WO2018166177A1 - 透明显示装置 - Google Patents

透明显示装置 Download PDF

Info

Publication number
WO2018166177A1
WO2018166177A1 PCT/CN2017/104042 CN2017104042W WO2018166177A1 WO 2018166177 A1 WO2018166177 A1 WO 2018166177A1 CN 2017104042 W CN2017104042 W CN 2017104042W WO 2018166177 A1 WO2018166177 A1 WO 2018166177A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical structure
transparent display
light
display device
optical
Prior art date
Application number
PCT/CN2017/104042
Other languages
English (en)
French (fr)
Inventor
张宇
周昊
胡巍浩
池海
张亮
张伟
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/769,505 priority Critical patent/US10551710B2/en
Publication of WO2018166177A1 publication Critical patent/WO2018166177A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133342Constructional arrangements; Manufacturing methods for double-sided displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present disclosure relates to the field of display technology, and more particularly to a transparent display device.
  • a transparent display generally refers to a display that can form a transparent display state so that a viewer can see the image displayed in the display and the image behind the display.
  • Transparent displays have many possible applications, such as windows for buildings or cars and display windows for shopping malls. In addition to the applications of these large devices, small devices such as handheld tablets can also benefit from transparent displays, for example, enabling users to view maps and view the front scene through the screen.
  • the transparent display device In the technical field of liquid crystal display (LCD), in order to provide a light source for the display, the transparent display device is mostly a box-type design, and a box structure is arranged on the light-incident side of the transparent display screen, and the ordinary light source is fixed at On the side of the cabinet, the common light source can be a light-emitting diode (LED) structure commonly used for illumination display or backlight, and the display object is placed in the box, and the light of the ordinary light source fixed through the side of the box body For the illumination of the display, this structure has a cumbersome overall appearance due to its inherent box-like structure, poor display flexibility, and lack of human-computer interaction.
  • LED light-emitting diode
  • An embodiment of the present disclosure provides a transparent display device, including: a transparent display panel, fixed to a first optical structure on the light incident side of the transparent display panel, and a plurality of light sources disposed on a side of the first optical structure;
  • a side of the first optical structure facing away from the transparent display panel is provided with a scattering lens structure, and a refractive index of the medium between the first optical structure and the transparent display panel is smaller than that of the first optical structure Refractive index.
  • the scattering lens structure includes a plurality of convex structures uniformly disposed on a side of the first optical structure facing away from the transparent display panel.
  • the convex structure is a lenticular lens.
  • the lenticular lens is internally provided with a sawtooth structure for concentrating light reflected by the first optical structure toward the convex structure.
  • the convex structure is internally provided with an arc-shaped cavity.
  • the first optical structure is internally provided with uniformly distributed diffusion particles or air bubbles.
  • the first optical structure and the convex structure are each composed of a transparent material.
  • the first optical structure and the convex structure are made of the same material.
  • the first optical structure and the convex structure are a unitary structure
  • the first optical structure and the convex structure are bonded by a transparent optical adhesive.
  • the thickness of the first optical structure is between 1.5 mm and 4.5 mm.
  • a second optical structure for concentrating light emitted by the light source is disposed between each of the light sources and the first optical structure.
  • the second optical structure is in a truncated cone shape
  • a diameter of a surface of the second optical structure adjacent to a side of the first optical structure is larger than a diameter of a surface adjacent to a side of the light source, and a side of the second optical structure is coated with a reflective layer.
  • a diameter of a surface of the second optical structure near a side of the first optical structure is not greater than a thickness of the first optical structure.
  • a diameter of a surface of the second optical structure adjacent to a side of the first optical structure is between 1.5 mm and 4.5 mm, and the second optical structure The thickness is between 0.56 mm and 1.68 mm.
  • a groove is disposed on a side of the second optical structure adjacent to the light source, and a total reflection lens is disposed inside the groove;
  • the total reflection lens is a revolving body, and the shape of the cross section of the total reflection lens in a direction perpendicular to the surface of the second optical structure is two symmetrical triangles.
  • FIG. 1 is a schematic structural diagram of a transparent display device according to an embodiment of the present disclosure
  • 2a is a schematic view of the optical path of the light in the first optical structure
  • Figure 2b is a schematic diagram of the optical path of the light in the first optical structure and the convex structure
  • Figure 2c is a second schematic diagram of the optical path of the light in the first optical structure and the convex structure
  • FIG. 3 is a schematic view showing the internal structure of a first optical structure and a convex structure in an embodiment of the present disclosure
  • Figure 4a is a schematic diagram of the optical path of the light in the convex structure
  • Figure 4b is a second schematic diagram of the optical path of the light in the convex structure
  • FIG. 5a is a schematic diagram of a set position of a second optical structure in an embodiment of the present disclosure
  • Figure 5b is a second schematic view of the arrangement position of the second optical structure in the embodiment of the present disclosure.
  • Figure 5c is a schematic cross-sectional view of a second optical structure in accordance with an embodiment of the present disclosure.
  • At least one embodiment of the present disclosure discloses a transparent display device to at least solve the problem of poor flexibility of a box type transparent display device existing in the related art.
  • the embodiment of the present disclosure provides a transparent display device, as shown in FIG. 1 , comprising: a transparent display panel 11 , a first optical structure 12 fixed on the light incident side of the transparent display panel 11 , and a side disposed on the first optical structure 12 a plurality of light sources 13 on the side; wherein
  • a side of the first optical structure 12 facing away from the transparent display panel 11 is provided with a scattering lens structure (not seen in FIG. 1 ), and the refractive index of the medium between the first optical structure 12 and the transparent display panel 11 is smaller than that of the first optical The refractive index of structure 12.
  • the transparent display device provided by the embodiment of the present disclosure has a scattering lens structure disposed on a side of the first optical structure 12 facing away from the transparent display panel 11, and the refractive index of the medium between the first optical structure 12 and the transparent display panel 11 is less than The refractive index of the first optical structure 12, the light source 13 is incident on the surface of the first optical structure 12 near the surface of the transparent display panel 11, and the light having an incident angle smaller than the critical angle of total reflection is transmitted through the first optical structure 12 to be transparent.
  • a display structure for providing a backlight for the transparent display structure, the light having an incident angle greater than or equal to the critical angle of total reflection is reflected to the diffusing lens structure and directed toward the display 22 facing away from the side of the transparent display device, and providing the light source 13 for the display 22,
  • the double-sided open transparent display effect is realized, and the flexibility of the transparent display device is greatly improved compared to the box-type transparent display device.
  • the light source 13 is disposed on one side of the first optical structure 12 as an example. In practical applications, the first optical device may also be used according to actual needs. The light source 13 is also disposed at the other side of the structure 12. For the scene where the brightness is required to be high, the light source 13 may be disposed on all four sides of the first optical structure 12, and the number of the light sources 13 is not limited herein.
  • the light source 13 can be a Light-Emitting Diode (LED) chip.
  • a package (PKG) structure with a specification of 1313 or 1515 can be selected.
  • the transparent display panel 11 After the light emitted by the light source 13 passes through the first optical structure 12, a part of the light is directed to the transparent display panel. 11. Providing a backlight for the transparent display panel 11, a portion of which is directed toward the display 22, and providing the light source 13 for the display 22. Thus, the transparent display panel 11 faces away from the human eye 21 of the first optical structure 12, and the transparent display panel can be seen. The displayed image 22 can be seen through the transparent display panel 11 again.
  • the first optical structure may be a light guide plate or a light diffusing plate, which is not limited herein.
  • the scattering lens structure includes a plurality of convex shapes that are evenly arranged on a side of the first optical structure 12 facing away from the transparent display panel 11 .
  • the structure 14 is such that light having an incident angle greater than or equal to the critical angle of total reflection is reflected to the convex structure 14 to be directed toward the display 22 facing away from the side of the transparent display device.
  • FIG. 2b and FIG. 2c are schematic structural diagrams of the first optical structure 12 and the convex structure 14 in the embodiment of the present disclosure
  • FIG. 2a is a schematic diagram of a comparative structure in which the convex structure 14 is not disposed
  • FIG. 2a is only for the purpose of performing The effect comparison does not represent the structure of the transparent display device in the embodiment of the present disclosure.
  • the manner in which the transparent display panel 11 and the first optical structure 12 are fixed may be fixed by an external structural member or adhered by an optical adhesive. If the external structural member is used for fixing, the lens display panel 11 and the first optical structure 12 are The air layer is an optical layer between the transparent display panel 11 and the first optical structure 12, and the portion between the transparent display panel 11 and the first optical structure 12 in FIG. 2a represents an air layer or an optical layer.
  • the adhesive layer, and the refractive index of the optical adhesive layer is lower than the refractive index of the first optical structure 12, and thus, the light emitted from the light source 13 reaches the first optical structure 12, following the law of total reflection: the light is made of a light-tight medium (ie, When the refractive index of the light in the medium is large, and the light is incident on the interface of the light-diffusing medium (ie, the refractive index of the light in the medium is small), all of the light is reflected back into the original medium, and the total reflection surface is the first optical structure 12 It is close to the plane on the side of the transparent display panel 11.
  • the light is reflected back into the interior of the first optical structure 12, and the principle of total reflection lower than that of the first optical structure 12 is similar to that of the air layer, and will not be described herein.
  • the convex structure 14 when the convex structure 14 is not disposed on the side of the first optical structure 12 facing away from the transparent display panel 11, since the refractive index of the first optical structure 12 is greater than the refractive index of the air layer or the optical adhesive layer, the first optical structure The surfaces on both sides of 12 are all in full reflection condition.
  • the light-tight medium When the light inside the first optical structure 12 is outwardly emitted, the light-tight medium is directed toward the light-dissipating medium.
  • the incident angle is greater than the critical angle, total reflection occurs. The light will always be reflected inside the first optical structure 12 and cannot be emitted.
  • the three light rays emitted from the same position of the light source 13 are taken as an example, wherein the incident angle of the light b to the first surface 121 (the surface of the first optical structure 12 near the transparent display panel 11) is equal to the total reflection.
  • the critical angle when the light b is totally reflected when it is directed to the first surface 121, and the reflected light b' of the light b is directed toward the second surface 122 (the surface of the first optical structure 12 facing away from the side of the transparent display panel 11) Therefore, the light b cannot be emitted from the first optical structure 12 and is constantly reflected in the first reflective structure.
  • the light a in FIG. 2a when the light a is incident on the first surface 121, most of the light is refracted, and is transmitted through the first surface 121.
  • the transparent display panel 11 i.e., light a 1
  • a small part of the light is reflected toward the second surface 122, i.e., light a ', since the light a' at an incident angle of the second surface 122 is smaller than the total reflection critical angle, so the light A' can be refracted at the second surface 122 to be emitted, ie, light a".
  • a convex structure is disposed on a side of the first optical structure 12 facing away from the transparent display panel 11.
  • the third surface 123 (the surface of the convex structure 14 facing away from the first optical structure 12 side) is a curved surface, the total reflected light is generated at the first surface 121, and the incident angle when hitting the third surface 123 may be The critical angle of total reflection is not reached, so most of the light can exit from the third surface 123.
  • the light ray a, the light ray b and the light ray c are also taken as an example.
  • the incident angle of the light ray b to the first surface 121 is equal to the total reflection critical angle, and the total reflected light of the light ray b
  • the incident angle of the light b' at the third surface 123 is smaller than the incident angle of the light b' at the second surface 122, and therefore, the light b' does not occur at the third surface 123.
  • Total reflection so that it can be emitted from the convex structure 14, such as light b".
  • Light c is similar to light b, and total reflection occurs at the first surface 121 to obtain light c', c' to the third surface 123 due to The total reflection condition is not satisfied and thus can be emitted from the third surface 123, such as light c".
  • the angle of incidence at the first surface 121 is smaller than the total reflection critical angle, it is possible to exit from the first surface 121, i.e., light a 1, may be emitted from the third surface 123, such as a ray a ".
  • first optical structure 12 and the convex structure 14 are both made of a transparent material, preferably PMMA, or may be polycarbonate (Polycarbonate, PC), polystyrene (PS) or methacrylic acid.
  • PC Polycarbonate
  • PS polystyrene
  • MS methacrylic acid
  • MS methyl methacrylate-styrene copolymer
  • the first optical structure 12 and the convex structure 14 are both made of a transparent material, on the one hand, the light transmittance is relatively large, and on the other hand.
  • the optical properties (eg, refractive index) of the first optical structure 12 and the convex structure 14 can be made similar, so that the light is in the first The deflection of the two surfaces 122 is small.
  • the first optical structure 12 and the convex structure 14 may also be integrally formed, so that the light does not occur on the second surface 122. The deflection also simplifies the manufacturing process, as shown in Figure 2c.
  • the convex structure 14 may be disposed as a lenticular lens.
  • the lens surface of the lenticular lens is a lens having a cylindrical longitudinal section, and the plurality of lenticular lenses are arranged to form a lens array, which has a function of focusing the light and increasing the center light intensity.
  • the lenticular lens in order to improve the convergence of the lenticular lens, as shown in FIG. 3, the lenticular lens is internally provided with light for reflecting the first optical structure 12 toward the convex structure 14.
  • Converging sawtooth structure 141 as shown in FIG.
  • the sawtooth structure 141 can be arranged such that the serrations of the edges are close to the center, so that the light emitted from the first surface 121 is deflected toward the center, thereby condensing the light, and can also be different.
  • the saw teeth of the position are set to different heights to further enhance the convergence, reduce the exit angle of the outgoing light of the convex structure 14, and enhance the center light intensity of the outgoing light.
  • the sawtooth structure 141 and the portion above the sawtooth structure 141 may be separately fabricated and then bonded together by optical glue or other materials, and the two parts may be made of the same material or different materials. There is no limit here.
  • the convex structure 14 may be provided as a lens having other convex light-emitting surfaces, such as a Fresnel lens, a convex lens, etc., and the type of the convex structure 14 is not limited herein.
  • the convex structure 14 in order to improve the uniformity of the light emitted from the convex structure 14, the convex structure 14 may be disposed as the structure shown in FIG. 4b, that is, the inside of the convex structure 14. It has an arc-shaped cavity.
  • Fig. 4a is an optical path diagram of the convex structure 14 in which no cavity is provided, and for the sake of convenience, the cross-sectional view of only one convex structure 14 is illustrated in the schematic views 4a and 4b.
  • the light b' in FIG. 4a and the light d in FIG. 4b are emitted at the same position of the light source 13, and the exit angle is the same, and the light b" is the light obtained by the light b' incident on the third surface 123, which is obtained in FIG. 4b.
  • the cavity disposed inside the convex structure 14, that is, the light emitted by the light source 13 passes through a layer of air, so that the light is in the cavity and the convex structure.
  • the first optical structure 12 is internally provided with uniformly distributed diffusion particles or air bubbles.
  • the substance filled in the first optical structure 12 in FIG. 3 represents uniformly distributed diffusing particles or uniformly distributed bubbles, and the diffusion of the light in the first optical structure 12 can be promoted by disposing the diffusing particles or bubbles, and the surface of the first optical structure 12 is destroyed.
  • the total reflection condition at the place increases the amount of light and increases the optical path of the light to increase the center brightness.
  • the first optical structure 12 and the convex structure 14 are made of the same material.
  • first optical structure 12 and the convex structure 14 are both transparent materials, they can be made of the same material, such as PMMA, PC, PS or MS, or other materials, which are only examples and are not The materials of an optical structure 12 and a convex structure 14 are defined.
  • the first optical structure 12 and the convex structure 14 can be fabricated in a variety of ways, such as:
  • Method 1 the first optical structure 12 and the convex structure 14 are integrated; or
  • Manner 2 The first optical structure 12 and the convex structure 14 are bonded by a transparent optical adhesive.
  • the first optical structure 12 and the convex structure 14 may be formed in the first mode or the second mode; when the first optical structure 12 and the convex structure 14 are different in material Can only be produced in the second way.
  • the thickness of the first optical structure 12 can be controlled between 1.5 mm and 4.5 mm, such as 1.5 mm, 3 mm or 4.5 mm, and the thickness of the first optical structure 12 is set between 1.5 mm and 4.5 mm, which can be guaranteed.
  • a second optical structure 15 for condensing light emitted from the light source 13 is disposed between each of the light sources 13 and the first optical structure 12.
  • the second optical structure 15 can be attached to the side of the first optical structure 12, and at least the following two implementations can exist:
  • Manner 1 As shown in FIG. 5a, a groove corresponding to the second optical structure 15 is disposed on a side of the first optical structure 12, and the second optical structure 15 is adhered to the groove of the first optical structure 12 through an optical adhesive. .
  • Manner 2 As shown in FIG. 5b, the second optical structure 15 can be directly attached to the side of the first optical structure 12 without providing a groove.
  • the process of making the groove needs to be added.
  • the second method although the second optical structure 15 occupies a certain space, the process of making the groove can be saved, and, optionally, if the first The optical structure 12 and the second optical structure 15 are made of the same material, and the second optical structure 15 may be integrally formed while the first optical structure 12 is formed.
  • first mode and the second mode are the preferred arrangement modes of the second optical structure. In the actual application, other setting modes may also be adopted, which are not limited herein.
  • the second optical structure 15 is in a truncated cone shape
  • the diameter of the surface of the second optical structure 15 near the side of the first optical structure 12 is larger than the diameter of the surface near the side of the light source 13, and the side of the second optical structure 15 is coated with the reflective layer 151.
  • Figure 5c is a cross-sectional view of the second optical structure 15 with the side of the second optical structure 15 being oriented because the diameter of the surface of the second optical structure 15 adjacent to the side of the first optical structure 12 is larger than the diameter of the surface near the side of the light source 13. There is a certain inclination angle between the two bottom surfaces.
  • the diameter of the surface of the second optical structure 15 adjacent to the side of the first optical structure 12 is not greater than the thickness of the first optical structure 12.
  • the second optical structure 15 it is ensured that there is sufficient space for the second optical structure 15 to be disposed on the side of the first optical structure 12, and on the other hand, it is also ensured that the light emitted by the light source 13 passes through the second optical structure 15, It can be injected into the first optical structure 12 to avoid light leakage.
  • the diameter of the surface of the second optical structure 15 adjacent to the side of the first optical structure 12 is between 1.5 mm and 4.5 mm, for example 1.5 mm, 3 mm or 4.5 mm, and the thickness of the second optical structure 15 is between 0.56 mm and 1.68. Between mm, for example 0.56 mm, 1.12 mm or 1.68 mm.
  • the diameter of the surface of the second optical structure 15 near the side of the first optical structure 12 is set to 3 mm, and since the thickness of the first optical structure 12 is set to 3 mm, the second optical structure 15 and the first optical structure 12 are thus The dimensions can be matched to each other and it is easier to fit the two together.
  • the thickness of the second optical structure 15 is set to 1.12 mm, and the thickness of the second optical structure 15 is smaller than the diameter of the surface close to the side of the first optical structure 12, so that the diameter of the surface away from the side of the first optical structure 12 is set to be slightly Less than 3 mm, a large inclination angle can be formed between the side surface of the second optical structure 15 and the two bottom surfaces, so that a certain inclination angle between the side surface of the second optical structure 15 and the two bottom surfaces can be relatively easily formed. It is also ensured that the thickness of the second optical structure 15 is small, and even if the second optical structure 15 is directly attached to the side of the first optical structure 12, the appearance of the first optical structure 12 is not affected. This is only a preferred size and does not limit the size of the second optical structure.
  • the second optical structure 15 is provided with a groove on a side of the light source 13 and a total reflection lens 152 is disposed inside the groove;
  • the total reflection lens 152 is a revolving body, and the shape of the cross section of the total reflection lens 152 in a direction perpendicular to the surface of the second optical structure 15 is two symmetrical triangles.
  • a total reflection lens 152 is disposed inside the second optical structure 15, and since the light emitted from the light source 13 is present in all directions, the light emitted from the light source 13 is relatively uniform.
  • the total reflection lens 152 may be disposed as a revolving body, that is, the shape of each cross section of the total reflection lens 152 in a direction perpendicular to the surface of the second optical structure 15 is the same, and may be specifically a triangle.
  • Figure 5c is an embodiment of the present disclosure, in practical applications,
  • the second optical structure 15 can also adopt other structures having a concentrated beam, which is not limited herein.
  • the second optical structure 15 and the total reflection lens 152 are both transparent materials, generally made of materials such as PMMA, PC, PS or MS, the refractive indices of these materials are relatively close, in order to make the light in the second optical structure 15 and the total reflection lens
  • the position between 152 is refracted, and during the fabrication process, an air layer is provided between the total reflection lens 152 and the second optical structure 15 (as shown by the thick solid line of the total reflection lens 152 in Fig. 5c) or through an optical glue. Fit the two together.
  • the light ray e 4 is emitted after the second optical structure 15 is refracted toward the point E of the surface on the side of the first optical structure 12, that is, the light ray e 5 .
  • the light in Fig. 5c is incident on point B
  • the broken line indicates the optical path when the total reflection lens 152 is not provided
  • the solid line indicates the optical path in which the total reflection lens 152 is disposed, as can be seen from the figure. If the total reflection lens 152 is not provided, the light ray e 1 is directly refracted to the point F after being refracted at the point B, and the total reflection lens 152 is disposed, so that the light ray e 1 is refracted at the point B and then refracted once, and is irradiated to the second point.
  • the position of the side of the optical structure 15 is the point D before the F, and thus the reflection angle at the point D is smaller than the reflection angle of the point F, so that when the two beams are emitted on the surface of the second optical structure 15, it is apparent from the figure. It can be seen that the solid line is closer to the center of the light source 13, and the dotted line is more biased toward the edge of the light source 13. Therefore, the provision of the total reflection lens 152 can increase the center light intensity of the light emitted by the light source 13.
  • the angle from the center of the light is small, and the astigmatism whose exit angle is ⁇ in the range of 60° to 90° is subjected to the secondary distribution of the total reflection lens 152, and the scattering angle of the light after being redistributed on the total reflection surface of the point D can be Control within ⁇ 30°.
  • the transparent display device provided by the embodiment of the present disclosure has a scattering lens structure on a side of the first optical structure facing away from the transparent display panel, and a refractive index of the medium between the first optical structure and the transparent display panel is smaller than the first optical structure.
  • the refractive index, the light source is incident on the surface of the first optical structure near the side of the transparent display panel, and the light having an incident angle smaller than the critical angle of total reflection is transmitted through the first optical structure to the transparent display structure to provide backlight for the transparent display structure.
  • the light source having an incident angle greater than or equal to the critical angle of the total reflection is reflected to the scattering lens structure and is directed toward the display facing away from the side of the transparent display device to provide a light source for the display, thereby realizing a double-sided open transparent display effect.
  • the flexibility of the transparent display device is greatly improved.

Abstract

公开了一种透明显示装置,包括:透明显示面板、固定于透明显示面板入光侧的第一光学结构,以及设置于第一光学结构侧边的多个光源;其中,第一光学结构背离透明显示面板一侧设有散射式透镜结构,且第一光学结构与透明显示面板之间的介质的折射率小于第一光学结构的折射率。由于设置散射式透镜结构,光源射入到第一光学结构靠近透明显示面板一侧的表面的光线,入射角小于全反射临界角的光线透过第一光学结构射向透明显示结构,为透明显示结构提供背光源,入射角大于或等于全反射临界角的光线可以通过散射式透镜结构而射出,为展示物提供光源,从而实现了双面开放式的透明显示效果,提高了透明显示装置的灵活性。

Description

透明显示装置
本申请要求在2017年3月17日提交中国专利局、申请号为201710160588.0、发明名称为“一种透明显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤指一种透明显示装置。
背景技术
随着显示技术的日益发展,各种新型技术不断涌现,透明显示技术因其透明的显示面板这一特性及其独特的应用,越来越受到人们的关注。
透明显示器一般是指可形成透明显示状态以使观看者可看到显示器中显示的影像及显示器背后的影像的显示器。透明显示器具有许多可能的应用,例如建筑物或汽车的窗户和购物商场的展示窗。除了这些大型设备的应用以外,诸如手持式平板电脑的小型设备也可得益于透明显示器,例如,使用户能够观看地图并且能够透过屏幕观看前面的景物。
液晶显示器(Liquid Crystal Display,LCD)的技术领域中,为了给展示物提供光源,透明显示装置大多都是箱体式设计,在透明显示屏的入光侧设置箱体结构,将普通光源固定在箱体的侧面上,普通光源可以为照明显示或背光源常用的侧入式发光二极管(Light Emitting Diode,LED)结构,将展示物放置于箱体中,通过箱体侧面固定的普通光源的光线为展示物照明,这种结构由于其固有的箱体式结构,整体外观较笨重,展示灵活性差,缺少人机的互动性。
发明内容
本公开实施例提供了一种透明显示装置,包括:透明显示面板、固定于 所述透明显示面板入光侧的第一光学结构,以及设置于所述第一光学结构侧边的多个光源;其中,
所述第一光学结构背离所述透明显示面板的一侧设有散射式透镜结构,且所述第一光学结构与所述透明显示面板之间的介质的折射率小于所述第一光学结构的折射率。
可选地,在本公开实施例提供的透明显示装置中,所述散射式透镜结构包括位于第一光学结构背离透明显示面板的一侧且均匀排布的多个凸状结构。
可选地,在本公开实施例提供的透明显示装置中,所述凸状结构为柱状透镜。
可选地,在本公开实施例提供的透明显示装置中,所述柱状透镜内部设有用于使所述第一光学结构向所述凸状结构反射的光线会聚的锯齿状结构。
可选地,在本公开实施例提供的透明显示装置中,所述凸状结构内部设有圆弧状的空腔。
可选地,在本公开实施例提供的透明显示装置中,所述第一光学结构内部设有均匀分布的扩散粒子或气泡。
可选地,在本公开实施例提供的透明显示装置中,所述第一光学结构和所述凸状结构均由透明材料构成。
可选地,在本公开实施例提供的透明显示装置中,所述第一光学结构和所述凸状结构的材质相同。
可选地,在本公开实施例提供的透明显示装置中,所述第一光学结构和所述凸状结构为一体结构;或,
所述第一光学结构和所述凸状结构通过透明光学胶贴合。
可选地,在本公开实施例提供的透明显示装置中,所述第一光学结构的厚度在1.5mm-4.5mm之间。
可选地,在本公开实施例提供的透明显示装置中,各所述光源与所述第一光学结构之间设有用于使所述光源出射的光线会聚的第二光学结构。
可选地,在本公开实施例提供的透明显示装置中,所述第二光学结构为圆台状;
所述第二光学结构靠近所述第一光学结构一侧的表面的直径大于靠近所述光源一侧的表面的直径,且所述第二光学结构的侧面涂覆有反射层。
可选地,在本公开实施例提供的透明显示装置中,所述第二光学结构靠近所述第一光学结构一侧的表面的直径不大于所述第一光学结构的厚度。
可选地,在本公开实施例提供的透明显示装置中,所述第二光学结构靠近所述第一光学结构一侧的表面的直径在1.5mm-4.5mm之间,所述第二光学结构的厚度在0.56mm-1.68mm之间。
可选地,在本公开实施例提供的透明显示装置中,所述第二光学结构靠近所述光源的一侧设有凹槽,且所述凹槽内部设有全反射透镜;
所述全反射透镜为回转体,且所述全反射透镜在垂直于所述第二光学结构表面的方向上的截面的形状为两个对称的三角形。
附图说明
图1为本公开实施例提供的透明显示装置的结构示意图之一;
图2a为光线在第一光学结构中的光路示意图;
图2b为光线在第一光学结构和凸状结构中的光路示意图之一;
图2c为光线在第一光学结构和凸状结构中的光路示意图之二;
图3为本公开实施例中第一光学结构和凸状结构的内部结构示意图;
图4a为光线在凸状结构中的光路示意图之一;
图4b为光线在凸状结构中的光路示意图之二;
图5a为本公开实施例中第二光学结构的设置位置示意图之一;
图5b为本公开实施例中第二光学结构的设置位置示意图之二;
图5c为本公开实施例中第二光学结构的截面示意图。
具体实施方式
本公开的至少一实施例公开了一种透明显示装置,以至少解决相关技术中存在的箱体式透明显示装置灵活性差的问题。
下面结合附图,对本公开实施例提供的透明显示装置的具体实施方式进行详细地说明。附图中各结构的形状和大小不反映真实比例,目的只是示意说明本公开内容。
本公开实施例提供了一种透明显示装置,如图1所示,包括:透明显示面板11、固定于透明显示面板11入光侧的第一光学结构12,以及设置于第一光学结构12侧边的多个光源13;其中,
第一光学结构12背离透明显示面板11的一侧设置有散射式透镜结构(图1中未视出),且第一光学结构12与透明显示面板11之间的介质的折射率小于第一光学结构12的折射率。
本公开实施例提供的透明显示装置,由于第一光学结构12背离透明显示面板11的一侧设置有散射式透镜结构,且第一光学结构12和透明显示面板11之间的介质的折射率小于第一光学结构12的折射率,光源13射入到第一光学结构12靠近透明显示面板11一侧的表面的光线,入射角小于全反射临界角的光线透过第一光学结构12射向透明显示结构,为透明显示结构提供背光源,入射角大于或等于全反射临界角的光线反射至散射式透镜结构而射向背离透明显示装置一侧的展示物22,为展示物22提供光源13,从而实现了双面开放式的透明显示效果,相比于箱体式透明显示装置,大大提升了透明显示装置的灵活性。
图1为上述透明显示装置的拆分立体结构图,图中以仅在第一光学结构12的一侧设有光源13为例进行说明,在实际应用中,也可以根据实际需要将第一光学结构12的其他侧边处也设置光源13,对于亮度需要较高的场景,也可以将第一光学结构12的四个侧边均设置光源13,此处不对光源13的数量进行限定。光源13可以采用发光二极管(Light-Emitting Diode,LED)芯片,例如可以选用规格型号为1313或1515等的封装(package,PKG)结构。光源13出射的光线经过第一光学结构12的导光后,一部分射向透明显示面板 11,为透明显示面板11提供背光源,一部分射向展示物22,为展示物22提供光源13,因而,透明显示面板11背离第一光学结构12的人眼21,既可以看到透明显示面板11显示的画面,又可以透过透明显示面板11看到展示物22。
可选地,在本公开实施例提供的透明显示装置中,第一光学结构可以为导光板或光扩散板,在此不作限定。
可选地,在本公开实施例提供的透明显示装置中,如图3所示,散射式透镜结构包括位于第一光学结构12背离透明显示面板11的一侧且均匀排布的多个凸状结构14,从而将入射角大于或等于全反射临界角的光线反射至凸状结构14而射向背离透明显示装置一侧的展示物22。
以下结合图2a、图2b和图2c来说明第一光学结构12的透光原理:
应当说明的是,图2b和图2c为本公开实施例中的第一光学结构12和凸状结构14的结构示意图,图2a为不设置凸状结构14的对比结构示意图,图2a只是为了进行效果对比,并不代表本公开实施例中的透明显示装置的结构。
参照图2a,透明显示面板11与第一光学结构12的固定方式可采用外部结构件固定或通过光学胶贴合的方式,若采用外部结构件固定,透镜显示面板11与第一光学结构12之间是空气层,若采用光学胶固定,透明显示面板11与第一光学结构12之间为光学胶层,图2a中透明显示面板11与第一光学结构12之间的部分表示空气层或者光学胶层,而且光学胶层的折射率要低于第一光学结构12的折射率,因而,从光源13出射的光线到达第一光学结构12内,遵循全反射定律:光由光密介质(即光在此介质中的折射率大)射到光疏介质(即光在此介质中的折射率小)的界面时,全部被反射回原介质内的现象,全反射面即第一光学结构12靠近透明显示面板11一侧的平面。
以空气层为例,光线到达第一光学结构12的表面时的入射角为a,如果发生全反射,则满足n*sina=1,若第一光学结构12的材质为折射率为1.49的有机玻璃(PolymethylMethacrylate,PMMA),可得a=arcsin(1/1.49)=42°,即在第一光学结构12的表面发生全反射的临界角度为42°,入射角大于42° 的光线会被反射回第一光学结构12内部,采用折射率低于第一光学结构12发生全反射的原理与空气层类似,此处不再赘述。
同样参照图2a,当第一光学结构12背离透明显示面板11一侧没有设置凸状结构14时,由于第一光学结构12的折射率大于空气层或光学胶层的折射率,第一光学结构12两侧的表面均满足全反射条件,当第一光学结构12内部的光线向外出射时,为光密介质射向光疏介质,当入射角大于临界角时,会发生全反射,此时,光线会一直在第一光学结构12内部反射,而不能射出。
图2a中,以光源13同一个位置出射的三条光线为例进行示意,其中光线b射到第一表面121(第一光学结构12靠近透明显示面板11一侧的表面)的入射角等于全反射临界角,光线b射向第一表面121时发生全反射,光线b的反射光b'射向第二表面122(第一光学结构12背离透明显示面板11一侧的表面)时同样发生全反射,因此光线b不能从第一光学结构12中射出,不断地在第一反射结构中反射。图2a中的光线c射到第一表面121的入射角大于全反射临界角,同样也会发生全反射,光线c的反射光,即光线c'也会一直在第一光学结构12中反射。只有在第一表面121的入射角小于全反射临界角的光线才能射出,例如图2a中的光线a,光线a射到第一表面121时,大部分光线发生折射,透过第一表面121射向透明显示面板11,即光线a1,很小一部分光线发生反射射向第二表面122,即光线a',由于光线a'在第二表面122处的入射角小于全反射临界角,因此光线a'可以在第二表面122处发生折射而射出,即光线a"。
由上述分析可知,当第一光学结构12背离透明显示面板11一侧没有设置凸状结构14时,只有在第一表面121处入射角较小的部分光线可以从第一光学结构12中射出,但由于第一光学结构12为透明材质,所以在第一表面121反射的光线很少,从图2a中也可以明显的看出,这种情况下,只有靠近光源13的很少部分光线可以从第二表面122出射,而距离光源13较远的位置几乎不会有光线出射,因此,无法正常为透明显示面板11提供背光源。
参照图2b,当第一光学结构12背离透明显示面板11一侧设有凸状结构 14时,由于第三表面123(凸状结构14背离第一光学结构12一侧的表面)为曲面,在第一表面121处发生全反射的光线,射到第三表面123时的入射角可能达不到全反射临界角,因此,大部分光线可以从第三表面123处出射。
为了对比光线出射的效果,图2b中,同样以光线a、光线b以及光线c为例进行示意,光线b射到第一表面121的入射角等于全反射临界角,光线b的全反射光b'射到第三表面123时,光线b'在第三表面123处的入射角要小于光线b'在第二表面122处的入射角,因此,光线b'在第三表面123处不会发生全反射,从而可以从凸状结构14中射出,如光线b"。光线c与光线b类似,在第一表面121处发生全反射得到光线c',c'射到第三表面123处,由于不满足全反射条件,因而可以从第三表面123射出,如光线c"。对于光线a,由于在第一表面121处的入射角小于全反射临界角,因而可以从第一表面121处射出,即光线a1,也可以从第三表面123处射出,如光线a"。
由上述分析可知,当第一光学结构12背离透明显示面板11一侧设有凸状结构14时,在第一表面121处入射角较小的光线可以从第一表面121射出,也可以从第三表面123射出,而在第一表面121处入射角大于全反射临界角的光线,只可以从第三表面123射出,只有在第三表面123处的入射角也大于全反射临界角的小部分光线,不能从第一光学结构12或凸状结构14中射出。因此,既可以为透明显示面板11提供背光源,又可以为展示物22品提供足够的光源。
应当说明的是,第一光学结构12和凸状结构14均由透明材料构成,优选为PMMA,也可以是聚碳酸酯(Polycarbonate,PC)、聚苯乙烯(Polystyrene,PS)或甲基丙烯酸甲酯-苯乙烯共聚物(methyl methacrylate-styrene copolymer,MS)等,此处不对第一光学结构12和凸状结构14的材料进行限定,因此,第一光学结构12和凸状结构14的折射率相同,或相近,所以图2b中忽略了光线在第二表面122处发生的较小的偏折。综上,由于第一光学结构12和凸状结构14均由透明材料构成,一方面光透过率比较大,另一方面。可以使第一光学结构12和凸状结构14的光学性能(例如折射率)相近,使光线在第 二表面122的偏折较小。此外,在实际应用中,当第一光学结构12和凸状结构14采用相同的材料时,第一光学结构12和凸状结构14也可以一体形成,这样光线在第二表面122就不会发生偏折,也简化了制作工艺,如图2c所示。
可选地,本公开实施例提供的上述透明显示装置中,凸状结构14可以设置为柱状透镜。
柱状透镜的透镜表面为圆柱纵截面状的一种透镜,多个柱状透镜排列在一起可以组成透镜阵列,具有使光线聚焦,提高中心光强的作用。
可选地,本公开实施例提供的上述透明显示装置中,为了提高柱状透镜的会聚作用,如图3所示,柱状透镜内部设有用于使第一光学结构12向凸状结构14反射的光线会聚的锯齿状结构141,如图3所示。
从图3中可以看出,可以将锯齿状结构141设置为边缘的锯齿向中心靠拢,这样从第一表面121射过来的光线会向中心偏折,从而对光线产生会聚作用,也可以将不同位置的锯齿设置为不同的高度,进一步提高会聚作用,减小凸状结构14的出射光线的出射角度,增强出射光线的中心光强。
可选地,可以将锯齿状结构141和锯齿状结构141之上的部分分别制作,然后通过光学胶或者其他材料粘合在一起,这两部分可以采用相同的材料,也可以采用不同的材料,此处不做限定。
在实际应用中,也可以将凸状结构14设置为其他出光面为凸状的透镜,例如菲涅耳透镜,凸透镜等,此处不对凸状结构14的种类进行限定。
可选地,本公开实施例提供的上述透明显示装置中,为了提高凸状结构14出射光线的均匀性,可以将凸状结构14设置为如图4b所示的结构,即凸状结构14内部设有圆弧状的空腔。
图4a为不设置空腔的凸状结构14的光路图,为了方便示意图4a和图4b中仅以一个凸状结构14的截面图进行示意。图4a中的光线b'和图4b中的光线d为光源13同一位置出射,且出射角度相同,光线b"为光线b'射到第三表面123发生折射后得到的光线,图4b中由于凸状结构14内部设置的空腔,即光源13出射的光线会经过一段空气层,使光线在该空腔与凸状结构 14之间的界面处发生二次折射,图4b中为了更明显的对比光线b"和光线d"在第三表面123的出射角,将图4a中的光线b"标注在图4b中(图4b中的虚线箭头)进行对比,从图4b中可以明显的看出,设置空腔的凸状结构14会使光线发生两次折射,因而出射角度要明显大于不带空腔的凸状结构14的出射角度,因此提高了凸状结构14的表面出射光线的均匀性。
参照图3,本公开实施例提供的上述透明显示装置中,第一光学结构12内部设有均匀分布的扩散粒子或气泡。
图3中第一光学结构12中填充的物质表示均匀分布的扩散粒子或均匀分布的气泡,通过设置扩散粒子或气泡可以促进光线在第一光学结构12中的传导,破坏第一光学结构12表面处的全反射条件,增加出光量,提高光线的光程以提高中心亮度。
可选地,本公开实施例提供的上述透明显示装置中,第一光学结构12和凸状结构14的材质相同。
由于第一光学结构12和凸状结构14均为透明材质,因此可以使用相同的材料制作,例如PMMA、PC、PS或MS等材料,也可以采用其他材料,此处只是举例说明,并不对第一光学结构12和凸状结构14的材料进行限定。
第一光学结构12和凸状结构14可以有多种制作方式,例如:
方式一:第一光学结构12和凸状结构14为一体结构;或,
方式二:第一光学结构12和凸状结构14通过透明光学胶贴合。
第一光学结构12和凸状结构14为相同的材质时,可以采用方式一也可以采用方式二制作第一光学结构12和凸状结构14;第一光学结构12和凸状结构14材质不同时,只能采用方式二制作。此外,第一光学结构12的厚度可以控制在1.5mm-4.5mm之间,例如1.5mm、3mm或4.5mm,将第一光学结构12的厚度设置为在1.5mm-4.5mm之间,可以保证有足够的空间使光源13设置在第一光学结构12的侧边,此处只是优选尺寸,并不对第一光学结构12的尺寸进行限定。
可选地,本公开实施例提供的上述透明显示装置中,如图5a和图5b所 示,各光源13与第一光学结构12之间设有用于使光源13出射的光线会聚的第二光学结构15。
可选地,可以将第二光学结构15贴合在第一光学结构12的侧边,至少可以存在以下两种实现方式:
方式一:如图5a所示,在第一光学结构12的侧边设置对应第二光学结构15的凹槽,将第二光学结构15通过光学胶贴合在第一光学结构12的凹槽中。
方式二:如图5b所示,可以将第二光学结构15直接贴合在第一光学结构12的侧边,不需要设置凹槽。
方式一可以节省一定的空间,但是需要增加制作凹槽的工艺,而方式二中,虽然第二光学结构15占用一定空间,但是可以节省制作凹槽的工艺,此外,可选地,若第一光学结构12和第二光学结构15的材质相同,也可以在制作第一光学结构12的同时,一体形成第二光学结构15。
应当说明的是,图5a和图5b中为了更清晰的示意第二光学结构15的位置,只画出了两个凸起结构,并不对凸起结构的数量进行限定。方式一和方式二是第二光学结构15的优选设置方式,在实际应用时,也可以采用其他设置方式,此处不做限定。
可选地,本公开实施例提供的上述透明显示装置中,如图5c所示,第二光学结构15为圆台状;
第二光学结构15靠近第一光学结构12一侧的表面的直径大于靠近光源13一侧的表面的直径,且第二光学结构15的侧面涂覆有反射层151。
图5c为第二光学结构15的截面图,由于第二光学结构15靠近第一光学结构12一侧的表面的直径大于靠近光源13一侧的表面的直径,使第二光学结构15的侧面与两个底面之间存在一定的倾角,通过在第二光学结构15的侧面涂覆反射层151,可以使射到第二光学结构15侧面的光线向中心方向偏折,可以将光源13出射的角度较大的光线向中心偏折,降低光源13的损耗,提高光源13出射的光线的中心光强。
可选地,本公开实施例提供的上述透明显示装置中,第二光学结构15靠近第一光学结构12一侧的表面的直径不大于第一光学结构12的厚度。
这样设置,一方面,可以保证有足够的空间使第二光学结构15设置在第一光学结构12的侧边,另一方面,也可以保证光源13出射的光线通过第二光学结构15后,都能射入到第一光学结构12中,避免出现漏光的情况。
此外,第二光学结构15靠近第一光学结构12一侧的表面的直径在1.5mm-4.5mm之间,例如为1.5mm、3mm或4.5mm,第二光学结构15的厚度在0.56mm-1.68mm之间,例如0.56mm、1.12mm或1.68mm。例如将第二光学结构15靠近第一光学结构12一侧的表面的直径设置为3mm,由于上述第一光学结构12的厚度设置为3mm,这样,第二光学结构15与第一光学结构12的尺寸可以相互匹配,比较容易将二者贴合在一起。第二光学结构15的厚度设置为1.12mm,第二光学结构15的厚度小于靠近第一光学结构12一侧的表面的直径,这样,只要设置远离第一光学结构12一侧的表面的直径稍小于3mm,就能使第二光学结构15的侧面与两个底面之间形成较大的倾角,因而,可以比较容易的使第二光学结构15的侧面与两个底面之间形成一定的倾角,也能保证第二光学结构15的厚度尺寸较小,即使直接将第二光学结构15直接贴合在第一光学结构12的侧边,也不会对第一光学结构12的外观产生影响。此处只是优选尺寸,并不对第二光学结构的尺寸进行限定。
可选地,本公开实施例提供的上述透明显示装置中,第二光学结构15靠近光源13的一侧设有凹槽,且凹槽内部设有全反射透镜152;
全反射透镜152为回转体,且全反射透镜152在垂直于第二光学结构15表面的方向上的截面的形状为两个对称的三角形。
参照图5c,为了进一步增强第二光学结构15的会聚作用,在第二光学结构15内部设置全反射透镜152,由于光源13出射的光线在各个方向都有,为了使光源13出射的光线比较均匀,可以将全反射透镜152设置为回转体,即全反射透镜152在垂直于第二光学结构15表面的方向上的各截面的形状均相同,具体可选为三角形。图5c是本公开的一种实施方式,在实际应用中,第 二光学结构15也可以采用其他具有会聚光束的结构,此处不做限定。
由于第二光学结构15与全反射透镜152都是透明材质,一般由PMMA、PC、PS或MS等材料制作,这些材料的折射率比较接近,为了使光线在第二光学结构15与全反射透镜152之间的位置发生折射,在制作过程中,在全反射透镜152和第二光学结构15之间(如图5c中全反射透镜152粗实线所示的位置)设置空气层或通过光学胶将二者贴合。
参照图5c,以A点为光源13的出光点,出射角为θ,A点出射的光线e1,通过全反射透镜152时,会发生两次折射,即在B点发生折射得到光线e2和C点处发生折射得到光线e3,对于出射角θ较小的光线,透过全反射透镜152后直接从第二光学结构15靠近第一光学结构12一侧的表面出射(图中未示出),而出射角θ较大的光线,透过全反射透镜152后会射向第二光学结构15的侧面,如图5c中的D点,经第二光学结构15的侧面反射后得到光线e4,光线e4在第二光学结构15靠近第一光学结构12一侧的表面的E点发生折射后出射,即光线e5
为了说明全反射透镜152的会聚作用,图5c中光线射到B点后,虚线表示未设置全反射透镜152时的光路,实线表示设置全反射透镜152的光路,从图中可以看出,若未设置全反射透镜152,光线e1在B点发生折射后直接射到F点,而设置全反射透镜152,可以使光线e1在B点发生折射后再经过一次折射,射到第二光学结构15侧面的位置为比F靠前的D点,因而在D点的反射角小于F点的反射角,所以这两束光在第二光学结构15的表面出射时,从图中可以明显看出,实线更靠近光源13的中心,而虚线更偏向光源13的边缘,因此,设置全反射透镜152可以提高光源13出射光线的中心光强。
假设第二光学结构15和全反射透镜152的折射率为n,根据菲涅耳原理,可以得到以下公式:
sinθ=n*sinθ1;
n*sin(θ1+β)=sin(α+β);
可知,tanβ=(-n*sinθ1+sinα)/(n*cosθ1-cosα)=dy/dx,β=1/2(π/2+ θ1+α),α=tan-1[(180°-θ)/60°-tan60°],因而可得到出射角为θ在0°~60°范围内的光线可按既定的光程进行,即偏离光线中心的角度较小,而出射角为θ在60°~90°范围内的散光经过全反射透镜152的二次分配,在D点的全反射面上重新分配后光线的散射角可以控制在±30°内。
本公开实施例提供的透明显示装置,由于第一光学结构背离透明显示面板的一侧设有散射式透镜结构,且第一光学结构和透明显示面板之间的介质的折射率小于第一光学结构的折射率,光源射入到第一光学结构靠近透明显示面板一侧的表面的光线,入射角小于全反射临界角的光线透过第一光学结构射向透明显示结构,为透明显示结构提供背光源,入射角大于或等于全反射临界角的光线反射至散射式透镜结构而射向背离透明显示装置一侧的展示物,为展示物提供光源,从而实现了双面开放式的透明显示效果,相比于箱体式透明显示装置,大大提升了透明显示装置的灵活性。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种透明显示装置,其特征在于,包括:透明显示面板、固定于所述透明显示面板入光侧的第一光学结构,以及设置于所述第一光学结构侧边的多个光源;其中,
    所述第一光学结构背离所述透明显示面板的一侧设有散射式透镜结构,且所述第一光学结构与所述透明显示面板之间的介质的折射率小于所述第一光学结构的折射率。
  2. 如权利要求1所述的透明显示装置,其特征在于,所述散射式透镜结构包括位于第一光学结构背离透明显示面板的一侧且均匀排布的多个凸状结构。
  3. 如权利要求2所述的透明显示装置,其特征在于,所述凸状结构为柱状透镜。
  4. 如权利要求3所述的透明显示装置,其特征在于,所述柱状透镜内部设有用于使所述第一光学结构向所述凸状结构反射的光线会聚的锯齿状结构。
  5. 如权利要求2所述的透明显示装置,其特征在于,所述凸状结构内部设有圆弧状的空腔。
  6. 如权利要求1所述的透明显示装置,其特征在于,所述第一光学结构内部设有均匀分布的扩散粒子或气泡。
  7. 如权利要求2所述的透明显示装置,其特征在于,所述第一光学结构和所述凸状结构的均由透明材料构成。
  8. 如权利要求7所述的透明显示装置,其特征在于,所述第一光学结构和所述凸状结构的材质相同。
  9. 如权利要求8所述的透明显示装置,其特征在于,所述第一光学结构和所述凸状结构为一体结构;或,
    所述第一光学结构和所述凸状结构通过透明光学胶贴合。
  10. 如权利要求1所述的透明显示装置,其特征在于,所述第一光学结构的厚度在1.5mm-4.5mm之间。
  11. 如权利要求1所述的透明显示装置,其特征在于,各所述光源与所述第一光学结构之间设有用于使所述光源出射的光线会聚的第二光学结构。
  12. 如权利要求11所述的透明显示装置,其特征在于,所述第二光学结构为圆台状;
    所述第二光学结构靠近所述第一光学结构一侧的表面的直径大于靠近所述光源一侧的表面的直径,且所述第二光学结构的侧面涂覆有反射层。
  13. 如权利要求12所述的透明显示装置,其特征在于,所述第二光学结构靠近所述第一光学结构一侧的表面的直径不大于所述第一光学结构的厚度。
  14. 如权利要求13所述的透明显示装置,其特征在于,所述第二光学结构靠近所述第一光学结构一侧的表面的直径在1.5mm-4.5mm之间,所述第二光学结构的厚度在0.56mm-1.68mm之间。
  15. 如权利要求12所述的透明显示装置,其特征在于,所述第二光学结构靠近所述光源的一侧设有凹槽,且所述凹槽内部设有全反射透镜;
    所述全反射透镜为回转体,且所述全反射透镜在垂直于所述第二光学结构表面的方向上的截面的形状为两个对称的三角形。
PCT/CN2017/104042 2017-03-17 2017-09-28 透明显示装置 WO2018166177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/769,505 US10551710B2 (en) 2017-03-17 2017-09-28 Transparent display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710160588.0 2017-03-17
CN201710160588.0A CN106646727B (zh) 2017-03-17 2017-03-17 一种透明显示装置

Publications (1)

Publication Number Publication Date
WO2018166177A1 true WO2018166177A1 (zh) 2018-09-20

Family

ID=58847646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104042 WO2018166177A1 (zh) 2017-03-17 2017-09-28 透明显示装置

Country Status (3)

Country Link
US (1) US10551710B2 (zh)
CN (1) CN106646727B (zh)
WO (1) WO2018166177A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646727B (zh) * 2017-03-17 2020-02-18 京东方科技集团股份有限公司 一种透明显示装置
CN107423728B (zh) * 2017-09-07 2024-02-02 京东方科技集团股份有限公司 光学结构及其制作方法、显示基板及显示装置
CN109801564A (zh) * 2019-03-22 2019-05-24 信利半导体有限公司 一种显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255318A (ja) * 2002-03-07 2003-09-10 Hitachi Ltd 部分透過型液晶表示装置
CN102262262A (zh) * 2011-07-01 2011-11-30 青岛海信电器股份有限公司 导光板、背光模组及显示装置
CN102520549A (zh) * 2011-10-24 2012-06-27 友达光电股份有限公司 透明显示器
CN103489373A (zh) * 2013-06-18 2014-01-01 友达光电股份有限公司 可透视显示装置
CN103680316A (zh) * 2013-12-17 2014-03-26 京东方科技集团股份有限公司 透明显示面板及其制造方法、显示装置
CN104375325A (zh) * 2014-11-17 2015-02-25 深圳市华星光电技术有限公司 一种透明显示装置
CN106646727A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 一种透明显示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100585268C (zh) * 2005-03-07 2010-01-27 日亚化学工业株式会社 面状照射光源及面状照射装置
TWI334046B (en) * 2007-07-10 2010-12-01 Au Optronics Corp Color filterless liquid crystal display device
CN102235594A (zh) * 2010-05-04 2011-11-09 艾迪光电(杭州)有限公司 一种led发光模块
US8770813B2 (en) * 2010-12-23 2014-07-08 Microsoft Corporation Transparent display backlight assembly
CN102654273B (zh) * 2011-03-04 2014-05-28 海洋王照明科技股份有限公司 一种led聚光透镜
TW201437689A (zh) * 2013-03-27 2014-10-01 鴻海精密工業股份有限公司 透鏡及採用該透鏡的發光模組
CN104100930A (zh) * 2013-04-02 2014-10-15 鸿富锦精密工业(深圳)有限公司 透镜及采用该透镜的发光模组
KR102022522B1 (ko) * 2013-06-28 2019-09-18 엘지디스플레이 주식회사 투명 액정표시장치
CN104279508A (zh) * 2013-07-12 2015-01-14 欧司朗有限公司 一种用于光源的透镜
CN104344332A (zh) * 2013-07-29 2015-02-11 鸿富锦精密工业(深圳)有限公司 透镜模组及应用该透镜模组的光源模组
CN105444044A (zh) * 2014-09-24 2016-03-30 青岛海信电器股份有限公司 一种发光二极管led发光器件、背光模组及显示面板
CN204986867U (zh) * 2015-08-24 2016-01-20 徐朝富 一种具有互换式入光面的透镜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255318A (ja) * 2002-03-07 2003-09-10 Hitachi Ltd 部分透過型液晶表示装置
CN102262262A (zh) * 2011-07-01 2011-11-30 青岛海信电器股份有限公司 导光板、背光模组及显示装置
CN102520549A (zh) * 2011-10-24 2012-06-27 友达光电股份有限公司 透明显示器
CN103489373A (zh) * 2013-06-18 2014-01-01 友达光电股份有限公司 可透视显示装置
CN103680316A (zh) * 2013-12-17 2014-03-26 京东方科技集团股份有限公司 透明显示面板及其制造方法、显示装置
CN104375325A (zh) * 2014-11-17 2015-02-25 深圳市华星光电技术有限公司 一种透明显示装置
CN106646727A (zh) * 2017-03-17 2017-05-10 京东方科技集团股份有限公司 一种透明显示装置

Also Published As

Publication number Publication date
CN106646727A (zh) 2017-05-10
US10551710B2 (en) 2020-02-04
US20190101774A1 (en) 2019-04-04
CN106646727B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
TW583422B (en) Optical deflection elements and light source device
KR0168879B1 (ko) 렌티큘러 렌즈, 면광원 및 액정 표시 장치
TW408241B (en) Surface light source device of side light type and liquid crystal display
WO2020192300A1 (zh) 光学准直组件、背光模组及显示装置
JP2008046601A (ja) 光学板、及びこの光学板を用いる直下型バックライト
JP2008139845A (ja) 光学板
US10444616B2 (en) Rear projection screen
US20190064418A1 (en) Backlight module and display device
JP2013044953A (ja) プロジェクション・システム
JP4039465B1 (ja) 光学シートとそれを用いたバックライトユニット及びディスプレイ
WO2018166177A1 (zh) 透明显示装置
TWI255356B (en) Light guide plate and plane light source using the same
JPH06222207A (ja) 光学用シート、面光源及び表示装置
JP2010262038A (ja) 光偏向素子、及び拡散板
CN113156707B (zh) 面光源装置和平板显示装置
TWM577512U (zh) Short focal length projection anti-light curtain
JP2009123361A (ja) 導光板および液晶表示装置用バックライトユニット
TW200523662A (en) Fresnel lens sheet, translucent type screen, and rear projection display device using the same
JP2019200862A (ja) 導光板、面光源装置および表示装置
US10545399B2 (en) Rear projection screen
JP5327746B2 (ja) 液晶表示装置
JP2001124910A (ja) レンチキュラーレンズ、面光源及び液晶表示装置
JP2009294240A (ja) 光学シート、バックライトユニット、液晶表示装置及びディスプレイ装置
TWI327670B (en) Optical plate and backlight module using the same
WO2021004303A1 (zh) 一种投影屏幕

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900749

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17900749

Country of ref document: EP

Kind code of ref document: A1