屏幕反射出的影像光束优选为准直的光束,即入射的影像光束B1和B2经过第一工作面1111和第二工作面1112的反射偏折,形成准直出射的影像光束B1和B2。
请参阅图3和图5,图5是本申请提供的投影屏幕另一实施例的结构示意图,与上述实施例不同的是,本实施例中投影屏幕10还包括基材13以及散射层14。
由于影像光束经过反射层12反射后发散角一般都比较小,为了增加投影画面的可视范围,可在投影光源20所在侧加入散射层14。具体地,基材13设置在光学结构层11远离反射层12的一侧,散射层14设置在基材13远离光学结构层11的一侧,即投影屏幕10包括层叠设置的散射层14、基材13、光学结构层11以及反射层12。
散射层14包括体散射薄膜、不规则面散射薄膜或规则的微透镜阵列薄膜中的至少一种,即散射层14可以是商业化的散射薄膜结构:体散射薄膜、不规则面散射薄膜或规则的微透镜阵列薄膜,这几种散射薄膜材料可以单独使用,也可以叠加使用,都可以增加投影屏幕10的可视范围。
基材13的材料包括聚对苯二甲酸乙二醇酯(PET,Polyethylene Terephthalate)、聚碳酸酯(PC,Polycarbonate)、聚氯乙烯(PVC,Polyvinyl Chloride)或聚甲基丙烯酸甲酯(PMMA,Polymethyl Methacrylate)等有机材料。
光学结构层11中的微结构单元可以通过精密车床加工、激光雕刻或微结构显影曝光的方式制作在母模上,然后经过热压印或UV(Ultra Violet,紫外线)胶水转印的方法制作在透明或者灰色的基材13的表面。
反射层12可以通过磁控溅射、热蒸发、电子束蒸发等方式将具有高反射率的金属铝、银或增加了吸收/散射粒子的反射涂料制作在光学结构层11的外侧。
应当理解的是,本实施例所说的偏折包括水平方向的偏折和/或竖直方向的偏折。具体来讲,第一工作面1111用于对部分影像光束进行投影屏幕竖直方向的偏折,以使得该部分影像光束经准直后传输至视场区域,或者对另一部分影像光束进行投影屏幕水平方向的偏折,以将该另一部分影像光束引导至第二工作面1112;第二工作面1112用于对另一部分影像光束进行投影屏幕水平和/或投影屏幕竖直方向上的偏折,以使 得另一部分影像光束经准直后传输至观众的视场区域。
以下对微结构单元的具体结构进行说明,如图6和图7所示,微结构单元包括一竖直斜壁、两个与投影屏幕表面所在平面相交的竖直侧壁、一个与投影屏幕表面所在平面平行的竖直侧壁以及一底壁。具体地,竖直斜壁为第一侧壁,两个与投影屏幕表面所在平面相交的竖直侧壁为第二侧壁。其中,反射层12覆盖至少部分的竖直斜壁形成第一工作面1111,两个与投影屏幕表面所在平面相交的竖直侧壁被反射层12覆盖以形成第二工作面1112。如图8所示,第一工作面1111与基材13的表面的夹角为第一角度α,多个第一角度α沿着投影屏幕竖直方向不相等,即每个微结构单元的第一工作面1111与基材13之间的竖直夹角不同,具体地,在同一水平位置的不同竖直位置处多个第一角度α不相等,或者在不同水平位置的同一竖直位置处多个第一角度α不相等,第一角度α的范围可以是4°~12°。鉴于经投影系统出射的影像光束在屏幕不同高度的入射角不同,因此沿投影屏幕竖直方向设计不同的α角,可以更好的实现经屏幕出射的影像光束准直。具体来讲,沿屏幕竖直方向从下往上,经投影系统出射的影像光束在屏幕上的入射角逐渐增大,同一角度值的α角实现影像光束的准直出射将存在较大难度。沿屏幕竖直方向从下往上,将α角的角度值设计成逐渐增大,则可解决影像光束的准直出射的问题。
微结构单元还包括第三侧壁1113,具体地,微结构单元的底壁为第三侧壁1113,第三侧壁1113与基材13的表面的夹角为第二角度β,第二角度β的范围是40°~90°;整个投影屏幕10中每个微结构单元对应的第二角度β的值可以相等,也可以不相等;微结构单元的深度Z与第二角度β之间的对应关系如图9所示,可根据微结构单元的深度Z设置对应的第二角度β的值。
在一具体的实施例中,如图10所示,图10(a)为某一尺寸的投影屏幕10的正视图,当投影光束打在投影屏幕10的非中心线区域时,影像光束与投影屏幕10在水平方向和竖直方向都存在一定的角度,若只单纯采用一个方向的线栅结构,会存在大角度观看亮度均匀性差的问 题。而本实施例中的光学结构层11由三棱柱结构组成,如图10(c)的剖面1所示,第一工作面1111将投影光束在竖直方向上进行准直;如图10(c)的剖面2所示,当投影光束入射在投影屏幕10的非中心线区域时,第二工作面1112将影像光束在水平方向上偏折向另外一个方向,形成光斑A,而未作用在第二工作面1112上的影像光束经反射层12反射后形成光斑B,两个光斑叠加得到更大的光斑C;因此,该三棱柱结构不仅可以提高投影屏幕10的亮度均匀性,还可以增大观看视角。
微结构单元在投影屏幕水平方向以及投影屏幕竖直方向阵列排布,即微结构单元在投影屏幕水平方向上间隔设置,微结构单元在投影屏幕10的竖直方向上间隔设置,且相邻的两个微结构单元之间涂覆有反射材料。
再次参见图6,在一具体的实施例中,微结构单元为三棱柱结构。图6示出了微结构单元为三棱柱结构的情况,两个与投影屏幕表面所在平面相交的竖直侧壁为三棱柱的底面,竖直斜壁、与投影屏幕表面所在平面平行的竖直侧壁和底壁为三棱柱的侧面。当三棱柱结构和反射层12形成的第二工作面1112与投影屏幕10的表面垂直时,为了将反射材料加工在三棱柱结构的四个面上,微结构单元在屏幕水平方向上具有一定间隔,微结构单元在屏幕竖直方向上可以紧密排列,不设置有间隔,如图11所示,或者微结构单元在屏幕竖直方向上也可以具有一定间隔,如图12所示。在其他实施例中,相邻的两个微结构单元之间也可以通过选择性涂布的方式,使得相邻的两个微结构单元之间没有反射材料,具有一定的透过率,从而实现半透半反的投影屏幕10的结构。
在另一具体的实施例中,微结构单元还可为不规则的结构,如图13和图14所示,第二工作面1112不与投影屏幕10的表面垂直,此种情况下相邻的两个微结构单元的竖直面之间没有间隔时也不会完全重合,因而相邻的两个微结构单元之间可紧密排列。
由于第一工作面1111的倾斜角度较小,导致第二工作面1112的深度较小,因而图6所示的三棱柱结构对影像光束在水平方向的调整能力有限。为了进一步增加投影屏幕10的均匀性,可以增加第二工作面1112 的深度,将微结构单元加工成图15所示的形状,具体地,微结构单元包括三棱柱结构以及与三棱柱结构的一个侧壁贴合的四棱柱结构,以增加第二工作面1112的深度,有助于提高投影屏幕10的亮度均匀性。应当理解的是,当微结构单元为图15所示的结构时,微结构单元还包括一顶壁,且用作形成第二工作面1112的侧壁还包括四棱柱的侧壁,此处不再赘述。
本实施例中的投影屏幕10结构简单、成本低、增益高、亮度均匀性高,可应用于投影产品中,保证投影屏幕10具有较佳的视觉效果。
请参阅图16,图16是本申请提供的投影系统一实施例的结构示意图,投影系统160包括投影屏幕10和投影光源20,投影光源20用于产生影像光束,投影屏幕10用于接收影像光束,对影像光束进行处理,并将处理后的影像光束反射至视场区域,投影屏幕10为上述实施例中的投影屏幕10。
投影系统160中的投影屏幕10能够对反射的影像光束进行水平和竖直两个方向的调节,使得投影屏幕10的亮度均匀性得到显著提升,保证较佳的视觉效果。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种投影屏幕,其特征在于,至少包括光学结构层与反射层,所述光学结构层包括多个微结构单元,每个所述微结构单元包括第一侧壁和第二侧壁,所述反射层覆盖至少部分所述第一侧壁和所述第二侧壁以形成第一工作面和第二工作面;
    其中,所述第一工作面对输入的影像光束进行偏折,以使得至少部分影像光束传输至视场区域和所述第二工作面,所述第二工作面对来自所述第一工作面的影像光束进行偏折,以使来自所述第一工作面的影像光束传输至视场区域。
  2. 根据权利要求1所述的投影屏幕,其特征在于,
    所述投影屏幕还包括散射层和基材,所述基材设置在所述光学结构层远离所述反射层的一侧,所述散射层设置在所述基材远离所述光学结构层的一侧。
  3. 根据权利要求2所述的投影屏幕,其特征在于,
    所述第一工作面与所述基材的表面的夹角为第一角度,多个第一角度沿着投影屏幕竖直方向不相等,所述第一角度的范围是4°~12°。
  4. 根据权利要求2所述的投影屏幕,其特征在于,
    所述微结构单元还包括第三侧壁,所述第三侧壁与所述基材的表面的夹角为第二角度,所述第二角度的范围是40°~90°。
  5. 根据权利要求2所述的投影屏幕,其特征在于,
    所述微结构单元为三棱柱结构或者包括所述三棱柱结构以及与所述三棱柱结构的一个侧壁贴合的四棱柱结构。
  6. 根据权利要求5所述的投影屏幕,其特征在于,
    所述微结构单元在投影屏幕水平方向以及所述投影屏幕竖直方向阵列排布,相邻的两个所述微结构单元之间涂覆有反射材料。
  7. 根据权利要求5所述的投影屏幕,其特征在于,
    所述第一工作面用于对部分影像光束进行所述投影屏幕竖直方向上的偏折,使所述部分影像光束准直传输至所述视场区域,或者对另一部分影 像光束进行投影屏幕水平方向上的偏折,以将所述另一部分影像光束引导至所述第二工作面;所述第二工作面用于对所述另一部分影像光束进行所述投影屏幕水平方向和/或所述投影屏幕竖直方向上的偏折,使所述另一部分影像光束准直传输至视场区域。
  8. 根据权利要求2所述的投影屏幕,其特征在于,
    所述散射层包括体散射薄膜、不规则面散射薄膜或规则的微透镜阵列薄膜中的至少一种;所述基材的材料包括聚对苯二甲酸乙二醇酯、聚碳酸酯、聚氯乙烯或聚甲基丙烯酸甲酯。
  9. 根据权利要求1所述的投影屏幕,其特征在于,
    所述微结构单元包括一竖直斜壁、两个与所述投影屏幕表面所在平面相交的竖直侧壁、一个与所述投影屏幕表面所在平面平行的竖直侧壁以及一底壁,所述竖直斜壁为所述第一侧壁,两个与所述投影屏幕表面所在平面相交的竖直侧壁为所述第二侧壁。
  10. 一种投影系统,其特征在于,包括投影光源和投影屏幕,其中,所述投影光源用于产生影像光束,所述投影屏幕用于接收所述影像光束,对所述影像光束进行处理,并将处理后的影像光束反射至视场区域,所述投影屏幕为权利要求1-9中任一项所述的投影屏幕。
PCT/CN2020/126552 2019-11-04 2020-11-04 一种投影屏幕以及投影系统 WO2021088883A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/735,685 US20220269159A1 (en) 2019-11-04 2022-05-03 Projection screen and projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911067723.2 2019-11-04
CN201911067723.2A CN112782929A (zh) 2019-11-04 2019-11-04 一种投影屏幕以及投影系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/735,685 Continuation US20220269159A1 (en) 2019-11-04 2022-05-03 Projection screen and projection system

Publications (1)

Publication Number Publication Date
WO2021088883A1 true WO2021088883A1 (zh) 2021-05-14

Family

ID=75748740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126552 WO2021088883A1 (zh) 2019-11-04 2020-11-04 一种投影屏幕以及投影系统

Country Status (3)

Country Link
US (1) US20220269159A1 (zh)
CN (1) CN112782929A (zh)
WO (1) WO2021088883A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255468A (ja) * 2002-02-27 2003-09-10 Victor Co Of Japan Ltd 斜め投射用スクリーン
JP2013050646A (ja) * 2011-08-31 2013-03-14 Dainippon Printing Co Ltd 反射型スクリーン、及び反射型投射システム
CN105408777A (zh) * 2014-02-14 2016-03-16 大日本印刷株式会社 反射屏、反射屏的制造方法、屏幕框体和影像显示系统
CN108490727A (zh) * 2018-06-07 2018-09-04 成都恒坤光显材料科技有限公司 一种新型的视角可控的正投影屏幕
CN109388014A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN109388013A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN109976081A (zh) * 2017-12-14 2019-07-05 深圳光峰科技股份有限公司 屏幕和吸光膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767186A (en) * 1987-10-06 1988-08-30 North American Philips Consumer Electronics Corp. Front projection screen with rear light concentrating lens array
JP2011085778A (ja) * 2009-10-16 2011-04-28 Seiko Epson Corp スクリーン
JP2011145382A (ja) * 2010-01-13 2011-07-28 Seiko Epson Corp 反射型スクリーン
JP2014142429A (ja) * 2013-01-22 2014-08-07 Dainippon Printing Co Ltd 反射型スクリーン、前面投射型表示装置、多画面表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255468A (ja) * 2002-02-27 2003-09-10 Victor Co Of Japan Ltd 斜め投射用スクリーン
JP2013050646A (ja) * 2011-08-31 2013-03-14 Dainippon Printing Co Ltd 反射型スクリーン、及び反射型投射システム
CN105408777A (zh) * 2014-02-14 2016-03-16 大日本印刷株式会社 反射屏、反射屏的制造方法、屏幕框体和影像显示系统
CN109388014A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN109388013A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN109976081A (zh) * 2017-12-14 2019-07-05 深圳光峰科技股份有限公司 屏幕和吸光膜的制备方法
CN108490727A (zh) * 2018-06-07 2018-09-04 成都恒坤光显材料科技有限公司 一种新型的视角可控的正投影屏幕

Also Published As

Publication number Publication date
US20220269159A1 (en) 2022-08-25
CN112782929A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
TW200817823A (en) Screen and projection system
US10642102B2 (en) Light homogenizing structure, front light source and display device
US20190004237A1 (en) Optical sheet, surface light source device and display device
CN100363798C (zh) 液晶显示装置
WO2007063856A1 (ja) バックライト用光学シート、バックライト及び表示装置
US20220268975A1 (en) Projection screen
WO2020192300A1 (zh) 光学准直组件、背光模组及显示装置
JP5463966B2 (ja) 導光板、面光源装置および液晶表示装置
TW201837557A (zh) 光源模組及其稜鏡片
EP3859446A1 (en) Projection screen and projection system
JP2008139845A (ja) 光学板
JP2001143515A (ja) プリズムシートおよび面光源素子
JP4515374B2 (ja) 照明装置及びそれを用いた表示装置
WO2021088883A1 (zh) 一种投影屏幕以及投影系统
JP5012221B2 (ja) バックライトユニット、およびディスプレイ装置
US8425067B2 (en) Composite diffuser structure and backlight module
WO2021103968A1 (zh) 一种投影屏幕以及投影系统
US20220291579A1 (en) Projection screen
US20220004224A1 (en) Viewing angle diffusion plate and display panel
US20170167692A1 (en) Backlight module
WO2021088884A1 (zh) 一种直投屏幕
JP3732251B2 (ja) レンズ配列シート、面光源及び透過型表示体
CN110658583A (zh) 导光板、背光模组及显示装置
JP3548902B2 (ja) 薄型面状光源装置
WO2023071594A1 (zh) 一种匀光膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20885283

Country of ref document: EP

Kind code of ref document: A1