WO2021098516A1 - 菲涅尔膜片及显示组件 - Google Patents

菲涅尔膜片及显示组件 Download PDF

Info

Publication number
WO2021098516A1
WO2021098516A1 PCT/CN2020/126542 CN2020126542W WO2021098516A1 WO 2021098516 A1 WO2021098516 A1 WO 2021098516A1 CN 2020126542 W CN2020126542 W CN 2020126542W WO 2021098516 A1 WO2021098516 A1 WO 2021098516A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
layer
fresnel
substrate
angle
Prior art date
Application number
PCT/CN2020/126542
Other languages
English (en)
French (fr)
Inventor
胡飞
王霖
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021098516A1 publication Critical patent/WO2021098516A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the utility model relates to the field of optical technology, in particular to a Fresnel film and a display assembly.
  • the rear projection screen Compared with LCD TVs or LED displays, rear projection screens use laser light sources, which have a better color gamut and a more comfortable and soft display.
  • the rear projection screen includes a Fresnel diaphragm.
  • the Fresnel diaphragm needs a fixed focal length to collimate the image of the projector into the field of view of the audience.
  • the existing Fresnel diaphragms are mostly realized by the principle of refraction, but the large angle The refraction is prone to chromatic dispersion, which leads to less light incident on the audience’s field of view, which cannot meet the needs of users.
  • the purpose of the present invention is to provide a Fresnel film and display assembly to solve the above-mentioned problems.
  • the present invention provides a Fresnel film, which includes a substrate layer and a catadioptric microstructure layer.
  • the substrate layer includes a first substrate surface and a second substrate surface opposite to each other.
  • the catadioptric and reflective microstructure layer is arranged on the surface of the first substrate.
  • the catadioptric and reflective microstructure layer includes a plurality of microprism units.
  • the plurality of microprism units are arranged to form a plurality of concentric arcs.
  • Each microprism unit includes an incident surface and a reflective surface.
  • the internal angle between the incident surface and the first substrate surface is an acute angle, and the internal angles of the microprism units on different concentric arcs are different.
  • the Fresnel film further includes a bulk diffusion layer or a surface diffusion layer, and the bulk diffusion layer or the surface diffusion layer is located on the surface of the second substrate.
  • the Fresnel film further includes a bulk diffusion layer and a surface diffusion layer, and the bulk diffusion layer is located between the second substrate surface and the surface diffusion layer.
  • the Fresnel film further includes an absorption layer, which is located between the bulk diffusion layer and the surface diffusion layer.
  • the Fresnel film further includes a refraction layer, and the light exits through the catadioptric and reflective microstructure layer and the refraction layer in sequence.
  • the refractive index of the refraction layer is greater than that of the catadioptric microstructure layer to reduce the refractive index of the light. Exit angle.
  • the refractive layer is disposed on the surface of the second substrate.
  • the incident surface includes a first incident area and a second incident area.
  • the second incident area is connected between the first incident area and the first substrate surface.
  • the included angle is the first inclination angle
  • the included angle between the second incident area and the first substrate surface is the second inclination angle
  • the first inclination angle is greater than the second inclination angle.
  • the cross section of the microprism unit is triangular, and the internal angle between the incident surface and the first substrate surface is between 70° and 90°.
  • the width of the micro prism unit on the surface of the first substrate is between 0.05 mm and 0.5 mm, and the distance between the micro prism units on two adjacent concentric arcs is between 0.05 mm and 0.5 mm. mm between.
  • the present invention also provides a display assembly, which includes a display unit, a projection lens, and the Fresnel film of any of the above embodiments.
  • the display unit is used to emit projection light
  • the projection lens is used to emit light from the display unit.
  • the projection light is projected to the Fresnel diaphragm.
  • the projection lens includes a lens group and a reflecting mirror, the projection light is incident on the Fresnel film after being condensed by the lens group and reflected by the reflecting mirror, and the center of the multiple concentric arcs is located in the light of the lens group. On the axis.
  • the angle between the projection light and the incident surface is 10° to 70°.
  • the Fresnel film and display assembly provided by the present invention provide microprism units on the first substrate surface of the substrate layer, and each microprism unit includes an incident surface and a reflective surface. After the light is refracted on the incident surface, it is totally reflected on the reflective surface, which increases the number of light rays that are collimated and output to the audience’s field of view.
  • Fig. 1 is a schematic structural diagram of the first Fresnel diaphragm provided by an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the microstructure of the first Fresnel diaphragm provided by an embodiment of the present invention.
  • Fig. 3 is an optical path diagram of the first Fresnel film provided by an embodiment of the present invention.
  • Fig. 4 is an optical path diagram of a second type of Fresnel film provided by an embodiment of the present invention.
  • Figure 5 is an optical path diagram of a third Fresnel diaphragm provided by an embodiment of the present invention
  • Fig. 6 is an optical path diagram of a fourth type of Fresnel film provided by an embodiment of the present invention.
  • Fig. 7 is an optical path diagram of a fifth Fresnel film provided by an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a sixth Fresnel diaphragm provided by an embodiment of the present invention.
  • Fig. 9 is a schematic structural diagram of a seventh Fresnel diaphragm provided by an embodiment of the present invention.
  • Fig. 10 is an optical path diagram of an eighth Fresnel film provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the structure of a display assembly provided by an embodiment of the present invention.
  • the present invention provides a Fresnel film 10, which includes a substrate layer 101 and a catadioptric microstructure layer 100.
  • the substrate layer 101 includes a first substrate surface 1012 and a second substrate surface 1014 opposite to each other.
  • the catadioptric microstructure layer 100 is disposed on the first substrate surface 1012.
  • the catadioptric microstructure layer 100 includes a plurality of microprism units 110, and the plurality of microprism units 110 are arranged to form a plurality of concentric arcs, and the centers of the plurality of concentric arcs P is located outside the Fresnel diaphragm 10, and the center P of the concentric arc may be the center of rotation of the Fresnel diaphragm 10.
  • Each microprism unit 110 includes an incident surface 111 and a reflecting surface 113.
  • the internal angles of the incident surface 111 and the first substrate surface 1012 are acute.
  • the internal angles of the microprism units 110 on different concentric arcs are different.
  • the shape of the substrate layer 101 may be rectangular, circular, elliptical, rhombic, trapezoidal, etc., which may be specifically set according to actual needs. In this embodiment, a rectangle is taken as an example for description.
  • the base layer 101 can be rotated with the circle center P as the center of rotation, and the direction perpendicular to the first base surface 1012 is the direction of rotation, so that the emitted light can form a larger spot.
  • the material of the substrate layer 101 can be transparent such as PC (Polycarbonate, polycarbonate), PMMA (polymethyl methacrylate, polymethyl methacrylate, or acrylic), or PET (Polyethylene terephthalate, polyethylene terephthalate), etc. Of organic materials.
  • the catadioptric microstructure layer 100 is disposed on the substrate layer 101, so the shape of the catadioptric microstructure layer 100 can be the same as the shape of the substrate layer 101, and the catadioptric microstructure layer 100 can be distributed throughout the substrate layer 101 or ⁇ Part of the substrate layer 101.
  • the cross section of the micro prism unit 110 may be a triangle.
  • the micro prism unit 110 includes an incident surface 111, a reflective surface 113 and a side surface 115, wherein the side surface 115 is attached to the first substrate surface 1012 and connected to the incident surface Between 111 and reflective surface 113.
  • the internal angle between the incident surface 111 and the first substrate surface 1012 is an acute angle to facilitate the release of the mold when the microprism unit 110 is manufactured through a molding process.
  • the incident surface 111 can refract the incident light, and the reflective surface 113 can totally reflect the incident light.
  • the microprism unit 110 is based on the principle of catadioptric reflection, that is, the light can be collimated and output to the audience's field of view after passing through the refraction of the incident surface 111 and the total reflection of the reflecting surface 113.
  • the internal angles of the incident surface 111 and the first substrate surface 1012 vary with the location of the microprism unit 110, that is, the internal angles of the microprism unit 110 on different concentric arcs are different.
  • the internal angle may be between 70° and 90°.
  • the internal angle between the incident surface 111 and the first substrate surface 1012 gradually increases, and the angle between the reflective surface 113 and the side surface 115 remains unchanged, which can increase the accuracy.
  • the angle between the reflective surface 113 and the side surface 115 is between 30° and 60°.
  • the internal angles of the incident surface 111 and the first substrate surface 1012 remain unchanged, and the included angle between the reflective surface 113 and the side surface 115 can be It changes with the angle of the incident light. For example, the greater the angle of the incident light, the greater the angle between the reflective surface 113 and the side surface 115, which can increase the amount of collimated light emitted to the audience's field of view.
  • the internal angles of the incident surface 111 and the first substrate surface 1012 gradually increase, and the reflection surface 113 and the side surface 115 are sandwiched between
  • the angle can change with the angle of the incident light, and it can also increase the amount of light emitted by the collimated output to the audience's field of view.
  • the cross section of the micro prism unit 110 may also be trapezoidal, and the micro prism unit 110 may also include an incident surface 111, a reflective surface 113 and a side surface 115. It can be understood that the cross-section of the microprism unit 110 may also be a pentagon, a hexagon or other polygons, so as to satisfy the function of refraction and reflection of light and collimated output of the light to the viewer's field of view.
  • the width between the microprism unit 110 and the first substrate surface 1012 can be between 0.05 mm and 0.5 mm, and a single-point diamond can be directly processed and formed on the first substrate surface 1012 at one time, or it can be formed by hot embossing.
  • the method is first processed on the surface of metal such as aluminum or copper, and then copied to the first substrate surface 1012 by embossing.
  • the distance between the microprism units 110 on two adjacent concentric arcs can be between 0.05 mm and 0.5 mm to ensure the resolution of the screen, that is, the ability of the screen to express details.
  • the incident surface 111 includes a catadioptric area L1 and a refraction area L2, wherein the catadioptric area L1 refers to the light incident on the microprism unit 110 is refracted and totally reflected from The area of the incident surface 111 corresponding to the base layer 101 exiting, and the refraction area L2 refers to the area of the incident surface 111 corresponding to the light ray exiting from the base layer 101 once refracted.
  • the ratio of the catadioptric area L1 to the refractive area L2 is defined as the duty ratio of the microprism unit 110, and only the light from the catadioptric area L1 enters the viewer's field of view.
  • the incident surface 111 may include a first incident area 1112 and a second incident area 1114, wherein the second incident area 1114 is connected to the first incident area 1112 and the first incident area 1112. Between the substrate surface 1012, the first incident area 1112 may correspond to the reflex area, and the second incident area 1114 may correspond to the refraction area L2.
  • the included angle between the first incident area 1112 and the first substrate surface 1012 is the first inclination angle
  • the included angle between the second incident area 1114 and the first substrate surface 1012 is the second inclination angle
  • the first inclination angle is greater than the second inclination angle.
  • the second inclination angle is smaller than the first inclination angle, so on the basis of the direction of the incident light, the angle between the incident light and the second incident area 1114 is smaller than the angle between the incident light and the first incident area 1112 angle. That is, the angle of refraction produced by the refraction of the light passing through the second incident area 1114 is smaller than the angle of refraction produced by the refraction passing through the first incident area 1112.
  • the refraction of the second incident area 1114 and the reflection of the reflective surface 113 then exit, so the duty ratio of the microprism unit 110 can be increased.
  • the Fresnel film 10 may further include a bulk diffusion layer 102, and the bulk diffusion layer 102 may be located on the second substrate surface 1014. In other embodiments, the Fresnel film 10 may further include a surface diffusion layer 103, and the surface diffusion layer 103 may be located on the second substrate surface 1014.
  • the Fresnel film 10 may also include a bulk diffusion layer 102 and a surface diffusion layer 103 at the same time, and the bulk diffusion layer 102 is located between the second substrate surface 1014 and the surface diffusion layer 103. between.
  • the Fresnel film 10 may further include an absorption layer 104, and the absorption layer 104 is located between the bulk diffusion layer 102 and the surface diffusion layer 103.
  • the Fresnel film 10 further includes a refraction layer 105, and light rays exit through the catadioptric microstructure layer 100 and the refraction layer 105 in sequence.
  • the refractive index of the refraction layer 105 is greater than that of the catadioptric microstructure.
  • the refractive index of the layer 100 is to reduce the exit angle of the light. After the light exits the second substrate surface 1014 and then enters the refractive layer 105, the exit angle is reduced, which can increase the amount of light entering the audience's field of view.
  • the refractive layer 105 may be disposed on the second substrate surface 1014, and may also be located between the second substrate surface 1014 and the bulk diffusion layer 102. In other embodiments, the refractive layer 105 may also be located between the bulk diffusion layer 102 and the surface diffusion layer 103.
  • the Fresnel film 10 and the display assembly 1 provided by the present invention are provided with microprism units 110 on the first substrate surface 1012 of the substrate layer 101, and each microprism unit 110 includes an incident surface 111 And a reflective surface 113. After the light is refracted on the incident surface 111, it is totally reflected on the reflective surface 113, which increases the amount of light that is collimated and output to the audience's field of view.
  • the present invention also provides a display assembly 1, including a display unit 20, a projection lens 30, and a Fresnel film 10.
  • the display unit 20 is used to emit projection light
  • the projection lens 30 is used to connect the display unit 20 The emitted projection light is projected to the Fresnel diaphragm 10.
  • the projection lens 30 includes a lens group 32 and a reflecting mirror.
  • the projection light is incident on the Fresnel film 10 after being condensed by the lens group 32 and reflected by the reflecting mirror.
  • a plurality of concentric arcs The center P may be located on the optical axis of the lens group 32. According to the principle of rotational symmetry, setting the circle center P (rotation center) on the optical axis of the lens group 32 can make the projected light rays more uniformly emerge into the audience's field of view after being collimated by the microprism unit 110.
  • the display unit 20 is incident from below the Fresnel film 10, so the angle between the projected light and the incident surface 111 gradually increases in the direction from the center of the circle P to the concentric arc. As shown in FIG. 11, from the center of the circle P to the direction of the concentric arc, the angle between the projected light and the incident surface 111 increases from ⁇ to ⁇ . As an example, the angle between the projected light and the incident surface 111 may be 10° to 70°.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种菲涅尔膜片(10)和显示组件(1),菲涅尔膜片(10)包括基材层(101)和折反射微结构层(100)。基材层(101)包括相背的第一基材面(1012)和第二基材面(1014)。折反射微结构层(100)设置在第一基材面(1012),折反射微结构层(100)包括多个微棱镜单元(110),多个微棱镜单元(110)排列形成多个同心圆弧,每个微棱镜单元(110)均包括入射面(111)和反射面(113),入射面(111)与第一基材面(1012)的内角为锐角,不同同心圆弧上的微棱镜单元(110)的内角不同,增加了准直输出到观众的视场中出射光线的数量。

Description

菲涅尔膜片及显示组件 技术领域
本实用新型涉及光学技术领域,具体而言,涉及一种菲涅尔膜片及显示组件。
背景技术
同液晶电视或者LED显示屏相比,背投屏幕采用激光光源,具有更好的色域和更加舒适柔和的显示。背投影屏幕包括菲涅尔膜片,菲涅尔膜片需要一个固定的焦距将投影机的图像准直到观众视场中,现有的菲涅尔膜片多通过折射的原理实现,然而大角度的折射容易发生色散现象,导致入射至观众的视场中的光线较少,无法满足用户需求。
实用新型内容
本实用新型的目的在于提供一种菲涅尔膜片及显示组件,以解决上述问题。
本实用新型实施例通过以下技术方案来实现上述目的。
第一方面,本实用新型提供一种菲涅尔膜片,包括基材层和折反射微结构层。其中,基材层包括相背的第一基材面和第二基材面。折反射微结构层设置在第一基材面,折反射微结构层包括多个微棱镜单元,多个微棱镜单元排列形成多个同心圆弧,每个微棱镜单元均包括入射面及反射面,入射面与第一基材面的内角为锐角,不同同心圆弧上的微棱镜单元的内角不同,当光线从圆心处入射至多个微棱镜单元时,光线从入射面入射后被反射面反射,再经由第一基材面从第二基材面出射。
在一种实施方式中,菲涅尔膜片还包括体扩散层或表面扩散层,体扩散层或表面扩散层位于第二基材面。
在一种实施方式中,菲涅尔膜片还包括体扩散层和表面扩散层,体扩散层位于第二基材面和表面扩散层之间。
在一种实施方式中,菲涅尔膜片还包括吸收层,吸收层位于体扩散层和表面扩散层之间。
在一种实施方式中,菲涅尔膜片还包括折射层,光线依次经折反射微结构层和折射层出射,折射层的折射率大于折反射微结构层的折射率,以减小光线的出射角。
在一种实施方式中,折射层设置于第二基材面。
在一种实施方式中,入射面包括第一入射区域和第二入射区域,第二入射区域连接于第一入射区域和第一基材面之间,第一入射区域与第一基材面的夹角为第一倾斜角,第二入射区域与第一基材面的夹角为第二倾斜角,第一倾斜角大于第二倾斜角。
在一种实施方式中,微棱镜单元的截面为三角形,入射面与第一基材面的内角介于70°~90°之间。
在一种实施方式中,微棱镜单元在与第一基材面上的宽度介于0.05mm~0.5mm之间,相邻两个同心圆弧上的微棱镜单元的间距介于0.05mm~0.5mm之间。
第二方面,本实用新型还提供一种显示组件,包括显示单元、投影镜头以及上述任一实施方式的菲涅尔膜片,显示单元用于发出投影光线,投影镜头用于将显示单元发出的投影光线投射至菲涅尔膜片。
在一种实施方式中,投影镜头包括透镜组和反射镜,投影光线经透镜组的聚光以及反射镜的反射后入射至菲涅尔膜片,多个同心圆弧的圆心位于透镜组的光轴上。
在一种实施方式中,投影光线与入射面之间的夹角为10°至70°。
相较于现有技术,本实用新型提供的菲涅尔膜片及显示组件,通过在基材层的第一基材面设置微棱镜单元,每个微棱镜单元都包含一个入射面和一个反射面,光线在入射面上发生折射后,再在反射面发生全反射,增加了准直输出到观众的视场中出射光线的数量。
本实用新型的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本实用新型实施例提供的第一种菲涅尔膜片的结构示意图。
图2是本实用新型实施例提供的第一种菲涅尔膜片的微观结构示意图。
图3是本实用新型实施例提供的第一种菲涅尔膜片的光路图。
图4是本实用新型实施例提供的第二种菲涅尔膜片的光路图。
图5是本实用新型实施例提供的第三种菲涅尔膜片的光路图
图6是本实用新型实施例提供的第四种菲涅尔膜片的光路图。
图7是本实用新型实施例提供的第五种菲涅尔膜片的光路图。
图8是本实用新型实施例提供的第六种菲涅尔膜片的结构示意图。
图9是本实用新型实施例提供的第七种菲涅尔膜片的结构示意图。
图10是本实用新型实施例提供的第八种菲涅尔膜片的光路图。
图11是本实用新型实施例提供的显示组件的结构示意图。
具体实施方式
为了便于理解本实用新型实施例,下面将参照相关附图对本实用新型实施例进行更全面的描述。附图中给出了本实用新型的较佳实施方式。但是,本实用新型可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本实用新型的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型实施例中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本实用新型。
请参阅图1和图2,本实用新型提供一种菲涅尔膜片10,包括基材层101和折反射微结构层100。其中,基材层101包括相背的第一基材面1012和第二基材面1014。折反射微结构层100设置在第一基材面1012,折反射微结构层100包括多个微棱镜单元110,多个微棱镜单元110排列形成多个同心圆弧,多个同心圆弧的圆心P位于菲涅尔膜片10的外侧,同心圆弧的圆心P可以是菲涅尔膜片10的旋转中心。每个微棱镜单元110均包括入射面111及反射面113,入射面111与第一基材面1012的内角为锐角,不同同心圆弧上的微棱镜单元110的内角不同,当光线从圆心P处入射至多个微棱镜单元110时,光线从入射面111入射后被反射面113反射,再经由第一基材面1012从第二基材面1014出射。
具体地,基材层101的形状可以是矩形、圆形、椭圆形、菱形或者梯形等形状,具体可以根据实际需要进行设置。本实施例中以矩形为例进行说明。基材层101可以以圆心P为转动中心,垂直于第一基材面1012的方向为转动方向进行转动,使出射的光线可以形成更大的光斑。基材层101的材质可以是PC(Polycarbonate,聚碳酸酯)、PMMA(polymethyl methacrylate,聚甲基丙烯酸甲酯或亚克力)、或者PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)等透明的有机材料。
折反射微结构层100设置于基材层101,因此折反射微结构层100的形状可以和基材层101的形状相同,折反射微结构层100可以分布于整个基材层101,也可以分布于部分基材层101。
在本实施例中,微棱镜单元110的截面可以为三角形,微棱镜单元110包括入射面111、反射面113和侧面115,其中侧面115贴合于第一基材面1012,并且连接于入射面111和反射面113之间。入射面111与第一基材面1012的内角为锐角,以便通过成型工艺制造微棱镜单元110时模具的脱模。入射面111可以对入射的光线进行折射,反射面113可以对入射的光线进行全反射。微棱镜单元110基于折反射原理,也就是光线可以经过入射面111的折射和反射面113的全反射后再将光线准直输出到观众的视场中。
请参阅图3,在本实施例中,入射面111与第一基材面1012的内角随微棱镜单元110所在的位置变化而变化,即不同同心圆弧上的微棱镜单元110的内角不同,作为一种示例,内角可以介于70°~90°之间。在本实施例中,自圆心P向同心圆弧的方向,入射面111与第一基材面1012的内角逐渐增大,且反射面113与侧面115之间的夹角不变,可以增加准直输出到观众的视场中出射光线的数量。 作为一种示例,反射面113和侧面115之间的夹角在30°到60°之间。
请参阅图4,在另一些实施方式中,自圆心P向同心圆弧的方向,入射面111与第一基材面1012的内角不变,且反射面113和侧面115之间的夹角可以随入射光线角度的变化而变化,例如入射光线角度越大,反射面113和侧面115之间的夹角也越大,可以增加准直输出到观众的视场中出射光线的数量。
请参阅图5,在其他的一些实施方式中,自圆心P向同心圆弧的方向,入射面111与第一基材面1012的内角逐渐增大,且反射面113和侧面115之间的夹角可以随入射光线角度的变化而变化,也可以增加准直输出到观众的视场中出射光线的数量。
在其他实施方式中,微棱镜单元110的截面还可以为梯形,微棱镜单元110同样可以包括入射面111、反射面113和侧面115。可以理解,微棱镜单元110的截面还可以为五边形、六边形或者其他多边形,满足讲光线折反射并将光线准直输出到观众的视场中的作用即可。
微棱镜单元110在与第一基材面1012上的宽度可以介于0.05mm~0.5mm之间,可以采用单点金刚石在第一基材面1012直接一次加工成型,或者采用如热压印的方式先在金属如铝或者铜的表面加工出来,然后通过压印的方式复制到第一基材面1012。
相邻两个同心圆弧上的微棱镜单元110的间距可以介于0.05mm~0.5mm之间,以保证屏幕的解像力,也就是屏幕对细节的表现能力。
请参阅图2和图6,在本实施例中,入射面111包括折反射区域L1和折射区域L2,其中折反射区域L1指的是入射到微棱镜单元110的光线发生折射和全反射再从基材层101出射所对应的的入射面111的区域,折射区域L2指的是光 线一次折射便从基材层101出射所对应的的入射面111的区域。将折反射区域L1和折射区域L2的比值定义为微棱镜单元110的占空比,只有折反射区域L1的光线会进入到观众的视场中。
请参阅图6和图7,在其他的一些实施方式中,入射面111可以包括第一入射区域1112和第二入射区域1114,其中,第二入射区域1114连接于第一入射区域1112和第一基材面1012之间,第一入射区域1112可以与折反区域对应,第二入射区域1114可以与折射区域L2对应。第一入射区域1112与第一基材面1012的夹角为第一倾斜角,第二入射区域1114与第一基材面1012的夹角为第二倾斜角,第一倾斜角大于第二倾斜角。也就是第二倾斜角小于第一倾斜角,因此在入射光线的方向不变的基础上,入射光线与第二入射区域1114之间的夹角小于入射光线与第一入射区域1112之间的夹角。也就是光线经过第二入射区域1114的折射产生的折射角小于经过第一入射区域1112的折射产生的折射角,也就是通过将第二倾斜角设置成小于第一倾斜角,可以使得部分光线经第二入射区域1114的折射和反射面113的反射再出射,因此可以提高微棱镜单元110的占空比。
在一些实施方式中,菲涅尔膜片10还可以包括体扩散层102,体扩散层102可以位于第二基材面1014。在另外一些实施方式中,菲涅尔膜片10还可以包括表面扩散层103,表面扩散层103可以位于第二基材面1014。
请参阅图8,在其他的一些实施方式中,菲涅尔膜片10还可以同时包括体扩散层102和表面扩散层103,体扩散层102位于第二基材面1014和表面扩散层103之间。
请参阅图9,在另一些实施方式中,为了提高屏幕的透过率,菲涅尔膜片10还可以包括吸收层104,吸收层104位于体扩散层102和表面扩散层103之间。
请参阅图10,在一种实施方式中,菲涅尔膜片10还包括折射层105,光线依次经折反射微结构层100和折射层105出射,折射层105的折射率大于折反射微结构层100的折射率,以减小光线的出射角。光线经过第二基材面1014出射后再进入折射层105后出射角度减小,可以增加进入到观众的视场的光量。
在一些实施方式中,折射层105可以设置于第二基材面1014,还可以位于第二基材面1014和体扩散层102之间。在其他实施方式中,折射层105还可以位于体扩散层102和表面扩散层103之间。
综上,本实用新型提供的菲涅尔膜片10及显示组件1,通过在基材层101的第一基材面1012设置微棱镜单元110,每个微棱镜单元110都包含一个入射面111和一个反射面113,光线在入射面111上发生折射后,再在反射面113发生全反射,增加了准直输出到观众的视场中出射光线的数量。
请参阅图11,本实用新型还提供一种显示组件1,包括显示单元20、投影镜头30以及菲涅尔膜片10,显示单元20用于发出投影光线,投影镜头30用于将显示单元20发出的投影光线投射至菲涅尔膜片10。
具体地,投影镜头30包括透镜组32和反射镜,投影光线经透镜组32的聚光以及反射镜的反射后入射至菲涅尔膜片10,在本实施例中,多个同心圆弧的圆心P可以位于透镜组32的光轴上。根据旋转对称的原理,将圆心P(旋转中心)设置在透镜组32的光轴上,可以使投影光线在经过微棱镜单元110的准直后,更均匀地出射到观众的视场中。
在本实施例中,显示单元20从菲涅尔膜片10的下方入射,因此自圆心P向同心圆弧的方向,投影光线与入射面111之间的夹角逐渐增大。如图11所示,自圆心P向同心圆弧的方向,投影光线与入射面111之间的夹角由α增加到β。作 为一种示例,投影光线与入射面111之间的夹角可以为10°至70°。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种菲涅尔膜片,其特征在于,所述菲涅尔膜片包括:
    基材层,包括相背的第一基材面和第二基材面;及
    折反射微结构层,设置在所述第一基材面,所述折反射微结构层包括多个微棱镜单元,所述多个微棱镜单元排列形成多个同心圆弧,每个微棱镜单元均包括入射面及反射面,所述入射面与所述第一基材面形成的的内角为锐角,不同所述同心圆弧上的所述微棱镜单元的内角不同,当光线从所述同心圆弧的圆心处入射至所述多个微棱镜单元时,所述光线从所述入射面入射后被所述反射面反射,再经由所述第一基材面从所述第二基材面出射。
  2. 根据权利要求1所述的菲涅尔膜片,其特征在于,所述菲涅尔膜片还包括体扩散层或表面扩散层,所述体扩散层或所述表面扩散层位于所述第二基材面。
  3. 根据权利要求1所述的菲涅尔膜片,其特征在于,所述菲涅尔膜片还包括体扩散层和表面扩散层,所述体扩散层位于所述第二基材面和所述表面扩散层之间。
  4. 根据权利要求3所述的菲涅尔膜片,其特征在于,所述菲涅尔膜片还包括吸收层,所述吸收层位于所述体扩散层和所述表面扩散层之间。
  5. 根据权利要求1至4任一项所述的菲涅尔膜片,其特征在于,所述菲涅尔膜片还包括折射层,所述光线依次经所述折反射微结构层和所述折射层出射,所述折射层的折射率大于所述折反射微结构层的折射率,以减小所述光线的出射角。
  6. 根据权利要求5所述的菲涅尔膜片,其特征在于,所述折射层设置于所述第二基材面。
  7. 根据权利要求1所述的菲涅尔膜片,其特征在于,所述入射面包括第一入射区域和第二入射区域,所述第二入射区域连接于所述第一入射区域和所述第一基材面之间,所述第一入射区域与所述第一基材面的夹角为第一倾斜角,所述第二入射区域与所述第一基材面的夹角为第二倾斜角,所述第一倾斜角大于所述第二倾斜角。
  8. 根据权利要求1所述的菲涅尔膜片,其特征在于,所述微棱镜单元的截面为三角形,所述入射面与所述第一基材面的内角介于70°~90°之间。
  9. 根据权利要求1所述的菲涅尔膜片,其特征在于,所述微棱镜单元在与所述第一基材面上的宽度介于0.05mm~0.5mm之间,相邻两个所述同心圆弧上的所述微棱镜单元的间距介于0.05mm~0.5mm之间。
  10. 一种显示组件,其特征在于,包括显示单元、投影镜头以及如权利要求1所述的菲涅尔膜片,所述显示单元用于发出投影光线,所述投影镜头用于将所述显示单元发出的投影光线投射至所述菲涅尔膜片。
  11. 根据权利要求10所述的显示组件,其特征在于,所述投影镜头包括透镜组和反射镜,所述投影光线经所述透镜组的聚光以及所述反射镜的反射后入射至 所述菲涅尔膜片,所述多个同心圆弧的圆心位于所述透镜组的光轴上。
  12. 根据权利要求10所述的显示组件,其特征在于,所述投影光线与所述入射面之间的夹角为10°至70°。
PCT/CN2020/126542 2019-11-20 2020-11-04 菲涅尔膜片及显示组件 WO2021098516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201922015115.9 2019-11-20
CN201922015115.9U CN211086909U (zh) 2019-11-20 2019-11-20 菲涅尔膜片及显示组件

Publications (1)

Publication Number Publication Date
WO2021098516A1 true WO2021098516A1 (zh) 2021-05-27

Family

ID=71626108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126542 WO2021098516A1 (zh) 2019-11-20 2020-11-04 菲涅尔膜片及显示组件

Country Status (2)

Country Link
CN (1) CN211086909U (zh)
WO (1) WO2021098516A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211086909U (zh) * 2019-11-20 2020-07-24 深圳光峰科技股份有限公司 菲涅尔膜片及显示组件
CN114063314A (zh) * 2020-08-03 2022-02-18 深圳光峰科技股份有限公司 菲涅尔组合光学器件和立体显示装置
CN113589540B (zh) * 2021-07-22 2023-07-18 亿信科技发展有限公司 扩束光学膜、显示装置和多方向扩束光学膜
CN114509910B (zh) * 2022-01-27 2024-06-18 峰米(重庆)创新科技有限公司 一种背投式触控显示屏幕和投影系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208041A (ja) * 1985-03-11 1986-09-16 Mitsubishi Rayon Co Ltd 背面投影スクリ−ン
CN1666116A (zh) * 2002-09-24 2005-09-07 大日本印刷株式会社 菲涅耳透镜片及采用它的透光型屏幕和背面透光型显示装置
CN1751268A (zh) * 2003-12-17 2006-03-22 三菱电机株式会社 菲涅尔光学元件及其投影式显示装置
JP2007058030A (ja) * 2005-08-26 2007-03-08 Dainippon Printing Co Ltd フレネルレンズシート、透過型スクリーン及び背面投射型表示装置
CN1987527A (zh) * 2005-12-22 2007-06-27 株式会社日立制作所 图像显示装置及其所使用的菲涅耳透镜片
CN211086909U (zh) * 2019-11-20 2020-07-24 深圳光峰科技股份有限公司 菲涅尔膜片及显示组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208041A (ja) * 1985-03-11 1986-09-16 Mitsubishi Rayon Co Ltd 背面投影スクリ−ン
CN1666116A (zh) * 2002-09-24 2005-09-07 大日本印刷株式会社 菲涅耳透镜片及采用它的透光型屏幕和背面透光型显示装置
CN1751268A (zh) * 2003-12-17 2006-03-22 三菱电机株式会社 菲涅尔光学元件及其投影式显示装置
JP2007058030A (ja) * 2005-08-26 2007-03-08 Dainippon Printing Co Ltd フレネルレンズシート、透過型スクリーン及び背面投射型表示装置
CN1987527A (zh) * 2005-12-22 2007-06-27 株式会社日立制作所 图像显示装置及其所使用的菲涅耳透镜片
CN211086909U (zh) * 2019-11-20 2020-07-24 深圳光峰科技股份有限公司 菲涅尔膜片及显示组件

Also Published As

Publication number Publication date
CN211086909U (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021098516A1 (zh) 菲涅尔膜片及显示组件
WO2015046439A1 (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
CN111538204A (zh) 一种反射型投影屏幕及投影系统
US20060250817A1 (en) Light deflection element and light source apparatus using the same
JP2006318886A (ja) 照明装置およびこれに使用する光制御部材並びにこれらを用いた表示装置
CN110824826A (zh) 投影屏幕及投影系统
US20140153090A1 (en) Projection system
KR20100075606A (ko) 광 매니지먼트 필름들, 백라이트 유니트들, 및 관련된 구조들
JPWO2008093819A1 (ja) 光学シート、面光源装置、透過型表示装置
CN108663893B (zh) 背投影屏幕
WO2019179167A1 (zh) 曲面屏幕及其微结构设置方法和投影系统
CN111025839A (zh) 正投影屏幕及投影系统
JP2023040121A (ja) 光学シート、光制御部材、面光源装置、映像源ユニット、及び表示装置
JP2012514771A (ja) 高コントラストのフロント投射スクリーン
TW200944840A (en) A compound type diffuser plate structure, backlight module, and liquid crystal display
CN112180672A (zh) 一种投影屏幕
US11635678B2 (en) Fresnel projection screen and projection system
CN111208705B (zh) 投影屏幕和投影系统
JP2004170862A (ja) フレネルレンズ
WO2019024366A1 (zh) 投影屏幕和投影系统
JP2010204573A (ja) 反射スクリーン、映像表示システム
JP2015180952A (ja) プリズムシート、面光源装置、映像源ユニット、及び液晶表示装置
CN211318982U (zh) 正投影屏幕及投影系统
KR100420650B1 (ko) 배면 투사형 스크린
JP6164000B2 (ja) 透過型スクリーン、および、映像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888996

Country of ref document: EP

Kind code of ref document: A1