WO2021000792A1 - 一种投影屏幕 - Google Patents

一种投影屏幕 Download PDF

Info

Publication number
WO2021000792A1
WO2021000792A1 PCT/CN2020/098452 CN2020098452W WO2021000792A1 WO 2021000792 A1 WO2021000792 A1 WO 2021000792A1 CN 2020098452 W CN2020098452 W CN 2020098452W WO 2021000792 A1 WO2021000792 A1 WO 2021000792A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection screen
grating
light
ring
layer
Prior art date
Application number
PCT/CN2020/098452
Other languages
English (en)
French (fr)
Inventor
胡飞
孙微
王霖
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Priority to US17/597,381 priority Critical patent/US11960199B2/en
Priority to EP20834893.8A priority patent/EP3985435B1/en
Publication of WO2021000792A1 publication Critical patent/WO2021000792A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/602Lenticular screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/58Projection screens collapsible, e.g. foldable; of variable area
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens

Definitions

  • the invention relates to a projection screen, belonging to the technical field of projection screen manufacturing.
  • the screen is an important factor affecting the projection display system, and it has a great impact on the image quality of the projection display.
  • the contrast of the screen reflected by the screen is affected by the ambient light and is much lower than the contrast of the projector itself.
  • a general projector screen can reflect both the light from the projector and the light from the ambient light.
  • the prior art includes a projection screen that resists ambient light.
  • a wire grid screen is used in the patent CN1670618A, which improves the contrast of ambient light by absorbing light on one side and reflecting on the other side.
  • patent CN105408777A adopts the method of Fresnel microstructure and light reflection layer to achieve, but there are still some angles of ambient light reflected to the side of the viewer, so the improvement effect is limited.
  • the angle of incidence of light incident on different positions of the projection screen is different.
  • the Fresnel reflection on the screen surface is positively related to the angle of incidence. The greater the angle of incidence, the higher the Fresnel reflection. Most of the light reflected by the Fresnel on the surface cannot enter the field of view of the audience, resulting in a waste of energy.
  • patent CN104516182B proposes a polarizer array with gradual absorptivity added to the projector optical system to form a dark middle and bright edge projection distribution to compensate for the uneven brightness of the projection screen.
  • Patent CN1723699A proposes a method of using two projectors to compensate for uneven brightness. The above two methods do not involve the improvement of the screen itself, but compensate the brightness uniformity by changing the settings of the projector.
  • the technical problem to be solved by the present invention is to address the shortcomings of the prior art and provide a projection screen.
  • the projection screen By arranging dense and uneven gratings arranged in a concentric ring, the projection screen has good brightness uniformity and strong resistance to ambient light.
  • the grating absorption structure can effectively distinguish the projection light and the ambient light, the projection screen has a high gain, thereby reducing the optical cost of the projector.
  • the present invention provides a projection screen comprising an optical collimation layer and a surface diffusion layer arranged in sequence, and an environment for absorbing various directions except the direction of projection light is provided between the optical collimation layer and the surface diffusion layer
  • the rings are arranged in a circumferential direction, centered on the vertical symmetrical centerline of the projection screen, along the circumferential direction of the concentric rings extending to the left and right sides of the projection screen, the same light-absorbing ring unit The distance between two adjacent gratings gradually increases.
  • the distance between two adjacent gratings on the different light-absorbing ring units in the same direction is gradually increased.
  • the centers of the concentric rings are located on the vertical symmetric center line of the projection screen.
  • the cross section of the grating is triangular, rectangular, trapezoidal or semicircular.
  • the grating absorption layer further comprises a transparent substrate, and the grating is provided on the transparent substrate; or, the grating is provided on the substrate of the optical collimation layer or the surface diffusion layer.
  • the grating is made of gray translucent material with an absorptance of ⁇ 90%.
  • the optical collimation layer is a ring-shaped TIR total reflection layer or a ring-shaped Fresnel structure.
  • the microstructure surface of the annular Fresnel structure is provided with a reflective coating.
  • the center of the ring of the ring-shaped TIR total reflection layer or the ring-shaped Fresnel structure and the center of the concentric ring of the grating absorption layer are both located on the vertical symmetric center line of the projection screen.
  • the height of the grating is 50um-1000um
  • the width of the grating is 50um-500um
  • the pitch of the grating is 200um-2000um
  • the length of the grating is 50um-1665mm.
  • the present invention provides a projection screen.
  • the projection screen By arranging dense and uneven gratings arranged in a concentric ring, the projection screen has the characteristics of good brightness uniformity and strong resistance to ambient light.
  • the grating absorbs The structure can effectively distinguish the projection light and the ambient light, so that the projection screen has a high gain, thereby reducing the optical cost of the projector.
  • FIG. 1 is a schematic diagram of a cross-sectional structure at the center of a projection screen according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the position of the grating of the projection screen according to the first embodiment of the present invention
  • 3a is a schematic diagram of the installation positions of the projection screen and the projector according to the first embodiment of the present invention
  • Figure 3b is a side view of Figure 3a
  • Fig. 3c is a side view of a projection screen and a setting position of a projector according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a grating according to the second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the structure of a grating according to the third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of a grating according to the fourth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the structure of a grating according to Embodiment 5 of the present invention.
  • FIG. 8 is a schematic diagram of the connection structure of the optical collimation layer and the grating absorption layer in the sixth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the connection structure of the optical collimation layer and the grating absorption layer in the seventh embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the structure of an optical collimating layer according to Embodiment 9 of the present invention.
  • FIG. 11 is a schematic structural diagram of an optical collimating layer according to the tenth embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a cross-sectional structure at the center of a projection screen according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a grating arrangement position of a projection screen according to an embodiment of the present invention.
  • the projection screen structure includes an optical collimation layer 100, a grating absorption layer 200 and a surface diffusion layer 300 from the inside to the outside.
  • the grating absorption layer 200 is provided between the optical collimation layer 100 and the surface diffusion layer 300 on both sides.
  • the grating absorption layer 200 is used to absorb ambient light from all directions except the direction of the projection light
  • the optical collimation layer 100 is used to reflect the projection light
  • the surface diffusion layer 300 is used to increase the divergence of the emitted light. angle.
  • the grating absorption layer 200 includes a plurality of light-absorbing ring-shaped units with different radii, and the plurality of light-absorbing ring-shaped units are arranged in a concentric ring shape.
  • the rings are arranged in a circumferential direction, centered on the vertical symmetrical centerline of the projection screen, along the circumferential direction of the concentric rings extending to the left and right sides of the projection screen, the same light-absorbing ring unit
  • the distance between two adjacent gratings 220 in the center gradually increases. Further, in the direction away from the center of the concentric ring, the distance between two adjacent gratings 220 on the different light-absorbing ring units in the same direction gradually increases, thereby improving the brightness unevenness of the projection screen.
  • the projection screen of the anti-ambient light projector needs to absorb the stray light of the environment as much as possible while minimizing the absorption of the light from the projector.
  • the light emitted by the projector is the divergent light centered on the projector lens, and most of the ambient light comes from the side or top surface. Due to the angular selectivity of the grating structure, projection light from a fixed direction can pass through the grating, while ambient light in other directions is effectively blocked, so that the projection screen has a good anti-ambient light effect.
  • the grating absorption layer can effectively distinguish between directional projection light and ambient light from all directions except the direction of the projection light, the projection screen has high gain, which can reduce the optical cost of the projector.
  • Fig. 3a is a schematic diagram of the installation positions of the projection screen and the projector according to the first embodiment of the present invention
  • Fig. 3b is a side view of Fig. 3a
  • Fig. 3c is a side view of the installation positions of the projection screen and the projector according to another embodiment of the present invention.
  • the grating 220 is arranged in a concentric ring as a whole, and the center of the concentric ring can be adjusted according to actual needs.
  • the circle center 410 is located on the vertical symmetrical center line of the projection screen and below the outer side of the projection screen.
  • the circle center 410 may also be on the projection screen.
  • the height of the projector may be the same as that of the screen.
  • the heights coincide.
  • the center of the circle is on the projection screen.
  • the center of the concentric circle is located at State the center of the glossy surface.
  • the circle center 410 is located on the vertical symmetric center line of the projection screen and is located outside the projection screen.
  • the source of ambient light is generally the sunlight from the windows and ceiling lights on the left and right sides of the projection screen, and the height of the projector is low at this time, the angle of the screen light and the ambient light when incident on the projection screen is quite different.
  • the design purpose of the grating in the present invention is to absorb as much light as possible in other directions except the direction of the projection light.
  • the projection screen with this structure has a better anti-ambient light effect.
  • the projection screen provided by the present invention is provided with concentric
  • the ring-shaped light-absorbing ring unit preferably, all the extension lines in the length direction of the grating 220 in each ring intersect the center 410 of the concentric ring.
  • the light emitted by the projector is divergent light with the projector lens as the center. The farther away from the center of the lens, the more severe the light decay. As shown in Figure 3, the distance between the top and bottom of the projection screen and the lens is not consistent.
  • the actual picture is uneven, and when the projection screen is used, due to the Fresnel reflection on the surface of the projection screen, the brightness uniformity of the picture on the projection screen is poor.
  • This defect can be compensated by changing the density of the gratings, that is, the position of the projection screen with high brightness near the symmetric center line of the projection screen is small and dense, while the corner of the projection screen with low brightness is large and the grating is sparse.
  • the reason why the above setting method can solve the brightness uniformity is that although the grating allows the projection light from a fixed direction to pass, it will inevitably absorb part of the projection light irradiated on the grating, so it is more suitable for areas with higher brightness.
  • Dense gratings, sparse gratings for areas with lower brightness can improve the overall uniformity of the picture. That is to say, in the multiple concentric rings of the present invention, the positions of the grating 220 between different rings are set independently, and the grating density in different areas of the projection screen can be adjusted freely according to requirements, so that the brightness of the projection screen is uniform. higher.
  • the grating is prepared by using black light-absorbing optical resin or thermosetting resin.
  • the resin is first coated, then molded by a mold, and finally molded by curing.
  • the black light-absorbing optical resin is made of a resin with carbon black or black pigment added.
  • the transparent substrate 210 is first coated with a black light-absorbing optical or thermosetting resin, and then a grating mold is used to roll the substrate coated with the black light-absorbing optical resin.
  • the grating mold can be obtained by precision machine tool processing, and it can be a flat mold or a roller mold. Finally, the molded resin is irradiated with a UV lamp or thermally cured to form it.
  • the grating can be directly disposed on the transparent substrate 210, and then combined with the optical collimation layer 100 and the surface diffusion layer 300 after the grating absorption layer 200 is formed, or it can be directly formed on the optical collimation layer 100 or the surface
  • the diffusion layer 300 is on the substrate.
  • FIG. 4 is a schematic diagram of the structure of a grating according to the second embodiment of the present invention.
  • the grating 220 provided on the transparent substrate 210 has a trapezoidal cross section.
  • the specific structure selection principle and size parameters of the grating of the present invention will be described in detail below with reference to FIG. 4 taking a trapezoidal grating as an example.
  • Wd the lower width of the grating cross section
  • Full light absorption angle, when the angle of the incident light from the side is greater than ⁇ , the light is completely absorbed
  • the width W and the height d are fixed, the larger the distance L between adjacent gratings and the larger ⁇ , the area of the projection screen absorbs less ambient light and transmits more projection light, so the brightness of this area is higher. , The brightness is lower.
  • Changing the grating width and the grating pitch has the same effect, both of which are to adjust the density of the grating.
  • the grating width W and the grating pitch L are fixed, by adjusting the grating height d, ⁇ changes accordingly, and the brightness of a certain area of the projection screen also changes accordingly.
  • the present invention can adjust the brightness uniformity and contrast of the projection screen by adjusting the grating pitch and the grating height.
  • the numerical range of each parameter includes:
  • the height of the grating 50um-1000um, preferably 50um-200um;
  • the width of the grating 50um-500um, preferably 200um-300um;
  • Grating pitch 200um-2000um, preferably 200um-500um;
  • the length of the grating 50um-1665mm, preferably 200um-5000um.
  • the projection light is incident on the projection screen in a fixed direction, and the ambient light comes from various directions, and mainly comes from the top illumination light and the side window light. Therefore, according to the different incident angles of the projection light and the ambient stray light, a projection screen structure capable of distinguishing the two can be set, thereby reducing the influence of ambient light on the contrast of the projection screen.
  • a Fresnel structure is used and a reflective layer is coated on the back to weaken the ambient light.
  • this method has two defects. One is to eliminate as much ambient light as possible, and the reflectivity of the reflective layer is low.
  • the contrast of the projection screen can be improved, the reflectivity of the projection light is also very low, resulting in low gain of the projection screen. Therefore, in order to obtain a relatively high screen brightness, it is necessary to increase the output brightness of the projector, which increases the cost of the optical machine;
  • Another drawback of the method is that the structure of the Fresnel plus reflective layer is mainly suitable for ultra-short throw projectors placed under the projection screen, but for the educational device placed above the projection screen, it is difficult to distinguish the structure from the same direction. Light, so the top illumination light causes the contrast of the projection screen to be low.
  • the grating is based on the principle of distinguishing between directional light and non-directional light to improve the contrast, only the ambient light completely consistent with the light direction of the projector cannot be well absorbed, while the environment in other directions Light can be effectively absorbed, so the contrast of the projection screen is high, and the ultra-short throw projector has a wider choice of placement position.
  • the reflectivity of the reflective coating in the present invention can be significantly improved.
  • the transmittance of the grating structure to the projected light is Ts;
  • the reflectivity of the reflective coating is R;
  • the reflectivity of the projection screen to the projected light is
  • the reflectivity of the projection screen to the ambient light is 22.5%, and the reflectivity of the projection light is 44.1%.
  • the reflectivity of the reflective coating is 22.5%, and the reflectivity of the projected light is also 22.5%, which is much lower than the reflectivity of the grating, so the projection screen gain is also very low.
  • the gain of the projection screen is increased, the output brightness of the projector does not need to be further increased, and a brighter picture can be obtained, which reduces the manufacturing cost of the optical machine.
  • the structure without grating needs to reduce the reflectivity of the reflective coating, but this way the projection light will also be lost.
  • the transmittance of the grating structure to ambient light mentioned above refers to the overall transmittance of the grating to the beam, which can be understood as the ratio of the total energy of the beam after passing through the grating to the total energy of the beam before it enters the grating structure.
  • the transmittance is determined by the density of the grating and the light transmittance of the size memory grating material itself.
  • FIG. 7 is a schematic diagram of the structure of a grating according to Embodiment 5 of the present invention. As shown in FIG. 7, in this embodiment, the shape of the grating 220 is a hemisphere, and its cross section is a semicircle.
  • the grating in the present invention can adopt various different structural forms, and can be triangular, rectangular, trapezoidal or semicircular. It should be noted that as long as it is a grating shape that can absorb as much ambient light as possible and has high projected light transmittance, it is covered by the protection scope of the present invention, and those skilled in the art can make selections according to actual needs. I will not repeat them here.
  • Figures 5 to 7 show the cross-sectional view of the grating structure in a certain radius direction passing through the center of the circle, that is, the schematic diagram of the grating in the circle of part B in Figure 3, since the gratings are arranged in a concentric ring shape, , The density of gratings in each ring is different, and the spacing between adjacent gratings in the cross-sectional view is also different.
  • FIG. 8 is a schematic diagram of the connection structure of the optical collimation layer and the grating absorption layer in the sixth embodiment of the present invention.
  • the optical collimation layer 100 is provided on one side of the collimation layer substrate 240, and the other side of the collimation layer substrate 240 is bonded to the side of the transparent substrate 210 opposite to the grating 220.
  • the grating 220 is separately fabricated on a transparent substrate and then combined with other functional layers.
  • FIG. 9 is a schematic diagram of the connection structure of the optical collimation layer and the grating absorption layer in the seventh embodiment of the present invention.
  • the optical collimation layer 100 is directly disposed on the side of the transparent substrate 210 opposite to the grating 220.
  • the grating 220 and the optical collimation layer 100 are processed on both sides of the same substrate, thereby reducing the bonding process.
  • the grating can be made of a gray translucent material. Specifically, since the absorption rate of the all-black absorbing material is about 90%, in order to prevent the gain of the projection screen from being low, a gray translucent material with an absorption rate of ⁇ 90% can be selected to make the grating.
  • the preparation method of the grating structure is the same as the method of using the black light-absorbing material structure. Since the absorptivity of the gray translucent material is not close to 100%, the gain of the projection screen is improved, and at the same time, it has a stronger ability to resist ambient light than a projection screen without a grating structure.
  • the structure of the present invention absorbs the environment at multiple angles. At the same time, it can ensure that the projected light passes through the gap of the grating. Although the projected light will have a certain loss, the reflectivity of the reflective coating can be very high, such as 90%, so that the final reflectivity of the projected light Still higher than before, the gain is also higher.
  • the optical collimating layer is a circular TIR (total internal reflection) total reflection layer, which uses the principle of total reflection to generate two TIR reflections on the collimating microstructure, and no additional reflective coating is required.
  • the center of the ring of the ring-shaped TIR total reflection layer and the center of the concentric ring of the grating absorption layer are both located on the vertical symmetric center line of the projection screen, and they may or may not overlap.
  • FIG. 11 is a schematic structural diagram of an optical collimating layer according to the tenth embodiment of the present invention.
  • the optical collimation layer has a ring-shaped Fresnel structure.
  • the surface of the microstructure of the Fresnel structure is provided with a reflective coating, and the light returns to the eyes of the audience after one reflection on the collimation microstructure.
  • the ring center of the ring-shaped Fresnel structure and the concentric ring center of the grating absorption layer are both located on the vertical symmetric center line of the projection screen, and they may or may not be overlapped.
  • the present invention provides a projection screen.
  • the projection screen By arranging dense and uneven gratings arranged in a concentric ring, the projection screen has the characteristics of good brightness uniformity and strong resistance to ambient light.
  • the grating absorbs The structure can effectively distinguish between projection light and ambient light, so that the projection screen has a high gain, thereby reducing the optical cost of the projector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

一种投影屏幕,包含依次设置的光学准直层(100)和表面扩散层(300),在光学准直层(100)和表面扩散层(300)之间还设有用于吸收来自除投影光方向外的各个方向的环境光的光栅吸收层(200);光栅吸收层(200)包含多个不同半径的吸光环状单元,多个吸光环状单元呈同心环状排列,每个吸光环状单元由多个光栅(220)沿同心环的周向排列组成,以投影屏幕的竖直对称中心线为中心,沿着同心环的周向分别向投影屏幕左右两侧延伸的方向,同一吸光环状单元中相邻的两个光栅(220)的间距逐渐增大。通过设置呈同心环状排列的疏密不均匀的光栅(220),使投影屏幕具有亮度均匀性好、抗环境光能力强的优点。

Description

一种投影屏幕 技术领域
本发明涉及一种投影屏幕,属于投影屏幕制造技术领域。
背景技术
屏幕是影响投影显示系统的一个重要因素,其对投影显示的图像质量影响很大。屏幕反射的画面对比度受环境光的影响而远远低于投影机自身的对比度。一般的投影机屏幕既能反射投影机的光线也能反射环境光的光线。为了提高在有环境光的情况下的屏幕对比度,在现有技术中包含有抗环境光的投影屏幕,如:专利CN1670618A中采用线栅屏幕,其通过一面吸光一面反射的方式来改善环境光对比度,但是该类型屏幕增益较低;专利CN105408777A中采用菲涅尔微结构加光反射层的方法来实现,但是仍有一些角度的环境光线被反射向观看者一侧,因此改善的效果有限。另外,对于超短焦投影机,由于具有很低的投射比使得光线入射到投影屏幕不同位置的入射角度是不一样的。屏幕表面的菲涅尔反射跟入射角度正相关,入射角度越大,菲涅尔反射越高。表面菲涅尔反射的光线大部分都不能进入到观众的视场中,造成了能量的浪费。同时,由于表面不均匀的菲涅尔反射导致了屏幕表面中心区域和边缘区域的亮度差高达20%以上。为了提高屏幕的亮度均匀性,专利CN104516182B提出了一种在投影机光学系统中加入吸收率渐变的偏振片阵列用来形成中间暗、边缘亮的投影分布来补偿投影屏幕的亮度不均匀性。专利CN1723699A提出了一种用两台投影机来补偿亮度不均匀性的方法。以上两种方法都不涉及屏幕本身的改善,而是通过改变投影机的设置来补偿亮度均匀性。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种 投影屏幕,通过设置呈同心环状排列的疏密不均匀的光栅,使投影屏幕具有亮度均匀性好、抗环境光能力强的特点,同时,由于光栅吸收结构可以有效区分投影光和环境光,使投影屏幕具有高增益,从而降低投影机的光机成本。
本发明所要解决的技术问题是通过如下技术方案实现的:
本发明提供一种投影屏幕,包含依次设置的光学准直层和表面扩散层,在所述光学准直层和表面扩散层之间还设有用于吸收来自除投影光方向外的各个方向的环境光的光栅吸收层;所述光栅吸收层包含多个不同半径的吸光环状单元,多个所述吸光环状单元呈同心环状排列,每个所述吸光环状单元由多个光栅沿同心环的周向排列组成,以所述投影屏幕的竖直对称中心线为中心,沿着所述同心环的周向分别向所述投影屏幕左右两侧延伸的方向,同一所述吸光环状单元中相邻的两个光栅的间距逐渐增大。
为了进一步提高投影屏幕抗环境光的能力,沿远离所述同心环的圆心的方向,同一方向的不同所述吸光环状单元上相邻的两个光栅的间距逐渐增大。
优选地,所述同心环的圆心位于所述投影屏幕的竖直对称中心线上。
为了调节投影屏幕的亮度均匀性和对比度,所述光栅的横截面为三角形、矩形、梯形或半圆形。
优选地,所述光栅吸收层还包含透明基材,所述光栅设置在所述透明基材上;或者,所述光栅设置在所述光学准直层或所述表面扩散层的基材上。
为了防止投影屏幕的增益低,所述光栅为吸收率<90%的灰色半透明材质。
优选地,所述光学准直层为环形TIR全反射层或环形菲涅尔结构。
优选地,所述环形菲涅尔结构的微结构表面设有反射涂层。
优选地,所述环形TIR全反射层或环形菲涅尔结构的环形中心与所述光栅吸收层的同心环圆心均位于所述投影屏幕的竖直对称中心线上。
优选地,所述光栅的高度为50um-1000um,光栅的宽度为50um-500um,光栅的间距为200um-2000um,光栅的长度为50um-1665mm。
综上所述,本发明提供一种投影屏幕,通过设置呈同心环状排列的疏密不均匀的光栅,使投影屏幕具有亮度均匀性好、抗环境光能力强的特点,同时,由于光栅吸收结构可以有效区分投影光和环境光,使投影屏幕具有高增益,从而降低投影机的光机成本。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明实施例一投影屏幕中心处的截面结构示意图;
图2为本发明实施例一投影屏幕的光栅设置位置示意图;
图3a为本发明实施例一投影屏幕和投影机的设置位置示意图;
图3b为图3a的侧视图;
图3c为本发明另一实施例投影屏幕和投影机设置位置的侧视图;
图4为本发明实施例二光栅的结构示意图;
图5为本发明实施例三光栅的结构示意图;
图6为本发明实施例四光栅的结构示意图;
图7为本发明实施例五光栅的结构示意图;
图8为本发明实施例六光学准直层和光栅吸收层的连接结构示意图;
图9为本发明实施例七光学准直层和光栅吸收层的连接结构示意图;
图10为本发明实施例九光学准直层的结构示意图;
图11为本发明实施例十光学准直层的结构示意图。
具体实施方式
实施例一
图1为本发明实施例一投影屏幕中心处的截面结构示意图;图2为本发明实施例一投影屏幕的光栅设置位置示意图。如图1并结合图2所示,本发明提供一种投影屏幕,以观看者侧为外侧A,投影屏幕结构从里至外包含光学准直层100、光栅吸收层200以及表面扩散层300, 也就是说,在位于两侧的光学准直层100和表面扩散层300之间,设置的是光栅吸收层200。所述光栅吸收层200用于吸收来自除投影光方向外的各个方向的环境光,所述光学准直层100用于反射投影光,所述表面扩散层300用于增大出射的光线的发散角。
具体来说,所述光栅吸收层200包含多个不同半径的吸光环状单元,多个所述吸光环状单元呈同心环状排列,每个所述吸光环状单元由多个光栅220沿同心环的周向排列组成,以所述投影屏幕的竖直对称中心线为中心,沿着所述同心环的周向分别向所述投影屏幕左右两侧延伸的方向,同一所述吸光环状单元中相邻的两个光栅220的间距逐渐增大。进一步地,沿远离所述同心环的圆心的方向,同一方向的不同所述吸光环状单元上相邻的两个光栅220的间距逐渐增大,从而改善投影屏幕的亮度不均匀性。
在超短焦激光电视的应用中,抗环境光的投影机投影屏幕需要尽量吸收环境的杂光,而尽量减少对投影机光线的吸收。对于超短焦投影机,投影机发出的光线都是投影机镜头为中心的发散光,而环境光大部分来于侧面或者顶面。由于光栅结构的角度选择性,来自固定方向的投影光线可以穿过光栅,而其他方向的环境光被有效阻挡,使投影屏幕具有良好的抗环境光效果。并且,由于光栅吸收层可以有效区分定向的投影光和来自除投影光方向外的各个方向的环境光,因此投影屏幕具有高增益,从而可以降低投影机的光机成本。
图3a为本发明实施例一投影屏幕和投影机的设置位置示意图;图3b为图3a的侧视图;图3c为本发明另一实施例投影屏幕和投影机设置位置的侧视图。如图3a所示,光栅220整体呈同心环状排列,其中同心环的圆心可根据实际需要进行调整。例如,在本实施例中,所述圆心410位于投影屏幕的竖直对称中心线上,且处于投影屏幕外侧下方,当然所述圆心410也可以处于投影屏幕上。
具体来说,如图3c所示,当采用短焦或者中长焦投影的方式将画面投射在投影屏幕上时,由于其投射的距离离投影屏幕较远,投影机放置的高度可能与画面的高度重合,此时,所述圆心处于投影屏幕上。例如,当投影屏幕的出光面(投影机的光线经投影屏幕反射后所形成 的、与投影屏幕所在平面平行的平面)的中心与投影机镜头的高度相同时,所述同心圆的圆心位于所述出光面的中心。
以下以超短焦投影为例,为了提高对比度,减少环境光对画面的影响,如图3a和图3b所示,所述圆心410位于投影屏幕的竖直对称中心线上,且处于投影屏幕外侧下方。由于环境光的来源一般为投影屏幕左右两侧来自窗户外的阳光以及天花板的灯光等,而此时投影机的高度较低,画面光线与环境光入射在投影屏幕时的角度差别较大,而本发明中光栅的设计目的正是为了尽可能多的吸收除投影光方向外的其他方向的光,这种结构的投影屏幕的抗环境光效果更好。
如图2并结合图3a所示,通常情况下,由于投影机400的光线L入射角度和环境光的入射到投影屏幕S的角度不一样,而本发明所提供的投影屏幕中设有呈同心环状的吸光环状单元,优选地,每环中的所有光栅220长度方向的延长线都交于同心环的圆心410。如上所述,投影机发出的光线都是投影机镜头为中心发散光,离镜头中心越远,光衰越严重,如图3所示,投影画面的最上方与最下方与镜头的距离不一致,因此画面实际存在不均匀的情况,加之在使用投影屏幕时,由于投影屏幕表面存在的菲涅尔反射,导致画面在投影屏幕上的亮度均匀性差。通过改变光栅的密集程度可以弥补这一缺陷,即投影屏幕亮度高的投影屏幕对称中心线附近位置光栅间距小,密度大,而亮度低的投影屏幕边角位置光栅间距大,光栅稀疏。上述设置方式可解决亮度均匀性的原因在于,光栅虽然允许来自固定方向的投影光线穿过,但是同时也会不可避免地吸收部分照射在光栅上的投影光线,因此针对亮度较高的区域设置较为密集的光栅,针对亮度较低的区域设置稀疏的光栅,可以使画面整体均匀性提高。也就是说,在本发明的多个同心环中,不同环之间的光栅220的位置是各自独立设置的,投影屏幕中不同区域的光栅密度可根据需求自由调节,使投影屏幕的亮度均匀性更高。
进一步地,本发明光栅的具体加工方法是这样的:
光栅通过采用黑色吸光光学树脂或热固化树脂制备,先涂布树脂,再通过模具模压,最后通过固化成型。黑色吸光光学树脂就是由一种 加入炭黑或黑色颜料的树脂制成的。具体为先在透明基材210上涂布黑色吸光光学或热固化树脂,然后利用光栅模具在涂布有黑色吸光光学树脂的基材上进行滚压。光栅模具可通过精密机床加工的方式得到,可以为平板模具,也可以是辊筒模具。最后,将模压过后的树脂进行UV灯照射或热固化成型处理,即可制成。
需要补充的是,所述光栅可以直接设置在透明基材210上,形成光栅吸收层200之后再和光学准直层100以及表面扩散层300结合,也可以直接形成在光学准直层100或者表面扩散层300的基材上。
实施例二
图4为本发明实施例二光栅的结构示意图。如图4所示,在本实施例中,设置在透明基材210上的光栅220为横截面为梯台形。以下结合图4以梯台形的光栅为例,对本发明光栅的具体结构选择原理和尺寸参数进行详细地说明。
如图4所示,其示出了同一个同心环沿周向(圆弧方向)相邻的两个光栅220,并给出了一个光栅的基本参数:
L:相邻两个光栅的间距(对应同心圆弧上的弦长)
Wu:光栅横截面的上宽度
Wd:光栅横截面的下宽度
d:光栅的高度
θ:完全吸光角度,当侧边入射光线的角度大于θ的时候,光线被完全吸收
参数之间的关系满足:
Figure PCTCN2020098452-appb-000001
其中,当Wu=Wd时,光栅为立方体,其横截面为矩形;当Wu=0时,光栅为三棱柱结构,其横截面为三角形;当0<Wu<Wd时,光栅为梯台形结构,其横截面为梯形。
θ的大小代表可以吸收的环境光角度范围,θ越小,可吸收的环境光越多。从公式(1)可看出,θ的大小与光栅上下面宽度Wi(i=d 或u)、高度d以及相邻光栅的间距L有关。
当宽度W和高度d固定时,相邻光栅间距L越大,θ越大,则投影屏幕该区域吸收的环境光较少,透过的投影光线较多,因此该区域的亮度较高,相反,则亮度较低。
改变光栅宽度与光栅间距具有同样的效果,均是对光栅的疏密进行调节。当固定光栅宽度W和光栅间距L时,通过调节光栅高度d,θ随之改变,投影屏幕某一区域的亮度也相应变化。
由于光栅是呈同心环形设置的,理论上说,即便是同一相邻的两个光栅的L的值也不是恒定的,即:任意两个相邻的光栅头尾的间距并不是完全相同的,需要说明的是,存在的上述误差并不会对投影屏幕的吸光效果造成巨大影响。
由上述内容可知,本发明可以通过调节光栅间距和光栅高度来调节投影屏幕的亮度均匀性和对比度。具体来说,各个参数的数值范围包含:
光栅的高度:为50um-1000um,优选值为50um-200um;
光栅的宽度:为50um-500um,优选值为200um-300um;
光栅的间距:为200um-2000um,优选值为200um-500um;
光栅的长度:为50um-1665mm,优选值为200um-5000um。
由上述内容可知,投影光线是以固定的方向入射在投影屏幕上,而环境光线来自于各个方向,并且主要来源于顶部照明光以及侧面窗户光。因此,根据投影光和环境杂光入射角度的不同,设置能够对两者进行区分的投影屏幕结构,从而降低环境光对投影屏幕对比度的影响。在现有技术中,利用菲涅尔结构并在背面涂覆反射层来削弱环境光,但是该方法有两个缺陷,一是为了尽可能多的消除环境光,反射层的反射率低,这样虽然可以提高投影屏幕的对比度,但是投影光线的反射率也很低,致使投影屏幕增益不高,因此为了获得比较高的画面亮度,就需要提高投影机的输出亮度,增加了光机成本;该方法的另外一个缺陷是,菲涅尔加反射层的结构主要适用于放在投影屏幕下方的超短焦投影机,但是对于放在投影屏幕上方的教育机,由于该结构难以区分来自同一方向的光线,因此顶部照明光导致投影屏幕的对 比度偏低。而本发明所提供的投影屏幕,由于光栅正是根据区分定向光和非定向光的原理来提高对比度的,只有完全和投影机光线方向一致的环境光不能得到良好的吸收,而其他方向的环境光都可以被有效吸收,因此投影屏幕的对比度高,而且超短焦投影机的摆放位置选择性范围更宽。另外一点,本发明中的反射涂层的反射率可以显著提高。
假设光栅结构对环境光线的透过率为Ta;
光栅结构对投影光线的透过率为Ts;
反射涂层反射率为R;
则投影屏幕对环境光线的反射率为
Figure PCTCN2020098452-appb-000002
投影屏幕对投影光线的反射率为
Figure PCTCN2020098452-appb-000003
举例来说,若Ta=0.5、Ts=0.7、且R=0.9时,则投影屏幕对环境光的反射率为22.5%,而投影光的反射率为44.1%。如果没有光栅,若想达到同样的对比度效果,反射涂层的反射率为22.5%,投影光线的反射率也为22.5%,远远低于加了光栅的反射率,因此投影屏幕增益也很低。同时,由于投影屏幕的增益提高,投影机的输出亮度不需要进一步增加,就可以获得比较亮的画面,降低了光机制造成本。换句话说,为了达到和有光栅的投影屏幕结构有同样程度的抗光效果,没加光栅的结构需要降低反射涂层的反射率,但是这样投影光线也会有损失。
上文中所提到的光栅结构对环境光线的透过率指的是光栅对光束的整体透过率,可以理解为透过光栅后光束总能量与光束入射光栅结构前的总能量的比值。透过率是由光栅的疏密程度、尺寸记忆光栅材料本身的透光率共同决定的。
实施例三
图5为本发明实施例三光栅的结构示意图。如图5所示,在本实施例中,光栅的横截面的上宽度和下宽度相等,即:当Wu=Wd时,光栅为立方体,其横截面为矩形。
实施例四
图6为本发明实施例四光栅的结构示意图。如图6所示,在本实施例中,光栅的横截面的上宽度为零,即:当Wu=0时,光栅为三棱柱结构,其横截面为三角形。
实施例五
图7为本发明实施例五光栅的结构示意图。如图7所示,在本实施例中,光栅220的形状为半球形,其横截面为半圆形。
综合上述的实施例一至实施例五可知,本发明中的光栅可以采用各种不同的结构形式,可以为三角形、矩形、梯形或半圆形。需要说明的是,只要是能够实现尽可能多的吸收环境光而投影光线透过率高的光栅形状,均涵盖在本发明的保护范围之内,本领域技术人员可以根据实际的需要进行选择,在此不再赘述。由于上述图5至图7表示经过圆心的某一半径方向上的光栅结构横截面图,即:图3中B部分范围内圈中的光栅的示意图,由于光栅是呈同心环状设置的,因此,每一环的光栅疏密不同,横截面图中相邻光栅的间距也是不同的。
实施例六
图8为本发明实施例六光学准直层和光栅吸收层的连接结构示意图。如图8所示,光学准直层100设置的准直层基材240的一侧,准直层基材240的另一侧结合在透明基材210与光栅220相对的一侧。也就是说,光栅220是单独制作在一个透明基材上,然后与其他功能层相结合的。
实施例七
图9为本发明实施例七光学准直层和光栅吸收层的连接结构示意图。如图9所示,所述光学准直层100直接设置在透明基材210与光栅220相对的一侧。也就是说,光栅220与光学准直层100加工在同一基材的两侧,从而减少贴合工序。
实施例八
由于光栅的存在会降低投影屏幕的反射率,从而导致投影屏幕的增益降低,因此在本实施例中,光栅可以采用灰色半透明的材质来制备。具体来说,由于全黑吸收材料的吸收率在90%左右,为了防止投影屏幕的增益低,可以选择吸收率<90%的灰色半透明材料制作光栅。光栅结构制备方法与使用黑色吸光材料结构的方法相同。由于灰色半透明材料的吸收率不是接近于100%,因此投影屏幕增益提高,同时,相比于未加光栅结构的投影屏幕抗环境光能力强。
在现有技术中,为了提高抗环境光对比度,需要降低反射涂层的反射率,但是这样也会同等程度的损失投影光线,使得增益做不高,而本发明中的结构在多角度吸收环境光的同时,可以保证投影光线经光栅的间隙中透过,虽然投影光线也会有一定损失,但是反射涂层反射率可以做到很高,比如90%,这样最后对于投影光线来说反射率还是比以前高,增益也就高了。
实施例九
图10为本发明实施例九光学准直层的结构示意图。如图10所示,光学准直层为环形TIR(total internal reflection)全反射层,其利用全反射的原理,在准直微结构上发生两次TIR反射,不需要设置额外的反射涂层。环形TIR全反射层的环形中心与光栅吸收层的同心环圆心均位于所述投影屏幕的竖直对称中心线上,其可以重合也可以不重合。
实施例十
图11为本发明实施例十光学准直层的结构示意图。如图11所示,所述光学准直层为环形菲涅尔结构。当所述光学准直层为环形菲涅尔结构时,菲涅尔结构的微结构表面设有反射涂层,光线在准直微结构上发生一次反射后回到观众眼中。另外,环形菲涅尔结构的环形中心与所述光栅吸收层的同心环圆心均位于所述投影屏幕的竖直对称中心线上,其可以重合也可以不重合。
综上所述,本发明提供一种投影屏幕,通过设置呈同心环状排列的疏密不均匀的光栅,使投影屏幕具有亮度均匀性好、抗环境光能力强的特点,同时,由于光栅吸收结构可以有效区分投影光和环境光,使投影屏幕具有高增益,从而降低投影机的光机成本。

Claims (11)

  1. 一种投影屏幕,包含依次设置的光学准直层和表面扩散层,其特征在于,在所述光学准直层和表面扩散层之间还设有用于吸收来自除投影光方向外的各个方向的环境光的光栅吸收层;所述光栅吸收层包含多个不同半径的吸光环状单元,多个所述吸光环状单元呈同心环状排列,每个所述吸光环状单元由多个光栅沿同心环的周向排列组成,以所述投影屏幕的竖直对称中心线为中心,沿着所述同心环的周向分别向所述投影屏幕左右两侧延伸的方向,同一所述吸光环状单元中相邻的两个光栅的间距逐渐增大。
  2. 如权利要求1所述的投影屏幕,其特征在于,沿远离所述同心环的圆心的方向,同一方向的不同所述吸光环状单元上相邻的两个光栅的间距逐渐增大。
  3. 如权利要求1所述的投影屏幕,其特征在于,所述同心环的圆心位于所述投影屏幕的竖直对称中心线上。
  4. 如权利要求1至3中任一项所述的投影屏幕,其特征在于,所述光栅的横截面为三角形、矩形、梯形或半圆形。
  5. 如权利要求4所述的投影屏幕,其特征在于,所述光栅吸收层还包含透明基材,所述光栅设置在所述透明基材上。
  6. 如权利要求4所述的投影屏幕,其特征在于,所述光栅设置在所述光学准直层或所述表面扩散层的基材上。
  7. 如权利要求1所述的投影屏幕,其特征在于,所述光栅为吸收率<90%的灰色半透明材质。
  8. 如权利要求1所述的投影屏幕,其特征在于,所述光学准直层 为环形TIR全反射层或环形菲涅尔结构。
  9. 如权利要求8所述的投影屏幕,其特征在于,所述环形菲涅尔结构的微结构表面设有反射涂层。
  10. 如权利要求8所述的投影屏幕,其特征在于,所述环形TIR全反射层或环形菲涅尔结构的环形中心与所述光栅吸收层的同心环圆心均位于所述投影屏幕的竖直对称中心线上。
  11. 如权利要求1所述的投影屏幕,其特征在于,所述光栅的高度为50um-1000um,光栅的宽度为50um-500um,光栅的间距为200um-2000um,光栅的长度为50um-1665mm。
PCT/CN2020/098452 2019-07-04 2020-06-28 一种投影屏幕 WO2021000792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/597,381 US11960199B2 (en) 2019-07-04 2020-06-28 Projection screen
EP20834893.8A EP3985435B1 (en) 2019-07-04 2020-06-28 Projection screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910598796.8 2019-07-04
CN201910598796.8A CN112180670B (zh) 2019-07-04 2019-07-04 一种投影屏幕

Publications (1)

Publication Number Publication Date
WO2021000792A1 true WO2021000792A1 (zh) 2021-01-07

Family

ID=73914566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098452 WO2021000792A1 (zh) 2019-07-04 2020-06-28 一种投影屏幕

Country Status (4)

Country Link
US (1) US11960199B2 (zh)
EP (1) EP3985435B1 (zh)
CN (1) CN112180670B (zh)
WO (1) WO2021000792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341827A1 (en) * 2018-09-27 2021-11-04 Appotronics Corporation Limited Projection screen and projection system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112015040B (zh) * 2019-05-30 2023-02-03 深圳光峰科技股份有限公司 投影屏幕
CN112180670B (zh) * 2019-07-04 2023-04-07 深圳光峰科技股份有限公司 一种投影屏幕

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096278A (en) * 1990-06-25 1992-03-17 Takayuki Yoshioka Reflective screen for front-projection television
CN1294317A (zh) * 1999-11-01 2001-05-09 孙柏林 正投屏幕
CN1670618A (zh) 2004-03-15 2005-09-21 株式会社有泽制作所 反射式屏幕装置
CN1723699A (zh) 2002-12-11 2006-01-18 皇家飞利浦电子股份有限公司 具有反差均匀性校正的投影系统
CN101430495A (zh) * 2008-12-09 2009-05-13 张家港市红叶视听器材有限公司 高清投影屏幕
KR101125176B1 (ko) * 2011-03-07 2012-03-20 유환아이텍(주) 초단초점 프로젝터용 반사형 스크린
CN103605258A (zh) * 2013-12-06 2014-02-26 深圳市真屏科技发展有限公司 抗环境光投影屏幕
CN104516182A (zh) 2014-12-17 2015-04-15 广东威创视讯科技股份有限公司 一种照明系统、投影机以及背投影系统
CN105408777A (zh) 2014-02-14 2016-03-16 大日本印刷株式会社 反射屏、反射屏的制造方法、屏幕框体和影像显示系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880292A (en) * 1987-07-24 1989-11-14 Minolta Camera Kabushiki Kaisha Transmission viewing screen of image projector apparatus
JPH0456837U (zh) * 1990-09-25 1992-05-15
DE19700162B4 (de) * 1997-01-07 2006-09-07 Eads Deutschland Gmbh Verfahren zur Herstellung eines holografischen Bildschirms für die Laseraufprojektion
JP4487567B2 (ja) * 2004-01-05 2010-06-23 三菱電機株式会社 背面投射スクリーン
US20070177263A1 (en) * 2004-07-23 2007-08-02 Kuraray Co. Ltd Back projection-type screen and back projection-type projection device
US7885003B2 (en) * 2005-01-11 2011-02-08 Dai Nippon Printing Co., Ltd. Optical diffusing sheet, optical deflecting sheet, and transmission type screen
CN101301236B (zh) * 2008-06-27 2011-02-16 北京中星微电子有限公司 基于三维摄像的视力保护系统及方法
CN101907821A (zh) * 2009-06-08 2010-12-08 陈波 一种正向投影屏及其制造方法
WO2015045192A1 (ja) * 2013-09-25 2015-04-02 大日本印刷株式会社 リニアフレネルレンズシート、透過型表示装置及びリニアフレネルレンズシートを製造するためのロール状の型
CN104062839B (zh) * 2014-07-21 2016-01-20 成都菲斯特科技有限公司 一种带正向投影光学屏幕的投影系统
CN104407444B (zh) * 2014-10-17 2017-07-04 河北冀雅电子有限公司 一种用于液晶屏的全视角3d光栅结构
CN108153102A (zh) * 2016-12-05 2018-06-12 深圳市光峰光电技术有限公司 投影屏幕及其制造方法
CN108663893B (zh) * 2017-03-29 2020-10-23 台湾扬昕股份有限公司 背投影屏幕
CN109388013B (zh) * 2017-08-04 2022-02-11 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN109388015B (zh) * 2017-08-04 2024-05-17 深圳光峰科技股份有限公司 全反射屏幕和投影系统
CN107329360A (zh) * 2017-08-29 2017-11-07 成都菲斯特科技有限公司 正投影透光投影屏幕及投影系统
CN110244508B (zh) * 2018-03-09 2021-12-10 深圳光峰科技股份有限公司 屏幕和投影系统
CN111273512A (zh) * 2018-12-04 2020-06-12 深圳光峰科技股份有限公司 投影屏幕和投影系统
CN112180670B (zh) * 2019-07-04 2023-04-07 深圳光峰科技股份有限公司 一种投影屏幕

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096278A (en) * 1990-06-25 1992-03-17 Takayuki Yoshioka Reflective screen for front-projection television
CN1294317A (zh) * 1999-11-01 2001-05-09 孙柏林 正投屏幕
CN1723699A (zh) 2002-12-11 2006-01-18 皇家飞利浦电子股份有限公司 具有反差均匀性校正的投影系统
CN1670618A (zh) 2004-03-15 2005-09-21 株式会社有泽制作所 反射式屏幕装置
CN101430495A (zh) * 2008-12-09 2009-05-13 张家港市红叶视听器材有限公司 高清投影屏幕
KR101125176B1 (ko) * 2011-03-07 2012-03-20 유환아이텍(주) 초단초점 프로젝터용 반사형 스크린
CN103605258A (zh) * 2013-12-06 2014-02-26 深圳市真屏科技发展有限公司 抗环境光投影屏幕
CN105408777A (zh) 2014-02-14 2016-03-16 大日本印刷株式会社 反射屏、反射屏的制造方法、屏幕框体和影像显示系统
CN104516182A (zh) 2014-12-17 2015-04-15 广东威创视讯科技股份有限公司 一种照明系统、投影机以及背投影系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985435A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210341827A1 (en) * 2018-09-27 2021-11-04 Appotronics Corporation Limited Projection screen and projection system
US11921413B2 (en) * 2018-09-27 2024-03-05 Appotronics Corporation Limited Projection screen and projection system

Also Published As

Publication number Publication date
EP3985435B1 (en) 2023-07-26
EP3985435A1 (en) 2022-04-20
US20220276551A1 (en) 2022-09-01
EP3985435A4 (en) 2022-08-17
CN112180670A (zh) 2021-01-05
US11960199B2 (en) 2024-04-16
CN112180670B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2021000792A1 (zh) 一种投影屏幕
US11906892B2 (en) Total internal reflection screen and projection system
TWI581049B (zh) 投影屏幕
CN207216263U (zh) 全反射屏幕和投影系统
US20220121097A1 (en) Projection screen and projection system
US11921413B2 (en) Projection screen and projection system
WO2019024367A1 (zh) 投影屏幕和投影系统
US20210389657A1 (en) Projection screen and processing method therefor
CN110297386B (zh) 曲面屏幕及其微结构设置方法和投影系统
US11448952B2 (en) Screen and projection system
WO2021143439A1 (zh) 一种投影屏幕以及投影系统
CN110554557B (zh) 投影屏幕和投影系统
CN102023471A (zh) 一种完全屏蔽环境光的正向投影屏
US11762275B2 (en) Projection screen and projection system
WO2019192202A1 (zh) 屏幕及投影系统
CN109388014B (zh) 投影屏幕和投影系统
JP2008039989A (ja) 透過型スクリーン用光学部材およびこの透過型スクリーン用光学部材を具備するディスプレイ装置
TWI706214B (zh) 光學投影螢幕
TWM564737U (zh) 背投影幕

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020834893

Country of ref document: EP

Effective date: 20220113