WO2021143439A1 - 一种投影屏幕以及投影系统 - Google Patents

一种投影屏幕以及投影系统 Download PDF

Info

Publication number
WO2021143439A1
WO2021143439A1 PCT/CN2020/137109 CN2020137109W WO2021143439A1 WO 2021143439 A1 WO2021143439 A1 WO 2021143439A1 CN 2020137109 W CN2020137109 W CN 2020137109W WO 2021143439 A1 WO2021143439 A1 WO 2021143439A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
projection
projection screen
microstructure
inclination angle
Prior art date
Application number
PCT/CN2020/137109
Other languages
English (en)
French (fr)
Inventor
胡飞
李士杰
王霖
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021143439A1 publication Critical patent/WO2021143439A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • This application relates to the field of projection technology, in particular to a projection screen and a projection system.
  • Ultra-short throw projection display is popular with consumers for its larger display size (for example, 100 inches).
  • the projection screen used with the projector can significantly improve the projection display effect, and has become one of the important supporting products of the current projector. .
  • One of the important functions of the projection screen is to improve the display brightness.
  • the use of high gain projection screens can reduce the requirements for the luminous flux output by the projector, and improve the practical cost-effectiveness of the projection display system; in addition, another important role of the projection screen is in reflective projection.
  • the light absorbs the ambient light at the same time, so that the audience can watch the projected picture normally in the daytime and indoor lighting conditions, and the picture quality will not be affected by the ambient light.
  • the main problem to be solved by this application is to provide a projection screen and a projection system, which can improve the contrast and gain of the projection screen.
  • the technical solution adopted in this application is to provide a projection screen, which is characterized in that it includes at least a diffusion layer, a reflective layer, and a microstructure layer.
  • the reflective layer is arranged between the diffusion layer and the microstructure layer.
  • the structure layer includes a plurality of Fresnel structures, each Fresnel structure includes a first surface and a second surface, the reflective layer is partially formed on the first surface of the Fresnel structure, and the diffusion layer is used to input the incident projection beam To the reflective layer, the reflective layer reflects the projection beam to the field of view area.
  • the material of the microstructure layer is a light-absorbing material, and the microstructure layer is used to absorb incident light beams.
  • the light-absorbing material is black structural glue
  • the structural glue includes ultraviolet curing glue, thermoplastic material or thermosetting material.
  • the projection screen further includes a first bonding layer, and the diffusion layer and the microstructure layer are connected and fixed by the first bonding layer; the first bonding layer is a transparent ultraviolet curing adhesive or a heat curing adhesive, and the first bonding The thickness of the layer is less than the depth of the microstructure layer, and the thickness of the first bonding layer is less than 10 ⁇ m.
  • the area of the reflective layer formed on the first surface of the Fresnel structure gradually increases as the projection screen moves away from the projection light source.
  • the first inclination angle of the Fresnel structure is ⁇ , wherein the first inclination angle ⁇ increases as the projection screen is away from the projection light source.
  • the second inclination angle of the Fresnel structure is ⁇
  • the sum of the inclination angle ⁇ of the projection beam emitted by the projection light source and the second inclination angle ⁇ is less than 90°
  • the second inclination angle ⁇ follows the projection screen Decrease away from the direction of the projection light source.
  • the bonding place of the microstructure layer and the diffusion layer is a plane, and the area of the plane is larger than the preset area;
  • the projection screen further includes a second bonding layer and a base layer, and the base layer and the microstructure layer pass through the second bonding layer and the base layer.
  • the bonding layer is connected and fixed, and the second bonding layer is arranged on the side of the microstructure layer away from the diffusion layer.
  • the microstructure layer is a transparent material, and the microstructure layer is used to transmit the projection light beam output from the diffusion layer to the base layer via the second bonding layer, and the material of the base layer is a light-absorbing material.
  • a projection system including a projection light source and a projection screen, wherein the projection light source is used to generate the projection light beam, and the projection screen is used to receive the projection light beam.
  • the projection light beam is processed, and the processed projection light beam is reflected to the field of view area, and the projection screen is the above-mentioned projection screen.
  • the projection screen includes a diffusion layer, a reflective layer, and a microstructure layer, wherein the microstructure layer includes a plurality of Fresnel structures, and the reflective layer partially formed on the Fresnel structure, one In this way, the brightness gain of the projection screen can be improved while maintaining the consistency of the anti-ambient light contrast of the projection screen.
  • Fig. 1 is a schematic structural diagram of an embodiment of a projection screen provided by the present application.
  • FIG. 2 is a schematic structural diagram of the Fresnel structure in the embodiment shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of another embodiment of a projection screen provided by the present application.
  • FIG. 4 is a schematic diagram of the structure of the ambient light and the projection screen in the embodiment shown in FIG. 3;
  • FIG. 5 is a schematic diagram of the structure of the projection screen in the embodiment shown in FIG. 3;
  • FIG. 6 is a schematic diagram of the curve relationship between the first face inclination angle and the longitudinal position of the screen in the embodiment shown in FIG. 3;
  • FIG. 7(a) is a schematic diagram of the curve relationship between the depth of the Fresnel structure and the longitudinal position of the screen in the embodiment shown in FIG. 3;
  • FIG. 7(b) is a schematic diagram of another curve relationship between the depth of the Fresnel structure and the longitudinal position of the screen in the embodiment shown in FIG. 3;
  • FIG. 8 is another schematic diagram of the structure of the projection screen in the embodiment shown in FIG. 3;
  • FIG. 9 is another schematic diagram of the structure of the projection screen in the embodiment shown in FIG. 3;
  • FIG. 10 is another schematic diagram of the structure of the ambient light and the projection screen in the embodiment shown in FIG. 3;
  • FIG. 11 is a schematic structural diagram of an embodiment of a projection system provided by the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a projection screen provided by the present application.
  • the projection screen 10 at least includes a diffusion layer 11, a reflective layer 12 and a microstructure layer 13.
  • the reflection layer 12 is arranged between the diffusion layer 11 and the microstructure layer 13, and the diffusion layer 11, the reflection layer 12 and the microstructure layer 13 are sequentially arranged on the optical path of the projection light beam output by the projection light source 20.
  • the microstructure layer 13 includes a plurality of Fresnel structures 131.
  • the structure of the Fresnel structure 131 is shown in FIG. 2.
  • Each Fresnel structure 131 includes a first surface 1311 and a second surface 1312, and the reflective layer 12 is disposed on On the first surface 1311, the reflective layer 12 is further attached to the first surface 1311 of the Fresnel structure 131.
  • the reflective layer 12 can cover a local area of the first surface 1311 of the Fresnel structure 131.
  • the first surface 1311 of the Fresnel structure 131 is selectively coated with a reflective material to form the reflective layer 12; it can be understood that the reflective layer 12 can also completely cover the first surface 1311 of the Fresnel structure 131.
  • the projection screen 10 can be used in conjunction with the projection light source 20. As shown in FIG. 1, the projection light source 20 generates a projection beam and outputs the projection beam to the projection screen 10.
  • the projection light source 20 can be a general projector, a short-throw projector, or an ultra-short-throw projector. Projector; the projection light beam emitted by the projection light source 20 can pass through the diffusion layer 11 and irradiate on the reflective layer 12, and the reflection layer 12 is reflected again through the diffusion layer 11, where the diffusion layer 11 is used to diffuse the projection light and increase the projection The viewing angle of the screen.
  • the diffusion layer 11 is used to input the incident projection beam to the reflection layer 12, and the reflection layer 12 reflects the projection beam to the viewer's field of view.
  • the projection beam emitted by the projection light source 20 enters the diffusion layer 11 and is processed by the diffusion layer 11. Then it reaches the interface of the reflective layer 12, is reflected by the reflective layer 12, passes through the diffusion layer 11, and then exits the projection screen 10 to reach the field of view area.
  • the second surface 1312 of the Fresnel structure 131 can be used to receive the interference light beam and process the interference light beam.
  • the interference light beam can be other stray light such as ambient light; specifically, the interference light beam output by the interference light source 30 enters the diffusion layer 11 After the diffusion layer 11 is processed, it is irradiated to the second surface 1312 of the Fresnel structure 131.
  • the second surface 1312 can absorb the interference beam emitted by the diffusion layer 11 or transmit the interference beam to other layers to prevent the interference beam from being
  • the reflective layer 12 reflects to the field of view area. In short, the light beam irradiated to the second surface 1312 or the first surface 1311 that is not covered by the reflective layer will not be emitted to the field of view of the projection screen.
  • the Fresnel structure in the embodiment can absorb the interference beams in the up, down, left, and right directions of the projection screen to further improve the contrast of the projection screen.
  • the Fresnel structure makes the reflective layer reflect more projection beams to the viewer’s viewing angle, increasing the projection The brightness of the emitted light of the system, combined with the uniform light of the emitted light beam by the diffusion layer, further improves the viewing angle of the projection system.
  • the projection screen 10 in this embodiment includes a diffusion layer 11, a reflective layer 12, and a microstructure layer 13.
  • the diffusion layer 11 can adjust the longitudinal and lateral viewing angles of the projection screen 10; when the reflective layer 12 is formed, it can be on the microstructure layer 13
  • the reflective material is selectively coated so that the reflective layer 12 partially covers the microstructure layer 13, and the interference beam can be processed by the second surface 1312 or the area of the first surface 1311 not covered by the reflective layer, so that the interference beam cannot be reflected to the field of view area, Avoiding interference light beams is beneficial to improve the contrast and gain of the projection screen 10.
  • FIG. 3 is a schematic structural diagram of another embodiment of a projection screen provided by the present application.
  • the projection screen 10 in this embodiment further includes a first lamination layer 14 and a second lamination layer 15 and base layer 16.
  • the diffusion layer 11 and the microstructure layer 13 are connected and fixed by a first bonding layer 14.
  • the first bonding layer 14 is a transparent ultraviolet curing glue or a thermosetting glue, and the thickness w of the first bonding layer 14 is less than the depth of the microstructure layer 13 d. In order not to affect the gain performance of the projection screen 10, the thickness w of the first bonding layer 14 may be less than 10 ⁇ m.
  • the structure of the diffusion layer 11 includes volume diffusion or surface microstructure diffusion.
  • the diffusion layer 11 can expand the angle at which the projection screen 10 reflects the projection beam, thereby expanding the viewing angle; when the diffusion layer 11 with surface microstructure is used, the surface of the diffusion layer 11 is microstructured.
  • the structure is designed so that the horizontal viewing angle and the vertical viewing angle displayed by the projection screen 10 can be modulated separately.
  • the base layer 16 and the microstructure layer 13 are connected and fixed by the second bonding layer 15, and the second bonding layer 15 is disposed on the side of the microstructure layer 13 away from the diffusion layer 11.
  • the Fresnel structure 131 includes a first surface 1311 and a second surface 1312.
  • the first surface 1311 can receive the projection beam. Because the first surface 1311 is coated with a reflective material, it can effectively reflect the projection beam; the second surface 1312 is transparent or The black light-absorbing material can effectively absorb the ambient light, prevent the ambient light from being reflected from the projection screen 10, and ensure that the ambient light is rarely reflected.
  • the substrate is a light-absorbing material
  • the interference beam emitted by the interference light source enters the microstructure, and penetrates into the microstructure through the second surface of the Fresnel structure, because the microstructure is The light-transmitting material, the interference beam passes through the microstructure and is absorbed by the base layer of the light-absorbing material through the second bonding layer, so as to achieve the effect of eliminating the interference light and improving the contrast.
  • the microstructure may also be a light-absorbing material. In this case, the interference light beam emitted by the interference light source enters the microstructure and is directly absorbed, so as to achieve the effect of anti-interference light.
  • a reflective material can be provided on the incident surface of the Fresnel structure 131, and an absorbing material can be provided on other surfaces; specifically, as shown in FIG. 4
  • the material of the microstructure layer 13 is a black light-absorbing material, and the microstructure layer 13 is used to absorb ambient light;
  • the black light-absorbing material may be a black structural glue, and the structural glue includes an ultraviolet curing glue, a thermoplastic material or a thermosetting material.
  • the material of the reflective layer 12 includes titanium dioxide, bead white, aluminum silver or resin material. Specifically, the reflective layer 12 is titanium dioxide, bead white, aluminum silver powder, etc. as solid resin materials, and the reflectance of the reflective layer 12 is greater than 90%
  • the material of the base layer 16 includes polyethylene terephthalate (PET, Polyethylene terephthalate), polymethyl methacrylate (PMMA, Polymethyl methacrylate), polycarbonate (PC, Polycarbonate), acrylonitrile-butane Materials such as olefin-styrene copolymer (ABS, Acrylonitrile Butadiene Styrene) or thermoplastic polyurethane (TPU, Thermoplastic polyurethanes).
  • ABS olefin-styrene copolymer
  • TPU thermoplastic polyurethane
  • the following is a specific analysis of the structure design of the projection screen, which mainly analyzes the parameter selection of the Fresnel structure.
  • the projection light source 20 is an ultra-short-throw projector.
  • the exit angle of the projection beam is ⁇
  • the exit angle ⁇ of the projection beam is the projection beam emitted by the ultra-short-throw projector.
  • the angle between and the first direction; the screen longitudinal position is y(h), the screen longitudinal position y(h) is the distance between a certain position on the projection screen 10 and the ground; the depth of the Fresnel structure 131 is d ,
  • the distance between two adjacent Fresnel structures 131 is p;
  • the first inclination angle is ⁇ , and the first inclination angle ⁇ is the angle between the first surface 1311 and the second direction.
  • the first The dihedral inclination angle is ⁇
  • the second inclination angle ⁇ is the angle between the second surface 1312 and the second direction
  • ⁇ >90°- ⁇ the first direction includes but is not limited to the horizontal direction. In the embodiment where the projection light source or the projection screen is not placed horizontally, the first direction may also be the plane direction where the projection light source is located.
  • the second direction includes but not Limited to the vertical direction, in embodiments where the projection light source or the projection screen is not placed horizontally, the second direction may also be the vertical direction of the plane where the projection light source is located.
  • each Fresnel structure 131 on the bonding surface is the same.
  • two adjacent Fresnel structures 131 The distance p and the depth d between are different, and the following relationship is satisfied between the two:
  • the Fresnel structure 131 of the microstructure layer can either use the same pitch p to change the depth d, or use the same depth d to change the pitch p.
  • the pitch p and the depth d can also be used at the same time. Change, the following is an example of fixing the pitch p and changing the depth d.
  • the viewing distance D 2.5m
  • viewing height H 1.4m
  • a projection light source 20 is short focus projector
  • a height H p between the ground and the ultra-short focus projector 0.8m
  • the corresponding relationship between the first inclination angle ⁇ and the screen longitudinal position y(h) is shown in Fig. 6. It can be seen from the figure that the first inclination angle ⁇ increases as the projection screen longitudinal position y(h) increases. It should be noted that because the Fresnel structure of the microstructure layer is a circular sawtooth structure, the slope ⁇ and ⁇ of each circular sawtooth structure can be considered the same, and the ⁇ and ⁇ of the sawtooth structure in different ring regions are the same. ⁇ can be considered different, as shown in Figure 2.
  • the first inclination angle ⁇ increases with the increase of the longitudinal position y(h) of the projection screen, which can be understood as the inclination angle of the ring-shaped sawtooth structure corresponding to the central area of the projection screen (the smallest radius annular area) to the farthest end
  • the inclination angle of the ring-shaped sawtooth structure corresponding to the area (the ring area with the largest radius) becomes larger and larger.
  • the above example illustrates the design idea of the first face angle ⁇ with the longitudinal position y(h) of the projection screen.
  • the following describes the design of ⁇ and depth d of the Fresnel structure, which can be divided into two types.
  • the first type the second surface inclination angle ⁇ can change with the projection angle ⁇ of the projected beam.
  • the relationship between the second surface inclination angle ⁇ and the projection angle ⁇ of the projected beam is as follows.
  • the Fresnel microstructure in this relationship corresponds to the projection beam completely Irradiate on the first side.
  • the corresponding relationship between the depth d of the Fresnel structure 131 and the longitudinal position y(h) of the screen can be as shown in Figure 7(a), that is, the depth d of the projection screen increases with the longitudinal position y( h) increases and decreases.
  • the second inclination angle ⁇ can also be a fixed value, as shown below:
  • ⁇ min is the minimum value of the exit angle of the projected beam.
  • the corresponding relationship between the depth d of the Fresnel structure 131 and the longitudinal position y(h) of the screen can be shown in Figure 7(b), that is, the projection The depth d of the screen increases as the longitudinal position y(h) of the projection screen increases.
  • the selection of the microstructure parameters of the projection screen is explained above.
  • the anti-ambient light contrast is an important parameter of the projection display. Below, we will explain the design of the anti-ambient light contrast of the projection screen.
  • the upper and lower contrast of the projection screen 10 is also one of the criteria for evaluating the projection screen 10.
  • the proportion of the area of the Fresnel structure 131 that is not coated with reflective material on the projection plane determines the contrast against ambient light ALR(y), the definition
  • the anti-ambient light contrast of the projection screen 10 is:
  • W p is the width of the reflective layer 12 mapped on the projection plane.
  • the width of the reflection layer 12 mapped on the projection plane gradually decreases as the longitudinal position y(h) of the projection screen increases, corresponding to The anti-ambient light contrast of the projection screen 10 gradually increases as the longitudinal position y(h) of the projection screen increases. That is, the farther the area from the ultra-short throw projector is, the higher the anti-ambient light contrast, which will affect the viewing effect to a certain extent; in order to further improve the uniformity of anti-ambient light contrast, the following two methods can be used to achieve:
  • the first type the area of the reflective layer 12 on the first surface 1311 of the Fresnel structure can be increased, and the area of the reflective layer 12 on the first surface 1311 of the Fresnel structure increases with the longitudinal position y(h) of the projection screen Gradually increase, that is, the farther away from the ultra-short throw projector, the larger the area of the reflective layer 12 attached to the first surface 1311 of the Fresnel structure; the increased reflective layer will not reflect the projection light to a certain extent, but will Reflecting the ambient light makes a part of the ambient light enter the viewer's viewing angle, and the anti-ambient light contrast is reduced compared to before the increase. Therefore, the contrast uniformity of the projection screen 10 can be effectively improved by increasing the area of the reflective layer.
  • the contrast consistency of the projection screen 10 can be improved by reducing the second face inclination angle ⁇ of the Fresnel structure. Specifically, the second face inclination angle ⁇ can be reduced so that the projection light source emits When the projection beam irradiates the projection screen closer to the projection light source, the projection beam is all irradiated on the first surface 1311 of the Fresnel structure.
  • is approximately equal to 90°- ⁇
  • the anti-ambient light contrast is the projection screen The actual anti-environmental contrast; but when the projection beam irradiates the projection screen far away from the projection light source, due to the decrease of the second surface inclination ⁇ , ⁇ 90°- ⁇ , the beam emitted by the projection light source at this time Partially irradiated on the first surface 1311 of the Fresnel structure, and a part of it will irradiate on the second surface. The projection beam irradiated on the second surface is directly absorbed and will not be reflected to the audience’s viewing angle, thereby resisting ambient light. The contrast is reduced relative to the closer position, so the contrast consistency of the projection screen 10 can be effectively improved by reducing the inclination angle ⁇ of the second face of the Fresnel structure.
  • the distribution of contrast is related to the second surface inclination angle ⁇ , and the contrast ALR(y) can be maintained at a constant value by setting the second surface inclination angle ⁇ ;
  • the constant value of the contrast ALR(y) at the position closer to the projection screen should be maintained.
  • the angle of the second surface inclination ⁇ is It needs to be smaller, that is, ⁇ 90°- ⁇ .
  • the angle reduction of the second face inclination ⁇ is reflected in the change in the Fresnel structure: the projection beam emitted by the projection light source does not completely irradiate the first surface 1311 of the Fresnel structure, and a part of the projection beam will irradiate the first surface 1311 of the Fresnel structure.
  • the Fresnel structure can be reduced by reducing the The dihedral angle ⁇ can effectively improve the contrast consistency of the projection screen 10.
  • the bonding place of the microstructure layer 13 and the diffusion layer 11 can be a plane, and the area of the plane is larger than the preset area to increase the bonding area, as shown in the figure As shown in 9, the area of the contact surface between the microstructure layer 13 and the diffusion layer 11 is larger than the area of the contact surface in FIG. 3.
  • the microstructure layer 13 is a transparent material, and the microstructure layer 13 is used to transmit the projection light beam output by the diffusion layer 11 to the base layer 16 via the second bonding layer 15;
  • the material of the base layer 16 is a black light-absorbing material to absorb the interference light beam transmitted through the transparent material microstructure layer, such as black PET, PMMA, PC, ABS, or TPU.
  • the projection screen 10 in this embodiment is a high-gain anti-ambient light screen.
  • Fresnel structures 131 are distributed on the projection screen 10, and the projection light beams irradiate the Fresnel structures 131, and each Fresnel structure 131 can be projected by the light beam.
  • the irradiated area is provided with a reflective layer 12 to reflect the projection beam to the viewer’s field of view.
  • the diffusion layer 11 is attached to the microstructure layer 13 to control the viewing angle of the display.
  • the first tilt angle ⁇ or the second tilt angle can be controlled.
  • the face inclination angle ⁇ is used to adjust the contrast uniformity, which helps to improve the contrast uniformity of the projection screen 10.
  • FIG. 11 is a schematic structural diagram of an embodiment of a projection system provided by the present application.
  • the projection system 110 includes a projection screen 10 and a projection light source 20.
  • the projection light source 20 is used to generate a projection light beam
  • the projection screen 10 is used to receive the projection light beam.
  • the projection beam is processed, and the processed projection beam is reflected to the field of view area, and the projection screen 10 is the projection screen 10 in the above-mentioned embodiment.
  • the projection screen 10 in the projection system 110 has the advantages of high gain, high contrast, and suitable viewing angle.
  • the combination of the projection screen 10 and the projection light source 20 can greatly improve the image display effect.

Abstract

本申请公开了一种投影屏幕,该投影屏幕至少包括扩散层、反射层以及微结构层,反射层设置于扩散层与微结构层之间,微结构层包括多个菲涅尔结构,每个菲涅尔结构包括第一面和第二面,反射层局部形成于菲涅尔结构的第一面上,扩散层用于将入射的投影光束输入至反射层,反射层将投影光束反射至视场区域。通过上述方式,本申请能够提高投影屏幕的亮度增益和抗环境光对比度一致性。

Description

一种投影屏幕以及投影系统 技术领域
本申请涉及投影技术领域,具体涉及一种投影屏幕以及投影系统。
背景技术
超短焦投影显示以其较大的显示尺寸(例如100寸)受到消费者的欢迎,与投影机配合使用的投影屏幕由于可以显著提升投影显示效果,也成为当前投影机重要的配套产品之一。投影屏幕的重要作用之一是提高显示亮度,高增益投影屏幕的使用可以降低对投影机输出的光通量的要求,提高投影显示系统的实用性价比;此外,投影屏幕的另一重要作用是在反射投影光的同时吸收环境光,使得观众在白天和室内光照条件下可正常观看投影画面,不被环境光影响画面质量。
目前市面上有提高投影屏幕的增益和对比度性能的方案,但是这两个性能参数此消彼长,难以兼顾。有些线栅投影屏幕由于使用了选择性涂覆的反光涂层,对比度大大提高了,但是增益较低,没有普通白幕的增益高。因此,如何设计同时具有对比度和亮度增益的抗光幕,成为本领域技术人员急需解决的问题。
发明内容
本申请主要解决的问题是提供一种投影屏幕以及投影系统,能够提高投影屏幕的对比度和增益。
为解决上述技术问题,本申请采用的技术方案是:提供一种投影屏幕,其特征在于,至少包括扩散层、反射层以及微结构层,反射层设置于扩散层与微结构层之间,微结构层包括多个菲涅尔结构,每个菲涅尔结构包括第一面和第二面,反射层局部形成于菲涅尔结构的第一面上,扩散层用于将入射的投影光束输入至反射层,反射层将投影光束反射至 视场区域。
在一实施例中,微结构层的材料为吸光材料,微结构层用于吸收入射的光束。
在一实施例中,吸光材料为黑色结构胶,结构胶包括紫外固化胶、热塑材料或热固材料。
在一实施例中,投影屏幕还包括第一贴合层,扩散层与微结构层通过第一贴合层连接固定;第一贴合层为透明紫外固化胶或热固化胶,第一贴合层的厚度小于微结构层的深度,第一贴合层的厚度小于10μm。
在一实施例中,形成于菲涅尔结构的第一面的反射层的面积随着投影屏幕远离投影光源的方向逐渐增加。
在一实施例中,菲涅尔结构的第一面倾角为α,其中第一面倾角α随着投影屏幕远离投影光源的方向而增加。
在一实施例中,菲涅尔结构的第二面倾角为β,投影光源出射的投影光束的倾斜角θ与第二面倾角β的和小于90°,且第二面倾角β随着投影屏幕远离投影光源的方向而减小。
在一实施例中,微结构层与扩散层的贴合处为平面,且平面的面积大于预设面积;投影屏幕还包括第二贴合层与基底层,基底层与微结构层通过第二贴合层连接固定,且第二贴合层设置在微结构层远离扩散层的一侧。
在一实施例中,微结构层为透明材料,微结构层用于将扩散层输出的投影光束经由第二贴合层传输至基底层,基底层的材料为吸光材料。
为解决上述技术问题,本申请采用的另一技术方案是:提供一种投影系统,该投影系统包括投影光源和投影屏幕,其中,投影光源用于产生投影光束,投影屏幕用于接收投影光束,对投影光束进行处理,并将处理后的投影光束反射至视场区域,投影屏幕为上述的投影屏幕。
通过上述方案,本申请的有益效果是:投影屏幕包括扩散层、反射层和微结构层,其中微结构层包括多个菲涅尔结构,通过局部形成于菲涅尔结构上的反射层,一方面提高投影屏幕的亮度增益,同时又可维持投影屏幕的抗环境光对比度一致性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提供的投影屏幕一实施例的结构示意图;
图2是图1所示的实施例中菲涅尔结构的结构示意图;
图3是本申请提供的投影屏幕另一实施例的结构示意图;
图4是图3所示的实施例中环境光与投影屏幕的结构示意图;
图5是图3所示的实施例中投影屏幕的结构示意图;
图6是图3所示的实施例中第一面倾角与屏幕纵向位置之间的曲线关系示意图;
图7(a)是图3所示的实施例中菲涅尔结构的深度与屏幕纵向位置之间的曲线关系示意图;
图7(b)是图3所示的实施例中菲涅尔结构的深度与屏幕纵向位置之间的另一曲线关系示意图;
图8是图3所示的实施例中投影屏幕的另一结构示意图;
图9是图3所示的实施例中投影屏幕的又一结构示意图;
图10是图3所示的实施例中环境光与投影屏幕的另一结构示意图;
图11是本申请提供的投影系统一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参阅图1,图1是本申请提供的投影屏幕一实施例的结构示意图,投影屏幕10至少包括扩散层11、反射层12以及微结构层13。
反射层12设置于扩散层11与微微结构层13之间,且扩散层11、反射层12以及微结构层13依次设置于投影光源20输出的投影光束的光路上。微结构层13包括多个菲涅尔结构131,菲涅尔结构131的结构如图2所示,每个菲涅尔结构131包括第一面1311和第二面1312,且反射层12设置于第一面1311上,进一步反射层12贴合于菲涅尔结构131的第一面1311,反射层12可以覆盖菲涅尔结构131第一面1311的局部区域,在制作反射层12时可在菲涅尔结构131的第一面1311上选择性涂覆反射材料,以形成反射层12;可以理解的是,反射层12也可以全部覆盖菲涅尔结构131第一面1311。
投影屏幕10可以配合投影光源20使用,如图1所示,投影光源20产生投影光束,并将投影光束输出至投影屏幕10,投影光源20可以为一般投影机、短焦投影机或超短焦投影机;投影光源20发出的投影光束可穿过扩散层11照射在反射层12上,通过反射层12的反射再次经过扩散层11出射,其中扩散层11用于对投影光进行扩散,增加投影屏幕的可视角,另外需要说明的,大部分的投影光束经过菲涅尔结构131第一面1311上的反射层12反射出射,小部分的投影光束入射在菲涅尔结构131未设置反射层12的区域,此部分投影光束直接被菲涅尔结构131吸收或通过菲涅尔结构131出射。
扩散层11用于将入射的投影光束输入至反射层12,反射层12将投影光束反射至观众的视场区域,具体地,投影光源20出射的投影光束进入扩散层11,被扩散层11处理后到达反射层12的界面上,再被反射层12反射后经过扩散层11后从投影屏幕10射出,到达视场区域。
菲涅尔结构131的第二面1312可用于接收干扰光束,并对干扰光束进行处理,该干扰光束可为环境光等其它杂散光;具体地,干扰光源30输出的干扰光束射入扩散层11,经扩散层11处理后,照射至菲涅尔结构131的第二面1312,第二面1312可对扩散层11出射的干扰光束进行吸收或者将干扰光束传输至其他膜层,防止干扰光束被反射层12反射至视场区域,总之照射至第二面1312或第一面1311未覆盖反射层区域的光束是不会出射到投影屏幕视场视角,相对于现有技术的线栅结构, 本实施例中菲涅尔结构,可对投影屏幕上下左右方向的干扰光束进行吸收,进一步提高投影屏幕的对比度,另外菲涅尔结构使得反射层将更多的投影光束反射向观众视角,增加了投影系统的出射光亮度,配合扩散层对出射光束的匀光,进一步提高了投影系统的可视角。
本实施例中的投影屏幕10包括扩散层11、反射层12和微结构层13,扩散层11可以调整投影屏幕10的纵向视角与横向视角;在形成反射层12时可在微结构层13上选择性涂覆反射材料,以使得反射层12部分覆盖微结构层13,干扰光束可被第二面1312或第一面1311未覆盖反射层的区域处理,使得干扰光束无法反射至视场区域,避免产生干扰光束,有利于提高投影屏幕10的对比度和增益。
参阅图3,图3是本申请提供的投影屏幕另一实施例的结构示意图,与上述实施例不同的是,本实施例中投影屏幕10还包括第一贴合层14、第二贴合层15以及基底层16。
扩散层11与微结构层13通过第一贴合层14连接固定,第一贴合层14为透明紫外固化胶或热固化胶,第一贴合层14的厚度w小于微结构层13的深度d,为了不影响投影屏幕10的增益性能,第一贴合层14的厚度w可小于10μm。
扩散层11的结构包括体扩散或表面微结构扩散,扩散层11可以扩大投影屏幕10反射投影光束的角度,从而扩大视角;在使用表面微结构的扩散层11时,通过对扩散层11表面微结构的设计,使得投影屏幕10显示的横向视角和纵向视角可分别被调制。
基底层16与微结构层13通过第二贴合层15连接固定,且第二贴合层15设置在微结构层13远离扩散层11的一侧。
菲涅尔结构131包括第一面1311和第二面1312,第一面1311可接收投影光束,由于第一面1311上涂覆有反射材料,可以有效反射投影光束;第二面1312为透明或黑色吸光材料,可以有效吸收环境光,阻止环境光从投影屏幕10反射出去,确保环境光很少被反射。在一具体的实施例中,当微结构为透光材料时,基底为吸光材料,干扰光源出射的干扰光束进入微结构,经菲涅尔结构的第二面透射进入微结构,由于 微结构为透光材料,干扰光束穿过微结构后经第二贴合层被吸光材料的基底层吸收,实现消除干扰光的效果,提高对比度。在其它实施例中,微结构也可以为吸光材料,此时干扰光源出射的干扰光束进入微结构直接被吸收,实现抗干扰光的效果。
在一具体的实施例中,由于投影光束和环境光入射投影屏幕10的方向不同,可在菲涅尔结构131的入射面设置反射材料,而在其他面设置吸收材料;具体地,如图4所示,微结构层13的材料为黑色吸光材料,微结构层13用于吸收环境光;该黑色吸光材料可以为黑色结构胶,该结构胶包括紫外固化胶、热塑材料或热固材料。
反射层12的材料包括钛白粉、珠白、铝银或树脂材料,具体地,反射层12为钛白粉、珠白和铝银粉等作为固含的树脂材料,反射层12的反射率大于90%;基底层16的材料包括聚对苯二甲酸乙二醇酯(PET,Polyethylene terephthalate)、聚甲基丙烯酸甲酯(PMMA,Polymethyl methacrylate)、聚碳酸酯(PC,Polycarbonate)、丙烯腈-丁二烯-苯乙烯共聚物(ABS,Acrylonitrile Butadiene Styrene)或热塑性聚氨酯(TPU,Thermoplastic polyurethanes)等材料。
下面针对投影屏幕的结构设计具体分析,其中主要分析菲涅尔结构的参数选择。
在一具体的实施例中,投影光源20为超短焦投影机,结合参阅图4和图5,投影光束的出射角为θ,投影光束的出射角θ为超短焦投影机出射的投影光束与第一方向之间的夹角;屏幕纵向位置为y(h),屏幕纵向位置y(h)为投影屏幕10上某一位置与地面之间的距离;菲涅尔结构131的深度为d,相邻两个菲涅尔结构131之间的距离为p;第一面倾角为α,第一面倾角α为第一面1311与第二方向之间的夹角,需要说明的是,第二面倾角为β,第二面倾角β为第二面1312与第二方向之间的夹角,且β>90°-α。需要说明的是,第一方向包括但不限于水平方向,在投影光源或投影屏幕非水平放置的实施例中,第一方向也可以为投影光源所在平面方向,同样的,第二方向包括但不限于垂直方向,在投影光源或投影屏幕非水平放置的实施例中,第二方向也可以是投影光源所 在平面的垂直方向。由于微结构层13和扩散层11贴合的需要,每个菲涅尔结构131在贴合面上的高度一致,对于不同的屏幕纵向位置y(h),相邻两个菲涅尔结构131之间的间距p和深度d不同,二者之间满足如下关系:
Figure PCTCN2020137109-appb-000001
在具体投影屏幕设计中,微结构层的菲涅尔结构131既可以使用相同的间距p而改变深度d,也可以使用相同的深度d而改变间距p,当然,间距p和深度d也可同时改变,下面以固定间距p而改变深度d为例进行说明。
例如,观看距离D=2.5m,观看高度H=1.4m,投影光源20为超短焦投影机,超短焦投影机与地面之间的高度H p=0.8m,超短焦投影机与投影屏幕10之间的水平距离D0=0.4m,投影屏幕10的中心高度等于观看高度H,屏幕纵向位置y(h)对应的第一面倾角α为:
Figure PCTCN2020137109-appb-000002
第一面倾角α与屏幕纵向位置y(h)之间的对应关系如图6所示,从图中可看出第一面倾角α随着投影屏幕纵向位置y(h)的增加而增加,需要说明的是,由于微结构层的菲涅尔结构为环状分布的锯齿结构,其中每一环状锯齿结构的斜面α和β可认为是相同的,不同环状区的锯齿结构的α和β可认为是不同的,如图2所示。通过上述公式,第一面倾角α随着投影屏幕纵向位置y(h)的增加而增加,可理解为投影屏幕中心区域(最小半径环形区域)对应的环状锯齿结构的倾斜角向最远端区域(最大半径环形区域)对应的环状锯齿结构的倾斜角越来越大。
上述示例说明了第一面倾角α随着投影屏幕纵向位置y(h)的设计思路,下面对菲涅尔结构的β和深度d的设计进行说明,具体可分为两种,其中第一种以第二面倾角β角度随投影光束的出射角α对应变化,其中变化关系为β=90°-θ,来进一步确定深度d与投影屏幕纵向位置y(h)的变化关系;第二种将第二面倾角β作为固定角度来设计,以确定深度d与投影屏幕纵向位置y(h)的变化关系。
第一种:第二面倾角β可以随投影光束的出射角θ而变化,第二面倾角β与投影光束的出射角θ的关系如下,此种关系下的菲涅尔微结构对应投影光束完全照射在第一面。
β=90°-θ
此种情况下,菲涅尔结构131的深度d与屏幕纵向位置y(h)之间的对应关系可如图7(a)所示,即投影屏幕的深度d随着投影屏幕纵向位置y(h)的增加而减小。
第二种,第二面倾角β也可以为固定值,如下所示:
β=90°-θ min=27.2°
θ min为投影光束的出射角的最小值,此种情况下,菲涅尔结构131的深度d与屏幕纵向位置y(h)之间的对应关系可如图7(b)所示,即投影屏幕的深度d随着投影屏幕纵向位置y(h)的增加而增大。
上文对投影屏幕的微结构参数选择进行了说明,抗环境光对比度作为投影显示的一重要参数,下面我们针对投影屏幕的抗环境光对比度的设计进行说明,
投影屏幕10的上下对比度一致也是评价投影屏幕10的标准之一,菲涅尔结构131中没有涂覆反射材料的区域在投影平面上所占比例决定了抗环境光的对比度ALR(y),定义投影屏幕10的抗环境光对比度为:
Figure PCTCN2020137109-appb-000003
其中,W p是反射层12映射在投影平面上的宽度。
从上述公式及图5可以看出,在第一倾斜面α角度不做调整的基础上,反射层12映射在投影平面上的宽度随着投影屏幕纵向位置y(h)的增加逐渐减少,对应投影屏幕10的抗环境光对比度随着投影屏幕纵向位置y(h)的增加逐渐增大。即离超短焦投影机越远的区域抗环境光对比度越高,一定程度上会影响观看效果;为了进一步提高抗环境光对比度的一致性,可通过以下两种方法实现:
第一种:可增大反射层12在菲涅尔结构第一面1311上的面积,进一步反射层12在菲涅尔结构第一面1311上的面积随投影屏幕纵向位置y(h)的增加逐渐增加,即离超短焦投影机越远的区域的菲涅尔结构第 一面1311上贴合的反射层12面积越大;增加的反射层在一定程度上不会反射投影光,但会反射环境光,使得一部分环境光进入观众视角,进而抗环境光对比度相对于增加前有所减小,因此可通过增加反射层面积的方式以有效提高投影屏幕10的对比度一致性。
第二种:如图8所示,可通过减小菲涅尔结构的第二面倾角β,来提升投影屏幕10的对比度一致性,具体来说,减小第二面倾角β使得投影光源出射的投影光束照射在投影屏幕距离投影光源较近的位置时,投影光束全部照射在菲涅尔结构的第一面1311上,此时的β近似等于90°-θ,抗环境光对比度为投影屏幕实际所能达到的抗环境对比度;但当投影光束照射在投影屏幕距离投影光源较远的位置时,由于第二面倾角的减小β,β<90°-θ,此时投影光源出射的光束不全照射在菲涅尔结构的第一面1311上,还有一部分会照射在第二面上,照射在第二面上的投影光束直接被吸收,不会被反射会观众视角,进而抗环境光对比度相对于较近位置有所减小,因此可通过减小菲涅尔结构第二面倾角β的方式以有效提高投影屏幕10的对比度一致性。
进一步,在投影屏幕10距离超短焦投影机较近的位置,投影光束全部照射在菲涅尔结构的第一面1311上,此时的β角度近似等于90°-θ,结合上述的抗环境光对比度公式,投影屏幕10的抗环境光对比度公式转换为:
Figure PCTCN2020137109-appb-000004
上述公式,对比度的分布和第二面倾角β有关,可以通过设定第二面倾角β使得对比度ALR(y)保持定值;
进一步,在投影屏幕10距离超短焦投影机较远的位置,根据上述转换后的公式,要维持与投影屏幕较近位置的对比度ALR(y)定值,此时第二面倾角β的角度需要更小,即β<90°-θ。第二面倾角β的角度减小体现在菲涅尔结构上的变化为,投影光源出射的投影光束不完全照射在菲涅尔结构的第一面1311上,还有一部分投影光束会照射在第二面上,照射在第二面上的投影光束直接被吸收,不会被反射会观众视角, 进而抗环境光对比度相对于较近位置有所减小,因此可通过减小菲涅尔结构第二面倾角β的方式以有效提高投影屏幕10的对比度一致性。
进一步举例说明,假设在投影屏幕10距离超短焦投影机较近的位置时,α=45°,β=45°,带入上述转换后的公式,此时的抗环境光对比度ALR(y)=1/2,1/2作为投影屏幕任何位置的抗环境光对比度固定值;此时假设在投影屏幕10距离超短焦投影机较远的位置,此时α=60°,上述已经说明α随投影屏幕纵向位置的增加而增加,带入上述转换后的抗环境光对比度ALR(y)=1/2,可得出β=30°,因此可通过减小菲涅尔结构的第二面倾角β维持投影屏幕的抗环境光对比度一致性。
为了提升扩散层11和微结构层13的贴合稳定性,微结构层13与扩散层11的贴合处可以为平面,且平面的面积大于预设面积,以增大贴合面积,如图9所示,微结构层13与扩散层11的接触面的面积大于图3中接触面的面积。
在另一具体的实施例中,如图10所示,微结构层13为透明材料,微结构层13用于将扩散层11输出的投影光束经由第二贴合层15传输至基底层16;基底层16的材料为黑色吸光材料,以吸收经透明材料微结构层透射的干扰光束,如黑色PET、PMMA、PC、ABS或TPU等材料。
本实施例中的投影屏幕10为高增益抗环境光屏幕,投影屏幕10上分布着菲涅尔结构131,投影光束照射在菲涅尔结构131上,每一个菲涅尔结构131可以被投影光束照射到的区域设置有反射层12,以将投影光束反射至观众的视场区域,扩散层11与微结构层13贴合,以控制显示的视角,可通过控制第一面倾角α或第二面倾角β来调整对比度均匀性,有助于提高投影屏幕10的对比度均匀性。
请参阅图11,图11是本申请提供的投影系统一实施例的结构示意图,投影系统110包括投影屏幕10和投影光源20,投影光源20用于产生投影光束,投影屏幕10用于接收投影光束,对投影光束进行处理,并将处理后的投影光束反射至视场区域,投影屏幕10为上述实施例中的投影屏幕10。
投影系统110中的投影屏幕10具有高增益、高对比度和合适的视角等优势,投影屏幕10和投影光源20的配合使用,可以极大的提升画面显示效果。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种投影屏幕,其特征在于,至少包括扩散层、反射层以及微结构层,所述反射层设置于所述扩散层与所述微结构层之间,所述微结构层包括多个菲涅尔结构,每个所述菲涅尔结构包括第一面和第二面,所述反射层局部形成于所述菲涅尔结构的第一面上,所述扩散层用于将入射的投影光束输入至所述反射层,所述反射层将所述投影光束反射至视场区域。
  2. 根据权利要求1所述的投影屏幕,其特征在于,
    所述微结构层的材料为吸光材料,所述微结构层用于吸收入射的光束。
  3. 根据权利要求2所述的投影屏幕,其特征在于,
    所述吸光材料为黑色结构胶,所述结构胶包括紫外固化胶、热塑材料或热固材料。
  4. 根据权利要求1所述的投影屏幕,其特征在于,
    所述投影屏幕还包括第一贴合层,所述扩散层与所述微结构层通过所述第一贴合层连接固定;所述第一贴合层为透明紫外固化胶或热固化胶,所述第一贴合层的厚度小于所述微结构层的深度,所述第一贴合层的厚度小于10μm。
  5. 根据权利要求1所述的投影屏幕,其特征在于,形成于所述菲涅尔结构的第一面的所述反射层的面积随着投影屏幕远离投影光源的方向逐渐增加。
  6. 根据权利要求1所述的投影屏幕,其特征在于,所述菲涅尔结构的第一面倾角为α,其中所述第一面倾角α随着投影屏幕远离投影光源的方向而增加。
  7. 根据权利要求6所述的投影屏幕,其特征在于,所述菲涅尔结构的第二面倾角为β,投影光源出射的投影光束的倾斜角θ与所述第二面倾角β的和小于90°,且所述第二面倾角β随着投影屏幕远离投影光源的方向而减小。
  8. 根据权利要求1所述的投影屏幕,其特征在于,
    所述微结构层与所述扩散层的贴合处为平面,且所述平面的面积大于预设面积;所述投影屏幕还包括第二贴合层与基底层,所述基底层与所述微结构层通过所述第二贴合层连接固定,且所述第二贴合层设置在所述微结构层远离所述扩散层的一侧。
  9. 根据权利要求8所述的投影屏幕,其特征在于,
    所述微结构层为透明材料,所述微结构层用于将所述扩散层输出的投影光束经由所述第二贴合层传输至所述基底层,所述基底层的材料为吸光材料。
  10. 一种投影系统,其特征在于,包括投影光源和投影屏幕,其中,所述投影光源用于产生投影光束,所述投影屏幕用于接收所述投影光束,对所述投影光束进行处理,并将处理后的投影光束反射至视场区域,所述投影屏幕为权利要求1-9中任一项所述的投影屏幕。
PCT/CN2020/137109 2020-01-17 2020-12-17 一种投影屏幕以及投影系统 WO2021143439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010052476.5 2020-01-17
CN202010052476.5A CN113219776A (zh) 2020-01-17 2020-01-17 一种投影屏幕以及投影系统

Publications (1)

Publication Number Publication Date
WO2021143439A1 true WO2021143439A1 (zh) 2021-07-22

Family

ID=76863537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137109 WO2021143439A1 (zh) 2020-01-17 2020-12-17 一种投影屏幕以及投影系统

Country Status (2)

Country Link
CN (1) CN113219776A (zh)
WO (1) WO2021143439A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280708A (zh) * 2022-01-12 2022-04-05 京东方科技集团股份有限公司 菲涅尔透镜、光学模组和虚拟现实装置
CN114594607A (zh) * 2022-03-23 2022-06-07 业成科技(成都)有限公司 光学膜片、其制备方法、抬头显示器及车辆
CN115729026A (zh) * 2022-10-17 2023-03-03 青岛海信激光显示股份有限公司 投影屏幕、其制作方法及投影系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139639A (ja) * 2008-12-10 2010-06-24 Seiko Epson Corp 反射型スクリーン
JP2012073360A (ja) * 2010-09-28 2012-04-12 Dainippon Printing Co Ltd インタラクティブボード用の反射スクリーン、インタラクティブボード、インタラクティブボードシステム
JP2012252112A (ja) * 2011-06-01 2012-12-20 Dainippon Printing Co Ltd 反射スクリーンおよびその製造方法
JP2013152288A (ja) * 2012-01-24 2013-08-08 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
EP2696243A2 (en) * 2012-08-06 2014-02-12 Samsung Electronics Co., Ltd Screen for front projection apparatus and fabrication method thereof
CN107102509A (zh) * 2016-02-19 2017-08-29 中强光电股份有限公司 投影屏幕
CN110554559A (zh) * 2018-05-31 2019-12-10 深圳光峰科技股份有限公司 菲涅尔屏幕

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139639A (ja) * 2008-12-10 2010-06-24 Seiko Epson Corp 反射型スクリーン
JP2012073360A (ja) * 2010-09-28 2012-04-12 Dainippon Printing Co Ltd インタラクティブボード用の反射スクリーン、インタラクティブボード、インタラクティブボードシステム
JP2012252112A (ja) * 2011-06-01 2012-12-20 Dainippon Printing Co Ltd 反射スクリーンおよびその製造方法
JP2013152288A (ja) * 2012-01-24 2013-08-08 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
EP2696243A2 (en) * 2012-08-06 2014-02-12 Samsung Electronics Co., Ltd Screen for front projection apparatus and fabrication method thereof
CN107102509A (zh) * 2016-02-19 2017-08-29 中强光电股份有限公司 投影屏幕
CN110554559A (zh) * 2018-05-31 2019-12-10 深圳光峰科技股份有限公司 菲涅尔屏幕

Also Published As

Publication number Publication date
CN113219776A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
WO2021143439A1 (zh) 一种投影屏幕以及投影系统
CN207216263U (zh) 全反射屏幕和投影系统
US10719005B2 (en) Projection screen and manufacturing method therefor
CN106918983B (zh) 投影屏幕
US11906891B2 (en) Projection screen and processing method therefor
US11906892B2 (en) Total internal reflection screen and projection system
CN110865509B (zh) 投影屏幕及其制造方法
WO2020114224A1 (zh) 投影屏幕和投影系统
CN109765725B (zh) 一种准直膜、准直背光模组、显示模组及显示装置
JP2013171246A (ja) 超短焦点プロジェクター用リアスクリーン
US20220026794A1 (en) Screen and projection system
WO2021000792A1 (zh) 一种投影屏幕
CN108663893B (zh) 背投影屏幕
JPWO2004049059A1 (ja) 透過型スクリーンおよび投写型表示装置
TWM568398U (zh) 投影屏幕
US11762275B2 (en) Projection screen and projection system
JP5849440B2 (ja) 反射型スクリーン、及び反射型投射システム
WO2021078289A1 (zh) 一种投影屏幕
CN109388014B (zh) 投影屏幕和投影系统
CN112255877A (zh) 一种反射式侧向投影屏幕及投影系统
WO2021103968A1 (zh) 一种投影屏幕以及投影系统
CN209949280U (zh) 一种直下式背光模组及其电视机
CN109388015B (zh) 全反射屏幕和投影系统
JP2009169037A (ja) 反射型スクリーン及びその製造方法
JP2011112669A (ja) 反射スクリーン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913601

Country of ref document: EP

Kind code of ref document: A1