WO2021103968A1 - 一种投影屏幕以及投影系统 - Google Patents

一种投影屏幕以及投影系统 Download PDF

Info

Publication number
WO2021103968A1
WO2021103968A1 PCT/CN2020/126551 CN2020126551W WO2021103968A1 WO 2021103968 A1 WO2021103968 A1 WO 2021103968A1 CN 2020126551 W CN2020126551 W CN 2020126551W WO 2021103968 A1 WO2021103968 A1 WO 2021103968A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection screen
layer
reflective layer
image beam
optical structure
Prior art date
Application number
PCT/CN2020/126551
Other languages
English (en)
French (fr)
Inventor
王霖
孙微
唐晓峰
胡飞
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021103968A1 publication Critical patent/WO2021103968A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens

Definitions

  • This application relates to the field of projection technology, in particular to a projection screen and a projection system.
  • the screen is an important factor affecting the projection display system, which has a great impact on the image quality of the projection display; the Fresnel reflection on the screen surface is positively related to the incident angle.
  • the brightness difference between the center area and the edge area of the screen surface is as high as more than 20%.
  • a polarizer array with gradual absorptivity is added to the optical system of the projector to form a projection distribution with a dark center and a bright edge to compensate for the uneven brightness of the projection screen; in the prior art
  • Two projectors can also be used to compensate for brightness unevenness.
  • the above two methods do not involve the improvement of the screen itself, but instead compensate for the brightness uniformity by changing the design of the projector.
  • the existing direct projection screen structure uses a wire grid structure with the same horizontal or vertical structure, but this structure can only collimate the image beam in one direction, and because the image beam is incident on different positions on the screen, it has different The angle of incidence, therefore, the uncollimated light beam will deviate from the viewing area to transmit, resulting in poor brightness uniformity of the screen and affecting the viewing experience.
  • this structure can collimate image beams incident at a large angle in the vertical direction, so that more image beams are reflected toward the audience, as shown in FIG.
  • the main problem to be solved by this application is to provide a projection screen and a projection system, which can improve the brightness uniformity of the projection screen.
  • the technical solution adopted in this application is to provide a projection screen, which at least includes a first reflective layer and a second reflective layer sequentially arranged on the optical path of the incident image beam, and the second reflective layer It is used to reflect the image beam to the first reflective layer or the field of view area.
  • the first reflective layer is used to reflect the image beam to the field of view area.
  • the first reflective layer includes a plurality of sub-reflective layers arranged at intervals to improve projection. The brightness uniformity of the screen.
  • a projection system including a projection light source and a projection screen, wherein the projection light source is used to generate an image beam, and the projection screen is used to receive the image beam.
  • the image beam is processed, and the processed image beam is reflected to the field of view area, and the projection screen is the above-mentioned projection screen.
  • the beneficial effect of the present application is that the projection screen includes a first reflective layer with a plurality of spaced sub-reflective layers, which can adjust the reflected image beam in multiple directions, which helps to improve the brightness uniformity of the projection screen.
  • the structure is simple, the cost is low, and the gain is high, which can ensure that the projection screen has a better visual effect.
  • FIG. 1 is a schematic diagram of the structure of a direct projection screen in the vertical direction of the screen and the horizontal direction of the screen in the prior art;
  • FIG. 2 is a schematic diagram of the structure of a direct projection screen in the vertical direction of the screen and the thickness direction of the screen in the prior art;
  • Fig. 3 is a schematic structural diagram of an embodiment of a projection screen provided by the present application.
  • FIG. 4 is a schematic diagram of the structure of the projection light source and the projection screen in the embodiment shown in FIG. 3;
  • Fig. 5 is a schematic diagram of another structure of the projection light source and the projection screen in the embodiment shown in Fig. 3;
  • FIG. 6 is a schematic diagram of the structure of the projection screen in the vertical direction of the screen and the thickness direction of the screen in another embodiment of the projection screen provided by the present application;
  • FIG. 7 is a schematic diagram of the structure of the projection screen in the horizontal direction of the screen and the thickness direction of the screen in another embodiment of the projection screen provided by the present application;
  • FIG. 8 is a three-dimensional schematic diagram of image beam transmission in another embodiment of the projection screen provided by the present application.
  • Fig. 9 is a schematic cross-sectional view of image beam transmission in Fig. 8.
  • FIG. 10 is a schematic diagram of the structure of the projection screen in the vertical direction of the screen and the thickness direction of the screen in another embodiment of the projection screen provided by the present application;
  • FIG. 11 is a schematic diagram of the structure of the neutron reflection layer and the first substrate of the projection screen provided by the present application;
  • Figure 12 (a) is a schematic diagram of the structure of the projection screen provided by the present application.
  • FIG. 12(b) is a schematic diagram of the structure of the optical structure layer provided by the present application.
  • Fig. 12(c) is a schematic diagram of the structure of the light spot provided in the present application.
  • Fig. 13(a) is a light intensity simulation diagram corresponding to a projection screen in the prior art
  • Fig. 13(b) is a light intensity simulation diagram corresponding to the projection screen shown in Fig. 10;
  • FIG. 14 is a schematic structural diagram of an embodiment of a projection system provided by the present application.
  • FIG. 3 is a schematic structural diagram of an embodiment of a projection screen provided by the present application.
  • the projection screen 10 at least includes a first reflective layer 11 and a second reflective layer 12 sequentially arranged on the optical path of the incident image beam.
  • the second reflective layer 12 is used to reflect the image beam to the first reflective layer 11 or the field of view.
  • the material of the second reflective layer 12 can be metallic aluminum with higher reflectivity, silver or increased reflection of absorbing/scattering particles. Paint; the first reflective layer 11 is used to reflect the image beam to the field of view area, the first reflective layer 11 includes a plurality of sub-reflective layers 111 arranged at intervals to improve the brightness uniformity of the projection screen 10.
  • the projection light source 20 generates an image beam and outputs the image beam to the projection screen 10.
  • the projection light source 20 may be a general projector, a short-throw projector, or an ultra-short-throw projector.
  • the image beam emitted by the projection light source 20 can pass through the gap between the sub-reflective layers 111 and irradiate on the second reflective layer 12 or directly on the sub-reflective layer 111; for example, the projection light source 20 generates the image beam B1 and the image beam B1. It is incident on the bottom surface of the sub-reflective layer 111a away from the second reflective layer 12, and is reflected by the sub-reflective layer 111a.
  • the image beam generated by the projection light source 20 may partially pass through the sub-reflective layer 111.
  • the projection light source 20 generates image beams B1 and B2, and the image beam B1 is incident on the sub-reflective layer 111a. Pass through the sub-reflective layer 111a to reach the contact surface of the sub-reflective layer 111a and the second reflective layer 12, and then be reflected by the second reflective layer 12 to the side wall of the sub-reflective layer 111a, and then reflect from the side wall of the sub-reflective layer 111a.
  • the projection screen 10 is emitted; the image beam B2 passes through the gap between the sub-reflective layers 111b and 111c, reaches the contact surface of the first reflective layer 11 and the second reflective layer 12, and after being reflected by the second reflective layer 12, reaches the sub-reflective layer The sidewalls of 111c are reflected by the sub-reflective layer 111c and then emitted from the projection screen 10.
  • the reflected image beam can be adjusted in multiple directions, which helps to improve the brightness uniformity of the projection screen 10, and has a simple structure, low cost, and high gain, which can ensure the projection screen 10 has better visual effects.
  • FIG. 6 is a schematic diagram of the structure of the projection screen in the vertical direction and the thickness direction of the screen in another embodiment of the projection screen provided by the present application
  • FIG. 7 is another embodiment of the projection screen provided by the present application
  • the projection screen 10 in this embodiment further includes a scattering layer 13 and an optical structure layer 14.
  • the first reflective layer 11 is arranged on the scattering layer. Between 13 and the optical structure layer 14, the optical structure layer 14 is disposed between the first reflective layer 11 and the second reflective layer 12.
  • the second reflective layer 12 can be made by magnetron sputtering, thermal evaporation, electron beam evaporation, etc., made of metal aluminum and silver with high reflectivity on the outside of the optical structure layer 14, or coated with a reflective paint with increased absorption/scattering particles. It covers the outer side of the optical structure layer 14.
  • the cross-sectional shape of the sub-reflective layer 111 can be rectangular, which is characterized by easy processing; the sub-reflective layers 111 are arranged at intervals in the horizontal direction of the projection screen 10, and the sub-reflective layers 111 are arranged at intervals in the horizontal direction of the projection screen 10.
  • the side surface of the sub-reflective layer 111 is coated with a reflective material 112, and the area of the bottom surface of the sub-reflective layer 111 that is not in contact with the optical structure layer 14 is smaller than the preset area to prevent the image beam from being reflected before entering the optical structure layer 14, that is, the sub-reflective layer 111
  • the area of the bottom surface in contact with the scattering layer 13 is smaller than the preset area, and the preset area may be an area value obtained according to experiments, which is relatively small.
  • the optical structure layer 14 is used to deflect the image beam reflected by the second reflective layer 12 in the horizontal direction and/or the vertical direction, and transmit the deflected image beam to the first reflective layer 11;
  • the layer 11 is used to reflect the deflected image beam to the scattering layer 13;
  • the scattering layer 13 is used to deflect the reflected image beam in the horizontal direction and/or the vertical direction, so that the image beam can be transmitted to the field of view area;
  • the optical structure layer 14 and the second reflective layer 12 can collimate the image beam, and the first reflective layer 11 can reflect the collimated image beam, so that the collimated image beam is horizontal and/or vertical. Deflection in the straight direction, the collimated image beam passes through the first reflective layer 11 and the scattering layer 13 in sequence, and then enters the field of view area.
  • the optical structure layer 14 is a linear Fresnel lens, and the optical structure layer 14 can collimate the image beam, so that the image beam is reflected by the second reflective layer 12 to the viewer's field of view; but because the image beam passes through the second The divergence angle of the reflective layer 12 after reflection is generally relatively small.
  • a scattering layer 13 can be added to the side where the projection light source 20 is located.
  • the material of the scattering layer 13 includes at least one of a volume scattering film, an irregular surface scattering film or a regular microlens array film, that is, the scattering layer 13 may be a commercial scattering film structure: volume scattering film, irregular surface scattering film Or regular microlens array film, these kinds of scattering film materials can be used alone or superimposed, all of which can increase the visible range of the projection screen 10.
  • the projection screen 10 further includes a first substrate 15.
  • the first substrate 15 is disposed between the first reflective layer 11 and the optical structure layer 14, and A substrate 15 is made of a transparent material.
  • the first substrate 15 includes a first surface and a second surface opposite to each other.
  • the first reflective layer 11 is disposed on the first surface by adhesive glue, and the optical structure layer 14 is provided by adhesive glue. Set on the second surface.
  • the image beam B1 enters the first substrate 15, and is collimated after passing through the optical structure layer 14 and the second reflective layer 12.
  • the collimated image beam B1 After passing through the optical structure layer 14 and the first substrate 15 sequentially, it is incident on the sub-reflective layer 111, and then incident on the field of view area after being reflected by the reflecting layer 111.
  • the microstructure of the optical structure layer 14 can be made on a master mold by precision lathe processing, laser engraving or microstructure development and exposure, and then made in a transparent or transparent way by hot embossing or UV (Ultra Violet) glue transfer.
  • the surface of the gray first substrate 15, the material of the first substrate 15 includes PET (Polyethylene Terephthalate), PC (Polycarbonate, polycarbonate), PVC (Polyvinyl Chloride, polychloride) Ethylene) or PMMA (Polymethyl Methacrylate) and other organic materials.
  • the first reflective layer 11 can be formed by sticking a metal strip on the first substrate 15 with an adhesive glue, or can be made by hot embossing or UV glue transfer in the same way as the optical structure layer 14 On the first substrate 15, then the structure of the first reflective layer 11 is selectively sprayed with a high-reflective metal material, etc.; specifically, a metal material with high reflectivity is coated on the sidewall of the sub-reflective layer 111; In an embodiment, the first reflective layer 11 and the first substrate 15 may be integrally formed.
  • the sub-reflective layer 111 is formed by developing and etching the materials of the first substrate 15 and the first reflective layer 11, and then The side surface of the sub-reflective layer 111 is coated with a reflective material 112.
  • the projection screen 10 further includes a second substrate 16.
  • the second substrate 16 is disposed between the first substrate 15 and the optical structure layer 14, and the second substrate
  • the material 16 may be made of a transparent material, and the material of the second substrate 16 includes PET, PC, PVC or PMMA.
  • the optical structure layer 14 and the first reflective layer 11 are respectively fabricated on different substrates, that is, the first reflective layer 11 is fabricated on the first substrate 15, and the optical structure layer 14 is fabricated on the second substrate 16. Then, the first base material 15 and the second base material 16 are bonded together by adhesive glue.
  • the cross-sectional shape of the sub-reflective layer 111 can be not only the rectangle shown in FIG. 7, but also a triangle, trapezoid or other shapes, as shown in FIG. 11, and FIG. 11(a) is the sub-reflective layer.
  • the cross-sectional shape of 111 is a schematic diagram of a triangle
  • FIG. 11(b) is a schematic diagram of the cross-sectional shape of the sub-reflective layer 111 being a trapezoid
  • the shape of the cross-section shown in FIG. 11 is conducive to restricting the sub-reflective layer 111 and the scattering layer.
  • the area of the bottom surface contacted by 13 is such that the area of the bottom surface is as small as possible to reduce the specular reflection of the image beam on the bottom surface where the sub-reflective layer 111 and the scattering layer 13 are in contact.
  • FIG. 12(a) is a front view of a projection screen 10 of a certain size.
  • the image beam hits the non-centerline area of the projection screen 10
  • the screen 10 has a certain angle in both the horizontal direction and the vertical direction. If only a wire grid structure in one direction is used, there will be a problem of poor brightness uniformity when viewed from a large angle.
  • the optical structure layer 14 in this embodiment is a linear Fresnel lens structure. As shown in FIG.
  • the inclined working surface 141 of the linear Fresnel lens structure collimates the image beam in the vertical direction;
  • a part of the image beam is deflected in one direction along the original path in the horizontal direction, and is scattered by the scattering layer 13 to form a spot A, while the other part passes through the first reflective layer 11 and
  • the scattering layer 13 is reflected and scattered to form a light spot B, and the two light spots are superimposed to obtain a larger light spot C. Therefore, under the action of the first reflective layer 11, the image beam moves closer to the field of view in the horizontal direction, thereby improving
  • the brightness uniformity of the projection screen 10 can also increase the viewing angle.
  • Figure 13 is a simulation diagram of the light intensity of the reflected image beam corresponding to 8 points on the projection screen 10 in Figure 12 (a), and Figure 13 (a) is a simulation diagram of the light intensity without the first reflective layer 11, because the horizontal direction is not limited Light and image beams are transmitted to both sides of the field of view area, which will cause differences in brightness uniformity when the viewer views the projection screen 10 from different horizontal directions; Figure 13(b) is the first reflection in this embodiment
  • the projection screen 10 proposed in this embodiment includes a scattering layer 13, a first reflective layer 11, an optical structure layer 14, and a second reflective layer 12. After the image beam is collimated in the vertical direction by the optical structure layer 14, the image beam is partially reflected Hits on the sidewall of the first reflective layer 11 and is reflected by the first reflective layer 11, so the image beam is also deflected in the horizontal direction, thereby improving the brightness uniformity of the projection screen 10, and has high gain and wide viewing angle.
  • FIG. 14 is a schematic structural diagram of an embodiment of a projection system provided by the present application.
  • the projection system 140 includes a projection screen 10 and a projection light source 20.
  • the projection light source 20 is used to generate an image beam
  • the projection screen 10 is used to receive the image beam.
  • the image beam is processed, and the processed image beam is reflected to the field of view area.
  • the projection screen 10 is the projection screen 10 in the above-mentioned embodiment.
  • the projection screen 10 in the projection system 140 can adjust the image beam in both horizontal and vertical directions, so that the brightness uniformity of the projection screen 10 is significantly improved, and a better visual effect is ensured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种投影屏幕(10)以及投影系统,投影屏幕(10)至少包括依次设置于入射的影像光束的光路上的第一反射层(11)与第二反射层(12),第二反射层(12)用于将影像光束反射至第一反射层(11)或视场区域,第一反射层(11)用于将影像光束反射至视场区域,其中,第一反射层(11)包括多个间隔设置的子反射层(111),以提高投影屏幕(10)的亮度均匀性。

Description

一种投影屏幕以及投影系统 技术领域
本申请涉及投影技术领域,具体涉及一种投影屏幕以及投影系统。
背景技术
屏幕是影响投影显示系统的一个重要因素,其对投影显示的图像质量影响很大;屏幕表面的菲涅尔反射跟入射角度正相关,入射角度越大,菲涅尔反射越高,菲涅尔反射的光线大部分都不能进入到观众的视场中,造成了能量的浪费。同时,由于屏幕表面不均匀的菲涅尔反射导致了屏幕表面中心区域和边缘区域的亮度差高达20%以上。
为了提高屏幕的亮度均匀性,现有技术中在投影机光学系统中加入吸收率渐变的偏振片阵列,形成中间暗、边缘亮的投影分布来补偿投影屏幕的亮度不均匀性;现有技术中还可利用两台投影机来补偿亮度不均匀性。但以上两种方法都不涉及对屏幕本身的改善,而是通过改变投影机的设计来补偿亮度均匀性。
现有的直投屏幕结构是采用水平或竖直方向结构一致的线栅结构,但是这种结构只能对影像光束进行一个方向的准直,并且由于影像光束入射在屏幕不同位置时具有不同的入射角度,因此未经过准直的光束会偏离观看区域传输,从而导致屏幕的亮度均匀性差,影响观看体验。例如,对于图1所示的水平线栅结构而言,该结构可以将大角度入射的影像光束在竖直方向进行准直,使更多的影像光束被反射至观众方向,如图2所示;同时由于线栅结构工作面的倾斜角度与影像光束入射角度相匹配,因此可以将环境光线反射向非观众区域,提高屏幕对比度;但是该屏幕结构不能对影像光束在水平方向起到准直的作用,因此入射在屏幕边缘位置的影像光束反射至观众视场外的区域,导致该屏幕的水平观看亮度均匀性差。
发明内容
本申请主要解决的问题是提供一种投影屏幕以及投影系统,能够提升投影屏幕的亮度均匀性。
为解决上述技术问题,本申请采用的技术方案是:提供一种投影屏幕,该投影屏幕至少包括依次设置于入射的影像光束的光路上的第一反射层与第二反射层,第二反射层用于将影像光束反射至第一反射层或视场区域,第一反射层用于将影像光束反射至视场区域,其中,第一反射层包括多个间隔设置的子反射层,以提高投影屏幕的亮度均匀性。
为解决上述技术问题,本申请采用的另一技术方案是:提供一种投影系统,该投影系统包括投影光源和投影屏幕,其中,投影光源用于产生影像光束,投影屏幕用于接收影像光束,对影像光束进行处理,并将处理后的影像光束反射至视场区域,投影屏幕为上述的投影屏幕。
通过上述方案,本申请的有益效果是:投影屏幕包括具有多个间隔的子反射层的第一反射层,可对反射的影像光束进行多方向的调节,有助于提升投影屏幕的亮度均匀性,且结构简单、成本较低、增益较高,可保证投影屏幕具有较佳的视觉效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是现有技术中直投屏幕在屏幕竖直方向与屏幕水平方向的结构示意图;
图2是现有技术中直投屏幕在屏幕竖直方向与屏幕厚度方向的结构示意图;
图3是本申请提供的投影屏幕一实施例的结构示意图;
图4是图3所示的实施例中投影光源与投影屏幕的结构示意图;
图5是图3所示的实施例中投影光源与投影屏幕的另一结构示意 图;
图6是本申请提供的投影屏幕另一实施例中投影屏幕在屏幕竖直方向与屏幕厚度方向的结构示意图;
图7是本申请提供的投影屏幕另一实施例中投影屏幕在屏幕水平方向与屏幕厚度方向的结构示意图;
图8是本申请提供的投影屏幕另一实施例中影像光束传输的立体示意图;
图9是图8中影像光束传输的截面示意图;
图10是本申请提供的投影屏幕又一实施例中投影屏幕在屏幕竖直方向与屏幕厚度方向的结构示意图;
图11是本申请提供的投影屏幕中子反射层与第一基材的结构示意图;
图12(a)是本申请提供的投影屏幕的结构示意图;
图12(b)是本申请提供的光学结构层的结构示意图;
图12(c)是本申请提供的光斑的结构示意图;
图13(a)是现有技术中的投影屏幕对应的光强仿真图;
图13(b)是图10所示的投影屏幕对应的光强仿真图;
图14是本申请提供的投影系统一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图3,图3是本申请提供的投影屏幕一实施例的结构示意图,投影屏幕10至少包括依次设置于入射的影像光束的光路上的第一反射层11与第二反射层12。
第二反射层12用于将影像光束反射至第一反射层11或视场区域, 第二反射层12的材料可以为具有较高反射率的金属铝、银或增加了吸收/散射粒子的反射涂料;第一反射层11用于将影像光束反射至视场区域,第一反射层11包括多个间隔设置的子反射层111,以提高投影屏幕10的亮度均匀性。
在一具体的实施例中,如图4所示,投影光源20产生影像光束,并将影像光束输出至投影屏幕10,投影光源20可以为一般投影机、短焦投影机或超短焦投影机,投影光源20发出的影像光束可穿过子反射层111之间的空隙照射在第二反射层12上或直接照射在子反射层111上;例如,投影光源20产生影像光束B1,影像光束B1射入到子反射层111a远离第二反射层12的底面,被子反射层111a反射出去。
在其他实施例中,投影光源20产生影像光束还可部分穿过子反射层111,例如,如图5所示,投影光源20产生影像光束B1和B2,影像光束B1射入子反射层111a,穿过子反射层111a到达子反射层111a与第二反射层12的接触面,然后被第二反射层12反射至子反射层111a的侧壁,然后经子反射层111a的侧壁反射后从投影屏幕10射出;影像光束B2穿过子反射层111b与111c之间的缝隙,到达第一反射层11与第二反射层12的接触面,经第二反射层12反射后,到达子反射层111c的侧壁,被子反射层111c反射后从投影屏幕10射出。
通过设置间隔的子反射层111,可对反射的影像光束进行多个方向的调节,有助于提升投影屏幕10的亮度均匀性,且结构简单、成本较低、增益较高,可保证投影屏幕10具有较佳的视觉效果。
请参阅图6和图7,图6是本申请提供的投影屏幕另一实施例中投影屏幕在屏幕竖直方向与屏幕厚度方向的结构示意图,图7是本申请提供的投影屏幕另一实施例中投影屏幕在屏幕水平方向与屏幕厚度方向的结构示意图,与上述实施例不同的是,本实施例中投影屏幕10还包括散射层13和光学结构层14,第一反射层11设置在散射层13与光学结构层14之间,光学结构层14设置在第一反射层11与第二反射层12之间。
第二反射层12可以通过磁控溅射、热蒸发、电子束蒸发等方式将 具有高反射率的金属铝、银制作在光学结构层14的外侧或将增加了吸收/散射粒子的反射涂料涂覆在光学结构层14的外侧。
如图7所示,子反射层111的横截面的形状可以为矩形,该形状的特点是易加工;子反射层111在投影屏幕10的水平方向上呈长条状间隔排列,子反射层111的侧面涂覆有反射材料112,且子反射层111中不与光学结构层14接触的底面的面积小于预设面积,以防止影像光束在进入光学结构层14之前发生反射,即子反射层111与散射层13接触的底面的面积小于预设面积,该预设面积可为根据实验得到的面积值,其值比较小。
光学结构层14用于对第二反射层12反射出的影像光束进行水平方向和/或竖直方向上的偏折,并将偏折后的影像光束传输至第一反射层11;第一反射层11用于将偏折后的影像光束反射至散射层13;散射层13用于对反射后的影像光束进行水平方向和/或竖直方向偏折,以使影像光束传输至视场区域;具体地,光学结构层14和第二反射层12可对影像光束进行准直,第一反射层11可对准直后的影像光束进行反射,使得准直后的影像光束产生水平和/或竖直方向上的偏折,准直后的影像光束依次经过第一反射层11与散射层13后,射入视场区域。
进一步地,光学结构层14为线性菲涅尔透镜,光学结构层14可对影像光束进行准直,使影像光束被第二反射层12反射至观众的视场区域;但由于影像光束经过第二反射层12反射后发散角一般都比较小,为了增加投影画面的可视范围,可在投影光源20所在侧加入散射层13。
散射层13的材料包括体散射薄膜、不规则面散射薄膜或规则的微透镜阵列薄膜中的至少一种,即散射层13可以是商业化的散射薄膜结构:体散射薄膜、不规则面散射薄膜或规则的微透镜阵列薄膜,这几种散射薄膜材料可以单独使用,也可以叠加使用,都可以增加投影屏幕10的可视范围。
在一具体的实施例中,如图6和图7所示,投影屏幕10还包括第一基材15,第一基材15设置于第一反射层11与光学结构层14之间,且第一基材15由透明材料制成,第一基材15包括相对的第一表面和第 二表面,第一反射层11通过粘合胶设置在第一表面上,光学结构层14通过粘合胶设置在第二表面上。
在一具体的实施例中,如图8与图9所示,影像光束B1进入第一基材15,经光学结构层14与第二反射层12后被准直,准直后的影像光束B1依次经过光学结构层14与第一基材15后,射入至子反射层111,经反射层111反射后射入视场区域。
光学结构层14的微结构可以通过精密车床加工、激光雕刻或微结构显影曝光的方式制作在母模上,然后经过热压印或UV(Ultra Violet,紫外线)胶水转印的方法制作在透明或者灰色的第一基材15的表面,第一基材15的材料包括PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)、PC(Polycarbonate,聚碳酸酯)、PVC(Polyvinyl Chloride,聚氯乙烯)或PMMA(Polymethyl Methacrylate,聚甲基丙烯酸甲酯)等有机材料。
第一反射层11可以通过将金属条用粘合胶粘贴在第一基材15上形成,也可以是同光学结构层14的制作方法一样,通过热压印或UV胶水转印的方式制作在第一基材15上,然后在第一反射层11的结构上选择性喷涂高反金属材料等;具体地,在子反射层111的侧壁涂覆具有高反射率的金属材料;在其他实施例中,第一反射层11和第一基材15可以为一体成型,通过对第一基材15和第一反射层11的材料进行显影、蚀刻等处理,形成子反射层111,再在子反射层111的侧面涂覆反射材料112。
在另一具体的实施例中,如图10所示,投影屏幕10还包括第二基材16,第二基材16设置于第一基材15与光学结构层14之间,且第二基材16可由透明材料制成,第二基材16的材料包括PET、PC、PVC或PMMA。
在此实施例中,光学结构层14和第一反射层11分别制作在不同基材上,即第一反射层11制作在第一基材15上,光学结构层14制作在第二基材16上,然后通过粘合胶将第一基材15和第二基材16进行贴合。
在其他实施例中,子反射层111的横截面的形状不仅可以为图7所示的矩形,还可以为三角形、梯形或其他形状,如图11所示,图11(a)为子反射层111的横截面的形状为三角形的示意图,图11(b)为子反射层111的横截面的形状为梯形的示意图,图11所示的横截面的形状有利于限制子反射层111与散射层13接触的底面的面积,使得该底面的面积尽可能小,以减小影像光束在子反射层111与散射层13接触的底面上发生镜面反射。
在一具体的实施例中,如图12所示,图12(a)为某一尺寸的投影屏幕10的正视图,当影像光束打在投影屏幕10的非中心线区域时,影像光束与投影屏幕10在水平方向和竖直方向都存在一定的角度,若只单纯采用一个方向的线栅结构,会存在大角度观看亮度均匀性差的问题。而本实施例中的光学结构层14是线性菲涅尔透镜结构,如图12(b)所示,线性菲涅尔透镜结构的倾斜工作面141将影像光束在竖直方向上进行准直;而当影像光束入射在投影屏幕10的非中心线区域时,影像光束一部分在水平方向上沿原路偏折一个方向,被散射层13散射形成光斑A,而另外一部分经第一反射层11和散射层13被反射及散射后形成光斑B,两个光斑叠加后得到更大的光斑C,因此,在第一反射层11的作用下,影像光束在水平方向上向视场区域靠拢,从而提高投影屏幕10的亮度均匀性,还可以增大观看视角。
图13为图12(a)中投影屏幕10上的8点对应的反射影像光束光强仿真图,图13(a)为没有加第一反射层11的光强仿真图,由于水平方向没有限光,影像光束朝视场区域的两侧传输,这样会导致观看者从不同的水平方向观看投影屏幕10时产生亮度均匀性的差异;图13(b)为本实施例中加了第一反射层11的反射影像光束光强仿真图,从图中可以看到,经8点位置反射的影像光束向投影屏幕10的中间位置偏折,使得观众从水平左右位置观看时均匀性一致,同时观看视角也得到有效提升。
本实施例所提出的投影屏幕10包括散射层13、第一反射层11、光学结构层14以及第二反射层12,影像光束经光学结构层14在竖直方向 准直后,部分反射影像光束打在第一反射层11的侧壁上,被第一反射层11反射,因此影像光束在水平方向上也得到偏折,从而提高投影屏幕10的亮度均匀性,并且具有高增益、宽视角的特点。
请参阅图14,图14是本申请提供的投影系统一实施例的结构示意图,投影系统140包括投影屏幕10和投影光源20,投影光源20用于产生影像光束,投影屏幕10用于接收影像光束,对影像光束进行处理,并将处理后的影像光束反射至视场区域,投影屏幕10为上述实施例中的投影屏幕10。
投影系统140中的投影屏幕10能够对影像光束进行水平和竖直两个方向的调节,使投影屏幕10的亮度均匀性得到显著提升,保证较佳的视觉效果。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种投影屏幕,其特征在于,至少包括依次设置于入射的影像光束的光路上的第一反射层与第二反射层,所述第二反射层用于将所述影像光束反射至所述第一反射层或视场区域,所述第一反射层用于将所述影像光束反射至所述视场区域,其中,所述第一反射层包括多个间隔设置的子反射层,以提高所述投影屏幕的亮度均匀性。
  2. 根据权利要求1所述的投影屏幕,其特征在于,
    所述投影屏幕还包括散射层和光学结构层,所述第一反射层设置在所述散射层与所述光学结构层之间,所述光学结构层设置在所述第一反射层与所述第二反射层之间。
  3. 根据权利要求2所述的投影屏幕,其特征在于,
    所述子反射层的侧面涂覆有反射材料,且所述子反射层中不与所述光学结构层接触的底面的面积小于预设面积,以防止所述影像光束在进入所述光学结构层之前发生反射。
  4. 根据权利要求2所述的投影屏幕,其特征在于,
    所述光学结构层用于对所述第二反射层反射出的影像光束进行水平方向和/或竖直方向上的偏折,并将偏折后的影像光束传输至所述第一反射层;所述第一反射层用于将所述偏折后的影像光束反射至所述散射层;所述散射层用于对反射后的影像光束进行水平方向和/或竖直方向偏折,以使影像光束传输至所述视场区域。
  5. 根据权利要求2所述的投影屏幕,其特征在于,
    所述散射层的材料包括体散射薄膜、不规则面散射薄膜或规则的微透镜阵列薄膜中的至少一种,所述光学结构层为线性菲涅尔透镜。
  6. 根据权利要求2所述的投影屏幕,其特征在于,
    所述投影屏幕还包括第一基材,所述第一基材设置于所述第一反射层与所述光学结构层之间,且所述第一基材由透明材料制成,所述第一基材包括相对的第一表面和第二表面,所述第一反射层通过粘合胶设置在所述第一表面上,所述光学结构层通过粘合胶设置在所述第二表面 上。
  7. 根据权利要求6所述的投影屏幕,其特征在于,
    所述投影屏幕还包括第二基材,所述第二基材设置于所述第一基材与所述光学结构层之间,且所述第二基材由透明材料制成。
  8. 根据权利要求7所述的投影屏幕,其特征在于,
    所述第一基材和第二基材的材料包括聚对苯二甲酸乙二醇酯、聚碳酸酯、聚氯乙烯或聚甲基丙烯酸甲酯。
  9. 根据权利要求1所述的投影屏幕,其特征在于,
    所述子反射层的横截面的形状包括三角形、梯形或矩形。
  10. 一种投影系统,其特征在于,包括投影光源和投影屏幕,其中,所述投影光源用于产生影像光束,所述投影屏幕用于接收所述影像光束,对所述影像光束进行处理,并将处理后的影像光束反射至视场区域,所述投影屏幕为权利要求1-9中任一项所述的投影屏幕。
PCT/CN2020/126551 2019-11-25 2020-11-04 一种投影屏幕以及投影系统 WO2021103968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911164617.6A CN112946982B (zh) 2019-11-25 2019-11-25 一种投影屏幕以及投影系统
CN201911164617.6 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021103968A1 true WO2021103968A1 (zh) 2021-06-03

Family

ID=76128786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126551 WO2021103968A1 (zh) 2019-11-25 2020-11-04 一种投影屏幕以及投影系统

Country Status (2)

Country Link
CN (1) CN112946982B (zh)
WO (1) WO2021103968A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577068A (zh) * 2003-07-09 2005-02-09 索尼株式会社 屏幕
CN101697058A (zh) * 2005-02-02 2010-04-21 大日本印刷株式会社 反射屏、反射屏的制造方法和反射型投影系统
US20110261327A1 (en) * 2010-04-26 2011-10-27 Mitsubishi Electric Corporation Transmission type screen, image display method for transmission type screen, and projection display apparatus
CN107991837A (zh) * 2018-01-30 2018-05-04 上海理工大学 基于全反射的增强投影亮度和对比度的幕布及其制作方法
CN109725484A (zh) * 2019-01-08 2019-05-07 成都菲斯特科技有限公司 一种偏轴短焦正投影光学屏幕及投影显示系统
CN209446952U (zh) * 2019-03-13 2019-09-27 东莞市银泰丰光学科技有限公司 一种背投式电视显示系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334161A (ja) * 2006-06-16 2007-12-27 Dainippon Printing Co Ltd 多目的表示装置、反射表示シート
JP2008039925A (ja) * 2006-08-02 2008-02-21 Dainippon Printing Co Ltd 対話型の前面投射型スクリーンシステム
TWI581049B (zh) * 2015-12-24 2017-05-01 中強光電股份有限公司 投影屏幕

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1577068A (zh) * 2003-07-09 2005-02-09 索尼株式会社 屏幕
CN101697058A (zh) * 2005-02-02 2010-04-21 大日本印刷株式会社 反射屏、反射屏的制造方法和反射型投影系统
US20110261327A1 (en) * 2010-04-26 2011-10-27 Mitsubishi Electric Corporation Transmission type screen, image display method for transmission type screen, and projection display apparatus
CN107991837A (zh) * 2018-01-30 2018-05-04 上海理工大学 基于全反射的增强投影亮度和对比度的幕布及其制作方法
CN109725484A (zh) * 2019-01-08 2019-05-07 成都菲斯特科技有限公司 一种偏轴短焦正投影光学屏幕及投影显示系统
CN209446952U (zh) * 2019-03-13 2019-09-27 东莞市银泰丰光学科技有限公司 一种背投式电视显示系统

Also Published As

Publication number Publication date
CN112946982A (zh) 2021-06-11
CN112946982B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
TWI581049B (zh) 投影屏幕
US20090284954A1 (en) Backlight device, display device, and optical member
WO2007125803A1 (ja) バックライトに用いられるレンズシート、それを用いたバックライト及び表示装置
US20190004237A1 (en) Optical sheet, surface light source device and display device
JP2013171246A (ja) 超短焦点プロジェクター用リアスクリーン
WO2020192300A1 (zh) 光学准直组件、背光模组及显示装置
WO2021143439A1 (zh) 一种投影屏幕以及投影系统
CN111045256B (zh) 背光模组及显示装置
JP5463966B2 (ja) 導光板、面光源装置および液晶表示装置
JP2009164101A (ja) バックライト
TWI704401B (zh) 背光模組
KR20140090056A (ko) 측면조사식 백라이트 모듈
US20220268975A1 (en) Projection screen
US20210223675A1 (en) Projection screen and projection system
EP3985435B1 (en) Projection screen
JP4515374B2 (ja) 照明装置及びそれを用いた表示装置
CN108845458B (zh) 光线收敛结构和背光模组
WO2021078154A1 (zh) 背光模组及显示装置
TWM568398U (zh) 投影屏幕
WO2021103968A1 (zh) 一种投影屏幕以及投影系统
JP2014153513A (ja) 角度依存性光線透過フィルム
JPH01252933A (ja) 面光源素子
US8425067B2 (en) Composite diffuser structure and backlight module
WO2021088883A1 (zh) 一种投影屏幕以及投影系统
US20220004224A1 (en) Viewing angle diffusion plate and display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894097

Country of ref document: EP

Kind code of ref document: A1