WO2021004303A1 - 一种投影屏幕 - Google Patents

一种投影屏幕 Download PDF

Info

Publication number
WO2021004303A1
WO2021004303A1 PCT/CN2020/098466 CN2020098466W WO2021004303A1 WO 2021004303 A1 WO2021004303 A1 WO 2021004303A1 CN 2020098466 W CN2020098466 W CN 2020098466W WO 2021004303 A1 WO2021004303 A1 WO 2021004303A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection screen
triangular pyramid
layer
unit
light
Prior art date
Application number
PCT/CN2020/098466
Other languages
English (en)
French (fr)
Inventor
王霖
唐晓峰
孙微
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to EP20837041.1A priority Critical patent/EP3985436B1/en
Priority to US17/597,434 priority patent/US11892766B2/en
Publication of WO2021004303A1 publication Critical patent/WO2021004303A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/58Projection screens collapsible, e.g. foldable; of variable area
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This application relates to the field of projection technology, in particular to a projection screen.
  • Projection displays have been used in more and more applications.
  • the principle of projection display is: the projector projects the image light onto a screen (called the projection screen), the image light is scattered on the screen, and part of the scattered image light is received by the human eye, and the image light is seen by the human eye It's as if it was emitted on the screen, so an image is formed on the screen.
  • the projection screen will significantly increase the display brightness.
  • the projection screen In order to ensure the audience's viewing experience, the projection screen needs to take into account both high gain and good brightness uniformity.
  • Brightness uniformity is a measure of the difference in brightness at different viewing positions in the horizontal direction. The better the brightness uniformity, the better the viewing experience.
  • the existing projection screen is a Fresnel direct projection screen with a wire grid structure. Due to the limitation of the optical structure of the screen, the brightness uniformity of the projection screen is poor. In order to improve the brightness uniformity, the prior art usually uses the reflection of the wire grid microstructure The layer adds scattering particles, which not only causes the reflectivity of the reflective layer to decrease, but also the scattering characteristics of the reflective layer will reduce the gain of the projection screen.
  • This application provides a projection screen with good brightness uniformity and high gain.
  • the projection screen of an embodiment of the present application includes at least a microstructure layer.
  • the microstructure layer includes a base layer and microstructure units formed on the surface of the base layer; wherein, the microstructure units include a plurality of A triangular pyramid unit, the triangular pyramid unit includes a light exit surface attached to the surface of the base layer, the plurality of triangular pyramid units arranged along the first direction are the same, and the triangular pyramid unit is arranged along a second perpendicular to the first direction.
  • the taper angle of a plurality of triangular pyramid units arranged in a direction is gradually changed, wherein the taper angle is the angle between the edge parallel to the second direction in the triangular pyramid unit and the bottom surface, and the bottom surface is the division of the triangular pyramid unit The light exit surface and the surface other than the two surfaces intersecting to form the edge.
  • the cone angles of the triangular pyramid units arranged along the second direction satisfy the following relationship:
  • is the cone angle of the triangular pyramid unit
  • ⁇ 1 is the incident angle of the image light
  • ⁇ 4 is the exit angle of the image light
  • n is the refractive index of the triangular pyramid unit.
  • a non-light-transmitting structure is provided between two adjacent triangular pyramid units.
  • an optical paint layer is arranged between two adjacent triangular pyramid units in the first direction, and the optical paint layer includes any combination of reflective material, light absorbing material, and light diffusing material.
  • a reverse structure prism is provided between two adjacent triangular pyramid units, and the reverse structure prism and the triangular pyramid unit have the same structure, and any triangular pyramid unit and the adjacent
  • the reverse structure prism is center-symmetrical, and the direction of the light exit surface of the triangular pyramid unit and the light exit surface of the reverse structure prism are the same.
  • the value range of the angle between the two faces that intersect to form an edge is 90° ⁇ 20°.
  • the projection screen further includes any combination of a diffusion layer, a reflective layer, and a protective layer, the microstructure unit is disposed on the diffusion layer, and the light exit surface of the triangular pyramid unit is attached to the diffusion layer.
  • the reflective layer covers the microstructure unit
  • the protective layer covers the outermost side of the projection screen.
  • the reflective layer is doped with scattering particles for realizing light scattering.
  • the diffusion layer is a layer structure with a uniform thickness, and is the base layer of the projection screen.
  • the thickness of the diffusion layer is between 100 and 1000 um.
  • the projection screen provided by the present application includes a plurality of triangular pyramid units arranged in an array.
  • the cone angles of the triangular pyramid units are designed to gradually change according to a predetermined relationship, so that the image light emitted from the projector is reflected by the microstructure layer with the triangular pyramid units Converge to a range centered on the human eye to reduce the difference in brightness at different viewing positions, thereby ensuring that the projection screen has high brightness uniformity and high gain.
  • FIG. 1 is a top view of the partial structure of the microstructure layer of the first embodiment of the projection screen of the present application
  • Figure 2 is a structural cross-sectional view of the projection screen shown in Figure 1 along the A-A direction;
  • Figure 3 is a perspective view of the structure of the triangular pyramid unit shown in Figure 1;
  • Fig. 4 is a structural side view of the triangular pyramid unit shown in Fig. 3 in a vertical viewing angle direction;
  • Figure 5 is a structural side view of the triangular pyramid unit shown in Figure 3 in a horizontal viewing angle direction;
  • FIG. 6 is a schematic diagram of a partial structure of the projection screen shown in FIG. 2;
  • FIG. 7 is a schematic diagram of vertical transmission when image light is projected onto the projection screen shown in FIG. 1;
  • FIG. 8 is a schematic diagram of horizontal transmission when image light is projected onto the projection screen shown in FIG. 1;
  • FIG. 9 is a top view of the partial structure of the second embodiment of the projection screen of the present application.
  • the primary purpose of this application is: for a projection screen including a plurality of triangular pyramid units arranged in an array, by designing the taper angle gradient of the triangular pyramid unit, the image light emitted from the projector passes through the microstructure layer with the triangular pyramid unit After reflection, it converges to the center of the human eye to reduce the difference in brightness at different viewing positions, so as to ensure that the projection screen has high brightness uniformity and high gain, and achieve good brightness uniformity and high gain.
  • Figure 1 is a top view of the partial structure of the microstructure layer of the first embodiment of the projection screen of the present application
  • Figure 2 is a cross-sectional view of the structure of the projection screen shown in Figure 1 along the AA direction.
  • the microstructure layer of the projection screen 10 includes a base layer 12 and a microstructure unit formed on the surface of the base layer 12, and the microstructure unit includes a plurality of triangular pyramid units 11 arranged in an array.
  • FIG 3 is a perspective view of the structure of the triangular pyramid unit 11 shown in Figure 1. Please refer to Figures 1 to 3 together.
  • a single triangular pyramid unit 11 has edges 1, edge 2, edge 3, edge 4, edge 5, and edge 6. These six straight edges, among them, edge 4, edge 5 and edge 6 are connected end to end to form the first surface 111 of the triangle, edge 2, edge 3 and edge 5 are connected end to end in turn to form the second surface 112 of the triangle, edge 1, edge 2
  • the edge 4 is connected end to end to form the third surface 113 of the triangle, and the edge 1, the edge 3 and the edge 6 are connected end to end to form the fourth surface 114 of the triangle.
  • Fig. 4 is a structural side view of the triangular pyramid unit 11 shown in Fig. 3 in the vertical viewing direction.
  • the angle between the edge 1 and the first surface 111 is the apex angle of the triangular pyramid unit 11.
  • the angle ⁇ between the edge 1 and the second surface 112 is the taper angle of the triangular pyramid unit 11.
  • 5 is a structural side view of the triangular pyramid unit 11 shown in FIG. 3 in the horizontal viewing angle direction. Referring to FIGS. 3 and 5, the angle ⁇ between the third surface 113 and the fourth surface 114 is that of the triangular pyramid unit 11 Span angle.
  • the first surfaces 111 of all the triangular pyramid units 11 are located on the same plane, for example, on a substrate layer 12 with a uniform thickness, and the cone angles ⁇ of all the triangular pyramid units 11 face the same side.
  • All the triangular pyramid units 11 arranged along the first direction D1 (for example, the horizontal direction x shown in FIG. 1) are the same, including the same structure and arrangement shape, that is, these triangular pyramid units 11 arranged along the first direction D1
  • the taper angles ⁇ of are also the same, while the taper angles ⁇ of the triangular pyramid units 11 arranged along the second direction D2 (for example, the vertical direction y shown in FIG. 1) are different.
  • FIGS. 3, 4, and 5 Please refer to FIGS. 3, 4, and 5 together.
  • the image light is refracted by the first surface 111 and then irradiated to the second surface 112.
  • a part of the light reflected by the second surface 112 (the light component in the horizontal direction as shown in FIG. 5) is irradiated to the fourth surface 114 and reflected by the fourth surface 114 to exit through the first surface 111 and be received by human eyes.
  • Another part of the light reflected by the three surfaces 113 (the light component in the vertical direction as shown in FIG. 4) is irradiated to the first surface 111 and exits through the first surface 111 and is received by human eyes.
  • a part of the light reflected by the fourth surface 114 (for example, the light component in the horizontal direction) is irradiated to the third surface 113 and reflected by the third surface 113, and then exits through the first surface 111 and is received by the human eye.
  • Another part of the light reflected from the four surfaces 114 (for example, the light component in the vertical direction) is irradiated to the first surface 111 and emitted through the first surface 111 to be received by the human eye.
  • the first surface 111 not only serves as the light incident surface of the projection screen 101, but also serves as the light exit surface of the projection screen 10. The image light is finally emitted through the first surface 111 and received by the human eye.
  • the taper angle ⁇ of the plurality of triangular pyramid units 11 arranged along the second direction D2 of the projection screen 10 only needs to satisfy a predetermined relationship, so that the image light emitted from the projector is reflected by the triangular pyramid unit 11 and converges.
  • the difference in brightness at different viewing positions is reduced, thereby ensuring that the projection screen has high brightness uniformity and high gain.
  • the image light transmission light path in FIG. 4 is not an actual image light transmission path, and the incident angle and reflection angle of the image light at each interface are also not shown in the figure.
  • the size relationship shown in Figure 4 is just to further illustrate the angular change trend of the cone angle ⁇ at different incident angles and reflection angles.
  • the triangular pyramid unit 11 has the following relationship:
  • is the cone angle of the triangular pyramid unit 11
  • ⁇ 1 is the incident angle of the image light transmitted to the first surface 111 when incident
  • ⁇ 2 is the refraction angle of the image light after passing through the first surface 111 when incident
  • ⁇ 3 Is the incident angle of the image light transmitted to the first surface 111 when it exits
  • ⁇ 4 is the exit angle of the image light
  • n is the refractive index of the triangular pyramid unit 11.
  • the incident angle ⁇ 1 and the exit angle ⁇ 4 are slightly smaller than those of the adjacent triangular pyramid.
  • the structure changes continuously, and the working angle (that is, the cone angle) ⁇ of the adjacent triangular pyramid microstructure on the projection screen 10 also changes continuously, that is, as shown in FIG. 6, the cones of the three adjacent triangular pyramid units 11 are The angles ⁇ 1, ⁇ 2, and ⁇ 3 are continuously changed according to the above-mentioned relational expression 1.
  • the beam emitted by the projector is cone-shaped.
  • the incident angle ⁇ 1 is the smallest.
  • the exit angle ⁇ 4 is the largest, and for the triangular pyramid unit 11 above the projection screen 10, the incidence angle ⁇ 1 gradually increases, and the exit angle ⁇ 4 gradually decreases; and because the angle of the incidence angle ⁇ 1 and the exit angle ⁇ 4 changes between 0-90° Within, namely
  • the beam emitted by the projector is cone-shaped.
  • the incident angle ⁇ 1 is the smallest
  • the exit angle ⁇ 4 is the largest
  • the incidence angle ⁇ 1 gradually increases, and the exit angle ⁇ 4 gradually decreases; and because the angles of the incidence angle ⁇ 1 and the exit angle ⁇ 4 vary between 0-90 Within °, that is
  • taper angle ⁇ gradually decreases along the projection screen 10 from bottom to top.
  • the third surface 113 and the fourth surface 114 of the triangular pyramid unit 11 are both PVD (physical meteorological deposition) processed and the reflectivity of the surface is 88% as an example.
  • PVD physical meteorological deposition
  • the viewer deviates from the center of the projection screen 10 in the horizontal direction, that is, as the viewing angle changes, the brightness uniformity of the projection screen 10 can be maintained above 80%, while the brightness of the existing projection screen 20 is uniform
  • the performance is kept below 30%, and it can be seen that the brightness uniformity of the projection screen 10 is much higher than that of the existing projection screen 20.
  • the gain of the projection screen 10 is 4.9, which is much larger than the case where the gain is 1, and the gain is high.
  • the second surface 112, the third surface 113, and the fourth surface 114 of the triangular pyramid unit 11 may be coated with a reflective material.
  • the reflective paint is preferably made of metal reflective materials such as aluminum and silver, and other additives. It is mixed with additives including leveling agent, wetting agent and defoaming agent to increase the coating effect in a certain proportion, or anhydrous acetone, anhydrous xylene, anhydrous cyclohexanone, anhydrous methyl ethyl ketone, Mixtures of ethyl acetate and anhydrous butyl acetate in a certain proportion.
  • appropriate diffusion materials can also be added to the reflective coating to enhance the diffusion effect.
  • the diffusion materials include but are not limited to epoxy, acrylic or silicone organic resin particles, or other inorganic scattering materials.
  • the span angle ⁇ is the angle between the third surface 113 and the fourth surface 114, and the value range of the ⁇ is 90° ⁇ 20°.
  • FIG. 8 at different positions in the horizontal direction, the image light emitted from the projector to different positions on the projection screen 10 all return to the same path.
  • the projection screen 10 may also include a diffusion layer 12, a reflective layer 13 and a protective layer 14, and of course, it may also include any combination of the three.
  • a plurality of triangular pyramid units 11 arranged in an array constitute the optical structure layer of the projection screen 10.
  • the optical structure layer can be prepared on a transparent substrate 12 by hot embossing or UV glue transfer.
  • the substrate 12 includes but is not limited to It is made of organic materials such as PET (polyethylene terephthalate), PC (polycarbonate), PVC (polyvinyl chloride), PMMA (polymethyl methacrylate), etc.
  • the substrate 12 may also be composed of a diffusion layer 12 with a uniform thickness.
  • the thickness of the diffusion layer 12 may be 100um-1000um, and the material may be epoxy, acrylic, or silicone organic resin particles, or Other inorganic scattering materials.
  • the optical structure layer is attached to the diffusion layer 12 and the first surface 111 of the triangular pyramid unit 11 is attached to the diffusion layer 12.
  • the reflective layer 13 covers the optical structure layer, and the reflective layer 13 may be doped with scattering particles for realizing light scattering to enhance the light scattering effect.
  • the protective layer 14 covers the outermost of the projection screen 10, and the protective layer 14 can be made of a material that is water and oxygen and oxygen resistant to protect the internal structure.
  • the aforementioned diffusion layer 12, optical structure layer, reflective layer 13, and protective layer 14 can be glued together to realize a projection screen 10 with high gain and high brightness uniformity.
  • a light-transmitting area 15 that is to say, half of the optical structure layer of this embodiment is a triangular pyramid microstructure. Half of the area is vacant.
  • the projection screen 10 of this embodiment can be applied to occasions where it is necessary to be able to present the foreground image while also seeing the background content.
  • the vacant area of the optical structure layer may be provided with a blackened layer, which is used to absorb the radiation to it.
  • the light irradiated from behind the projection screen 10 (which can be regarded as ambient light) can be absorbed by the black layer, so that the projection screen 10 has a high resistance to ambient light, which can be suitable for no need to see To the background scene, it also has a high resistance to ambient light.
  • the projection screen 10 of the present application may also be provided with other non-transparent structures.
  • the light irradiated from the back of the projection screen 10 can be blocked by the non-transmissive structure, so that the projection screen 10 of this embodiment has high resistance to ambient light, and can be applied to scenes that do not need to see the background.
  • the area between two adjacent triangular pyramid units 11 located on the same row may be provided with an optical paint layer.
  • the optical coating layer can be composed of metal reflective materials, black absorbing materials and other additives and diffusing materials.
  • the ratio of the materials of each part of the reflective coating can be adjusted according to actual needs, so as to adjust the light transmittance and light reflectivity of the optical coating layer 162 . Since the optical coating layer 162 not only has light absorption capability, but also has light reflection and light diffusion capabilities, the projection screen 10 not only has high resistance to ambient light so as to be suitable for scenes that do not need to see the background, but also can reflect light. And the light diffusion ability improves the light intensity irradiated to the human eye, and has a higher gain.
  • FIG. 11 is a top view of the partial structure of the second embodiment of the projection screen of the present application.
  • a reverse structure prism 17 is provided between two adjacent triangular pyramid units 11, in the direction perpendicular to the line of sight of the projection screen 10.
  • Any triangular pyramid unit 11 and the adjacent reverse structure prism 17 are center-symmetric, and the first surface 111 of the triangular pyramid unit 11 and the first surface of the adjacent reverse structure prism 17 have the same orientation.
  • the apex angles of the triangular pyramid unit 11 and the reverse structure prism 17 are in opposite directions. For example, as shown in FIG. 11, the apex angle of the triangular pyramid unit 11 faces upward, and the apex angle of the reverse structure prism 17 faces downward.
  • the first surface 111 of the triangular pyramid unit 11 and the reverse structure prism 17 both face the projector.
  • the triangular pyramid unit 11 and the reverse structure prism 17 are arranged in a staggered and symmetrical center.
  • the first surfaces 111 of all the triangular pyramid units 11 are located on the same plane, for example, on the right side surface of the base layer 12 shown in FIG. 2, and the first surfaces of all the reverse structure prisms 17 are also located on the same plane. On the plane, for example, it is also located on the right side surface of the base layer 12 shown in FIG. 2.
  • the cone angle ⁇ of all the reverse structure prisms 17 satisfies the following:
  • the reverse structure prism 17 In order to shoot the image light toward the human eye position as much as possible, the reverse structure prism 17 The cone angle of ⁇ gradually increases from top to bottom, and the cone angle of the reverse structure prism 17 from top to bottom also satisfies the above-mentioned relationship 1. It can be seen that the projector is located above the projection screen 10, and the image light is reflected by the anti-structural prism 17 and then condensed into the range centered on the human eye, thereby reducing the difference in brightness at different viewing positions, thereby also ensuring the The projection screen 10 has good uniformity and high gain.
  • the projection screen 10 can achieve high brightness uniformity and high gain.
  • a reverse structure prism 17 is provided between two adjacent triangular pyramid units 11, and the reverse structure prism 17 and the triangular pyramid unit 11 have the same structure, and are perpendicular to the projection screen.
  • any triangular pyramid unit 11 and the adjacent reverse structure prism 17 are center-symmetric, but the first surface 111 of the triangular pyramid unit 11 and the first surface of the adjacent reverse structure prism 17 face the opposite direction. That is, the first surface 111 of the triangular pyramid unit 11 faces the projector, and the first surface of the reverse structure prism 17 faces away from the projector. Therefore, both sides of the projection screen 10 of this embodiment can achieve high brightness uniformity and high gain.
  • first and second in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. “Multiple” means at least two, such as two, three, etc., unless otherwise specifically defined. All the directional indicators (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between the various components in a specific posture (as shown in the drawings) If the specific posture changes, the directional indication will change accordingly.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种投影屏幕(10),通过设计阵列排布的多个三棱锥单元(11)的锥角按照预定关系渐变,使得从投影机出射的图像光经具有三棱锥单元(11)的微结构层的反射后汇聚至以人眼为中心的范围内,以此降低不同观看位置处的亮度差异大小,从而保证投影屏幕(10)具有高亮度均匀性和高增益。

Description

一种投影屏幕 技术领域
本申请涉及投影技术领域,具体涉及一种投影屏幕。
背景技术
投影显示目前已经得到了越来越多的应用。投影显示的原理是:投影机将图像光投射到一屏幕(称为投影屏幕)上,图像光在屏幕上被散射,其中部分被散射的图像光被人眼接收,在人眼看来这些图像光就如同是屏幕上发出来的,这样屏幕上就形成了图像。相比较于投影机将图像光直接投射至墙体上,投影屏幕会显著提高显示亮度。
为了保证观众的观影体验,投影屏幕需要兼顾高增益和良好的亮度均匀性。在投影尺寸较大的画面以及在较远处观看时,投影屏幕的增益越高,亮度体验越高。亮度均匀性是衡量在水平方向上不同观看位置处的亮度差异大小,亮度均匀性越好,观影体验越佳。
现有的投影屏幕为线栅结构菲涅尔直投屏幕,由于屏幕光学结构的限制,投影屏幕的亮度均匀性较差,而为了改善亮度均匀性,现有技术通常会在线栅微结构的反射层添加散射粒子,这不仅导致反射层的反射率降低,而且反射层的散射特性会降低投影屏幕的增益。
由此可见,现有的投影屏幕无法兼顾高增益和亮度均匀性。
发明内容
本申请提供一种具有良好亮度均匀性和高增益的投影屏幕。
本申请一实施例的投影屏幕,至少包括微结构层,所述微结构层包括基体层和形成于所述基体层表面的微结构单元;其中,所述微结构单元包括阵列排布的多个三棱锥单元,所述三棱锥单元包括贴合于所述基体层表面的光出射面,沿第一方向排布的所述多个三棱锥单元相同,沿 与所述第一方向垂直的第二方向排布的多个三棱锥单元的锥角渐变,其中所述锥角为所述三棱锥单元中平行于第二方向的棱和底面的夹角,所述底面为所述三棱锥单元的除光出射面和相交形成所述棱的两个面之外的面。
可选地,沿第二方向排布的三棱锥单元的锥角满足如下关系式:
Figure PCTCN2020098466-appb-000001
其中,θ为所述三棱锥单元的锥角,α1为所述图像光的入射角,α4为所述图像光的出射角,n为三棱锥单元的折射率。
可选地,沿所述第一方向,相邻两个所述三棱锥单元之间为透光区域。
可选地,沿所述第一方向,相邻两个所述三棱锥单元之间设置有非透光结构。
可选地,在所述第一方向上相邻两个所述三棱锥单元之间设置有光学涂料层,所述光学涂料层包括反射材料、光吸收材料及光扩散材料的任意组合。
可选地,沿所述第一方向,相邻两个所述三棱锥单元之间设有反结构棱镜,所述反结构棱镜和三棱锥单元的结构相同,任一三棱锥单元和相邻的反结构棱镜呈中心对称,且所述三棱锥单元的光出射面与所述反结构棱镜的光出射面的朝向相同。
可选地,相交形成棱的两个面的夹角的取值范围为90°±20°。
可选地,所述投影屏幕还包括扩散层、反射层和保护层的任意组合,所述微结构单元设置于所述扩散层上且所述三棱锥单元的光出射面与所述扩散层贴合,所述反射层覆盖所述微结构单元,所述保护层覆盖于所述投影屏幕的最外侧。
可选地,所述反射层中掺杂有用于实现光散射的散射粒子。
可选地,所述扩散层为厚度均匀的层结构,且为所述投影屏幕的所述基体层。
可选地,所述扩散层的厚度介于100~1000um之间。
本申请提供的投影屏幕包括阵列排布的多个三棱锥单元,通过设计三棱锥单元的锥角按照预定关系渐变,使得从投影机出射的图像光经具有三棱锥单元的微结构层的反射后汇聚至以人眼为中心的范围内,以此降低不同观看位置处的亮度差异大小,从而保证该投影屏幕具有高亮度均匀性和高增益。
附图说明
图1是本申请的投影屏幕第一实施例的微结构层的局部结构俯视图;
图2是图1所示的投影屏幕沿A-A方向的结构剖视图;
图3是图1所示的三棱锥单元的结构透视图;
图4是图3所示的三棱锥单元在垂直视角方向上的结构侧视图;
图5是图3所示的三棱锥单元在水平视角方向上的结构侧视图;
图6是图2所示的投影屏幕的局部结构示意图;
图7是图像光投射至图1所示投影屏幕时垂直方向的传输示意图;
图8是图像光投射至图1所示投影屏幕时水平方向的传输示意图;
图9是本申请的投影屏幕第二实施例的局部结构俯视图。
具体实施方式
本申请的首要目的是:对于包括阵列排布的多个三棱锥单元的投影屏幕,通过设计三棱锥单元的锥角渐变,使得从投影机出射的图像光经具有三棱锥单元的微结构层的反射后汇聚至以人眼为中心的范围内,以此降低不同观看位置处的亮度差异大小,从而保证该投影屏幕具有高亮度均匀性和高增益,实现良好的亮度均匀性和高增益的兼顾。
基于上述目的,下面将结合本申请实施例的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处描述的具体实施例仅用于解释本申请,而非对本申请的限定。在不冲突的情况下,下述各实施例及其中的技术特征可相互组合。另外还需要说明的是,为了便于描述,所述附图中仅示出了与本申请相关的部分而非全部结构。基于本申请的实施例,本领域普通技术人员在没有作出创造性劳动前提下获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请的投影屏幕第一实施例的微结构层的局部结构俯视图,图2是图1所示的投影屏幕沿A-A方向的结构剖视图,请一并参阅图1和图2,所述投影屏幕10的微结构层包括基体层12和形成于基体层12表面的微结构单元,该微结构单元包括阵列排布的多个三棱锥单元11。
图3是图1所示的三棱锥单元11的结构透视图,请一并参阅图1~图3,单个三棱锥单元11具有棱1、棱2、棱3、棱4、棱5和棱6这六条直线棱,其中,棱4、棱5和棱6依次首尾相连构成三角形的第一面111,棱2、棱3和棱5依次首尾相连构成三角形的第二面112,棱1、棱2和棱4依次首尾相连构成三角形的第三面113,棱1、棱3和棱6依次首尾相连构成三角形的第四面114。
图4是图3所示的三棱锥单元11在垂直视角方向上的结构侧视图,参阅图3和图4,棱1与第一面111之间的夹角为三棱锥单元11的顶角,棱1与第二面112之间的夹角θ为三棱锥单元11的锥角。图5是图3所示的三棱锥单元11在水平视角方向上的结构侧视图,参阅图3和图5,第三面113和第四面114之间的夹角β为三棱锥单元11的跨度角。
请一并参阅图1~图5,所有三棱锥单元11的第一面111均位于同一平面上,例如位于一厚度均匀的基体层12上,所有三棱锥单元11的锥角θ均朝向同一侧,沿第一方向D1(例如图1所示的水平方向x)排布的所有三棱锥单元11相同,包括结构和排布形状均相同,即这些沿第一方向D1排布的三棱锥单元11的锥角θ也相同,而沿第二方向D2(例如图1所示的竖直方向y)排布的三棱锥单元11的锥角θ不相同。
在本申请中,请一并参阅图3、图4和图5,从投影机出射的图像光入射至投影屏幕10上之后,图像光经第一面111折射后照射至第二面112,被第二面112反射的光的一部分(如图5所示的水平方向的光分量)照射至第四面114并被第四面114反射而经由第一面111出射并被人眼接收,被第三面113反射的光的又一部分(如图4所示的垂直方向的光分量)照射至第一面111并经由第一面111出射并被人眼所接收。同理,被第四面114的反射的光的一部分(例如水平方向的光分量)照射至第三面113并被第三面113反射而经由第一面111出射并被人眼接收,被 第四面114反射的光的又一部分(例如垂直方向的光分量)照射至第一面111并经由第一面111出射而被人眼接收。其中,第一面111不仅作为投影屏幕101的光入射面,还作为投影屏幕10的光出射面,图像光最终经由第一面111出射并被人眼所接收。
依据此原理,投影屏幕10的沿第二方向D2排布的多个三棱锥单元11的锥角θ只需满足预定关系,即可使得从投影机出射的图像光经三棱锥单元11反射后汇聚至以人眼为中心的范围内,以此降低不同观看位置处的亮度差异大小,从而保证该投影屏幕具有高亮度均匀性和高增益。具体而言:
在水平方向上,当投影机位于投影屏幕10的下半部分时,假定人眼位于投影屏幕10的中间位置,为了尽可能的将图像光射向人眼位置,以图4和图6为例,则所述锥角θ自下往上逐渐增大。
在水平方向上,当投影机位于投影屏幕10的上半部分时,仍假定人眼位于投影屏幕10的中间位置,为了尽可能的将图像光射向人眼位置,以图4为例,则所述锥角θ从上往下逐渐增大。
具体地,依据图4箭头所示的图像光传输路径,需要说明的是,图4的图像光传输光路径并非实际的图像光传输路径,图像光在各界面的入射角和反射角也并非图4所示的大小关系,图4仅仅是为了进一步说明锥角θ在不同入射角和反射角时的角度变化趋势,三棱锥单元11具有如下关系式:
Figure PCTCN2020098466-appb-000002
sinα1=n×sinα2…关系式1-2
sinα4=n×sinα3…关系式1-3
其中,θ为所述三棱锥单元11的锥角,α1为图像光在入射时传输至第一面111上的入射角,α2为图像光在入射时经第一面111后的折射角,α3为图像光在出射时传输至第一面111上的入射角,α4为所述图像光的出射角,n为三棱锥单元11的折射率。
上述三个关系式可以推导得到如下关系式1:
Figure PCTCN2020098466-appb-000003
也就是说,沿所述第二方向D2排布的三棱锥单元11的锥角θ只要满足上述关系式1,则在竖直方向y上,入射角α1和出射角α4在相邻三棱锥微结构上是连续变化的,投影屏幕10上相邻三棱锥微结构的工作角(即锥角)θ也是连续变化的,即如图6所示,上下相邻的三个三棱锥单元11的锥角θ1、θ2和θ3是按照上述关系式1连续变化的。
当投影机位于投影屏幕10的下半部分时,假定人眼位于投影屏幕10的中间位置,投影机出射的光束为锥形,对于投影屏幕10最下方的三棱锥单元11,入射角α1最小,出射角α4最大,而对于投影屏幕10较上方的三棱锥单元11,入射角α1逐渐变大,出射角α4逐渐变小;又因为入射角α1和出射角α4的角度的变化在0-90°内,即
Figure PCTCN2020098466-appb-000004
逐渐变大,
Figure PCTCN2020098466-appb-000005
逐渐变小,由此,
Figure PCTCN2020098466-appb-000006
Figure PCTCN2020098466-appb-000007
逐渐变大
可见,所述锥角θ沿投影屏幕10自下往上逐渐增大。
而当投影机位于投影屏幕10的上半部分时,假定人眼位于投影屏幕10的中间位置,投影机出射的光束为锥形,对于投影屏幕10最上方的三棱锥单元11,入射角α1最小,出射角α4最大,而对于投影屏幕10较下方的三棱锥单元11,入射角α1逐渐变大,出射角α4逐渐变小;又因为入射角α1和出射角α4的角度的变化在0-90°内,即
Figure PCTCN2020098466-appb-000008
逐渐变小,
Figure PCTCN2020098466-appb-000009
逐渐变大,由此,
Figure PCTCN2020098466-appb-000010
Figure PCTCN2020098466-appb-000011
逐渐变小
可见,所述锥角θ沿投影屏幕10自下往上逐渐变小。
基于上述可知,在投影屏幕10的竖直方向y上,不同高度位置,通过设置不同的工作角θ,即可使得从投影机出射至投影屏幕10的不 同位置上的图像光都汇聚至人眼所在范围内,如图7所示。
在具体的实际场景中,以三棱锥单元11的第三面113和第四面114均做PVD(物理气象沉积)处理并使其表面的反射率为88%这一实施场景为例,随着观看者在水平方向上偏离投影屏幕10的中心位置,即随着观水平视角的变化,所述投影屏幕10的亮度均匀性可以均保持在80%以上,而现有的投影屏幕20的亮度均匀性均保持在30%以下,可见投影屏幕10的亮度均匀性远远高于现有的投影屏幕20。而此时,投影屏幕10的增益为4.9,远大于增益为1的情况,增益高。
为了提高光反射效率,上述三棱锥单元11的第二面112、第三面113和第四面114上可以涂覆有反射材料,该反射涂料优选由铝、银等金属反射材料和其他助剂混合而成,助剂包括流平剂、润湿剂与消泡剂等增加涂布效果的一定比例的混合物,或者无水丙酮、无水二甲苯、无水环已酮、无水丁酮、乙酸乙酯和无水醋酸丁醋等一定比例的混合物等。根据实际使用场景,反射涂料中也可以添加有适当的扩散材料以增强扩散效果,该扩散材料包括但不限于为环氧系、丙烯酸系或者硅酮系有机树脂颗粒,或者其他无机的散射材料。
请继续参阅图5,在水平方向x上,跨度角β为第三面113和第四面114之间的夹角,所述β的取值范围为90°±20°。当β=90°时,从投影机出射的图像光入射至投影屏幕10上之后,图像光经第三面113和第四面114的反射而传输至第一面111上,然后以与入射方向相同的方向朝向投影机折射回来。如图8所示,在水平方向上的不同位置处,投影机出射至投影屏幕10不同位置上的图像光都原路返回。当β≠90°,投影机出射至投影屏幕10不同位置上的图像光并不能朝向投影机原路返回,而是在观察面水平方向上成为一条焦线,其中假设δ=90°-β,δ的绝对值越大,焦线的长度越长。
请继续参阅图2,所述投影屏幕10还可以包括扩散层12、反射层13和保护层14,当然也可以包括这三者的任意组合。阵列排布的多个三棱锥单元11构成投影屏幕10的光学结构层,光学结构层可以通过热压印或UV胶水转印的方式制备在透明的衬底12上,衬底12包括但不 限于由PET(聚对苯二甲酸乙二醇酯)、PC(聚碳酸酯)、PVC(聚氯乙烯)、PMMA(聚甲基丙烯酸甲酯)等有机材料制备。当然,所述衬底12也可以由厚度均匀的扩散层12构成,所述扩散层12的厚度可以为100um-1000um,其材料可以是环氧系、丙烯酸系或者硅酮系有机树脂颗粒,或者其他无机的散射材料。于此,所述光学结构层贴合于扩散层12上且三棱锥单元11的第一面111与该扩散层12贴合。反射层13覆盖光学结构层,该反射层13中可以掺杂有用于实现光散射的散射粒子,以增强光散射效果。保护层14覆盖于投影屏幕10的最外侧,该保护层14可以采用隔水隔氧的材料制备,以保护内部结构。
上述扩散层12、光学结构层、反射层13及保护层14可以通过胶水贴合共同实现高增益、高亮度均匀性的投影屏幕10。
请继续参阅图1,沿所述水平方向x,相邻两个三棱锥单元11之间为透光区域15,也就是说,本实施例的光学结构层有一半区域是三棱锥微结构,另一半区域是空置的,于此,本实施例的投影屏幕10可适用于需要既能呈现前景图像,同时也能看到后景内容的场合。
不同于前述实施例,所述光学结构层空置的区域,即位于同一行上相邻两个三棱锥单元11之间的区域,可以设有涂黑层,该涂黑层用于吸收照射至其上的光线,于此,从投影屏幕10背后照射而来的光线(可视为环境光)可以被涂黑层吸收,使得投影屏幕10具有较高的抗环境光能力,可以适用于不需要看到背景的场景,还具有较高的抗环境光能力。
当然,位于同一行上相邻两个三棱锥单元11之间的区域,本申请的投影屏幕10还可以设置有其他非透光结构。从投影屏幕10背后照射而来的光线可以被该非透光结构遮挡,使得本实施例的投影屏幕10具有较高的抗环境光能力,可以适用于不需要看到背景的场景。
进一步地,不同于前述实施例,位于同一行上,相邻两个三棱锥单元11之间的区域可以设置有光学涂料层。该光学涂料层可以由金属反射材料、黑色吸收材料和其他助剂以及扩散材料组成,可以根据实际使用需求调节反射涂料各部分材料的比例,以此调节光学涂料层162的光 透射率和光反射率。由于光学涂料层162不仅具有光吸收能力,还具有光反射和光扩散能力,于此,投影屏幕10不仅具有较高的抗环境光能力以适用于不需要看到背景的场景,还能够通过光反射和光扩散能力提高照射至人眼的光强度,具有较高的增益。
图11是本申请的投影屏幕第二实施例的局部结构俯视图。如图11所示,不同于前述图1所示实施例,位于同一行上,相邻两个三棱锥单元11之间设有反结构棱镜17,在垂直于投影屏幕10的视线方向上,虽然任一三棱锥单元11和相邻的反结构棱镜17呈中心对称,且三棱锥单元11的第一面111与相邻反结构棱镜17的第一面的朝向相同。于此,三棱锥单元11和反结构棱镜17的顶角的朝向相反,例如,结合图11所示,三棱锥单元11的顶角朝上,则反结构棱镜17的顶角朝下。
即,三棱锥单元11和反结构棱镜17的第一面111均朝向投影机。换言之,位于同一行上,三棱锥单元11和反结构棱镜17呈中心对称的依次交错设置。
需要注意的是,所有三棱锥单元11的第一面111均位于同一平面上,例如图2所示的基底层12的右侧表面上,而所有反结构棱镜17的第一面也均位于同一平面上,例如也位于图2所示的基底层12的右侧表面上。另外,正是基于三棱锥单元11和反结构棱镜17的上述设置,所有反结构棱镜17的锥角θ满足如下:
在水平方向上,当投影机位于投影屏幕10的下半部分时,假定人眼位于投影屏幕10的中间位置,为了尽可能的将图像光射向人眼位置,以图4为例,则所述三棱锥单元11的锥角θ自下往上逐渐增大。由此可见,投影机位于投影屏幕10的下方,图像光经三棱锥单元11反射后汇聚至以人眼为中心的范围内,以此降低不同观看位置处的亮度差异大小,从而保证该投影屏幕10具有良好的均匀性和高增益。
在水平方向上,当投影机位于投影屏幕10的上半部分时,仍假定人眼位于投影屏幕10的中间位置,为了尽可能的将图像光射向人眼位置,则所述反结构棱镜17的锥角从上往下逐渐增大,自上往下反结构棱镜17的锥角也满足上述关系式1。由此可见,投影机位于投影屏幕 10的上方,图像光经反结构棱镜17反射后汇聚至以人眼为中心的范围内,以此降低不同观看位置处的亮度差异大小,从而也能够保证该投影屏幕10具有良好的均匀性和高增益。
在水平方向上,当投影机位于投影屏幕10的下半部分时,假定人眼位于投影屏幕10的中间位置,为了尽可能的将图像光射向人眼位置,以图4为例,则所述三棱锥单元11的锥角θ自下往上逐渐增大。由此可见,投影机位于投影屏幕10的下方,图像光经三棱锥单元11反射后汇聚至以人眼为中心的范围内,以此降低不同观看位置处的亮度差异大小,从而保证该投影屏幕10具有良好的均匀性和高增益。
综上,无论投影机位于投影屏幕10的上方还是下方,投影屏幕10均能实现高亮度均匀性和高增益。
当然,在另一实施例中,位于同一行上,相邻两个三棱锥单元11之间设有反结构棱镜17,该反结构棱镜17和三棱锥单元11的结构相同,在垂直于投影屏幕10的视线方向上,任一三棱锥单元11和相邻的反结构棱镜17呈中心对称,但是,三棱锥单元11的第一面111与相邻反结构棱镜17的第一面的朝向相反。即,三棱锥单元11的第一面111朝向投影机,而反结构棱镜17的第一面背向投影机。于此,本实施例的投影屏幕10的两面均可以实现高亮度均匀性和高增益。
应理解,以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
另外,需要说明的是,本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部元件之间的相对位置关系、运动情况等,如果该特定姿态 发生改变时,则该方向性指示也相应地随之改变。

Claims (11)

  1. 一种投影屏幕,其特征在于,所述投影屏幕至少包括微结构层,所述微结构层包括基体层和形成于所述基体层表面的微结构单元;
    其中,所述微结构单元包括阵列排布的多个三棱锥单元,所述三棱锥单元包括贴合于所述基体层表面的光出射面,沿第一方向排布的所述多个三棱锥单元相同,沿与所述第一方向垂直的第二方向排布的多个三棱锥单元的锥角渐变,其中所述锥角为所述三棱锥单元中平行于第二方向的棱和底面的夹角,所述底面为所述三棱锥单元的除光出射面和相交形成所述棱的两个面之外的面。
  2. 根据权利要求1所述的投影屏幕,其特征在于,沿所述第二方向排布的三棱锥单元的锥角满足如下关系式:
    Figure PCTCN2020098466-appb-100001
    其中,θ为所述三棱锥单元的锥角,α1为所述图像光的入射角,α4为所述图像光的出射角,n为三棱锥单元的折射率。
  3. 根据权利要求1所述的投影屏幕,其特征在于,沿所述第一方向,相邻两个所述三棱锥单元之间为透光区域。
  4. 根据权利要求1所述的投影屏幕,其特征在于,沿所述第一方向,相邻两个所述三棱锥单元之间设置有非透光结构。
  5. 根据权利要求1或4所述的投影屏幕,其特征在于,在所述第一方向上相邻两个所述三棱锥单元之间设置有光学涂料层,所述光学涂料层包括反射材料、光吸收材料及光扩散材料的任意组合。
  6. 根据权利要求1所述的投影屏幕,其特征在于,沿所述第一方向,相邻两个所述三棱锥单元之间设有反结构棱镜,所述反结构棱镜和三棱锥单元的结构相同,任一三棱锥单元和相邻的反结构棱镜呈中心对称,且所述三棱锥单元的光出射面与所述反结构棱镜的光出射面的朝向相同。
  7. 根据权利要求1所述的投影屏幕,其特征在于,相交形成所述棱 的两个面之间的夹角的取值范围为90°±20°。
  8. 根据权利要求1~7任一项所述的投影屏幕,其特征在于,所述投影屏幕还包括扩散层、反射层和保护层的任意组合,所述微结构单元设置于所述扩散层上且所述三棱锥单元的光出射面与所述扩散层贴合,所述反射层覆盖所述微结构单元,所述保护层覆盖于所述投影屏幕的最外侧。
  9. 根据权利要求8所述的投影屏幕,其特征在于,所述反射层中掺杂有用于实现光散射的散射粒子。
  10. 根据权利要求8所述的投影屏幕,其特征在于,所述扩散层为厚度均匀的层结构,且为所述投影屏幕的所述基体层。
  11. 根据权利要求10所述的投影屏幕,其特征在于,所述扩散层的厚度介于100~1000um之间。
PCT/CN2020/098466 2019-07-05 2020-06-28 一种投影屏幕 WO2021004303A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20837041.1A EP3985436B1 (en) 2019-07-05 2020-06-28 Projection screen
US17/597,434 US11892766B2 (en) 2019-07-05 2020-06-28 Projection screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910605057.7 2019-07-05
CN201910605057.7A CN112180673B (zh) 2019-07-05 2019-07-05 一种投影屏幕

Publications (1)

Publication Number Publication Date
WO2021004303A1 true WO2021004303A1 (zh) 2021-01-14

Family

ID=73915382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098466 WO2021004303A1 (zh) 2019-07-05 2020-06-28 一种投影屏幕

Country Status (4)

Country Link
US (1) US11892766B2 (zh)
EP (1) EP3985436B1 (zh)
CN (1) CN112180673B (zh)
WO (1) WO2021004303A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220291579A1 (en) * 2019-07-05 2022-09-15 Appotronics Corporation Limited Projection screen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010018578A (ko) * 1999-08-20 2001-03-05 성재갑 입사광을 부분 내부 전반사시키는 변형 큐브코너 재귀반사체 및 그 제조방법
CN106406012A (zh) * 2016-06-28 2017-02-15 张家港宝视特影视器材有限公司 高亮度幕布
JP2018077379A (ja) * 2016-11-10 2018-05-17 大日本印刷株式会社 再帰反射人工皮革シート作製用賦型シート
CN207895098U (zh) * 2017-11-29 2018-09-21 佛山市顺德区德联邦盛光电科技有限公司 一种多层密度的扩散板
CN108663821A (zh) * 2016-10-16 2018-10-16 王德龙 一种3d立体投影膜
CN109634046A (zh) * 2018-12-24 2019-04-16 宁波激智科技股份有限公司 一种光学屏幕及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145881A (ja) * 2004-11-19 2006-06-08 Olympus Corp 反射型投影スクリーン
US7667893B2 (en) * 2005-04-06 2010-02-23 Seiko Epson Corporation Microlens front projection screen
CN1928699A (zh) * 2005-11-24 2007-03-14 长春百泰精密光学仪器技术有限责任公司 一种悬浮像投影仪
CN203587956U (zh) * 2013-09-16 2014-05-07 吴震 屏幕和投影显示系统
CN104076589A (zh) * 2014-07-21 2014-10-01 成都菲斯特科技有限公司 一种短投射距离正向投影光学屏幕的投影系统
CN204009335U (zh) * 2014-07-21 2014-12-10 成都菲斯特科技有限公司 一种短投射距离正向投影光学屏幕的投影系统
CN109804297B (zh) * 2016-08-03 2021-09-07 米拉维兹公司 逆反射屏幕、显示系统和显示图像的方法
CN109388015B (zh) * 2017-08-04 2024-05-17 深圳光峰科技股份有限公司 全反射屏幕和投影系统
CN109388014B (zh) * 2017-08-04 2021-07-06 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN109388013B (zh) * 2017-08-04 2022-02-11 深圳光峰科技股份有限公司 投影屏幕和投影系统
US10444615B2 (en) * 2017-08-29 2019-10-15 Avery Dennison Corporation Retroreflective sheeting for projector-based display system
CN110297387A (zh) * 2018-03-22 2019-10-01 深圳光峰科技股份有限公司 屏幕和投影系统
CN110955106B (zh) * 2018-09-27 2021-11-12 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN111208705B (zh) * 2018-11-05 2022-04-22 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN112180673B (zh) * 2019-07-05 2023-06-16 深圳光峰科技股份有限公司 一种投影屏幕
CN112180672A (zh) * 2019-07-05 2021-01-05 深圳光峰科技股份有限公司 一种投影屏幕

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010018578A (ko) * 1999-08-20 2001-03-05 성재갑 입사광을 부분 내부 전반사시키는 변형 큐브코너 재귀반사체 및 그 제조방법
CN106406012A (zh) * 2016-06-28 2017-02-15 张家港宝视特影视器材有限公司 高亮度幕布
CN108663821A (zh) * 2016-10-16 2018-10-16 王德龙 一种3d立体投影膜
JP2018077379A (ja) * 2016-11-10 2018-05-17 大日本印刷株式会社 再帰反射人工皮革シート作製用賦型シート
CN207895098U (zh) * 2017-11-29 2018-09-21 佛山市顺德区德联邦盛光电科技有限公司 一种多层密度的扩散板
CN109634046A (zh) * 2018-12-24 2019-04-16 宁波激智科技股份有限公司 一种光学屏幕及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220291579A1 (en) * 2019-07-05 2022-09-15 Appotronics Corporation Limited Projection screen
US11892766B2 (en) * 2019-07-05 2024-02-06 Appotronics Corporation Limited Projection screen

Also Published As

Publication number Publication date
US11892766B2 (en) 2024-02-06
EP3985436B1 (en) 2024-03-27
US20220291579A1 (en) 2022-09-15
CN112180673A (zh) 2021-01-05
EP3985436A4 (en) 2022-08-17
EP3985436A1 (en) 2022-04-20
CN112180673B (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
CN207216263U (zh) 全反射屏幕和投影系统
WO2021004301A1 (zh) 一种投影屏幕
TWI581049B (zh) 投影屏幕
EP3663852B1 (en) Total reflection screen and projection system
CN109388013A (zh) 投影屏幕和投影系统
US11448952B2 (en) Screen and projection system
CN109388012B (zh) 投影屏幕和投影系统
US11194243B2 (en) Projection screen and projection system
WO2019179167A1 (zh) 曲面屏幕及其微结构设置方法和投影系统
WO2019179124A1 (zh) 屏幕和投影系统
US11762275B2 (en) Projection screen and projection system
CN109388014B (zh) 投影屏幕和投影系统
WO2021004303A1 (zh) 一种投影屏幕
WO2018166177A1 (zh) 透明显示装置
TWI653497B (zh) 背投影幕
TWI750888B (zh) 長焦抗光幕
TWI390253B (zh) 背光模組及其稜鏡片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020837041

Country of ref document: EP

Effective date: 20220117