WO2019179167A1 - 曲面屏幕及其微结构设置方法和投影系统 - Google Patents

曲面屏幕及其微结构设置方法和投影系统 Download PDF

Info

Publication number
WO2019179167A1
WO2019179167A1 PCT/CN2018/118835 CN2018118835W WO2019179167A1 WO 2019179167 A1 WO2019179167 A1 WO 2019179167A1 CN 2018118835 W CN2018118835 W CN 2018118835W WO 2019179167 A1 WO2019179167 A1 WO 2019179167A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructure
screen
curved screen
angle
light
Prior art date
Application number
PCT/CN2018/118835
Other languages
English (en)
French (fr)
Inventor
王霖
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/040,122 priority Critical patent/US11740545B2/en
Publication of WO2019179167A1 publication Critical patent/WO2019179167A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens

Definitions

  • the invention relates to a curved screen and a micro structure setting method thereof and a projection system, and belongs to the technical field of optical component manufacturing.
  • projection systems are small in size, easy to install, and the system is inexpensive, and can easily achieve greater than 100.
  • Surface display technology has attracted much attention because it gives consumers a more comfortable look and feel and immersive surround effects.
  • the surface display has obvious technical advantages.
  • the curved surface setting is more ergonomically compatible with the human eye structure, ensuring that the distance from each point on the screen to the eyeball is equal, reducing visual distortion and making the viewer more comfortable to watch.
  • the curved surface display can enlarge the picture.
  • the field of view reduces edge loss and enhances the immersion and presence of the audience.
  • the curved screen is curved to reduce the incident angle at the edge of the screen, thereby reducing the Fresnel reflection of the screen surface, and further improving the uniformity of the screen brightness.
  • the technical problem to be solved by the present invention is to provide a curved screen, a micro structure setting method thereof and a projection system according to the deficiencies of the prior art.
  • the diffusion layer has various structures, and the projector is effectively distinguished by setting the angle of the total reflection diffusion layer.
  • Incident light and ambient stray light improve the contrast of the screen, and reflect the light to the viewer's field of view with a certain scattering angle, which increases the field of view angle; improves the brightness uniformity of the curved screen; improves the gain and facilitates installation.
  • a curved screen comprising a black light absorbing layer, a microstructure array layer and a transparent substrate layer arranged in order from the inside to the outside, the microstructure array layer being composed of a plurality of microstructure units, the microstructure unit being composed of two intersecting
  • the V-shaped groove formed by the inclined surface, the microstructure array layer is rotationally symmetrical with respect to a center line of the curved screen, and the angle of the V-shaped groove on each section in the longitudinal direction of the curved screen is uniquely determined according to the angle of the incident light of the projector .
  • the curved screen further includes a light diffusion layer, and the arrangement of the light diffusion layer may be different in different cases.
  • the light diffusion layer is disposed outside the transparent substrate layer.
  • the light diffusion layer may be composed of a scattering material disposed on at least one side of the V-groove for easier processing and cost reduction.
  • the microstructure array layer further includes a microstructure array and a microlens array, and the number and position of the two are correspondingly set.
  • the microstructured array layer can be fabricated in a variety of configurations depending on the processing.
  • the microstructure array and the microlens array may be disposed together on both sides of the first substrate, and the microstructure array and the microlens array may also be respectively disposed on the first substrate and the second substrate, the first base
  • the material and the second substrate may also be processed in different ways spaced apart or attached to each other.
  • the microlens array is also an arc array formed by a plurality of lens units, using arc bars Shaped rotationally symmetric structure.
  • the invention also provides a micro structure setting method on a curved screen, comprising the following steps:
  • Step 100 Select an angle setting position of the microstructure at any point of the curved screen
  • Step 200 Calculate an angle ⁇ between the incident ray at the position and the microstructure cross section at the position;
  • Step 300 Projecting incident light and outgoing light onto the microstructure cross section to obtain direction angles ⁇ ' and ⁇ ';
  • Step 400 Calculate the cross-sectional angles ⁇ 1 and ⁇ 2 of the V-shaped groove according to the directions of the incident light and the outgoing light on the projected section.
  • the specific calculation method in the step 300 includes: formulas (1) and (2):
  • the angle between the incident ray and the normal direction of the screen surface
  • the angle between the incident ray and the microstructure cross section
  • ⁇ ' the angle between the projected incident light and the normal direction of the screen surface
  • ⁇ ' the angle between the projected outgoing light and the normal direction of the screen surface
  • N2 refractive index of the microstructure unit
  • N3 the refractive index of the material in contact with the microstructure unit, typically air.
  • the specific calculation method in the step 400 includes: formulas (3) to (5):
  • ⁇ 1 an angle between the first incident slope and the parallel screen direction
  • ⁇ 2 the angle between the first incident slope and the direction of the parallel screen.
  • the present invention also provides a projection system including a projector and a projection screen, the projection screen being a curved screen as described above.
  • the present invention provides a curved screen, a micro-structure setting method thereof, and a projection system.
  • the diffusion layer has various structures, and the angle of the total reflection diffusion layer is set to effectively distinguish the projector from incident ray and ambient stray light.
  • the contrast of the screen reflects the light at a certain scattering angle into the viewer's field of view, increasing the angle of view; improving the brightness uniformity of the curved screen; increasing the gain and facilitating installation.
  • FIG. 1 is a cross-sectional structural view of a curved screen along a center line according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional structural view of a curved screen along a center line according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic view showing a position where a scattering material is disposed according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing the position of a scattering material according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a micro-array array layer according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a six-micro array array layer according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a micro-array array layer according to Embodiment 7 of the present invention.
  • Figure 8 is a schematic structural view of a microlens array of the present invention.
  • FIG. 9 is a schematic view showing the overall structure of a curved screen according to the present invention.
  • Figure 10 is a partial structural schematic view showing the microstructure of the present invention.
  • Figure 11 and Figure 12 are the light path on the plane projection screen and the curved projection screen, respectively;
  • Figure 13 is a schematic view showing the change of the direction of the V-groove of the P point in the curved screen
  • Figure 14 is a schematic view showing the positional relationship between the cross section of the microstructure and the incident and outgoing rays according to the present invention.
  • Figure 15 is a schematic diagram of the optical reflection of the microstructure of the present invention.
  • Figure 16 is a flow chart of a method for setting a microstructure according to the present invention.
  • Figure 17 is a schematic diagram showing the relationship between brightness uniformity and screen curvature radius according to the present invention.
  • FIG. 1 is a cross-sectional structural view of a curved screen along a center line according to an embodiment of the present invention.
  • the present invention provides a curved screen B including a black light absorbing layer 100, a microstructure array layer 200 and a transparent substrate layer 300 which are sequentially disposed from the inside to the outside, and the microstructure array layer 200 is composed of a plurality of micro a structural unit composed of a V-shaped groove 210 composed of two intersecting inclined surfaces, the microstructured array layer being rotationally symmetrical with respect to a center line of the curved screen, each of the longitudinal sections of the curved screen
  • the angle of the V-groove is uniquely determined by the angle of the incident light from the projector.
  • the curved screen further includes a light diffusion layer 400, and the arrangement of the light diffusion layer may be different in different cases.
  • the light diffusion layer 400 is disposed outside the transparent substrate layer 300.
  • the incident light I passes through the light diffusion layer 400, and the emitted light O is formed by the microstructure unit, and the ambient light S is absorbed by the black light absorbing layer 100.
  • the light diffusion layer 410 is composed of a scattering material provided on at least one inclined surface of the V-shaped groove.
  • the scattering material can be obtained by sandblasting on the V-shaped groove; or the surface of the mold can be roughened to form a glue transfer structure; and when the surface of the microstructure unit is smoothed, the glue with scattering particles can be sprayed. Complete the setting of the scattering material.
  • the scattering material is disposed on the two slopes of the V-groove.
  • the incident light I passes through the transparent substrate layer 300, and the emitted light O is formed by the light diffusing layer 410 disposed on the V-shaped groove 210, and the ambient light S is absorbed by the black light absorbing layer 100, passing through the V-shaped groove.
  • the structure of the light diffusion layer 410 is provided.
  • the screen in the present invention does not need to additionally provide a separate light diffusion layer on the screen surface as in the screen of the first embodiment, but the micro structure unit has a light diffusion function, thereby simplifying the screen. Structure, reducing costs and increasing yield.
  • FIG. 3 is a schematic view showing the position of the scattering material according to the third embodiment of the present invention.
  • the arrangement position of the scattering material is different from that of the second embodiment.
  • the scattering material is formed on the upper inclined surface of the V-shaped groove to form the light diffusion layer 410.
  • the scattering material can have the effect of scattering, and it has no effect on the scattering effect, and both the microstructure unit can have the light diffusion function, and the light is The diffusion effect does not have an effect, and the difference is only slightly different during the machining process due to the difference in the setting position.
  • FIG. 4 is a schematic view showing the position of a scattering material according to an embodiment of the present invention.
  • the scattering material is formed on the lower side of the V-shaped groove to form the light diffusion layer 410.
  • the third embodiment and the fourth embodiment only provide the scattering material on one side of the V-shaped groove, and the processing process is simpler than the second embodiment, and the material is saved to some extent. The cost is reduced, but the scattering effect is not affected too much. Therefore, in practical applications, the position and manner of setting the scattering material can be selected according to different requirements for scattering effect or processing cost.
  • the microstructure array layer further includes a microstructure array and a microlens array, the number and position of which are correspondingly set.
  • the microstructured array layer can be fabricated in a variety of configurations depending on the processing.
  • FIG. 5 is a schematic structural diagram of a fifth micro-array array layer according to an embodiment of the present invention.
  • the microstructure array 220 and the microlens array 230 are disposed on both sides of the first substrate 240, wherein the first substrate 240 is PET (polyethylene terephthalate, English: Polyethylene terephthalate), the side of the PET facing the viewer processes the microlens array 230, and the other side processes a row of V-groove microstructure arrays 220 using a roll coating resin and a UV curing process.
  • PET polyethylene terephthalate
  • English Polyethylene terephthalate
  • FIG. 6 is a schematic structural diagram of a six-micro array array layer according to an embodiment of the present invention.
  • the microstructure array 220 and the microlens array 230 are respectively disposed on the first substrate 240 and the second substrate 250 , and the materials of the first substrate 240 and the second substrate 250 are respectively disposed.
  • the beneficial effects that can be achieved are the same as in the fifth embodiment, only because the microstructure array 220 and the microlens array 230 are respectively disposed thereon, and the first substrate and the second substrate are used.
  • Material is distinguished by name.
  • the first substrate 240 and the second substrate 250 are spaced apart.
  • FIG. 7 is a schematic structural diagram of a micro-array array layer according to Embodiment 7 of the present invention.
  • the microstructure array 220 and the microlens array 230 are also disposed on the first substrate 240 and the second substrate 250, respectively, which is different from the sixth embodiment in that, in order to save The space, the first substrate 240 and the second substrate 250 are bonded to each other, and the advantageous effects that can be attained are the same as those of the fifth embodiment and the sixth embodiment.
  • Figure 8 is a schematic view showing the structure of a microlens array of the present invention.
  • the microstructure array 220 is arranged in a rotationally symmetrical manner, and the central axis of rotation is in a direction perpendicular to the array of microstructures, the microlens array 230 is also formed by a plurality of lens units.
  • the curved array adopts an arc-shaped rotational symmetrical structure.
  • FIG. 9 is a schematic view showing the overall structure of a curved screen of the present invention
  • FIG. 10 is a partial structural schematic view of a microstructure of the present invention.
  • the focus of the edge screen will deviate from the center of the field of view, resulting in edge brightness that is significantly lower than the center of the screen.
  • the curved screen B is beneficial to improve the brightness uniformity of the screen surface.
  • the microstructures of both flat and curved screens are collimated by two total reflections of incident ray I, the curved curvature radius of the curved screen provides more freedom of setting and can be used to optimize the microstructure cross-section settings. Improve the brightness uniformity of the screen surface.
  • FIG. 11 and FIG. 12 are respectively a light path on a plane projection screen and a curved projection screen;
  • FIG. 13 is a schematic diagram showing a change of a V-channel bus line direction of a P point in a curved screen;
  • FIG. 14 is a positional relationship between a microstructure cross section and incident and outgoing rays according to the present invention;
  • FIG. 15 is a schematic diagram of the optical reflection of the microstructure of the present invention.
  • the flat screen M has a rotationally symmetric microstructure 200 that passes through the ultra short throw projector A, such that both the incident ray I and the exit ray O are located within the microstructure section 212 perpendicular to the trench bus 211.
  • Incident rays I1, I2, and I3 represent incident rays of different exit angles on the same rotating V-groove, respectively.
  • the light I1 is located at the incident section passing through the center of the screen, and the rays I2 and I3 are located on the rotating section. Due to the rotational symmetry of the screen microstructures 200, the rays I1, I2, and I3 exit to different locations in the viewer's field of view. Light I1 passes through the center of the field of view, while rays I2 and I3 deviate from the center of the field of view. According to the above optical path analysis, the difference in the position of the intersection of the light and the field of view may result in uneven distribution of the brightness of the screen seen in the field of view.
  • the microstructure cross section 200 is offset toward the center of the field of view, so that the incident ray I and the microstructure cross section 200 create an angle so that the outgoing ray O direction
  • the center offset of the field of view In the case where the bending radius of the curved surface is known, the angle ⁇ between the incident ray I and the microstructure cross section perpendicular to the bus bar can be theoretically calculated.
  • the plane screen is located in the y-z plane, the position of the point P on the screen is (0, y, z) and the direction of the V-slot busbar passing through the point is V1.
  • the direction of the busbar at that point will also rotate accordingly.
  • the bent bus direction V2 is V1 rotated by ⁇ around the z-axis.
  • the pupil angle is the angle between the incident ray and a line projected in the plane of the vertical bus V2.
  • the microstructure cross sections described in the present invention are all perpendicular to the bus bar direction of the microstructure.
  • the pitch of the microstructures on the cross-section is about 50 to 300 microns, and the microstructure can be approximated to a linear prism structure, as shown in FIG.
  • the linear prism structure has the characteristics of keeping the light component along the busbar direction constant for incident light having a certain angle with the microstructure cross section. With this feature, the angle at which the projected ray is projected can be set on the microstructure section such that the actual exit ray is as close as possible to the center of the field of view, as shown in FIG.
  • Figure 16 is a flow chart of the method for setting the microstructure of the present invention. As shown in FIG. 16, according to the above analysis, the angles of the microstructures on the curved screen can be set by the following simple steps. Specifically, the following steps are included:
  • Step 100 Select an angle setting position of the microstructure at any point of the curved screen
  • Step 200 Calculate an angle ⁇ between the incident ray at the position and the microstructure cross section at the position;
  • Step 300 Projecting incident light and outgoing light onto the microstructure cross section to obtain direction angles ⁇ ' and ⁇ ';
  • Step 400 Calculate the cross-sectional angles ⁇ 1 and ⁇ 2 of the V-shaped groove according to the directions of the incident light and the outgoing light on the projected section.
  • the specific calculation method in the step 300 includes: formulas (1) and (2):
  • the angle between the incident ray and the normal direction of the screen surface
  • the angle between the incident ray and the microstructure cross section
  • ⁇ ' the angle between the projected incident light and the normal direction of the screen surface
  • ⁇ ' the angle between the projected outgoing light and the normal direction of the screen surface
  • N2 refractive index of the microstructure unit
  • N3 the refractive index of the material in contact with the microstructure unit, typically air.
  • the specific calculation method in the step 400 includes: formulas (3) to (5):
  • ⁇ 1 an angle between the first incident slope and the parallel screen direction
  • ⁇ 2 the angle between the first incident slope and the direction of the parallel screen.
  • each V-groove is uniquely determined by a cross section.
  • the angle between the V-slot section and the incident light of the projector is constantly changing, increasing from the center of the screen to both sides of the screen.
  • Reasonable selection of the above angle to determine the cross-section shape of the V-groove can increase the overall brightness uniformity of the screen.
  • Figure 17 is a schematic diagram showing the relationship between brightness uniformity and screen curvature radius according to the present invention.
  • the selection of the bending radius needs to be optimally set according to the distance of the viewer relative to the screen and the size of the screen.
  • the abscissa in Fig. 17 represents the radius of curvature of the curved screen, and the ordinate represents the brightness uniformity of the curved screen.
  • the laser TV light source comes from the bottom of the curved screen and is reflected by two total reflections into the viewer's field of view. Therefore, the curvature of the screen will be selected by the laser TV. Different.
  • the brightness of the screen can be observed by simulating the positions of different viewers.
  • L comprehensive brightness uniformity evaluation index
  • N The sum of the viewing positions.
  • the uniformity of the screen can be improved by more than 15%.
  • the present invention also provides a projection system including a projector and a projection screen, the projection screen being a curved screen as described above.
  • the present invention provides a curved screen and a micro-structure setting method thereof and a projection system.
  • the micro-structure formed by a V-shaped groove is provided on a section of the curved screen, and the influence of the screen bending is adopted. Calculating the tilt angle of the microstructure on the surface, compared to the plane's total reflection screen, further increases the brightness and uniformity of the curved screen.
  • the beneficial effects are:
  • the microstructure layer of the present invention may be combined with various diffusion layers, including: a separately disposed diffusion layer, or a diffusion layer formed of a diffusion material disposed on the surface of the microstructure;
  • the invention improves the brightness uniformity of the screen; the set microstructure has rotational symmetry on the plane, and is flexibly bent to a radius of curvature by the flexibleness of the screen substrate itself, which is convenient for installation, Increase gain while ensuring higher contrast.
  • the existing laser projector it is expected to produce a low-cost, high-performance laser projection system, such as: laser TV.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种曲面屏幕(B),包括由内向外依次设置的黑色吸光层(100)、微结构阵列层(200)和透明基材层(300)。微结构阵列层(200)由多个微结构单元构成。微结构单元为由两个相交的斜面构成V型槽(210)。微结构阵列层(200)相对于曲面屏幕(B)的中心线旋转对称,曲面屏幕(B)纵向上的每个截面上的V型槽(210)的角度根据投影机入射光线的角度唯一确定。还公开了曲面屏幕(B)中微结构的设置方法以及包含这种曲面屏幕(B)的投影系统。这种曲面屏幕(B)可以提高屏幕的对比度和亮度均匀性,还可以增大屏幕的视场角。

Description

曲面屏幕及其微结构设置方法和投影系统 技术领域
本发明涉及一种曲面屏幕及其微结构设置方法和投影系统,属于光学部件制造技术领域。
背景技术
随着投影机亮度的不断提高,投影显示系统在大尺寸家庭影院应用中的优势开始体现出来,相比于LCD电视,投影系统尺寸小、便于安装、整套系统价格低,并且可以轻松实现大于100寸的画面。曲面显示技术因为给消费者带来更加舒适的观感体验和沉浸式的包围效果而备受关注。相比于传统的平面显示系统,曲面显示在技术上的优势明显。弧形的曲面设置从人体工学角度来讲更符合人眼构造,保证屏幕上每一点的距离到眼球的距离均等,减少视觉上的失真,使观众观赏起来更加舒适;同时,曲面显示可以扩大画面视场,减少边缘损失,增强观众的沉浸感和临场感。另外,对于超短焦投影机相对于屏幕的大入射角度,曲面屏幕通过弯曲,减少屏幕边缘处的入射角度,从而减少屏幕表面的菲涅尔反射,进一步提高屏幕亮度的均匀性。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种曲面屏幕及其微结构设置方法和投影系统,扩散层结构多样、通过对全反射扩散层角度的设置,既有效区分投影机入射光线和环境杂散光,提高屏幕的对比度,又将光线以一定散射角反射到观众的视野中,增大了视场角;提高了曲面屏幕的亮度均匀性;提高增益且方便安装。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种曲面屏幕,包括由内向外依次设置的黑色吸光层、微结构阵列层和透明基材层,所述微结构阵列层由多个微结构单元构成,所述 微结构单元为由两个相交的斜面构成的V型槽,所述微结构阵列层相对于曲面屏幕的中心线旋转对称,所述曲面屏幕纵向上的每个截面上的V型槽的角度根据投影机入射光线的角度唯一确定。
为了进一步将光线打散,所述曲面屏幕还包括光扩散层,在不同的情况下,光扩散层的设置方式也可以有所不同。在本发明的一个实施例中,所述光扩散层设置在所述透明基材层的外侧。在本发明的另一个实施例中,为了更容易加工并降低成本,所述光扩散层还可以由设置在V型槽的至少一侧斜面上的散射材料构成。
为了是更多的入射光线满足全反射条件而得到利用,提高屏幕对投影机光线的利用率,所述微结构阵列层进一步包括微结构阵列和微透镜阵列,两者的数量和位置对应设置。具体来说,按照不同的加工方式,微结构阵列层可以制成多种结构。比如:微结构阵列和微透镜阵列可以共同设置在第一基材的两个侧面、所述微结构阵列和微透镜阵列还可以分别设置在第一基材和第二基材上,第一基材和第二基材也可以采用间隔设置或彼此贴合在一起的不同方式进行加工。
由于微结构阵列是以旋转对称的方式排布的,且旋转中心轴位于垂直于该微结构阵列的方向,因此,所述微透镜阵列也是由多个透镜单元形成的弧形阵列,采用弧条形旋转对称结构。
本发明还提供一种曲面屏幕上的微结构设置方法,包括如下步骤:
步骤100:在曲面屏幕的任一点上选择微结构的角度设置位置;
步骤200:计算位置处入射光线和该位置微结构截面的夹角ψ;
步骤300:将入射光线和出射光线投影到微结构截面上,得到方向角度α’和β’;
步骤400:根据投影截面上入射光线和出射光线的方向,计算V型槽的截面夹角θ1和θ2。
所述步骤300中的具体计算方法包括:公式(1)和(2):
cos(α)=cos(ψ)cos(α′)   (1)
Figure PCTCN2018118835-appb-000001
其中:
α:入射光线和屏幕表面法线方向的夹角;
β:出射光线和屏幕表面法线方向的夹角;
ψ:入射光线和微结构截面的夹角;
α’:投影入射光线和屏幕表面法线方向的夹角;
β’:投影出射光线和屏幕表面法线方向的夹角;
n2:微结构单元折射率;
n3:于微结构单元接触物质的折射率,一般为空气。
所述步骤400中的具体计算方法包括:公式(3)至(5):
Figure PCTCN2018118835-appb-000002
Figure PCTCN2018118835-appb-000003
Figure PCTCN2018118835-appb-000004
其中:
θ1:第一入射斜面和平行屏幕方向的夹角;
θ2:第一入射斜面和平行屏幕方向的夹角。
本发明还提供一种投影系统,包括投影机和投影屏幕,所述投影屏幕为如上所述的曲面屏幕。
综上所述,本发明提供一种曲面屏幕及其微结构设置方法和投影系统,扩散层结构多样、通过对全反射扩散层角度的设置,既有效区分投影机入射线和环境杂散光,提高屏幕的对比度,又将光线以一定散射角反射到观众的视野中,增大了视场角;提高了曲面屏幕的亮度均匀性;提高增益且方便安装。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明实施例一曲面屏幕沿中心线的剖视结构示意图;
图2为本发明实施例二曲面屏幕沿中心线的剖视结构示意图;
图3为本发明实施例三散射材料设置位置示意图;
图4为本发明实施例四散射材料设置位置示意图;
图5为本发明实施例五微结构阵列层结构示意图;
图6为本发明实施例六微结构阵列层结构示意图;
图7为本发明实施例七微结构阵列层结构示意图;
图8为本发明微透镜阵列结构示意图;
图9为本发明曲面屏幕的整体结构示意图;
图10为本发明微结构截面局部结构示意图;
图11和图12分别为平面投影屏幕和曲面投影屏幕上光线路径;
图13为曲面屏幕中P点的V槽母线方向变化示意图;
图14为本发明微结构截面与入射、出射光线的位置关系示意图;
图15为本发明微结构光学反射原理图;
图16为本发明微结构设置方法流程图;
图17为本发明亮度均匀性和屏幕曲率半径的关系示意图。
具体实施方式
实施例一
图1为本发明实施例一曲面屏幕沿中心线的剖视结构示意图。如图1所示,本发明提供一种曲面屏幕B,包括由内向外依次设置的黑色吸光层100、微结构阵列层200和透明基材层300,所述微结构阵列层200由多个微结构单元构成,所述微结构单元为由两个相交的斜面构成的V型槽210,所述微结构阵列层相对于曲面屏幕的中心线旋转对称,所述曲面屏幕纵向上的每个截面上的V型槽的角度根据投影机入射光线的角度唯一确定。为了进一步将光线打散,所述曲面屏幕还包括光扩散层400,在不同的情况下,光扩散层的设置方式也可以有所不同。在本实施例中,所述光扩散层400设置在所述透明基材层300的外侧。入射光I经过光扩散层400,在微结构单元的作用下形成出射光O,而 环境光S则被黑色吸光层100所吸收。
实施例二
图2为本发明实施例二曲面屏幕沿中心线的剖视结构示意图。如图2所示,在本实施例中,为了更容易加工并降低成本,所述光扩散层410由设置在V型槽的至少一侧斜面上的散射材料构成。散射材料可以在V型槽上进行喷砂处理得到;也可以通过模具表面粗糙化处理,形成胶水转印结构;还可以在微结构单元表面光滑处理时,再喷涂具有散射粒子的胶水,即可完成散射材料的设置。在图2所示的实施例中,散射材料设置在V型槽的两个斜面上。入射光I经过透明基材层300,在设置在V型槽210上的光扩散层410的作用下形成出射光O,而环境光S则被黑色吸光层100所吸收,通过在V型槽上设置光扩散层410结构,本发明中的屏幕无需像实施例一中的屏幕一样,在屏幕表面额外设置单独的光扩散层,而是使微结构单元兼具光扩散功能,从而简化了屏幕的结构,降低了成本,提高了成品率。
实施例三
图3为本发明实施例三散射材料设置位置示意图。如图3所示,在本实施例中,散射材料的设置位置与实施例二有所不同,具体来说,散射材料是设置在V型槽的上面一侧斜面上形成光扩散层410的。在实际应用中,无论散射材料设置在V型槽的哪个位置上,都能够起到散射的效果,而且对散射的效果不会产生影响,均能够使微结构单元兼具光扩散功能,对光扩散效果不会产生影响,区别仅仅是在加工过程中由于设置位置的不同而会略有不同而已。
实施例四
图4为本发明实施例四散射材料设置位置示意图。如图4所示,在本实施例中,散射材料是设置在V型槽的下面一侧斜面上形成光扩散层410的。与实施例二相比来说,实施例三和实施例四都是仅仅在V型槽的一侧斜面上设置散射材料,加工工艺会比实施例二简单一些,也在一定程度上节省材料,降低了成本,但散射效果并不会受到太大的影响。因此,在实际应用中,可以根据对散射效果或加工成本的不同需求,对散射材料的设置位置和方式进行选择。
实施例五
为了使更多的入射光线满足全反射条件而得到利用,提高屏幕对投影机光线的利用率,使得原本以大入射角入射的投影光线的光路变得更易于满足在微结构阵列中发生全反射的光路要求,能够使投影光线依次在分别经过V型槽的两个相交斜面发生全反射,大幅减少了因无法发生在全反射而造成的投影光线的损失,提高了投影光线的利用率,提高了屏幕增益,能够获得更亮的显示画面。所述微结构阵列层进一步包括微结构阵列和微透镜阵列,两者的数量和位置对应设置。具体来说,按照不同的加工方式,微结构阵列层可以制成多种结构。图5为本发明实施例五微结构阵列层结构示意图。如图5所示,微结构阵列220和微透镜阵列230共同设置在第一基材240的两个侧面,其中的第一基材240为PET(聚对苯二甲酸乙二醇酯,英文:Polyethylene terephthalate),PET面向观众的一侧加工微透镜阵列230,另外一侧用对卷涂布树脂和UV固化工艺加工出一排V型槽状的微结构阵列220。
实施例六
图6为本发明实施例六微结构阵列层结构示意图。如图6所示,在本实施例中,微结构阵列220和微透镜阵列230分别设置在第一基材240和第二基材250上,第一基材240和第二基材250的材质实质上是相同的,所能达到的有益效果也是和实施例五是一样的,仅仅是由于其上分别设置的是微结构阵列220和微透镜阵列230,才以第一基材和第二基材在名称上加以区别。在图6所示的实施例中,第一基材240和第二基材250是间隔设置。
实施例七
图7为本发明实施例七微结构阵列层结构示意图。如图7所示,在办实施例中,微结构阵列220和微透镜阵列230也是分别设置在第一基材240和第二基材250上的,与实施例六不同之处在于,为了节省空间,第一基材240和第二基材250是彼此贴合在一起的,所能达到的有益效果也是和实施例五以及实施例六是一样的。
图8为本发明微透镜阵列结构示意图。如图8所示,由于微结构阵列220是以旋转对称的方式排布的,且旋转中心轴位于垂直于该微 结构阵列的方向,因此,所述微透镜阵列230也是由多个透镜单元形成的弧形阵列,采用弧条形旋转对称结构。
图9为本发明曲面屏幕的整体结构示意图;图10为本发明微结构截面局部结构示意图。如图9并结合图10所示,当屏幕为平面的时候,由于微结构阵列220的旋转对称性,边缘屏幕的焦点会偏离视场的中心,导致边缘亮度显著低于屏幕中心的亮度。而曲面屏幕B则有利于提高屏幕表面的亮度均匀性。虽然平面屏幕和曲面屏幕的微结构都是对入射光线I进行两次全反射进行光线准直的,但曲面屏幕弯曲曲率半径提供了更多的设置自由度,可以用来优化微结构截面设置来提高屏幕表面的亮度均匀性。
图11和图12分别为平面投影屏幕和曲面投影屏幕上光线路径;图13为曲面屏幕中P点的V槽母线方向变化示意图;图14为本发明微结构截面与入射、出射光线的位置关系示意图;图15为本发明微结构光学反射原理图。如图11所示,平面屏幕M具有旋转对称微结构200,旋转轴通过超短焦投影机A,因此入射光线I和出射光线O都位于垂直于沟槽母线211的微结构截面212内。入射光线I1、I2和I3分别代表同一个旋转V槽上不同出射角度的入射光线。其中光线I1位于通过屏幕中央的入射截面,而光线I2和I3则位于旋转截面上。由于屏幕微结构200的旋转对称性,光线I1、I2和I3出射到观众视场中的不同位置。光线I1通过视场的中心,而光线I2和I3偏离了视场的中心位置。根据上述光路分析,光线和视场交点位置的不同可以导致视场里面看到的屏幕亮度分布不均匀。
结合图12所示,当屏幕向观众侧弯曲的时候,微结构截面200会向视场中心的方向偏移,因此入射光线I和微结构截面200会产生了一个夹角,使得出射光线O向视场的中心偏移。在曲面的弯曲半径已知的情况下,入射光线I和垂直于母线的微结构截面的夹角ψ可以理论计算出来。
具体来说,结合图13所示,假设平面屏幕位于y-z平面内,屏幕上一点P的位置为(0,y,z)并且通过该点的V-槽母线方向为V1。当屏幕弯曲成曲面的时候,该点的母线方向也会相应的发生旋转。比 如当屏幕水平弯曲σ角度的时候,弯曲后的母线方向V2为V1绕着z轴旋转σ角度。所述的ψ角度为入射光线和投影在垂直母线V2平面内的直线的夹角。
为了叙述方便,本发明中所述的微结构截面均垂直于微结构的母线方向。对于尺寸大于100寸的屏幕来说,截面上微结构的间距在50到300个微米左右,可以将微结构近似成看线性的棱镜结构,如图14所示。根据几何光学原理,线性棱镜结构对于和微结构截面存在一定夹角的入射光线,具有保持沿着母线方向光线分量不变的特性。利用该特性,可以在微结构截面上设置投影出射光线的角度,使得实际出射光线尽量靠近视场的中心,如图15所示。
图16为本发明微结构设置方法流程图。如图16所示,根据上述的分析,可以通过如下几个简单的步骤对曲面屏幕上的微结构的角度进行设置。具体来说,包括如下步骤:
步骤100:在曲面屏幕的任一点上选择微结构的角度设置位置;
步骤200:计算位置处入射光线和该位置微结构截面的夹角ψ;
步骤300:将入射光线和出射光线投影到微结构截面上,得到方向角度α’和β’;
步骤400:根据投影截面上入射光线和出射光线的方向,计算V型槽的截面夹角θ1和θ2。
所述步骤300中的具体计算方法包括:公式(1)和(2):
cos(α)=cos(ψ)cos(α′)   (1)
Figure PCTCN2018118835-appb-000005
其中:
α:入射光线和屏幕表面法线方向的夹角;
β:出射光线和屏幕表面法线方向的夹角;
ψ:入射光线和微结构截面的夹角;
α’:投影入射光线和屏幕表面法线方向的夹角;
β’:投影出射光线和屏幕表面法线方向的夹角;
n2:微结构单元折射率;
n3:于微结构单元接触物质的折射率,一般为空气。
所述步骤400中的具体计算方法包括:公式(3)至(5):
Figure PCTCN2018118835-appb-000006
Figure PCTCN2018118835-appb-000007
Figure PCTCN2018118835-appb-000008
其中:
θ1:第一入射斜面和平行屏幕方向的夹角;
θ2:第一入射斜面和平行屏幕方向的夹角。
本发明通过上述的计算方法获得的V型槽的角度,对于曲面屏幕,每一个V槽都由一个截面唯一确定。但是V槽截面和投影机入射光线的夹角是不断变化的,从屏幕中心向屏幕两侧不断增大。合理选择上述夹角来确定V槽截面形状,可以增加屏幕的总体亮度均匀性。
图17为本发明亮度均匀性和屏幕曲率半径的关系示意图。如图17所示可知,对于曲面屏幕,弯曲半径的选择需要根据观看者相对于屏幕的距离和屏幕的尺寸进行优化设置。图17中的横坐标代表曲面屏幕的曲率半径,纵坐标代表曲面屏幕的亮度均匀性。同自发光的LED,OLED或者LCD电视相比,激光电视的光源来自于曲面屏幕的下方,并且通过两次全反射后反射到观看者的视场中,因此屏幕的曲率选择激光电视的会有所不同。
举例来说,对于对角线尺寸在100寸-120寸范围内的曲面屏幕,当观看的距离在3米到4米的范围内时,可以通过仿真不同观看者的位置观察到的屏幕亮度均匀性Li(i=1…N),进行加权平均,可以得到一个综合的亮度均匀性评价指标L。
Figure PCTCN2018118835-appb-000009
其中:L:综合的亮度均匀性评价指标;
Li:不同观看位置观察到的屏幕亮度均匀性;
N:观看位置的总和。
通过仿真得到,当屏幕增益为2.0到3.0的时候,屏幕的曲率半径范围从4米到15米弯曲的时候,相对于平面的屏幕都可以实现均匀性15%以上提升。
本发明还提供一种投影系统,包括投影机和投影屏幕,所述投影屏幕为如上所述的曲面屏幕。
综上所述,本发明提供了一种曲面屏幕及其微结构设置方法和投影系统,在曲面屏幕的截面上设有由V型槽构成的微结构,考虑到屏幕弯曲带来的影响,通过计算得到曲面上微结构的倾斜角度,相比于平面的全反射屏幕,进一步增加了曲面屏幕的亮度和均匀性,有益效果在于:
1)本发明的微结构层可以和各种扩散层相结合,包括:独立设置的扩散层,或者设置在微结构表面的扩散材料形成的扩散层;
2)通过对全反射扩散层角度的设置,既可以将投影机的入射光线和来自环境当中的杂散光区分开,提高屏幕的对比度,又可以将光线以一定散射角反射到观众的视野中,增大了视场角;
3)相比于平面屏幕的设置方法,本发明提高了屏幕的亮度均匀性;设置的微结构在平面上具有旋转对称性,利用屏幕基材本身的柔性弯曲到一个曲率半径上,方便安装,提高增益,同时保证更高的对比度。配合现有的激光投影机,有望产生一套低价格,高性能的激光投影系统,如:激光电视。

Claims (12)

  1. 一种曲面屏幕,其特征在于,包括由内向外依次设置的黑色吸光层(100)、微结构阵列层(200)和透明基材层(300),所述微结构阵列层由多个微结构单元构成,所述微结构单元为由两个相交的斜面构成的V型槽(210),所述微结构阵列层相对于曲面屏幕的中心线旋转对称,所述曲面屏幕纵向上的每个截面上的V型槽的角度根据投影机入射光线的角度唯一确定。
  2. 如权利要求1所述的曲面屏幕,其特征在于,所述曲面屏幕还包括光扩散层(400),所述光扩散层设置在所述透明基材层(300)的外侧。
  3. 如权利要求1所述的曲面屏幕,其特征在于,所述曲面屏幕还包括光扩散层,所述光扩散层由设置在所述V型槽的至少一侧斜面上的散射材料(410)构成。
  4. 如权利要求1所述的曲面屏幕,其特征在于,所述微结构阵列层(200)进一步包括微结构阵列(220)和微透镜阵列(230),两者的数量和位置对应设置。
  5. 如权利要求3所述的曲面屏幕,其特征在于,所述微结构阵列(220)和微透镜阵列(230)共同设置在第一基材(240)的两个侧面。
  6. 如权利要求3所述的曲面屏幕,其特征在于,所述微结构阵列(220)和微透镜阵列(230)分别设置在第一基材(240)和第二基材(250)上。
  7. 如权利要求6所述的曲面屏幕,其特征在于,所述第一基材(240)和第二基材(250)间隔设置或彼此贴合在一起。
  8. 如权利要求4所述的曲面屏幕,其特征在于,所述微透镜阵列(230)为由多个透镜单元形成的弧形阵列。
  9. 一种曲面屏幕上的微结构设置方法,其特征在于,包括如下步骤:
    步骤100:在曲面屏幕的任一点上选择微结构的角度设置位置(P);
    步骤200:计算位置(P)处入射光线和该位置微结构截面的夹角ψ;
    步骤300:将入射光线和出射光线投影到微结构截面上,得到方向角度α’和β’;
    步骤400:根据投影截面上入射光线和出射光线的方向,计算V型槽的截面夹角θ1和θ2。
  10. 如权利要求9所述的抗环境光超短焦曲面屏幕上的微结构设置方法,其特征在于,所述步骤300中的具体计算方法包括:公式(1)和(2):
    cos(α)=cos(ψ)cos(α′)          (1)
    Figure PCTCN2018118835-appb-100001
    其中:
    α:入射光线和屏幕表面法线方向的夹角;
    β:出射光线和屏幕表面法线方向的夹角;
    ψ:入射光线和微结构截面的夹角;
    α’:投影入射光线和屏幕表面法线方向的夹角;
    β’:投影出射光线和屏幕表面法线方向的夹角;
    n2:微结构单元折射率;
    n3:于微结构单元接触物质的折射率,一般为空气。
  11. 如权利要求9所述的曲面屏幕上的微结构设置方法,其特征在于,所述步骤400中的具体计算方法包括:公式(3)至(5):
    Figure PCTCN2018118835-appb-100002
    Figure PCTCN2018118835-appb-100003
    Figure PCTCN2018118835-appb-100004
    其中:
    θ1:第一入射斜面和平行屏幕方向的夹角;
    θ2:第一入射斜面和平行屏幕方向的夹角。
  12. 一种投影系统,包括投影机和投影屏幕,其特征在于,所述投影屏幕为如权利要求1-8任一项所述的曲面屏幕。
PCT/CN2018/118835 2018-03-22 2018-12-03 曲面屏幕及其微结构设置方法和投影系统 WO2019179167A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/040,122 US11740545B2 (en) 2018-03-22 2018-12-03 Curved screen and method of arranging microstructure therein, and projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810238977.5 2018-03-22
CN201810238977.5A CN110297386B (zh) 2018-03-22 2018-03-22 曲面屏幕及其微结构设置方法和投影系统

Publications (1)

Publication Number Publication Date
WO2019179167A1 true WO2019179167A1 (zh) 2019-09-26

Family

ID=67986767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118835 WO2019179167A1 (zh) 2018-03-22 2018-12-03 曲面屏幕及其微结构设置方法和投影系统

Country Status (3)

Country Link
US (1) US11740545B2 (zh)
CN (2) CN114488678B (zh)
WO (1) WO2019179167A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244508B (zh) * 2018-03-09 2021-12-10 深圳光峰科技股份有限公司 屏幕和投影系统
CN110297385B (zh) * 2018-03-22 2021-10-08 深圳光峰科技股份有限公司 屏幕和投影系统
CN113885288A (zh) * 2020-07-03 2022-01-04 中强光电股份有限公司 曲面壳体及其制造方法
CN111901543B (zh) * 2020-08-05 2021-06-22 四川长虹电器股份有限公司 一种提升液晶电视均匀性的方法
CN112255876A (zh) * 2020-11-10 2021-01-22 成都菲斯特科技有限公司 一种全反射式侧向投影屏幕及投影系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199375A (ja) * 2013-03-30 2014-10-23 大日本印刷株式会社 反射スクリーン、映像表示システム
CN206115132U (zh) * 2016-08-19 2017-04-19 简铭镇 一种超短焦投影幕布
CN207067652U (zh) * 2017-07-10 2018-03-02 成都恒坤光显材料科技有限公司 一种可弯曲的激光投影屏幕

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782805A (en) * 1972-11-30 1974-01-01 Qantix Corp Front projection screen made from a transparent material
JPS56165130A (en) * 1980-05-23 1981-12-18 Dainippon Printing Co Ltd Reflecting screen
JPS58178342A (ja) * 1982-04-14 1983-10-19 Hitachi Ltd リヤ−スクリ−ン
US5903392A (en) * 1997-05-19 1999-05-11 Dai Nippon Printing Co., Ltd. Reflecting screen
US6185038B1 (en) * 1997-09-26 2001-02-06 Matsushita Electric Industrial Co., Ltd. Rear projection screen with light diffusion sheet and projector using same
KR100516173B1 (ko) * 2002-12-28 2005-09-22 삼성전자주식회사 곡률 스크린을 구비한 투사형 영상 재생 장치
JP4127517B2 (ja) * 2003-03-25 2008-07-30 大日本印刷株式会社 拡散シートおよび透過型スクリーン
JP4238782B2 (ja) 2004-06-08 2009-03-18 ソニー株式会社 光拡散フィルム及びその製造方法、並びにスクリーン
CN1779559A (zh) * 2004-11-26 2006-05-31 精碟科技股份有限公司 背投屏幕及其光学装置
JP2013195914A (ja) * 2012-03-22 2013-09-30 Dainippon Printing Co Ltd 反射スクリーン、映像表示装置
JP2013257496A (ja) * 2012-06-14 2013-12-26 Dainippon Printing Co Ltd 透過型スクリーン、背面投射型表示装置
JP2014182335A (ja) * 2013-03-21 2014-09-29 Dainippon Printing Co Ltd 粘着層付き車載用曲面スクリーン部材、車載用曲面スクリーン及び車載用表示装置
WO2015108295A1 (en) * 2014-01-15 2015-07-23 Lg Electronics Inc. Reflective screen, display having the same and method for manufacturing reflective screen
CN104076589A (zh) * 2014-07-21 2014-10-01 成都菲斯特科技有限公司 一种短投射距离正向投影光学屏幕的投影系统
CN104298063B (zh) * 2014-10-24 2017-03-29 苏州大学 透明投影屏幕
CN107102509B (zh) * 2016-02-19 2020-05-26 台湾扬昕股份有限公司 投影屏幕
CN108153102A (zh) * 2016-12-05 2018-06-12 深圳市光峰光电技术有限公司 投影屏幕及其制造方法
CN108073029A (zh) * 2018-02-05 2018-05-25 成都恒坤光显材料科技有限公司 一种具有线性菲涅尔透镜层的正投影屏幕

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199375A (ja) * 2013-03-30 2014-10-23 大日本印刷株式会社 反射スクリーン、映像表示システム
CN206115132U (zh) * 2016-08-19 2017-04-19 简铭镇 一种超短焦投影幕布
CN207067652U (zh) * 2017-07-10 2018-03-02 成都恒坤光显材料科技有限公司 一种可弯曲的激光投影屏幕

Also Published As

Publication number Publication date
CN114488678B (zh) 2023-06-30
CN114488678A (zh) 2022-05-13
US20210026231A1 (en) 2021-01-28
CN110297386A (zh) 2019-10-01
US11740545B2 (en) 2023-08-29
CN110297386B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2019179167A1 (zh) 曲面屏幕及其微结构设置方法和投影系统
CN207216263U (zh) 全反射屏幕和投影系统
WO2019024367A1 (zh) 投影屏幕和投影系统
WO2019024368A1 (zh) 全反射屏幕和投影系统
US11448952B2 (en) Screen and projection system
WO2018153069A1 (zh) 光学膜材和彩膜基板及其制作方法、显示装置
CN109388012B (zh) 投影屏幕和投影系统
WO2019169870A1 (zh) 屏幕和投影系统
WO2021098516A1 (zh) 菲涅尔膜片及显示组件
CN110554557B (zh) 投影屏幕和投影系统
WO2019179124A1 (zh) 屏幕和投影系统
WO2021004301A1 (zh) 一种投影屏幕
CN111624844B (zh) 一种光学投影屏幕及投影系统
WO2020093805A1 (zh) 投影屏幕和投影系统
CN101191850A (zh) 光学板
WO2019024366A1 (zh) 投影屏幕和投影系统
CN101191849A (zh) 光学板
JP2007103226A (ja) 照明装置および光制御手段構造体並びにこれらを用いた画像表示装置
TWI728110B (zh) 一種投影螢幕
JPH1195007A (ja) レンチキュルレンズシートとこれを利用した投射スクリーン
WO2021004303A1 (zh) 一种投影屏幕
CN111624843B (zh) 一种光学投影屏幕及投影系统
CN101191846A (zh) 光学板
JP2011158836A (ja) 光学シート、面光源装置、および、透過型表示装置
WO2021088884A1 (zh) 一种直投屏幕

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911276

Country of ref document: EP

Kind code of ref document: A1