WO2020192300A1 - 光学准直组件、背光模组及显示装置 - Google Patents

光学准直组件、背光模组及显示装置 Download PDF

Info

Publication number
WO2020192300A1
WO2020192300A1 PCT/CN2020/075459 CN2020075459W WO2020192300A1 WO 2020192300 A1 WO2020192300 A1 WO 2020192300A1 CN 2020075459 W CN2020075459 W CN 2020075459W WO 2020192300 A1 WO2020192300 A1 WO 2020192300A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dimming
light guide
guide plate
prism
Prior art date
Application number
PCT/CN2020/075459
Other languages
English (en)
French (fr)
Inventor
汤海
高亮
胡勇
秦建伟
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/966,798 priority Critical patent/US11307342B2/en
Publication of WO2020192300A1 publication Critical patent/WO2020192300A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity

Definitions

  • the embodiments of the present disclosure relate to an optical collimation assembly, a backlight module and a display device.
  • the anti-peeping display can only allow users located directly in front of the display screen to see the content on the display screen. People on both sides of the screen cannot see the content on the display screen, thereby providing the observer with a sufficiently private viewing experience.
  • the core of the privacy display technology is the collimation of light, that is, the backlight provided by the backlight source of the display panel can be emitted in a specific direction, so that it can be shot into the eyes of the user facing the display screen.
  • the embodiments of the present disclosure provide an optical collimation assembly, a backlight module and a display device.
  • an optical collimation assembly including:
  • a collimating film comprising a light-incident surface and a light-emitting surface
  • a dimming component is located on the light incident surface of the collimating film and includes a plurality of dimming parts arranged in an array, each of the dimming parts includes:
  • the first surface is close to the light incident surface
  • the second surface is arranged opposite to the first surface and far away from the light incident surface;
  • a third surface that intersects both the first surface and the second surface, the angle between the third surface and the first surface is an acute angle
  • the third surface is configured to reflect light incident from the second surface into the dimming part so that the reflected light exits the collimating film in a direction substantially perpendicular to the light exit surface.
  • a backlight module including:
  • a light guide assembly includes a light guide plate including a light exit side and a backlight side opposite to the light exit side;
  • the optical collimation assembly is laminated with the light guide plate and is located on the light exit side of the light guide plate, and the dimming component is located between the collimation film and the light guide plate.
  • embodiments of the present disclosure provide a display device including the aforementioned backlight module.
  • FIG. 1 is a schematic diagram of the structure of a collimating film of the present disclosure
  • FIG. 2 is a schematic structural diagram of a display device in an embodiment of the disclosure.
  • FIG. 3 is a schematic diagram (X direction) of the working principle of the backlight module in the embodiment of the disclosure
  • FIG. 4 is a schematic diagram (Y direction) of the working principle of the backlight module in the embodiment of the disclosure.
  • Figure 5 is a partial enlarged view of Figure 3;
  • Fig. 6 is a perspective view of an optical collimating component in an embodiment of the disclosure.
  • FIG. 7 is a side view of the optical collimation assembly in an embodiment of the disclosure.
  • FIG. 8 is a top view of a light guide assembly in an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of the structure of a light guide part in an embodiment of the disclosure.
  • FIG. 10 is a graph of the angular brightness line chart of the backlight module in the embodiment of the disclosure.
  • FIG. 11 is a grating chart of the uniformity of illuminance of the backlight module in an embodiment of the disclosure
  • Figure 12 (a) is a top view of the light guide part in an embodiment of the disclosure.
  • Figure 12(b) is a side view of the light guide in the embodiment of the disclosure.
  • Fig. 12(c) is another side view of the light guide in the embodiment of the disclosure.
  • the collimating film is a film that enables the light emitted by the backlight to exit in a specific direction.
  • FIG. 1 is a schematic diagram of the structure of a collimating film of the present disclosure.
  • the collimating film has a louvered grating structure 01.
  • the louvered grating structure 01 can absorb large angles (a large angle refers to an angle that deviates from the Z direction (ie vertical direction) by more than 30°). Stray light, only light parallel to the Z-direction or close to the Z-direction can pass through the louver grating structure 01, thereby achieving the collimation of the light emitted by the backlight. Since the louver grating structure 01 of the collimating film absorbs the large-angle light emitted by the backlight, the brightness of the light after passing through the collimating film will be greatly reduced, thereby affecting the display effect of the display device.
  • the embodiments of the present disclosure provide an optical collimating assembly, a backlight module, and a display device, one of the purposes of which is to reduce the loss of brightness when incident light is emitted from an optical device.
  • An embodiment of the present disclosure provides an optical collimating assembly, including: a collimating film, the collimating film includes a light incident surface and a light emitting surface; and a dimming component, the dimming component is located on the light incident surface of the collimating film And includes a plurality of dimming parts arranged in an array.
  • Each of the dimming parts includes: a first surface, which is close to the light incident surface; a second surface, which is arranged opposite to the first surface and far from the light incident surface; and is connected to the first surface and the second surface If the third surface is uniformly intersected, the angle between the third surface and the first surface is an acute angle.
  • the third surface is configured to reflect light incident from the second surface into the dimming part so that the reflected light exits the collimating film in a direction substantially perpendicular to the light exit surface.
  • the optical collimating component provided by the embodiment of the present invention reflects the light incident on the light adjusting part through the third surface of the light adjusting part, thereby achieving two-dimensional convergence of the incident light and realizing the collimation effect. Furthermore, since the light is emitted in a specific direction, the anti-peeping effect can be achieved.
  • the optical collimating component is applied to the backlight module, since the optical collimating component of this embodiment can reflect incident light including large-angle light, it will not lose the brightness of the light emitted by the light source, thereby improving the display device’s performance display effect.
  • the embodiment of the present invention provides an optical collimation assembly, as shown in FIG. 6 and FIG. 7, comprising a collimation film 1; the collimation film 1 has a light incident surface 12 and a light output surface 14, and the light incident surface 14 is provided with a light adjustment A light component, the dimming component includes a plurality of dimming parts 2 arranged in an array.
  • each dimming portion 2 has a bottom surface (ie, a first surface) 22 parallel to the light incident surface 12. Further, in at least one example, the bottom surface is coplanar with the light incident surface 12.
  • the dimming part 2 further includes a top surface (ie, a second surface) 23 opposite to the bottom surface 22, and a third surface 21 and a fourth surface 24 intersecting both the bottom surface 22 and the top surface 23.
  • the angle between the third surface 21 and the bottom surface 22 is an acute angle.
  • the third surface 21 is configured to reflect the light incident from the top surface 23 into the dimming portion 2 so that the reflected light is emitted from the collimating film 1 in a direction substantially perpendicular to the light exit surface 14. .
  • the third surface 21 is a tapered surface, so that each dimming portion 2 has a shape that shrinks from bottom to top. Since the third surface 21 is inclined with respect to the bottom surface, in this way, when the light incident into the dimming part 2 is reflected by the third surface, it can be in the first direction (the X direction as shown in FIG. 6) and the second direction ( Convergence is performed in the Y direction at the same time, thereby achieving two-dimensional convergence of the incident light and achieving collimation.
  • the fourth surface 24 intersects with the top surface 23 and the bottom surface 22 and is connected to the third surface 21, so that together with the third surface 21 forms the side surface of the dimming part 2.
  • the fourth surface 24 may have the same or a different shape from the third surface 21.
  • the included angle between the fourth surface 24 and the bottom surface 22 is equal to the included angle between the third surface 21 and the bottom surface 22, and the included angle is an acute angle, so that each dimming portion is in the shape of a truncated cone .
  • the truncated cone is truncated with a plane parallel to the bottom surface of the cone, and the part between the bottom surface and the cross section is called a truncated cone (also called a truncated cone).
  • the fourth surface may be flat.
  • the fourth surface 24 is a flat surface, and the included angle between it and the bottom surface 22 is a right angle.
  • each dimming portion 2 is in the shape of a half truncated cone.
  • half round truncated cone refers to the part obtained by cutting the truncated cone along the central axis of the truncated cone in the direction perpendicular to the table surface of the truncated cone.
  • each dimming part 2 in FIG. 6 is in the shape of a half truncated cone.
  • each dimming portion 2 when the dimming portion 2 is in the shape of a half truncated cone, as shown in FIG. 7, each dimming portion 2 has a first in a plane 4 perpendicular to the plane of the collimating film 1 and parallel to the X direction.
  • Cross section the shape of the first cross section is a right-angled trapezoid.
  • each dimming portion 2 has a second cross section in a plane perpendicular to the plane where the collimating film 1 is located and parallel to the Y direction, and the shape of the second cross section is an isosceles trapezoid.
  • the Y direction is perpendicular to the X direction.
  • a plurality of the dimming parts 2 are arranged at equal intervals along the X direction, so that the distribution of incident light is more uniform.
  • the above-mentioned distance may be equal to zero, that is, the orthographic projections of any two adjacent dimming parts 2 arranged along the X direction on the light incident surface 12 are mutually direct contact.
  • the semicircular cone-shaped dimming parts can be closely arranged in the X direction, which improves the light convergence effect of the dimming part.
  • the dimming parts closely arranged along the X direction can also increase the effective bonding area of the dimming film and the optical adhesive layer, thereby improving the light extraction efficiency.
  • the function of the light adjustment part includes light convergence and light guide, that is, light from the light guide plate or the optical adhesive layer is guided downward from the light exit surface of the collimating film.
  • a plurality of the dimming parts 2 are arranged at equal intervals in the Y direction.
  • the above-mentioned distance may be equal to zero, that is, the orthographic projections of any two adjacent dimming parts 2 arranged along the Y direction on the light incident surface are directly opposite to each other. contact.
  • the semicircular cone-shaped dimming parts can be closely arranged in the Y direction, and the light converging effect of the dimming part is improved.
  • the dimming parts closely arranged along the Y direction can also increase the effective bonding area of the dimming film and the optical adhesive layer, thereby improving the light extraction efficiency.
  • the angle between the tangent line of each point on the third surface 21 of the dimming part 2 and the bottom surface 22 of the dimming part 2 may be an acute angle. It may be that the angle between the tangent line of each point on the third surface 21 of all the dimming parts 2 and the bottom surface 22 of the dimming part 2 is an acute angle, which is not specifically limited here. As shown in FIG. 7, in the first cross-section of the dimming portion 2, the angle between the tangent of each point on the third surface 21 and the bottom surface 22 of the dimming portion 2 is an acute angle, for example, as shown in FIG. The angle ⁇ of is an acute angle.
  • the dimming part 2 and the collimating film 1 can be integrally formed or can be made separately, which is not specifically limited here.
  • the refractive index of the dimming part 2 and the refractive index of the collimating film 1 should be equal or similar, so as to avoid the difference in the refractive index of the two and the path of the light. Influence, and then affect the collimation effect.
  • the collimating film 1 and the dimming part 2 are integrally formed and made of the same material.
  • the material can be one of the following: glass, PC (polycarbonate, which is a high molecular polymer, mainly used for Engineering plastics), PMMA (polymethyl methacrylate; polymethyl methacrylate, also known as acrylic), PET (Polyethylene terephthalate; polyethylene terephthalate).
  • PC polycarbonate
  • PMMA polymethyl methacrylate; polymethyl methacrylate, also known as acrylic
  • PET Polyethylene terephthalate; polyethylene terephthalate
  • the collimating film 1 is made of the above-mentioned materials, and the material of the dimming part 2 may be a curable organic material, such as ultraviolet (UV) curing glue or thermal Curing glue.
  • UV ultraviolet
  • the light emitted from the light guide plate 200 is reflected by the third surface 21 of the light adjusting part 2, thereby achieving two-dimensional convergence of the incident light and achieving a collimation effect. Furthermore, since the light is emitted in a specific direction, the anti-peeping effect can be achieved.
  • the optical collimating component is applied to the backlight module, since the optical collimating component of this embodiment can reflect incident light including large-angle light, it will not lose the brightness of the light emitted by the light source, thereby improving the display device’s performance display effect.
  • the dimming part 2 can be regarded as a revolving body structure.
  • the semicircular platform is a geometric body formed by rotating the right-angled trapezoid by 180° with the waist of the right-angled trapezoid as its axis.
  • the third surface 21 is a curved portion of the light control unit 2 and also becomes a side surface of the truncated cone.
  • the shape of the dimming portion 2 is not limited to that shown in the figure.
  • the dimming portion 2 may also be a pyramid structure, such as a quadrangular pyramid, the third surface 21 and/or the fourth surface 24 It is the side of the dimming part 2.
  • the revolving surface of the revolving body structure is continuous with no corners in the middle, which is the preferred way.
  • the edges and corners will have a certain impact on the reflection of light.
  • the light irradiated at the edges and corners cannot converge in the Z direction (that is, the direction perpendicular to the plane where the collimating film 1 is located).
  • the curved surface of revolution can reflect the light in all directions around it, so that the reflected light converges in the Z direction.
  • the right-angled trapezoid includes an upper bottom, a lower bottom and two waists, and the waist that is not perpendicular to the upper bottom and the lower bottom is called a generatrix.
  • the bus bar may be a straight line or a curve. When the bus bar is a straight line, the complexity of the third surface 21 is reduced, so that the dimming portion 2 is easier to manufacture, which is beneficial to reduce the manufacturing cost of the dimming portion 2.
  • the dimming part 2 may be in the shape of a truncated cone, that is, the right-angled trapezoid is formed by rotating the right-angled trapezoid by 360° with the waist of the right-angled trapezoid shown in FIG. 7 as the axis. Geometry. Compared with the dimming section 2 which is a truncated cone shape, when the dimming section 2 is a semi-circular cone shape, it occupies a smaller space. When the light incident surface area of the collimating film 1 is the same, it can be placed on the light incident surface of the collimating film 1 Set more dimming parts 2.
  • the light emitted from the light guide plate 200 can be reflected by more dimming parts 2, thereby ensuring the brightness of the backlight module.
  • the light source 400 since the light source 400 is located on the side of the light guide plate 200, when the light adjustment unit 2 reflects the light emitted from the light guide plate 200, only the third surface 21 has a reflection function, that is, only the adjustment The surface of the light portion 2 away from the light source 400 reflects the light emitted from the light guide plate 200. If the dimming section 2 is in the shape of a truncated cone, the other surface of the dimming section 2 close to the light source 400 will not be able to reflect. Therefore, the shape of the dimming section 2 can avoid waste of materials for the dimming section 2 , Is the preferred solution.
  • the third surface 21 of each dimming portion 2 is located on the same side of the plane 3, that is: the third surface of each dimming portion 2
  • the surfaces 21 are all located on the left side of the plane 3.
  • the plane 3 is a plane where the fourth surface of the semicircular cone-shaped dimming part 2 is located.
  • the position arrangement of the third surface 21 of the plurality of dimming parts 2 is not limited to that shown in FIG. 7.
  • a part of the third surface 21 of each of the dimming parts 2 is located on the first side (for example, the left side) of the plane 3, and the other part is The third surface 21 of each of the dimming portions 2 is located on the second side (for example, the right side) of the plane 3.
  • the installation method of the optical collimation assembly 100 can be adjusted during assembly, so that the third surface 21 of the same dimming part 2 is compared with Its fourth surface is farther away from the light source 400, as shown in FIG. 3, so that the third surface 21 of each dimming part 2 can reflect the light emitted by the light guide plate 200 to converge in the Z direction, thereby enabling optical
  • the collimation component 100 has a good collimation effect.
  • the dimming part 2 may be in the shape of a half truncated cone.
  • the shape of the dimming portion 2 is not limited to that shown in the figure.
  • the dimming portion 2 may also have a half cone shape. Compared with a half cone shape, when the dimming part 2 is a half cone shape, the top of the half cone has a flat surface, which can better fit other parts.
  • the top surface of the half cone can be The optical adhesive layer is in direct contact, thereby increasing the contact area between the optical collimating assembly 100 and the optical adhesive layer, which is beneficial to improving the bonding effect between the optical collimating assembly 100 and the light guide plate 200.
  • the optical collimating component provided by the embodiment of the present invention, in order to ensure uniform light output of the optical collimating component 100, further, as shown in FIG. 6, a plurality of light adjusting parts 2 are evenly distributed on the light incident surface of the collimating film 1. . In this way, the uneven light output of the optical collimation assembly 100 can be avoided, so that the display effect of the display device can be ensured.
  • uniform distribution means that the intervals between the plurality of dimming parts 2 are equal to each other.
  • An embodiment of the present invention also provides a backlight module, as shown in FIG. 3, including the optical collimation assembly 100 described in the previous embodiment.
  • the backlight module includes a light guide assembly
  • the light guide assembly includes a light guide plate 200
  • the light guide plate 200 includes a light exit side and a backlight side opposite to the light exit side.
  • the optical collimation assembly 100 and the light guide plate 200 are stacked and arranged on the light exit side of the light guide plate 200, and the dimming component is located between the collimating film 1 and the light guide plate 200. In this way, a plurality of dimming parts 2 are located close to the collimating film 1 One side of the light guide plate 200.
  • the dimming member is configured to reflect the totally reflected light emitted from the light guide plate 200 and incident into the dimming member, and make the reflected totally reflected light from the collimator in a direction substantially perpendicular to the light exit surface 14.
  • Straight film injection is configured to reflect the totally reflected light emitted from the light guide plate 200 and incident into the dimming member, and make the reflected totally reflected light from the collimator in a direction substantially perpendicular to the light exit surface 14.
  • the backlight module further includes a light source 400 which is arranged on the side of the light guide plate 200 and is configured to emit incident light to the light guide plate 200, and the light guide assembly further includes The reflective assembly on the backlight side is configured to totally reflect a part of the incident light into the dimming component.
  • the reflective assembly includes a plurality of prisms.
  • the light emitted by the light source 400 enters the light guide plate 200 and is totally reflected in the light guide plate 200.
  • the light hits the prism 300 on the light guide plate 200, it is reflected by the prism 300 on the light guide plate 200, and the light is emitted from the light exit surface of the light guide plate 200.
  • the light emitted from the light-emitting surface of the light guide plate 200 enters the dimming part 2 of the optical collimation assembly 100, and the light irradiated on the third surface 21 and reflected will converge in the Z direction, thereby realizing the backlight module to emit The light is emitted in a specific direction.
  • a plurality of prisms 300 are scattered on the surface of the light guide plate 200 facing away from the optical collimation assembly 100. In this way, incident light can be reflected as much as possible, and the light extraction efficiency of the light guide assembly can be improved.
  • the prism 300 includes a bottom surface 301. Furthermore, the bottom surface 301 is parallel to the plane where the light guide plate 200 is located.
  • the prism 300 further includes a first prism surface 310, a second prism surface 320, and two third prism surfaces 330.
  • the first prism surface 310 and the second prism surface 320 are inclined relative to the bottom surface 301 and intersect each other.
  • the first prism surface 310 and the second prism surface 320 are arranged along the X+ direction shown in FIG. 8; the two third prism surfaces 330 are arranged apart along the Y direction, and are both connected to the first prism surface 310 and the second prism surface.
  • the two prism surfaces 320 are connected.
  • the X+ direction is the direction the light source 400 faces
  • the Y direction is perpendicular to the thickness direction of the light guide plate 200 and perpendicular to the X+ direction.
  • the first prism surface 310 of the prism 300 can destroy the total reflection of light in the light guide plate 200, so that the incident angle of the light relative to the light exit surface of the light guide plate 200 is reduced.
  • Alignment assembly 100 In ordinary spherical dots, the light reflected by the spherical surface is relatively stray, and a considerable proportion of the light leaks from the backlight side of the light guide plate 200.
  • the angle between the first prism surface 310 of the prism 300 and the bottom surface of the prism 300 in the embodiment of the present disclosure is an acute angle, so that light can be reflected to the light guide plate 200
  • the proportion of light leaking from the side surface of the light guide plate 200 where the prism 300 is provided is small, so that there is no need to install a reflective sheet on the side of the light guide plate 200 facing away from the light-emitting surface (ie, the backlight side), which not only reduces parts
  • the number of backlight modules also reduces the thickness of the backlight module.
  • the backlight module does not need to be provided with a reflective sheet, in at least one example, it can be well applied to a display module with a front backlight structure.
  • the prism 300 and the light guide plate 200 may be integrally formed, or may be manufactured separately, which is not specifically limited herein.
  • the refractive index of the prism 300 and the refractive index of the light guide plate 200 should be equal or similar, so as to avoid the influence of the light path when the two refractive indexes are different.
  • the cross-sectional shape of the prism 300 may be a triangle (for example, as shown in FIG. 12(b)), and the base of the triangle is defined by the bottom surface 301 of the prism 300 (as shown in FIG. 3). Shown) formed.
  • the cross-sectional shape of the prism may also be a trapezoid, and the bottom of the trapezoid is formed by the bottom surface of the prism.
  • the arrangement density of the plurality of prisms 300 on the surface of the light guide plate 200 gradually increases. Close to the light source 400, the light intensity is high, and the arrangement density of the multiple prisms 300 is small, so as to avoid the light emitted from the reflected light at that place from being too large; the light intensity is low at the place far away from the light source 400.
  • the arrangement density of the plurality of prisms 300 is relatively high, so as to prevent the light emitted from the reflected light from being too small.
  • FIG. 11 is a grating chart of the uniformity of illuminance of the backlight module in an embodiment of the disclosure. Through simulation, it can be obtained that, as shown in FIG. 11, the multiple prisms 300 are arranged in the above-mentioned manner, and the uniformity of the illuminance of the collimating optical system can reach 88%, thereby improving the uniformity of the display device.
  • the first prism surface 310 is in contact with the bottom surface 301 of the prism 300 (as shown in FIG. 9, the bottom surface of the prism 300 is the contact between the prism 300 and the light guide plate 200).
  • the angle ⁇ of the surface is an important parameter.
  • the angle ⁇ between the first prism surface 310 and the bottom surface of the prism 300 is an acute angle.
  • should not be too large or too small. If ⁇ is too large, after the light is reflected by the first prism surface 310, its incidence angle with respect to the light-emitting surface of the light guide plate 200 decreases too much, which reduces the accuracy of light deflection by the prism 300.
  • is too small, then after the light is reflected by the first prism surface 310, its incidence angle with respect to the light-emitting surface of the light guide plate 200 decreases too small, and the light needs to be totally reflected in the light guide plate 200 for multiple times. Only the multiple reflections of the prism surface 310 can exit the light guide plate 200, which is not conducive to the improvement of the dimming efficiency of the prism 300. It is found through research that when 1° ⁇ 10°, the accuracy and dimming efficiency of the prism 300 for light deflection can be ensured at the same time, which is the preferred solution.
  • the angle ⁇ between the second prism surface 320 of the prism 300 and the bottom surface 301 of the prism 300 is also an important parameter.
  • should not be too large or too small. If ⁇ is too large (for example, 90°), it will increase the difficulty of processing the prism 300; if ⁇ is too small, when the height of the prism 300 is constant, increase the prism 300 in the X direction It is easy to see the shadow of the prism 300 in the display screen. It is found through research that when 30° ⁇ 90°, it is convenient to process the prism 300, and it is not easy to see the shadow of the prism 300 in the display screen, which is beneficial to improve the display effect, so it is a preferred solution.
  • the angle ⁇ between the third prism surface 330 of the prism 300 and the bottom surface 301 of the prism 300 is also an important parameter. ⁇ should not be too large or too small. If ⁇ If it is too large (for example, 90°), it also increases the processing difficulty of the prism 300; if ⁇ is too small, when the height of the prism 300 is constant, the size of the prism 300 in the Y direction is increased, so that it is easy to see in the display The shadow of the prism 300. It is found through research that when 25° ⁇ 90°, it is convenient to process the prism 300, and it is not easy to see the shadow of the prism 300 in the display screen, which is beneficial to improve the display effect, so it is a preferred solution.
  • L1 and L2 are both smaller than 100 ⁇ m.
  • L1 is the size of the prism 300 in the X direction
  • L2 is the size of the prism 300 in the Y direction. In this way, the size of the prism 300 in the X and Y directions can be prevented from being too large, so that the user is less likely to see the shadow of the prism 300 in the display screen, thereby helping to improve the display effect.
  • the backlight module further includes an optical adhesive layer 500, and the light guide plate 200 is adhered to the optical collimation assembly 100 through the optical adhesive layer 500 In this way, the optical collimation assembly 100 and the light guide plate 200 can be firmly connected, and the misalignment between the light guide plate 200 and the optical collimation assembly 100 can be prevented.
  • the above-mentioned optical adhesive layer 500 is a low refractive index adhesive material, such as a low refractive index UV photosensitive adhesive.
  • a low refractive index UV photosensitive adhesive For example, if the refractive index n2 of the optical adhesive is less than 1.45, the optical adhesive layer 500 is closely attached to the light guide plate 200, and the attachment is flat.
  • the refractive index n1 of the light guide plate 200 and the refractive index n3 of the dimming part 2 are both greater than the refractive index n2 of the optical glue.
  • the refractive index n1 of the light guide plate 200 is greater than the refractive index n2 of the optical glue. This is to ensure that the light emitted by the light source 400 enters the optical glue layer 500 under the action of the prism 300 on the light guide plate 200, so as to ensure that light can pass through the light guide plate.
  • Total reflection occurs in 200 to facilitate the diffusion of light in the light guide plate 200 (when light is emitted from the optically dense medium to the optically thin medium, the incident angle must be less than the total reflection angle to enter the optically thin medium, otherwise total reflection will occur),
  • the light emitted from the light source 400 is prevented from entering the optical adhesive layer 500 directly without being totally reflected in the light guide plate 200.
  • the refractive index n3 of the dimming part 2 is greater than the refractive index n2 of the optical glue.
  • the plane 3 is perpendicular to the direction of the light source 400, and the third surface 21 of each dimming part 2 is located on the side of the plane 3 away from the light source 400.
  • the third surface 21 of each dimming part 2 can reflect the light emitted by the light guide plate 200 to converge in the Z direction, so that the optical collimating assembly 100 can have a better collimating effect.
  • the light When the angle ⁇ 3 ⁇ 0 between the light and the Z direction (the total reflection angle of the light guide plate 200 is ⁇ 0 ), the light enters the optical adhesive layer 500 and then enters the dimming part 2. After being reflected by the third surface 21 of the dimming part 2, the reflected light can be emitted from the collimating film 1 in a direction substantially parallel to the Z direction, achieving a collimation effect.
  • ⁇ 3> ⁇ 0 the light will continue to occur the total reflection within the light guide plate 200, continue to reduce the luminous efficiency by an incident angle of the prism 300, each cut 2 [alpha, ultimately theta] 3 will be less than ⁇ 0.
  • the light enters the optical adhesive layer 500 from the light guide plate 200, and then enters the dimming section 2 from the optical adhesive layer 500.
  • the dimming section 2 reflects the incoming light, and the reflected light is aligned along a direction substantially parallel to the Z direction.
  • the straight film 1 is shot to achieve the collimation effect.
  • the gap between two adjacent dimming parts 2 is an air layer.
  • the light emitted from the optical adhesive layer 500 hits the adjacent two
  • the light will be totally reflected and returned to the light guide plate 200, and will be reflected again through the light guide plate 200 to the optical adhesive layer 500 until the light can enter the dimming part 2.
  • the inclination angle ⁇ between the third surface 21 of the dimming portion 2 and the bottom surface 22 is an important parameter, which is directly related to the effect of light collimation.
  • the inclination angle will be described in detail below.
  • the relationship between the angle between the light and the Z direction is:
  • the incident angle ⁇ 3 of the light that can be projected out of the light guide plate 200 has an angular fluctuation interval: arcsin(n2/n1)-2 ⁇ 3 ⁇ arcsin(n2/n1); (3)
  • the size d1 of the dimming portion 2 in the X direction and the height h of the dimming portion 2 are also important parameters of the dimming portion 2.
  • the ratio of d1 to h determines the contact area between the optical collimation component 100 and the optical adhesive layer 500. The larger the ratio of d1 to h, the larger the area of the top surface of the dimming part 2, and the greater the contact area with the optical adhesive layer 500.
  • a simulation model of the backlight module provided by the embodiment of the present invention is built. After simulation analysis, the simulation results are as follows: As shown in Figure 10, the half-brightness angle of the backlight module in the X direction is ⁇ 5°, and the cut-off angle is ⁇ 10°; the half-brightness angle of light exiting the backlight module in the Y direction is ⁇ 18°, and the cut-off angle is ⁇ 45°. It can be seen from the results shown in FIG. 10 that the collimation effect in the X direction of the light is better than the collimation effect in the Y direction. As shown in FIGS. 4 and 8, this is because the light source 400 is arranged along the Y direction. There is more stray light in the Y direction. However, on the whole, the backlight module provided by the embodiment of the present invention still has a good collimation effect.
  • the half-brightness angle is the angle (the angle between the light and the Z-direction) when the light's brightness attenuation is half of the central brightness (50%);
  • the cut-off angle is the light's brightness attenuation corresponding to 0.5% of the central brightness Angle.
  • An embodiment of the present invention also provides a display device, as shown in FIG. 2, including a backlight module 600, which is, for example, the backlight module described in the previous embodiment.
  • the display device may have a front backlight structure (as shown in FIG. 2) or a rear backlight structure, which is not specifically limited here.
  • a display device with a front backlight structure no reflective sheet is provided on the backlight side of the light guide plate 200, and the backlight module 600 is provided on the front side of the display panel 700.
  • the optical collimation assembly 100 is passed through optical glue.
  • the display panel 600 may be a reflective liquid crystal display panel (R-LCD).
  • the optical collimation assembly 100 is arranged on the light exit side of the light guide plate 200, and a plurality of dimming parts 2 are located on the side surface of the collimating film 1 close to the light guide plate 200 .
  • the light emitted by the light source 400 (such as LED) enters the light guide plate 200 and is totally reflected in the light guide plate 200.
  • the prism 300 on the light guide plate 200 reflects, and the light is emitted from the light exit surface of the light guide plate 200.
  • the display device may be a device with a display function such as a mobile phone, a notebook computer, or a tablet computer.

Abstract

一种光学准直组件、背光模组及显示装置。该光学准直组件包括:准直膜(1),所述准直膜(1)包括入光面(12)和出光面(14);和调光部件,所述调光部件位于所述准直膜(1)的入光面(12)上并且包括多个阵列布置的调光部(2),每个所述调光部(2)包括:第一表面(22),靠近所述入光面(12);第二表面(23),与所述第一表面(22)相对设置且远离所述入光面(12);与所述第一表面(22)、第二表面(23)均相交的第三表面(21),所述第三表面(21)与所述第一表面(22)之间的夹角(β)为锐角,其中所述第三表面(21)构造为反射从所述第二表面(23)入射到所述调光部(2)中的光线以使该反射光线沿基本上垂直于所述出光面(14)的方向从所述准直膜(1)射出。上述光学准直组件能减少入射光的光亮度损失。

Description

光学准直组件、背光模组及显示装置
相关申请的交叉引用
本申请基于并且要求于2019年3月26日递交、名称为“一种准直膜、准直背光模组、显示模组及显示装置”的中国专利申请第201910233494.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种光学准直组件、背光模组及显示装置。
背景技术
随着显示技术的快速发展,诸如防窥的应用场景应运而生,在防窥场景下,防窥显示只能够让位于显示屏幕正前方的使用者看到显示屏幕上的内容,而位于显示屏幕两侧的人看不到显示屏幕上的内容,从而给观察者提供足够私密的观看体验。
防窥显示技术的核心是光线的准直,也就是显示面板的背光源提供的背光能够按照特定的方向出射,从而能够射入到正对着显示屏幕的使用者的眼睛中。
发明内容
本公开实施例提供一种光学准直组件、背光模组及显示装置。
根据本公开的第一方面,本公开实施例提供了一种光学准直组件,包括:
准直膜,所述准直膜包括入光面和出光面;和
调光部件,所述调光部件位于所述准直膜的入光面上并且包括多个阵列布置的调光部,每个所述调光部包括:
第一表面,靠近所述入光面;
第二表面,与所述第一表面相对设置且远离所述入光面;
与所述第一表面、第二表面均相交的第三表面,所述第三表面与所述第一表面之间的夹角为锐角,
其中所述第三表面构造为反射从所述第二表面入射到所述调光部中的光线以使该反射光线沿基本上垂直于所述出光面的方向从所述准直膜射出。
根据本公开的第二方面,本公开实施例提供了一种背光模组,包括:
导光组件,该导光组件包括导光板,该导光板包括出光侧和与所述出光侧相对的背光侧;
前述的光学准直组件,所述光学准直组件与所述导光板层叠设置,且位于所述导光板的出光侧,所述调光部件位于所述准直膜和所述导光板之间。
根据本公开的第三方面,本公开实施例提供了一种显示装置,包括前述的背光模组。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开的一种准直膜的结构示意图;
图2为本公开实施例中的显示装置的结构示意图;
图3为本公开实施例中的背光模组的工作原理示意图(X方向);
图4为本公开实施例中的背光模组的工作原理示意图(Y方向);
图5为图3的局部放大图;
图6为本公开实施例中的光学准直组件的透视图;
图7为本公开实施例中的光学准直组件的侧视图;
图8为本公开实施例中的导光组件的俯视图;
图9为本公开实施例中导光部的结构示意图;
图10为本公开实施例中背光模组的角亮度线表图;
图11为本公开实施例中背光模组的照度均一性光栅图表;
图12(a)为本公开实施例中导光部的俯视图;
图12(b)为本公开实施例中导光部的侧视图;
图12(c)为本公开实施例中导光部的另一侧视图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开的背光模组中,准直膜是能够使背光源发出的光按照特定的方向出射的膜片。图1为本公开的一种准直膜的结构示意图。如图1所示,该准直膜具有百叶窗光栅结构01,在工作时,百叶窗光栅结构01能够吸收大角度(大角度是指偏离Z向(即竖直方向)30°以上的角度)的散杂光,只有平行于Z向或者接近平行于Z向的光能够通过百叶窗光栅结构01,从而实现了背光源发出光的准直。该准直膜的百叶窗光栅结构01由于吸收了背光源发出的大角度光,这样会造成通过准直膜后的光亮度大幅度降低,从而影响显示装置的显示效果。
本公开实施例提供一种光学准直组件、背光模组及显示装置,其目的之一是能减少入射光从光学器件中射出时的光亮度损失。
本公开实施例提供一种光学准直组件,包括:准直膜,所述准直膜包括入光面和出光面;调光部件,所述调光部件位于所述准直膜的入光面上并且包括多个阵列布置的调光部。每个所述调光部包括:第一表面,靠近所述入光面;第二表面,与所述第一表面相对设置且远离所述入光面;与所述第一表面、第二表面均相交的第三表面,所述第三表面与所述第一表面之间的夹角为锐角。第三表面构造为反射从所述第二表面入射到所述调光部中的光线以使该反射光线沿基本上垂直于所述出光面的方向从所述准直膜射出。
本发明实施例提供的光学准直组件,通过调光部的第三表面对入射到调光部的光线进行反射,由此对入射光实现二维收敛,实现准直作用。进一步,由于光线按照特定的方向射出,可达到防偷窥的效果。在光学准直组件应用到背光模组时,由于本实施例的光学准直组件能反射包括大角度光线在内的入射光,不会对光源发出光的亮度造成损失,因此提高了显示装置的显示效果。
本发明实施例提供了一种光学准直组件,如图6和图7所示,包括准直膜1;准直膜1具有入光面12和出光面14,入光面14上设有调光部件,该调光部件包括呈阵列式排布 的多个调光部2。例如,每个调光部2具有与入光面12平行的底面(即第一表面)22。进一步,至少一个示例中,该底面与所述入光面12共面。调光部2还包括与底面22相对设置的顶面(即第二表面)23,以及与底面22和顶面23均相交的第三表面21和第四表面24。如图7所示,第三表面21与底面22之间的夹角为锐角。如图3所示,该第三表面21构造为反射从顶面23入射到所述调光部2中的光线以使该反射光线沿基本上垂直于出光面14的方向从准直膜1射出。
例如,如图6所示,第三表面21为锥面,这样,每个调光部2具有从下向上减缩的形状。由于第三表面21相对于底面倾斜,这样一来,入射到调光部2中的光线被第三表面反射时,能在第一方向(如图6所示的X方向)和第二方向(Y方向)上同时进行收敛,从而对入射光线实现二维收敛,实现准直作用。
至少一些实施例中,第四表面24与顶面23、底面22均相交并且和第三表面21彼此相连接,这样,与第三表面21一起形成调光部2的侧表面。第四表面24可以与第三表面21具有相同或不同的形状。在二者具有相同形状的情况下,第四表面24与底面22之间的夹角等于第三表面21与底面22的夹角并且该夹角为锐角,这样,每个调光部呈圆台形。这里,用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(也叫做截头圆锥)。在二者具有不同形状的情况下,第四表面可以为平面型。例如,如图7所示,第四表面24为平面型,其与底面22之间的夹角为直角,此时,每个所述调光部2呈半个圆台形。本文中“半个圆台”指的是在垂直于圆台的台面的方向上,沿圆台中心轴对圆台剖切后得到的部分。例如,图6中每个调光部2呈半个圆台形。
例如,当调光部2呈半个圆台形时,如图7所示,每个调光部2具有在垂直于准直膜1所在平面且平行于所述X方向的平面4内的第一截面,该第一截面的形状为直角梯形。再例如,如图4所示,每个调光部2具有在垂直于准直膜1所在平面且平行于Y方向的平面内的第二截面,所述第二截面的形状为等腰梯形。Y方向与X方向相垂直。
例如,如图6所示,多个所述调光部2沿X方向等间距地排列,这样,使入射光的分布更均匀。进一步,如图3和图7所示,至少一个示例中,上述间距可以等于零,也就是,沿X方向排列的任意相邻两个所述调光部2在入光面12上的正投影彼此直接接触。这样,半圆台形的调光部能在X方向上紧密地排列,提高调光部的光线收敛作用。至少一个示例中,沿X方向紧密排列的调光部还可以提高调光膜跟光学胶层的有效贴合面积,从而提高出光效率。本公开实施例中,调光部的作用包括收敛光线以及导光,也就是,将来自导光板或光学胶层中的光线向下从准直膜的出光面导出。
例如,如图4和图7所示,多个所述调光部2沿Y方向等间距地排列。进一步地,如图4所示,至少一个示例中,上述间距可以等于零,也就是,沿Y方向排列的任意相邻两个所述调光部2在所述入光面上的正投影彼此直接接触。这样,半圆台形的调光部能在Y方向上紧密地排列,提高调光部的光线收敛作用。至少一个示例中,沿Y方向紧密排列的调光部还可以提高调光膜跟光学胶层的有效贴合面积,从而提高出光效率。
本公开实施例的多个调光部2中,可以是一部分数目的调光部2的第三表面21上每个点的切线与调光部2的底面22之间的夹角为锐角,也可以是全部调光部2的第三表面21上每个点的切线与调光部2的底面22之间的夹角为锐角,在此不做具体限定。如图7所示,在调光部2的第一截面内,第三表面21上每个点的切线与调光部2的底面22之间的夹角均为锐角,例如图7中所示的角β为锐角。
本公开实施例中,调光部2和准直膜1可以一体成型,也可以分体制作,在此不做具体限定。当调光部2和准直膜1分体制作时,调光部2的折射率和准直膜1的折射率应相等或者相近,这样是为了避免两者折射率不同时对光线的路径造成影响,进而影响准直效果。例如,准直膜1和调光部2为一体成型并且由同一材料制成,该材料可以为以下中的一种:玻璃、PC(聚碳酸酯,是一种高分子聚合物,主要用于工程塑料)、PMMA(poly methyl methacrylate;聚甲基丙烯酸甲酯,又称亚克力)、PET(Polyethylene terephthalate;聚对苯二甲酸乙二醇酯)。例如,当调光部2和准直膜1分体设计时,准直膜1由上述材料制成,调光部2的材料可以为可固化的有机材料,例如紫外(UV)固化胶或热固化胶。
本发明实施例提供的光学准直组件中,通过调光部2上第三表面21对导光板200射出的光线进行反射,由此对入射光实现二维收敛,实现准直作用。进一步,由于光线按照特定的方向射出,可达到防偷窥的效果。在光学准直组件应用到背光模组时,由于本实施例的光学准直组件能反射包括大角度光线在内的入射光,不会对光源发出光的亮度造成损失,因此提高了显示装置的显示效果。
在本公开实施例中,如图3和图6所示,调光部2可以被看作为回转体结构。半圆台是以直角梯形的垂直于底边的腰为轴,把直角梯形旋转180°所形成的几何体。第三表面21为调光部2的曲面部分,也成为圆台的侧面。然而,调光部2的形状并限于图中所示,比如,在其他实施例中,调光部2也可以为棱台结构,比如四棱台,第三表面21和/或第四表面24为调光部2的侧面。相比棱台结构,回转体结构的回转曲面是连续的,中间没有棱角,为优选方式。棱角会对光线的反射造成一定影响,例如,照射到棱角处的光不能够很好地向Z方向(即垂直于准直膜1所在平面的方向)收敛。回转曲面能够对其周围各个方 向的光进行反射,以使反射的光线向Z方向收敛。
在调光部2为回转体结构的实施例中,如图7所示,直角梯形包括上底、下底和两个腰,其中不垂直于上底和下底的腰叫做母线。本公开实施例中,该母线可以为直线,也可以为曲线。当母线为直线时,降低了第三表面21的复杂度,从而使调光部2更容易制作,进而有利于降低调光部2的制作成本。
在调光部2为回转体结构的实施例中,调光部2可以是圆台形,即以图7所示的直角梯形的垂直于底边的腰为轴,把直角梯形旋转360°所形成的几何体。相比调光部2是圆台形,调光部2是半圆台形时,占用空间更小,在准直膜1的入光面面积相同的情况下,可以在准直膜1的入光面上设置更多的调光部2。这样,在应用到背光模组中时,如图3所示,从导光板200射出的光线可以被更多的调光部2反射出,从而保证了背光模组的光亮度。进一步,如图3所示,由于光源400是位于导光板200的侧面,调光部2在对导光板200的射出的光线的反射时,只有第三表面21起到反射作用,也就是只有调光部2的远离光源400的表面对导光板200的射出的光线进行反射。如果调光部2为圆台形,那么会使调光部2的靠近光源400的另一表面发挥不到反射的作用,因此,调光部2是半圆台形能够避免对调光部2材料的浪费,为优选方案。
在调光部2是半圆台形的实施例中,如图7所示,每个调光部2的第三表面21均位于平面3的同一侧,也就是:每个调光部2的第三表面21均位于平面3的左侧。例如,平面3为半圆台形调光部2的第四表面所在的平面。然而,多个调光部2的第三表面21的位置设置方式并不限于图7中所示。例如,其他实施例也可以采用以下设置方式:一部分数目的调光部2中的每一个调光部2的第三表面21均位于平面3的第一侧(例如左侧),另一部分数目的调光部2中的每一个调光部2的第三表面21均位于平面3的第二侧(例如右侧)。当每个调光部2的第三表面21均位于平面3的同一侧时,在装配时可以调整光学准直组件100的安装方式,以使同一调光部2的第三表面21相比于其第四表面更远离光源400,如图3所示,这样每个调光部2的第三表面21均能够对导光板200射出的光进行反射,使其向Z向收敛,从而可以使光学准直组件100具有较好的准直效果。
在本公开实施例中,如图6和图7所示,调光部2可以呈半个圆台形。调光部2的形状不限于图中所示,比如,其他实施例中,调光部2也可以呈半个圆锥形。相比半个圆锥形,调光部2呈半个圆台形时,半个圆台的顶部具有平面,可以更好地和其它部件贴合,比如图3所示,半个圆台的顶面可以与光学胶层直接接触,从而增大了光学准直组件100与光学胶层的接触面积,有利于提高光学准直组件100与导光板200之间的粘接效果。
本发明实施例提供的光学准直组件中,为了保证光学准直组件100的出光均匀,进一步地,如图6所示,多个调光部2均匀分布于准直膜1的入光面上。这样可以避免光学准直组件100的出光不均匀,从而可以保证显示装置的显示效果。本文中,“均匀分布”是指多个调光部2之间的间隔彼此相等。
本发明实施例还提供了一种背光模组,如图3所示,包括前面实施例中所述的光学准直组件100。
例如,背光模组包括导光组件,该导光组件包括导光板200,该导光板200包括出光侧和与所述出光侧相对的背光侧。光学准直组件100与导光板200层叠设置,且位于导光板200的出光侧,调光部件位于准直膜1和导光板200之间,这样,多个调光部2位于准直膜1靠近导光板200的一侧。
例如,调光部件构造为反射从导光板200射出的、且入射到调光部件中的全反射光线,并且使该反射的该全反射光线沿基本上垂直于出光面14的方向从所述准直膜射出。
例如,背光模组还包括光源400,所述光源400设置于所述导光板200的侧向并且构造为向所述导光板200发出入射光,所述导光组件还包括设置于所述导光板的所述背光侧的反射组件,该反射组件构造为将所述入射光的一部分全反射到所述调光部件中。例如,反射组件包括多个棱镜。
例如,在背光模组工作时,如图3所示,光源400发出的光线进入到导光板200中并在导光板200中发生全反射。当光线射到导光板200上的棱镜300上,经导光板200上的棱镜300反射,光线从导光板200的出光面射出。从导光板200的出光面射出的光进入到光学准直组件100的调光部2中,照射到第三表面21上并发生反射后的光线会向Z方向收敛,从而实现了背光模组发出的光按照特定的方向射出。
例如,如图3和图8所示,本发明实施例提供的背光模组中,多个棱镜300分散设置于导光板200背离光学准直组件100的一侧表面上。这样,可以尽可能多地对入射光进行反射,提高导光组件的出光效率。
例如,如图9所示,棱镜300包括底面301。进一步,该底面301与导光板200所在平面平行。棱镜300还包括第一棱镜面310、第二棱镜面320和两个第三棱镜面330。第一棱镜面310、第二棱镜面320相对底面301倾斜,且彼此相交。进一步,至少一个示例中,第一棱镜面310、第二棱镜面320沿图8所示的X+方向设置;两个第三棱镜面330沿Y方向相隔设置,且均与第一棱镜面310、第二棱镜面320相接。X+方向为光源400所朝向的方向,Y方向为垂直于导光板200的厚度方向,且与X+方向相垂直。
本公开实施例中,棱镜300的第一棱镜面310能够破坏光线在导光板200内的全反射,使得光线相对导光板200出光面的入射角减小。例如,如图3所示,光线的相对导光板200出光面的入射角由θ1减小至θ3,θ3=θ1-2α,使光线经第一棱镜面310的反射后射出导光板200进入到光学准直组件100中。在普通的球面网点中,通过球面反射的光线比较杂散,相当一部分比例的光从导光板200的背光侧漏出,因此需要在导光板200的背光侧设置反射片。相较于普通的网点(也就是球面网点),本公开实施例的棱镜300中的第一棱镜面310与棱镜300的底面之间的夹角为锐角,这样能够将光线反射至导光板200的出光面,光线从导光板200设置棱镜300的一侧表面漏出的比例很小,这样就无需在导光板200的背向出光面的一侧(即背光侧)设置反射片,不但减少了零部件的数量,还减小了该背光模组厚度。进一步地,由于该背光模组无需设置反射片,至少一个示例中,能够很好地适用于前置背光源结构的显示模组中。
本公开实施例中,棱镜300与导光板200可以一体成型,也可以分体制作,在此不做具体限定。当棱镜300与导光板200分体制作时,棱镜300的折射率与导光板200的折射率应相等或者相近,这样是为了避免两者折射率不同时对光线的路径造成影响。如图9所示,在垂直于Y方向的平面内,棱镜300的截面形状可以为三角形(例如,如图12(b)所示),三角形的底边由棱镜300的底面301(如图3所示)形成。棱镜的截面形状也可以为梯形,梯形的下底由棱镜的底面形成。
为了使导光板200射出的光线更加均匀,如图8所示,沿X+方向,多个棱镜300在导光板200的表面上的排布密度逐渐增大。在靠近光源400处,光照强度较大,多个棱镜300的排布密度较小,这样是为了避免该处反射的光线的出光量不至于过大;在远离光源400处,光照强度较小,多个棱镜300的排布密度较大,这样是为了避免该处反射的光线的出光量不至于过小。通过上述排布可以使导光板200射出的光线分布均匀,从而保证导光板200射出光的亮度均一。
图11为本公开实施例中背光模组的照度均一性光栅图表。经过模拟仿真可得,如图11所示,多个棱镜300通过上述方式排布,该准直光学系统的照度均一性可达88%,从而提高显示装置的画面均一性。
本公开实施例中,如图3和图12(b)所示,第一棱镜面310与棱镜300的底面301(如图9中所示,棱镜300的底面就是棱镜300与导光板200相接触的表面)的夹角α是一个重要的参数。例如,第一棱镜面310与棱镜300的底面之间的夹角α为锐角。α不宜过大,也不宜过小。如果α过大,那么光线经过第一棱镜面310的反射后,其相对导光板200出 光面的入射角的减小幅度过大,这样降低了棱镜300对光线偏转的精准度。如果α过小,那么光线经过第一棱镜面310的反射后,其相对导光板200出光面的入射角的减小幅度过小,光线需要在导光板200内发生多次全反射,经过第一棱镜面310的多次反射才能够射出导光板200,这样不利于棱镜300调光效率的提高。经研究发现,当1°<α<10°时,能够同时保证棱镜300对光线偏转的精准度和调光效率,因此为优选方案。
例如,如图9和图12(b)所示,棱镜300的第二棱镜面320与棱镜300的底面301之间的夹角δ也是一个重要的参数。δ不宜过大,也不宜过小,如果δ过大(比如为90°),增加了棱镜300的加工难度;如果δ过小,那么在棱镜300的高度一定时,增加了棱镜300在X方向的尺寸,这样容易在显示画面中看到棱镜300的影子。经研究发现,当30°<δ<90°时,这样既便于棱镜300的加工,也不容易在显示画面中看到棱镜300的影子,有利于提高显示效果,因此为优选方案。
例如,如图9图12(c)所示,棱镜300的第三棱镜面330与棱镜300的底面301之间的夹角γ也是一个重要的参数,γ不宜过大,也不宜过小,如果γ过大(比如为90°),同样增加了棱镜300的加工难度;如果γ过小,那么在棱镜300的高度一定时,增加了棱镜300在Y方向的尺寸,这样容易在显示画面中看到棱镜300的影子。经研究发现,当25°<γ<90°时,这样既便于棱镜300的加工,也不容易在显示画面中看到棱镜300的影子,有利于提高显示效果,因此为优选方案。
为了使用户更不容易在显示画面中看到棱镜300的影子,如图9和图12(a)所示,L1、L2均小于100μm。L1为棱镜300在X方向的尺寸,L2为棱镜300在Y方向的尺寸。这样,可以使得棱镜300在X、Y方向的尺寸不至于过大,使用户更不容易在显示画面中看到棱镜300的影子,从而有利于提高显示效果。
为了使光学准直组件100和导光板200牢固地连接,例如,如图3所示,该背光模组还包括光学胶层500,导光板200通过光学胶层500与光学准直组件100相粘接,这样可以保证光学准直组件100和导光板200牢固地连接,防止导光板200和光学准直组件100之间发生错位。
例如,上述光学胶层500为一种低折射率胶材,比如低折射率UV光敏胶。例如,光学胶的折射率n2<1.45,光学胶层500跟导光板200紧密贴合,且贴合平整。
例如,导光板200的折射率n1、调光部2的折射率n3均大于光学胶的折射率n2。导光板200的折射率n1大于光学胶的折射率n2,这样是为了保证光源400射出的光在导光板200上棱镜300反射的作用下进入到光学胶层500中,从而保证光线能够在导光板200 中发生全反射,以便于光线在导光板200中的扩散(光由光密介质射向光疏介质时,入射角需要小于全反射角才能进入到光疏介质,否则会发生全反射),防止光源400射出的光不在导光板200中发生全反射直接经进入到光学胶层500中。调光部2的折射率n3大于光学胶的折射率n2,这是为了保证经过光学胶层500的光能够直接进入到调光部2中(光能够由光疏介质直接进入到光密介质),避免光线在调光部2上发生全反射影响光向Z方向收敛。
例如,如图3所示,平面3与光源400的朝向相垂直,并且每个调光部2的第三表面21均位于平面3背离光源400的一侧。这样每个调光部2的第三表面21均能够对导光板200射出的光进行反射,使其向Z向收敛,从而可以使光学准直组件100具有较好的准直效果。
下面具体描述一下本发明实施例提供的背光模组的工作原理:
如图3所示,光源400发出的光线进入导光板200中,进入到导光板200之后,光线会在导光板200内发生全反射,当光线照射到棱镜300上并经过第一棱镜面310的反射之后,光线与Z方向的夹角会由θ1减小至θ3,θ3满足θ3=θ1-2α。
当光线与Z方向夹角θ3<θ 0(导光板200的全反射角度为θ 0)时,光线会进入光学胶层500,然后进入到调光部2中。经过调光部2的第三表面21的反射后,反射光线可以沿基本上平行于Z方向的方向从准直膜1射出,实现了准直的效果。当θ3>θ 0,光线会继续在导光板200内发生全反射,通过棱镜300继续缩减光效的入射角度,每次缩减2α,最终θ3会小于θ 0。光线由导光板200进入光学胶层500,然后由光学胶层500进入到调光部2中,调光部2对进入的光线进行反射,并且反射光线沿基本上平行于Z方向的方向从准直膜1射出,实现了准直的效果。
如图3所示,在光学准直组件100中,相邻的两个调光部2之间的空隙处为空气层,当从光学胶层500中的射出的光线打到相邻的两个调光部2之间的空气层之上时,光线会发生全反射而返回至导光板200中,再次经过导光板200反射至光学胶层500,直到光线能够进入到调光部2中。
本发明实施例提供的光学准直组件100中,调光部2的第三表面21与其底面22之间的倾角β是一个重要的参数,直接关系着光线准直的效果,下面具体描述一下倾角β的具体计算过程:
如图3和图5所示,由几何关系得:β=(π-θ4)/2;  (1)
根据光线由导光板200进入到光学胶层500,再由光学胶层500进入到调光部2过程 中,光线与Z向之间的夹角关系得:
θ4=arcsin[(n1/n3)sinθ3];  (2)
在X方向上,能够投射射出导光板200的光线的入射角θ3具有一个角度波动区间:arcsin(n2/n1)-2α≤θ3≤arcsin(n2/n1);  (3)
现取θ3的波动区间的某个值进行后续计算,即:
θ3=arcsin(n2/n1)-α;  (4)
根据公式(1)、(2)和(4)得出:
β=90°-(1/2)arcsin{(n1/n3)sin[arcsin(n2/n1)-α]};  (5)
将n1、n2、n3和α的值带入公式(5)就可以得出β的值。
本发明实施例提供的光学准直组件100中,调光部2在X向的尺寸d1以及调光部2的高度h也是调光部2的中重要的参数。d1跟h的比值,决定了光学准直组件100和光学胶层500的接触面积,d1跟h的比值越大,说明调光部2的顶表面的面积就越大,那么和光学胶层500的接触面积就越大,这样导光板200射出光大部分不经空气层的反射就可以进入到光学准直组件100中,这样光学准直组件100的光效就越高;反之,d1跟h的比值越小,则光学准直组件100的光效就越低。
如图5所示,由几何关系可得:
d1/h≤(tanθ4)min;  (6)
将θ4=arcsin[(n1/n3)sinθ3]
=arcsin{(n1/n3)sin[arcsin(n2/n1)-2α]};带入公式(6)中得:
d1/h≤tan{arcsin{(n1/n3)sin[arcsin(n2/n1)-2α]}};  (7)
将n1、n2、n3和α的值带入公式(7)就可以得出d1/h的最大值,根据d1/h,以及d1大小取值(尽量小于50μm),就可以得出h值大小。
对本发明实施例提供的背光模组搭建仿真模型,经过仿真分析后,模拟结果如下:如图10所示,在X方向上光线射出该背光模组的半亮度角为±5°,截止角为±10°;在Y方向上光线射出该背光模组的半亮度角为±18°,截止角为±45°。由图10所示的结果可以看出,光线的X方向上的准直效果要好于在Y方向上的准直效果,如图4和图8所示,这是由于光源400沿Y方向设置,Y方向上的散杂光较多。不过从总体上来看,本发明实施例提供的背光模组依然具有较好的准直效果。
需要说明的是:半亮度角为光线的亮度衰减为中心亮度一半(50%)时所对应的角度(光线与Z向的夹角);截止角为光线的亮度衰减为中心亮度0.5%所对应的角度。
本发明实施例还提供了一种显示装置,如图2所示,包括背光模组600,该背光模组600例如为前面实施例所述的背光模组。
例如,该显示装置既可以具有前置背光源结构(如图2所示),也可以是后置背光源结构,在此不做具体限定。在前置背光源结构的显示装置中,导光板200的背光侧不设置反射片,背光模组600是设置在显示面板700的前侧,如图2所示,光学准直组件100通过光学胶跟显示面板600粘接,背光模组600的光线会由上而下进入显示面板600,最终经由显示面板600底部的反射层反射射出导光板200,从而实现前置背光功能。例如,显示面板600可以为反射式液晶显示面板(R-LCD)。
在显示装置中,如图2和图3所示,光学准直组件100是设置在导光板200的出光侧,并且多个调光部2位于准直膜1靠近导光板200的一侧表面上。在工作时,如图3所示,光源400(比如LED)发出的光线进入到导光板200中并在导光板200中发生全反射,当光线射到导光板200上的棱镜300上,经导光板200上的棱镜300反射,光线从导光板200的出光面射出。从导光板200的出光面射出的光进入到光学准直组件100的调光部2中,由于调光部2的第三表面21上每个点的切线与调光部2的底面22之间的夹角均为锐角,这样进入到调光部2中的光照射到第三表面21上并发生反射后的光线会向Z方向收敛(也就是将光线与Z向的夹角约束到一定范围内),从而使背光模组发出的光按照特定的方向射出。例如,该显示装置可以为手机、笔记本电脑、平板电脑等具有显示功能的装置。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种光学准直组件,包括:
    准直膜,所述准直膜包括入光面和出光面;和
    调光部件,所述调光部件位于所述准直膜的入光面上并且包括多个阵列布置的调光部,每个所述调光部包括:
    第一表面,靠近所述入光面;
    第二表面,与所述第一表面相对设置且远离所述入光面;
    与所述第一表面、第二表面均相交的第三表面,所述第三表面与所述第一表面之间的夹角为锐角,
    其中所述第三表面构造为反射从所述第二表面入射到所述调光部中的光线以使该反射光线沿基本上垂直于所述出光面的方向从所述准直膜射出。
  2. 根据权利要求1所述的光学准直组件,其中所述第三表面包括锥面。
  3. 根据权利要求2所述的光学准直组件,还包括:与所述第一表面、第二表面均相交的第四表面,第四表面和所述锥面彼此相接,并且所述第四表面为平面。
  4. 根据权利要求3所述的光学准直组件,其中所述第四表面与所述第一表面之间的夹角为直角,每个所述调光部呈半个圆台形。
  5. 根据权利要求4所述的光学准直组件,其中多个所述调光部沿平行于所述准直膜所在平面的第一方向等间距地排列,每个所述调光部具有在垂直于所述准直膜所在平面且平行于所述第一方向的平面内的第一截面,所述第一截面的形状为直角梯形。
  6. 根据权利要求5所述的光学准直组件,其中在所述第一截面内,所述第三表面上每个点的切线与所述第一表面之间的夹角为锐角。
  7. 根据权利要6所述的光学准直组件,其中沿所述第一方向排列的任意相邻两个所述调光部在所述入光面上的正投影彼此直接接触。
  8. 根据权利要求5至7任一项所述的光学准直组件,其中多个所述调光部沿平行于所述准直膜所在平面的第二方向等间距地排列,每个所述调光部具有在垂直于所述准直膜所在平面且平行于所述第二方向的平面内的第二截面,所述第二截面的形状为等腰梯形,并且所述第二方向与所述第一方向相垂直。
  9. 根据权利要求8所述的光学准直组件,其中沿所述第二方向排列的任意相邻两个所述调光部在所述入光面上的正投影彼此直接接触。
  10. 根据权利要求1至9任一项所述的光学准直组件,其中所述准直膜和所述调光部为分体制作,所述准直膜包括有机绝缘材料,所述调光部件包括可固化有机绝缘材料。
  11. 一种背光模组,包括:
    导光组件,该导光组件包括导光板,该导光板包括出光侧和与所述出光侧相对的背光侧;
    根据权利要求1至10任一项所述的光学准直组件,所述光学准直组件与所述导光板层叠设置,且位于所述导光板的出光侧,所述调光部件位于所述准直膜和所述导光板之间。
  12. 根据权利要求11所述的背光模组,其中所述调光部件构造为反射从所述导光板射出的、且入射到所述调光部件中的全反射光线,并且使该反射的该全反射光线沿基本上垂直于所述出光面的方向从所述准直膜射出。
  13. 根据权利要求11或12所述的背光模组,还包括光源,所述光源设置于所述导光板的侧向并且构造为向所述导光板发出入射光,所述导光组件还包括设置于所述导光板的所述背光侧的反射组件,该反射组件构造为将所述入射光的一部分全反射到所述调光部件中。
  14. 根据权利要求13所述的背光模组,其中所述反射组件包括多个棱镜,多个所述棱镜沿背向所述光源的方向的排布密度逐渐增大。
  15. 根据权利要求14所述的背光模组,其中每个所述棱镜包括:
    底面,与所述导光板所在平面平行;
    第一棱镜面、第二棱镜面以及两个第三棱镜面,所述第一棱镜面、所述第二棱镜面相对所述底面倾斜且所述第一棱镜面、所述第二棱镜面彼此相交,两个所述第三棱镜面彼此相对设置,且均与所述第一棱镜面、所述第二棱镜面和底面相交。
  16. 根据权利要求15所述的背光模组,其中所述第一棱镜面与所述底面之间的夹角为α,并且1°<α<10°,所述第二棱镜面与所述底面之间的夹角为δ,并且30°<δ<90°。
  17. 根据权利要求15或16所述的背光模组,其中两个所述第三棱镜面与所述导光部的底面之间的夹角相等且为γ,并且25°<γ<90°。
  18. 根据权利要求11至17任一项所述的背光模组,还包括光学胶层,所述导光板通过所述光学胶层与所述调光部件相粘接,并且所述导光板的折射率、所述调光部件的折射率均大于所述第一光学胶层的折射率。
  19. 一种显示装置,包括根据权利要求11至18任一项所述的背光模组。
  20. 根据权利要求所述的显示装置,还包括:
    显示面板,位于所述光学准直组件的远离所述导光板的一侧,其中从所述光源发出的光经过所述导光板和所述光学准直组件入射到所述显示面板中。
PCT/CN2020/075459 2019-03-26 2020-02-17 光学准直组件、背光模组及显示装置 WO2020192300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/966,798 US11307342B2 (en) 2019-03-26 2020-02-17 Optical collimation assembly, backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910233494.0A CN109765725B (zh) 2019-03-26 2019-03-26 一种准直膜、准直背光模组、显示模组及显示装置
CN201910233494.0 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020192300A1 true WO2020192300A1 (zh) 2020-10-01

Family

ID=66459999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075459 WO2020192300A1 (zh) 2019-03-26 2020-02-17 光学准直组件、背光模组及显示装置

Country Status (3)

Country Link
US (1) US11307342B2 (zh)
CN (1) CN109765725B (zh)
WO (1) WO2020192300A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765725B (zh) * 2019-03-26 2021-04-06 合肥京东方光电科技有限公司 一种准直膜、准直背光模组、显示模组及显示装置
WO2021042283A1 (zh) * 2019-09-04 2021-03-11 京东方科技集团股份有限公司 纹路识别装置及显示装置
CN113805267A (zh) * 2020-06-15 2021-12-17 江苏集萃智能液晶科技有限公司 一种导光板及背光源结构
CN111929937B (zh) * 2020-08-26 2023-04-18 合肥泰沃达智能装备有限公司 一种超薄显示装置以及制作方法
CN111929762B (zh) * 2020-08-26 2022-09-13 合肥泰沃达智能装备有限公司 一种高出光角度的导光板及制作方法
US20220346904A1 (en) * 2021-05-03 2022-11-03 The Cleveland Clinic Foundation Machine vision needle counting imaging tray

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130294108A1 (en) * 2012-05-03 2013-11-07 National Chiao Tung University Optical film and backlight module using the same
DE102014200369A1 (de) * 2014-01-10 2015-07-16 Osram Gmbh Flächenleuchtvorrichtung mit flächigem Lichtleiter
CN105842774A (zh) * 2016-04-22 2016-08-10 福建船政交通职业学院 一种具有调光、准直和保偏的复合光学薄膜及其背光模组
CN106597599A (zh) * 2017-01-17 2017-04-26 京东方科技集团股份有限公司 背光模组、显示面板及显示装置
CN109212660A (zh) * 2018-10-26 2019-01-15 合肥京东方光电科技有限公司 导光组件、光准直组件、背光模组及显示装置
CN109765725A (zh) * 2019-03-26 2019-05-17 合肥京东方光电科技有限公司 一种准直膜、准直背光模组、显示模组及显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752505B2 (en) * 1999-02-23 2004-06-22 Solid State Opto Limited Light redirecting films and film systems
US6838142B2 (en) * 2001-05-18 2005-01-04 3M Innovative Properties Company Specular laminates
CN1756978A (zh) * 2003-01-10 2006-04-05 霍尼韦尔国际公司 渐缩光学元件与光纤的联结
US7093968B2 (en) * 2004-08-19 2006-08-22 Radiant Opto-Electronics Corporation Light guide plate and LGP-based FFP
US7220026B2 (en) * 2004-12-30 2007-05-22 3M Innovative Properties Company Optical film having a structured surface with offset prismatic structures
EP2031424B1 (en) * 2007-08-28 2011-03-09 Nissan Motor Co., Ltd. Antireflective structure and antireflective moulded body
TWI352222B (en) * 2008-01-16 2011-11-11 Coretronic Corp Light-collimating film
JP4681075B1 (ja) * 2010-01-14 2011-05-11 鈴木 優一 照明装置および表示装置
CN103688201A (zh) * 2011-05-20 2014-03-26 3M创新有限公司 光控制膜
TW201331646A (zh) * 2011-12-01 2013-08-01 Toppan Printing Co Ltd 照明裝置及具有照明裝置的顯示裝置
US20140375929A1 (en) * 2011-12-27 2014-12-25 3M Innovative Properties Company Light management film
WO2019049505A1 (ja) * 2017-09-05 2019-03-14 ソニー株式会社 発光装置および表示装置
TWI665479B (zh) * 2018-01-26 2019-07-11 光耀科技股份有限公司 導光膜及具有該導光膜的背光模組
CN108519637A (zh) * 2018-04-13 2018-09-11 京东方科技集团股份有限公司 导光板及其制作方法、前置光源、显示装置
CN108594354B (zh) 2018-04-27 2022-08-09 京东方科技集团股份有限公司 光学模组及显示装置
KR20200024982A (ko) * 2018-08-28 2020-03-10 삼성디스플레이 주식회사 백라이트 유닛 및 이를 구비한 표시 장치
DE102018122918B4 (de) * 2018-09-19 2020-11-05 JENETRIC GmbH Vorrichtung zur optischen Direktaufnahme von Hautabdrücken für mobile Anwendung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130294108A1 (en) * 2012-05-03 2013-11-07 National Chiao Tung University Optical film and backlight module using the same
DE102014200369A1 (de) * 2014-01-10 2015-07-16 Osram Gmbh Flächenleuchtvorrichtung mit flächigem Lichtleiter
CN105842774A (zh) * 2016-04-22 2016-08-10 福建船政交通职业学院 一种具有调光、准直和保偏的复合光学薄膜及其背光模组
CN106597599A (zh) * 2017-01-17 2017-04-26 京东方科技集团股份有限公司 背光模组、显示面板及显示装置
CN109212660A (zh) * 2018-10-26 2019-01-15 合肥京东方光电科技有限公司 导光组件、光准直组件、背光模组及显示装置
CN109765725A (zh) * 2019-03-26 2019-05-17 合肥京东方光电科技有限公司 一种准直膜、准直背光模组、显示模组及显示装置

Also Published As

Publication number Publication date
CN109765725A (zh) 2019-05-17
CN109765725B (zh) 2021-04-06
US11307342B2 (en) 2022-04-19
US20210231856A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2020192300A1 (zh) 光学准直组件、背光模组及显示装置
CN109212660B (zh) 导光组件、光准直组件、背光模组及显示装置
KR102482891B1 (ko) 복합 광학 시트, 이를 이용한 액정 표시 장치 및 그 제조방법
TWI665479B (zh) 導光膜及具有該導光膜的背光模組
JP2010531045A (ja) バックライト出力特性を制御するシステム及び方法
JP2009164101A (ja) バックライト
CN203849450U (zh) 一种导光板
TWM608390U (zh) 背光模組
CN113156707B (zh) 面光源装置和平板显示装置
KR101813753B1 (ko) 액정표시장치
TW201945776A (zh) 楔形光導
US10942393B2 (en) Light source assembly, backlight module and display device
WO2018166177A1 (zh) 透明显示装置
CN105116598A (zh) 一种背光模组、棱镜片以及电视机
US8425067B2 (en) Composite diffuser structure and backlight module
JP2010250987A (ja) 光均一素子、光学シート、バックライトユニット及びディスプレイ装置
JP6975409B2 (ja) 導光板、面光源装置および表示装置
TWM276217U (en) Backlight module and liquid crystal display
US20220291579A1 (en) Projection screen
TWM619556U (zh) 背光模組及顯示裝置
JP6542889B2 (ja) 導光板とバックライトモジュール及び液晶表示装置
TW201500817A (zh) 曲型背光模組
JP6277650B2 (ja) 導光板、面光源装置、映像源ユニット、及び液晶表示装置
CN108873126B (zh) 一种光学膜片、背光模组及显示装置
JP5896265B2 (ja) 光学モジュールおよび表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777098

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: OTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20777098

Country of ref document: EP

Kind code of ref document: A1