WO2021088884A1 - 一种直投屏幕 - Google Patents

一种直投屏幕 Download PDF

Info

Publication number
WO2021088884A1
WO2021088884A1 PCT/CN2020/126553 CN2020126553W WO2021088884A1 WO 2021088884 A1 WO2021088884 A1 WO 2021088884A1 CN 2020126553 W CN2020126553 W CN 2020126553W WO 2021088884 A1 WO2021088884 A1 WO 2021088884A1
Authority
WO
WIPO (PCT)
Prior art keywords
incident
projection screen
direct projection
layer
optical structure
Prior art date
Application number
PCT/CN2020/126553
Other languages
English (en)
French (fr)
Inventor
王霖
孙微
唐晓峰
胡飞
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021088884A1 publication Critical patent/WO2021088884A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the invention relates to the field of projection technology, in particular to a direct projection screen.
  • the screen is an important factor that affects the projection display system, and it has a great influence on the image quality of the projection display.
  • the Fresnel reflection on the screen surface is positively related to the incident angle. The larger the incident angle, the higher the Fresnel reflection. Most of the light reflected by the Fresnel on the surface cannot enter the field of view of the audience, resulting in a waste of energy. At the same time, due to the uneven Fresnel reflection on the surface, the brightness difference between the center area and the edge area of the screen surface is as high as 20% or more.
  • a horizontal wire grid structure is provided on the direct projection screen, which can collimate the projection light incident at a large angle in the vertical direction, making it more A lot of projection light is reflected to the direction of the audience, and because the inclination angle of the working surface of the wire grid structure matches the incident angle of the projection light, the ambient light can be reflected to the non-audience area, but the horizontal wire grid structure cannot perform the projection light in the horizontal direction. It is collimated, so the projection light incident on the edge of the screen will still be reflected to the non-audience area.
  • the present invention provides a direct projection screen to solve the technical problem that the direct projection screen in the prior art can only collimate the projection light in the horizontal direction, which causes part of the projection light to be reflected to the non-audience area.
  • a technical solution adopted by the present invention is to provide a direct projection screen, including a base layer and an optical structure layer disposed on the base layer, the optical structure layer including a plurality of optical structures arranged in an array ,
  • the optical structure includes an incident surface attached to the base layer and a first reflection surface, a second reflection surface, a third reflection surface, and a fourth reflection surface connected to the incident surface, the first reflection surface Connected to the second reflecting surface and arranged obliquely with respect to the incident surface, for collimating the projection light incident from the incident surface in a vertical direction, the third reflecting surface and the fourth reflecting surface They are respectively connected to the first reflective surface and the second reflective surface, and are used to reflect the projection light incident from the incident surface in a horizontal direction.
  • the third reflective surface and the fourth reflective surface are arranged perpendicular to the incident surface and extend in a vertical direction, and the optical structures are arranged at intervals in a horizontal direction.
  • the third reflective surface and the fourth reflective surface are arranged obliquely with respect to the incident surface, and are used for collimating the projected light incident from the incident surface in a horizontal direction.
  • the inclination angle of the first reflecting surface with respect to the incident surface is equal to the inclination angle of the second reflecting surface with respect to the incident surface, so that the projection light incident from the incident surface passes through the The second reflective surface is completely reflected to the first reflective surface.
  • the inclination angle of the first reflecting surface with respect to the incident surface is greater than the inclination angle of the second reflecting surface with respect to the incident surface, so that the projection light incident from the incident surface passes through the The second reflective surface is partially reflected to the first reflective surface.
  • the inclination angle of the first reflecting surface with respect to the incident surface is smaller than the inclination angle of the second reflecting surface with respect to the incident surface, so that the projection light incident from the incident surface passes through the The second reflective surface is all reflected to the first reflective surface, and part of the projected light is reflected by the first reflective surface and then reflected to the second reflective surface again.
  • the optical structure is a total reflection structure
  • the direct projection screen further includes a reflective layer disposed on a side of the optical structure layer away from the base layer, and the reflective layer is used to reflect the projection light transmitted through the optical structure layer.
  • the direct projection screen further includes a light absorbing layer disposed on a side of the optical structure layer away from the base layer for absorbing ambient light transmitted through the optical structure layer.
  • the direct projection screen further includes a scattering layer disposed on the side of the base layer away from the optical structure layer for scattering the projection light reflected by the optical structure layer.
  • the base layer is made of PET, PC, PVC or PMMA.
  • an optical structure layer including a plurality of optical structures arranged in an array is arranged on the base layer of the direct projection screen, and the optical structure includes four reflective surfaces, which can collimate the incident projection light in the vertical direction, and The incident projection light can be reflected in the horizontal direction, so that all the projection light can be reflected to the audience area, so that the brightness uniformity of the direct projection screen can be improved, and the display effect of the direct projection screen is better.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an embodiment of a direct projection screen of the present invention
  • FIG. 2 is a schematic side view of the structure of an embodiment of the direct projection screen of the present invention.
  • FIG. 3 is a schematic diagram of the front view of the optical structure in an embodiment of the direct projection screen of the present invention.
  • FIG. 4 is a schematic side view of the optical structure in an embodiment of the direct projection screen of the present invention.
  • FIG. 5 is a schematic diagram of the reflection principle of the optical structure in an embodiment of the direct projection screen of the present invention.
  • FIG. 6 is a schematic side view of the optical structure in another embodiment of the direct projection screen of the present invention.
  • FIG. 7 is a schematic side view of the optical structure in another embodiment of the direct projection screen of the present invention.
  • FIG. 8 is a schematic diagram of the emission efficiency of projected light in an embodiment of the direct projection screen of the present invention.
  • FIG. 9 is a schematic diagram of a projection effect of a direct projection screen in the prior art.
  • Fig. 10a is a schematic diagram of the illuminance of the direct projection screen in the audience area in the prior art
  • 10b is a schematic diagram of the illuminance of the direct projection screen in the audience area in an embodiment of the direct projection screen of the present invention
  • FIG. 11 is a schematic diagram of comparison of horizontal viewing uniformity in an embodiment of the direct projection screen of the present invention.
  • FIG. 12 is a schematic diagram of a three-dimensional structure of another embodiment of a direct projection screen of the present invention.
  • FIG. 13 is a schematic diagram of the three-dimensional structure of another embodiment of the direct projection screen of the present invention.
  • FIG. 14 is a schematic diagram of a three-dimensional structure of another embodiment of a direct projection screen of the present invention.
  • 15 is a schematic side view of the structure of another embodiment of the direct projection screen of the present invention.
  • Fig. 16 is a schematic side view of another embodiment of the direct projection screen of the present invention.
  • first and second in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • “multiple” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusions. For example, a process, method, system, product, or device that includes a series of steps or units is not limited to the listed steps or units, but optionally includes unlisted steps or units, or optionally also includes Other steps or units inherent in these processes, methods, products or equipment.
  • an embodiment of the direct projection screen 10 of the present invention includes a base layer 100 and an optical structure layer 200 disposed on the base layer 100.
  • the optical structure layer 200 includes a plurality of optical structures 210 arranged in an array. Including the incident surface 211 attached to the base layer 100 and the first reflecting surface 212, the second reflecting surface 213, the third reflecting surface 214 and the fourth reflecting surface 215 connected to the incident surface 211, the first reflecting surface 212 and the second reflecting surface 212
  • the reflective surface 213 is connected to the incident surface 211 and is arranged obliquely to collimate the projection light incident from the incident surface 211 in the vertical direction.
  • the third reflective surface 214 and the fourth reflective surface 215 are respectively connected to the first reflective surface 212 and
  • the second reflecting surface 213 is connected to reflect the projection light incident from the incident surface 211 in the horizontal direction.
  • an optical structure layer 200 including a plurality of optical structures 210 arranged in an array is disposed on the base layer 100 of the direct projection screen 10, and the optical structure 210 includes four reflective surfaces, which can be directed to the incident light along the vertical direction.
  • the projection light is collimated, and the incident projection light can be reflected in the horizontal direction, so that all the projection light can be reflected to the audience area, so that the brightness uniformity of the direct projection screen 10 can be improved, and the display of the direct projection screen 10 can be improved. better result.
  • the up-down direction parallel to the surface of the base layer 100 in FIG. 1 is set as the vertical direction
  • the left-right direction parallel to the surface of the base layer 100 is set as the horizontal direction
  • the base layer 100 may be PET (Polyethylene Terephthalate), PC (Polycarbonate), PVC (Polyvinyl chloride) or PMMA (Polymethyl Methacrylate), Polymethyl methacrylate) and other materials.
  • the base layer 100 may be transparent, black or gray.
  • the optical structure 210 can be fabricated on the master mold by compact lathe processing, laser engraving, or microstructure development exposure, and then by hot embossing or UV glue (Ultraviolet Rays, shadowless glue) transfer method. Prepared on the base layer 100.
  • UV glue Ultraviolet Rays, shadowless glue
  • the third reflective surface 214 and the fourth reflective surface 215 are arranged perpendicular to the incident surface 211 and extend in the vertical direction, and the optical structures 210 are arranged at intervals along the horizontal direction, which can reserve a certain space for the reflective layer, or When the optical structure 210 is set as a total reflection structure, it is ensured that the optical structure is in contact with the air to meet the total reflection condition.
  • the optical structures 210 are arranged adjacent to each other in the vertical direction. In other embodiments, the optical structures 210 may also be arranged at intervals along the vertical direction, which is not limited herein.
  • the area between the plurality of optical structures 210 can be provided with a reflective structure together with the optical structure 210, or it can be provided with a reflective structure only on the optical structure 210 through selective coating, so as to achieve translucent and semi-transparent. Reflective direct projection screen 10.
  • the inclination angle of the first reflecting surface 212 with respect to the incident surface 211 is equal to the inclination angle of the second reflecting surface 213 with respect to the incident surface 211, so that the projection light incident from the incident surface 211 passes through the second reflecting surface 213. It is completely reflected to the first reflective surface 212.
  • the reflection principles of the first reflective surface 212 and the second reflective surface 213 are as follows:
  • the projection light enters the optical structure 210 from the incident surface 211, is reflected to the first reflective surface 212 via the second reflective surface 213, and then exits from the incident surface 211 via the first reflective surface 212.
  • the refractive index of the optical structure 210 is n 1.
  • the refractive index of the outside of the optical structure 210 (which can be air) is n 2
  • the incident angle of the projected light is ⁇
  • the exit angle of the projected light is ⁇
  • the angle between the second reflecting surface 213 and the direction parallel to the base layer 100 is ⁇ 1.
  • the angle between the first reflecting surface 212 and the direction parallel to the base layer 100 is ⁇ 2 , which is obtained from the geometric relationship and optical distance:
  • the optical structure 210 may be a total reflection structure, which can totally reflect the projection light, save the preparation of a reflective layer, the structure is simple and easy to implement, and can reduce the processing steps of the direct projection screen 10.
  • ⁇ 1 and ⁇ 2 also need to satisfy:
  • ⁇ 1 is a variable, which can be transformed when the conditions are met.
  • the inclination angle of the first reflective surface 222 of the optical structure 220 with respect to the incident surface 221 may be greater than the inclination angle of the second reflective surface 223 with respect to the incident surface 221, so that The projection light incident on the incident surface 221 is partially reflected by the second reflection surface 223 to the first reflection surface 222.
  • the inclination angle of the first reflective surface 232 of the optical structure 230 with respect to the incident surface 231 may be smaller than the inclination angle of the second reflective surface 233 with respect to the incident surface 231, so that from the incident surface The projection light incident from 231 is all reflected to the first reflective surface 232 via the second reflective surface 233, and is reflected to the ground via the first reflective surface 232, which may cause waste.
  • FIG. 8 shows the emission efficiency of the projected light when the angle ⁇ 1 between the second reflecting surface 213 and the direction parallel to the base layer 100 is in different ranges, where ⁇ 1 can be 0° to 90°, for example, 0 °, 48° or 90°, etc.
  • ⁇ 1 may be 20° to 50°, such as 20°, 25° or 50°. More preferably, ⁇ 1 may be 35° to 45°, such as 35°, 40°, or 45°. It can be seen that when the intermediate light 1 is parallel to the surface of the direct projection screen 10, the projection efficiency of the projection light is the highest, which will make the display effect better.
  • FIG. 9 is an effect diagram of the projection light projected on the direct projection screen 10 in the prior art, and the dashed frame in FIG. 9 is a non-centerline area;
  • FIG. 10a is the direct projection in the prior art.
  • FIG. 10b is the illuminance diagram of the audience's field of view area on the direct-projection screen 10 in this application;
  • FIG. 11 is a simulation diagram of viewing uniformity in the vertical direction.
  • the light spots in FIG. 10a and FIG. 10b correspond to the point corresponding to the number 7 in FIG. 9.
  • point M is the light spot reflected in the vertical direction from the point corresponding to the number 7
  • point N is the light spot reflected in the horizontal direction from the point corresponding to the number 7.
  • the projection light is collimated only in the vertical direction, the light spot formed by the horizontal light upward is located outside the viewing area, which is not shown in the figure.
  • the projection light is collimated in both the vertical direction and the horizontal direction, so the light spots formed in the vertical direction and the horizontal direction are all located in the viewing area. Comparing FIGS.
  • another embodiment of the direct projection screen 10 of the present invention includes a base layer 100 and an optical structure layer 200.
  • the optical structure layer 200 includes a plurality of optical structures 240 arranged in an array.
  • the incident surface (not shown in the figure) and the first reflecting surface 241, the second reflecting surface 242, the third reflecting surface 243 and the fourth reflecting surface 244 connected with the incident surface, the first reflecting surface 241 and the second reflecting surface 242 Connected and arranged obliquely with respect to the incident surface, for collimating the projection light incident from the incident surface along the vertical direction, the third reflecting surface 243 and the fourth reflecting surface 244 are respectively connected to the first reflecting surface 241 and the second reflecting surface 242
  • the third reflective surface 214 and the fourth reflective surface 215 are connected and arranged obliquely with respect to the incident surface, and are used for collimating the projection light incident from the incident surface in a horizontal direction.
  • first reflective surface 241 and the second reflective surface 242 refer to the direct projection screen embodiment, and the third reflective surface 243 and the fourth reflective surface 244 are similar to the first reflective surface 241 and the second reflective surface 242. , I won’t repeat it here.
  • a plurality of optical structures 240 are arranged adjacent to each other in the vertical direction and the horizontal direction.
  • the plurality of optical structures 240 may also be spaced apart in the vertical direction and arranged adjacently in the horizontal direction, as shown in FIG. 13; the plurality of optical structures 240 may also be spaced apart in the vertical direction and the horizontal direction.
  • the settings, as shown in Figure 14, are not restricted here.
  • the direct projection screen 10 may further include a reflective layer 300 and a scattering layer 400.
  • the reflective layer 300 is disposed on the side of the optical structure layer 200 away from the base layer 100, and the reflective layer 300 is used for reflection.
  • the scattering layer 400 is disposed on the side of the base layer 100 away from the optical structure layer 200 for scattering the projection light reflected by the optical structure layer 200.
  • the reflective layer can be prepared on the optical structure layer 200 by means of PVD (Physical Vapor Deposition, physical vapor deposition) or spraying. .
  • PVD Physical Vapor Deposition, physical vapor deposition
  • the scattering layer 400 can be an irregular surface scattering film or a regular microlens array film, and different types of films can be used alone or superimposed, which can increase the visibility of the direct projection screen 10. range.
  • the direct projection screen 10 may further include a light absorbing layer 500, which is disposed on the side of the optical structure layer 200 away from the base layer 100 , Used to absorb the ambient light transmitted through the optical structure layer 200.
  • the light-absorbing layer 500 may be a black light-absorbing layer, which can absorb ambient light that does not satisfy the total reflection condition of the optical mechanism layer 200, thereby improving the contrast of the direct projection screen 10.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种直投屏幕(10),直投屏幕(10)包括基层(100)及设置于基层(100)上的光学结构层(200),光学结构层(200)包括多个呈阵列排布的光学结构(210),光学结构(210)包括与基层(100)贴合设置的入射面(211)及与入射面(211)连接的第一反射面(212)、第二反射面(213)、第三反射面(214)和第四反射面(215),第一反射面(212)和第二反射面(213)连接且相对入射面(211)倾斜设置,用于沿竖直方向对从入射面(211)入射的投影光线进行准直,第三反射面(214)与第四反射面(215)分别与第一反射面(212)和第二反射面(213)连接,用于沿水平方向对从入射面(211)入射的投影光线进行反射。直投屏幕(10)使得投影光线能够都被反射至观众区域,从而能够提高直投屏幕的亮度均匀性,使得直投屏幕的显示效果更好。

Description

一种直投屏幕 技术领域
本发明涉及投影技术领域,特别涉及一种直投屏幕。
背景技术
屏幕是影响投影显示系统的一个重要因素,其对投影显示的图像质量影响很大。屏幕表面的菲涅尔反射跟入射角度正相关,入射角度越大,菲涅尔反射越高。表面菲涅尔反射的光线大部分都不能进入到观众的视场中,造成了能量的浪费。同时,由于表面不均匀的菲涅尔反射导致了屏幕表面中心区域和边缘区域的亮度差高达20%以上。
本申请的发明人在长期的研发中发现,目前为了提高屏幕的亮度均匀性,在直投屏幕上设置水平线栅结构,能够将大角度入射的投影光线在竖直方向上进行准直,使得更多的投影光线被反射至观众方向,并且由于线栅结构工作面的倾斜角度与投影光线的入射角匹配,可以将环境光反射向非观众区域,但是水平线栅结构不能对投影光线在水平方向进行准直,因此入射在屏幕边缘的投影光线仍会反射至非观众区域。
发明内容
本发明提供一种直投屏幕,以解决现有技术中的直投屏幕仅能对投影光线在水平方向进行准直,导致部分投影光线反射至非观众区域的技术问题。
为解决上述技术问题,本发明采用的一个技术方案是提供一种直投屏幕,包括基层及设置于所述基层上的光学结构层,所述光学结构层包括多个呈阵列排布的光学结构,所述光学结构包括与所述基层贴合设置的入射面及与所述入射面连接的第一反射面、第二反射面、第三反射面和第四反射面,所述第一反射面和所述第二反射面连接且相对所述入射 面倾斜设置,用于沿竖直方向对从所述入射面入射的投影光线进行准直,所述第三反射面与所述第四反射面分别与所述第一反射面和所述第二反射面连接,用于沿水平方向对从所述入射面入射的投影光线进行反射。
在一具体实施例中,所述第三反射面和所述第四反射面相对所述入射面垂直设置且沿竖直方向延伸,所述光学结构沿水平方向间隔设置。
在一具体实施例中,所述第三反射面和所述第四反射面相对所述入射面倾斜设置,用于沿水平方向对从所述入射面入射的投影光线进行准直。
在一具体实施例中,所述第一反射面相对于所述入射面的倾斜角度等于所述第二反射面相对于所述入射面的倾斜角度,以使得从所述入射面入射的投影光线经所述第二反射面完全反射至所述第一反射面。
在一具体实施例中,所述第一反射面相对于所述入射面的倾斜角度大于所述第二反射面相对于所述入射面的倾斜角度,以使得从所述入射面入射的投影光线经所述第二反射面部分反射至所述第一反射面。
在一具体实施例中,所述第一反射面相对于所述入射面的倾斜角度小于所述第二反射面相对于所述入射面的倾斜角度,以使得从所述入射面入射的投影光线经所述第二反射面全部反射至所述第一反射面,并且部分投影光线经第一反射面反射后再次反射至所述第二反射面。
在一具体实施例中,所述光学结构为全反射结构;或
所述直投屏幕进一步包括设置于所述光学结构层远离所述基层一侧的反射层,所述反射层用于反射经所述光学结构层透射的投影光线。
在一具体实施例中,所述直投屏幕进一步包括设置于所述光学结构层远离所述基层一侧的吸光层,用于吸收经所述光学结构层透射的环境光线。
在一具体实施例中,所述直投屏幕进一步包括设置于所述基层远离所述光学结构层一侧的散射层,用于对经所述光学结构层反射的投影光线进行散射。
在一具体实施例中,所述基层为PET、PC、PVC或PMMA材料。
本发明通过在直投屏幕的基层上设置包括多个呈阵列排布的光学 结构的光学结构层,且光学结构包括四个反射面,能够沿竖直方向对入射的投影光线进行准直,并且能够沿水平方向对入射的投影光线进行反射,从而使得投影光线能够都被反射至观众区域,从而能够提高直投屏幕的亮度均匀性,使得直投屏幕的显示效果更好。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明直投屏幕一实施例的立体结构示意图;
图2是本发明直投屏幕一实施例的侧视结构示意图;
图3是本发明直投屏幕一实施例中光学结构的主视结构示意图;
图4是本发明直投屏幕一实施例中光学结构的侧视结构示意图;
图5是本发明直投屏幕一实施例中光学结构的反射原理示意图;
图6是本发明直投屏幕另一实施例中光学结构的侧视结构示意图;
图7是本发明直投屏幕另一实施例中光学结构的侧视结构示意图;
图8是本发明直投屏幕一实施例中投影光线的出射效率示意图;
图9是现有技术中直投屏幕的投影效果示意图;
图10a是现有技术中直投屏幕在观众区域的照度示意图;
图10b是本发明直投屏幕一实施例中直投屏幕在观众区域的照度示意图;
图11是本发明直投屏幕一实施例中水平观看均匀性的对比示意图;
图12是本发明直投屏幕另一实施例的立体结构示意图;
图13是本发明直投屏幕另一实施例的立体结构示意图;
图14是本发明直投屏幕另一实施例的立体结构示意图;
图15是本发明直投屏幕另一实施例的侧视结构示意图;
图16是本发明直投屏幕另一实施例的侧视结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本发明保护的范围。
本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。而术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
参见图1至图4,本发明直投屏幕10一实施例包括基层100及设置于基层100上的光学结构层200,光学结构层200包括多个呈阵列排布的光学结构210,光学结构210包括与基层100贴合设置的入射面211及与入射面211连接的第一反射面212、第二反射面213、第三反射面214和第四反射面215,第一反射面212和第二反射面213连接且相对入射面211倾斜设置,用于沿竖直方向对从入射面211入射的投影光线进行准直,第三反射面214与第四反射面215分别与第一反射面212和第二反射面213连接,用于沿水平方向对从入射面211入射的投影光线进行反射。
本发明实施例通过在直投屏幕10的基层100上设置包括多个呈阵列排布的光学结构210的光学结构层200,且光学结构210包括四个反射面,能够沿竖直方向对入射的投影光线进行准直,并且能够沿水平方向对入射的投影光线进行反射,从而使得投影光线能够都被反射至观众 区域,从而能够提高直投屏幕10的亮度均匀性,使得直投屏幕10的显示效果更好。
在本实施例中,设定沿图1中平行于基层100表面的上下方向为竖直方向,平行于基层100表面的左右方向为水平方向。
在本实施例中,基层100可以为PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)、PC(Polycarbonate,聚碳酸酯)、PVC(Polyvinyl chloride,聚氯乙烯)或PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)等材料。基层100可以为透明、黑色或灰色。
在本实施例中,光学结构210可以通过紧密车床加工、激光雕刻或微结构显影曝光的方式制作在母模上,然后通过热压印或UV胶水(Ultraviolet Rays,无影胶水)转印的方式制备于基层100上。
在本实施例中,第三反射面214和第四反射面215相对入射面211垂直设置且沿竖直方向延伸,光学结构210沿水平方向间隔设置,能够为设置反射层预留一定空间,或者在将光学结构210设置为全反射结构时保证光学结构与空气接触,以满足全反射条件。
在本实施例中,光学结构210沿竖直方向相邻设置。在其他实施例中,光学结构210也可以沿竖直方向间隔设置,在此不做限制。
在本实施例中,多个光学结构210之间的区域既可以同光学结构210一同设置反射结构,也可以通过选择性涂布的方式只在光学结构210上设置反射机构,从而实现半透明半反射的直投屏幕10。
在本实施例中,第一反射面212相对于入射面211的倾斜角度等于第二反射面213相对于入射面211的倾斜角度,以使得从入射面211入射的投影光线经第二反射面213完全反射至第一反射面212。
一并参见图5,在本实施例中,第一反射面212及第二反射面213的反射原理如下:
投影光线从入射面211入射至光学结构210内,经第二反射面213反射至第一反射面212,再经第一反射面212从入射面211出射,其中,光学结构210的折射率为n 1,光学结构210外部(可以为空气)的折射率为n 2,投影光线的入射角度为α,投影光线的出射角度为β,第二反 射面213与平行于基层100方向的夹角为θ 1,第一反射面212与平行于基层100方向的夹角为θ 2,由几何关系和光学远离得到:
Figure PCTCN2020126553-appb-000001
在本实施例中,光学结构210可以为全反射结构,能够对投影光线进行全反射,省去反射层的制备,结构简单易于实现,能够减少直投屏幕10的加工工序。
光学结构210为全反射结构时,θ 1和θ 2还需满足:
Figure PCTCN2020126553-appb-000002
Figure PCTCN2020126553-appb-000003
在上述公式中,θ 1为变量,可在满足条件的情况下变换。例如,参见图6,在另一具体实施例中,光学结构220的第一反射面222相对于入射面221的倾斜角度可以大于第二反射面223相对于入射面221的倾斜角度,以使得从入射面221入射的投影光线经第二反射面223部分反射至第一反射面222。参见图7,在另一具体实施例中,光学结构230的第一反射面232相对于入射面231的倾斜角度可以小于第二反射面233相对于入射面231的倾斜角度,以使得从入射面231入射的投影光线经第二反射面233全部反射至第一反射面232,并且经第一反射面232反射至地面,可能造成浪费。
一并参见图8,图8为当第二反射面213与平行于基层100方向的夹角θ 1在不同范围时投影光线的出射效率,其中,θ 1可以为0°至90°,例如0°、48°或90°等。优选的,θ 1可以为20°至50°,例如20°、25°或50°。更优选的,θ 1可以为35°至45°,例如35°、40°或45°。由此可以看出当使得中间光线l平行于直投屏幕10的表面时,投影光线的出射效率最高,会使得显示效果更好。
一并参见图9至图11,图9为现有技术中投影光线投射在直投屏幕10上的效果图,且图9中的虚线框为非中心线区域;图10a为现有技术中直投屏幕10上观众视场区域的照度图,图10b为本申请中直投屏幕 10上观众视场区域的照度图;图11为竖直方向观看均匀性的仿真图。
具体的,图10a和图10b中的光斑对应图9中的数字7对应的点。其中,M点为数字7对应的点经竖直方向反射的光斑,N点为数字7对应的点经水平方向反射的光斑。在图10a对应的现有技术中,由于只在竖直方向对投影光线进行准直,因此其水平光向上形成的光斑位于观看区域外,在图中未显示。而图10b对应的本申请中,在竖直方向和水平方向都对投影光线进行准直,因此其竖直方向和水平方向上形成的光斑都位于观看区域内。对比图9至图10b可以看出,由于现有技术中仅能在竖直方向上实现对投影光线的准直,在直投屏幕10上呈现的投影画面的均匀性较差,而本申请中不仅能在竖直方向上实现对投影光线的准直,还能在水平方向上反射投影光线,并且在本申请中,经过准直的投影光线还可以经散射层作用,使得光斑M和光斑N重合,能够使得在直投屏幕10上呈现的投影画面的亮度更大、均匀性更好。
参见图12,本发明直投屏幕10另一实施例包括基层100及光学结构层200,光学结构层200包括多个呈阵列排布的光学结构240,光学结构240包括与基层100贴合设置的入射面(图中未示出)及与入射面连接的第一反射面241、第二反射面242、第三反射面243和第四反射面244,第一反射面241和第二反射面242连接且相对入射面倾斜设置,用于沿竖直方向对从入射面入射的投影光线进行准直,第三反射面243与第四反射面244分别与第一反射面241和第二反射面242连接,且第三反射面214和第四反射面215相对所述入射面倾斜设置,用于沿水平方向对从入射面入射的投影光线进行准直。
其中,第一反射面241和第二反射面242的结构参见上述直投屏幕实施例,且第三反射面243和第四反射面244与第一反射面241和第二反射面242反射原理类似,在此不再赘述。
在本实施例中,多个光学结构240分别沿竖直方向和水平方向相邻设置。
在其他实施例中,多个光学结构240还可以沿竖直方向间隔设置,沿水平方向相邻设置,如图13所示;多个光学结构240还可以分别沿 竖直方向和水平方向都间隔设置,如图14所示,在此不做限制。
参见图15,在另一具体实施例中,直投屏幕10进一步还可以包括反射层300和散射层400,反射层300设置于光学结构层200远离基层100的一侧,反射层300用于反射经光学结构层200透射的投影光线,散射层400设置于基层100远离光学结构层200的一侧,用于对经光学结构层200反射的投影光线进行散射。
在本实施例中,反射层可以通过PVD(Physical Vapor Deposition,物理气相沉积)或喷涂的方式将高反射率的金属铝、银或添加了吸收/散射粒子的反射涂料制备于光学结构层200上。
在本实施例中,散射层400可以为不规则面散射薄膜,也可以为规则的微透镜阵列薄膜,且不同类型的薄膜可单独使用,也可以叠加使用,能够增加直投屏幕10的可视范围。
参见图16,在另一具体实施例中,当光学结构层200为全反射结构层,直投屏幕10进一步还可以包括吸光层500,吸光层500设置于光学结构层200远离基层100的一侧,用于吸收经光学结构层200透射的环境光线。
在本实施例中,吸光层500可以为黑色吸光层,能够将不满足光学机构层200的全反射条件的环境光吸收,从而提高直投屏幕10的对比度。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种直投屏幕,其特征在于,包括基层及设置于所述基层上的光学结构层,所述光学结构层包括多个呈阵列排布的光学结构,所述光学结构包括与所述基层贴合设置的入射面及与所述入射面连接的第一反射面、第二反射面、第三反射面和第四反射面,所述第一反射面和所述第二反射面连接且相对所述入射面倾斜设置,用于沿竖直方向对从所述入射面入射的投影光线进行准直,所述第三反射面与所述第四反射面分别与所述第一反射面和所述第二反射面连接,用于沿水平方向对从所述入射面入射的投影光线进行反射。
  2. 根据权利要求1所述的直投屏幕,其特征在于,所述第三反射面和所述第四反射面相对所述入射面垂直设置且沿竖直方向延伸,所述光学结构沿水平方向间隔设置。
  3. 根据权利要求1所述的直投屏幕,其特征在于,所述第三反射面和所述第四反射面相对所述入射面倾斜设置,用于沿水平方向对从所述入射面入射的投影光线进行准直。
  4. 根据权利要求1所述的直投屏幕,其特征在于,所述第一反射面相对于所述入射面的倾斜角度等于所述第二反射面相对于所述入射面的倾斜角度,以使得从所述入射面入射的投影光线经所述第二反射面完全反射至所述第一反射面。
  5. 根据权利要求1所述的直投屏幕,其特征在于,所述第一反射面相对于所述入射面的倾斜角度大于所述第二反射面相对于所述入射面的倾斜角度,以使得从所述入射面入射的投影光线经所述第二反射面部分反射至所述第一反射面。
  6. 根据权利要求1所述的直投屏幕,其特征在于,所述第一反射面相对于所述入射面的倾斜角度小于所述第二反射面相对于所述入射面的倾斜角度,以使得从所述入射面入射的投影光线经所述第二反射面全部反射至所述第一反射面,并且部分投影光线经第一反射面反射后再次反射至所述第二反射面。
  7. 根据权利要求1所述的直投屏幕,其特征在于,所述光学结构为全反射结构;或
    所述直投屏幕进一步包括设置于所述光学结构层远离所述基层一侧的反射层,所述反射层用于反射经所述光学结构层透射的投影光线。
  8. 根据权利要求7所述的直投屏幕,其特征在于,所述直投屏幕进一步包括设置于所述光学结构层远离所述基层一侧的吸光层,用于吸收经所述光学结构层透射的环境光线。
  9. 根据权利要求1所述的直投屏幕,其特征在于,所述直投屏幕进一步包括设置于所述基层远离所述光学结构层一侧的散射层,用于对经所述光学结构层反射的投影光线进行散射。
  10. 根据权利要求1所述的直投屏幕,其特征在于,所述基层为PET、PC、PVC或PMMA材料。
PCT/CN2020/126553 2019-11-05 2020-11-04 一种直投屏幕 WO2021088884A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911071400.0A CN112824970B (zh) 2019-11-05 2019-11-05 一种直投屏幕
CN201911071400.0 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021088884A1 true WO2021088884A1 (zh) 2021-05-14

Family

ID=75849740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126553 WO2021088884A1 (zh) 2019-11-05 2020-11-04 一种直投屏幕

Country Status (2)

Country Link
CN (1) CN112824970B (zh)
WO (1) WO2021088884A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201408322Y (zh) * 2009-04-14 2010-02-17 中强光电股份有限公司 投影荧幕
JP2012212035A (ja) * 2011-03-31 2012-11-01 Kuraray Co Ltd 反射型スクリーン
CN104460213A (zh) * 2014-12-26 2015-03-25 成都宽显科技有限责任公司 投影屏幕及投影显示系统
CN105759555A (zh) * 2016-04-29 2016-07-13 青岛海信电器股份有限公司 显示屏及激光电视
CN106405699A (zh) * 2016-11-18 2017-02-15 四川长虹电器股份有限公司 定向光反射元件、锥形辊筒及投影屏幕
CN106842800A (zh) * 2017-01-13 2017-06-13 简铭镇 一种超短焦的抗光投影幕布
CN109388012A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN109388013A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影屏幕和投影系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600600B2 (en) * 2000-08-14 2003-07-29 Cid, Inc. Projection screen and projection method
CN207216263U (zh) * 2017-08-04 2018-04-10 深圳市光峰光电技术有限公司 全反射屏幕和投影系统
CN110361921B (zh) * 2018-04-02 2021-08-24 深圳光峰科技股份有限公司 屏幕及投影系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201408322Y (zh) * 2009-04-14 2010-02-17 中强光电股份有限公司 投影荧幕
JP2012212035A (ja) * 2011-03-31 2012-11-01 Kuraray Co Ltd 反射型スクリーン
CN104460213A (zh) * 2014-12-26 2015-03-25 成都宽显科技有限责任公司 投影屏幕及投影显示系统
CN105759555A (zh) * 2016-04-29 2016-07-13 青岛海信电器股份有限公司 显示屏及激光电视
CN106405699A (zh) * 2016-11-18 2017-02-15 四川长虹电器股份有限公司 定向光反射元件、锥形辊筒及投影屏幕
CN106842800A (zh) * 2017-01-13 2017-06-13 简铭镇 一种超短焦的抗光投影幕布
CN109388012A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN109388013A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影屏幕和投影系统

Also Published As

Publication number Publication date
CN112824970A (zh) 2021-05-21
CN112824970B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
US11630250B2 (en) System for use in imaging in air
CN207216263U (zh) 全反射屏幕和投影系统
US8218236B2 (en) Projection screen and manufacturing method thereof
CN109388013A (zh) 投影屏幕和投影系统
WO2020192300A1 (zh) 光学准直组件、背光模组及显示装置
CN109388015A (zh) 全反射屏幕和投影系统
US11194243B2 (en) Projection screen and projection system
US11740545B2 (en) Curved screen and method of arranging microstructure therein, and projection system
US20220268975A1 (en) Projection screen
KR20100075606A (ko) 광 매니지먼트 필름들, 백라이트 유니트들, 및 관련된 구조들
US20220026794A1 (en) Screen and projection system
CN109388012A (zh) 投影屏幕和投影系统
CN110297387A (zh) 屏幕和投影系统
WO2020093805A1 (zh) 投影屏幕和投影系统
JP2004170862A (ja) フレネルレンズ
CN109388014A (zh) 投影屏幕和投影系统
WO2021088884A1 (zh) 一种直投屏幕
JP2004342429A (ja) 面状光源装置およびそれを備えた液晶表示装置
JP2014142429A (ja) 反射型スクリーン、前面投射型表示装置、多画面表示装置
US20220291579A1 (en) Projection screen
JP2010204573A (ja) 反射スクリーン、映像表示システム
JP2014086245A (ja) 導光板、バックライト・ユニット及びディスプレイ装置
US20220269159A1 (en) Projection screen and projection system
WO2023199926A1 (ja) スクリーン及びその製造方法、並びに金型
WO2023071594A1 (zh) 一种匀光膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883945

Country of ref document: EP

Kind code of ref document: A1