WO2021088307A1 - 一种植物功能性涤纶长丝及其制备方法 - Google Patents

一种植物功能性涤纶长丝及其制备方法 Download PDF

Info

Publication number
WO2021088307A1
WO2021088307A1 PCT/CN2020/082977 CN2020082977W WO2021088307A1 WO 2021088307 A1 WO2021088307 A1 WO 2021088307A1 CN 2020082977 W CN2020082977 W CN 2020082977W WO 2021088307 A1 WO2021088307 A1 WO 2021088307A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional polyester
plant
mass ratio
plant functional
polyester filament
Prior art date
Application number
PCT/CN2020/082977
Other languages
English (en)
French (fr)
Inventor
黄效华
刘彦明
刘宇
黄效谦
甄丽
刘洁
Original Assignee
百事基材料(青岛)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 百事基材料(青岛)股份有限公司 filed Critical 百事基材料(青岛)股份有限公司
Publication of WO2021088307A1 publication Critical patent/WO2021088307A1/zh
Priority to AU2021105065A priority Critical patent/AU2021105065A4/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/08Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0893Zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/324Alkali metal phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial

Definitions

  • the invention relates to the technical field of textiles, in particular to a plant functional polyester filament and a preparation method thereof.
  • polyester fiber accounts for more than 60% of the world's synthetic fiber output. It has the advantages of durability, good elasticity, resistance to deformation, corrosion resistance, and insulation, especially its excellent wrinkle resistance and shape retention. Polyester fabrics are washable, wear-resistant, non-ironing and wrinkle-resistant, so they are widely used in outerwear, home textiles, luggage, tents and other fields.
  • Polyester fiber containing plant extracts has a wide range of application prospects because of its theoretically simultaneous function of plant extracts and properties of polyester fiber.
  • the compatibility of each functional material is poor.
  • the existing method is used to extract the plant extract. When directly added to molten PET, the plant extracts are easy to agglomerate, disperse unevenly in the melt, and are easily oxidized at high temperature.
  • the existing plant functional polyester masterbatch has poor peelability during the spinning process. It is because the PET melt with plant extracts is prone to swelling zone after the spinneret is pressed out. The appearance of the swelling zone will affect the shape of the melt leaving the spinneret hole, and it is easy to stick to the plate and affect the spinning process. Normal production;
  • polyester fiber has its own shortcomings.
  • the fabric made of polyester fiber will pilling after being used for a period of time.
  • the prior art does not A good improvement method has affected the use of polyester fiber:
  • the Chinese invention patent number CN201811438662.1 the name of the invention is a polyester fiber containing plant extracts.
  • the fiber has good natural functionality, high dry heat shrinkage, breaking strength and elastic elongation, and abrasion resistance. It also has a greater improvement, non-toxic, non-flammable, safe and environmentally friendly.
  • This patent mainly solves the problem of the mechanical strength of the plant-functional polyester fiber, and cannot solve the shortcomings of the existing polyester fiber that it is easy to pilling, easy to charge static electricity, and get dust.
  • polyester fiber filament with good plant functions, antibacterial and deodorizing, good abrasion resistance, high elasticity, comfortable hand feeling, not easy to pilling, and not easy to stain.
  • the purpose of the present invention is to provide a plant functional polyester filament and a preparation method thereof
  • a plant functional polyester filament contains 0.1-1.5% of plant extracts.
  • the preferred plant extract is one or a combination of peppermint extract, valerian extract, lavender extract, wormwood extract, and seaweed extract. Of course, it can also be other plant extracts, which will not be repeated.
  • the present invention also includes a method for preparing plant functional polyester filament, including the steps of preparing plant functional polyester masterbatch, including: heating the PET chip to melt, first adding antioxidant and dispersing agent and stirring, and then adding protective agent and The plant extract is mixed at high speed, and finally the modifier is added, and the mixture is obtained after uniform mixing, which is extruded and granulated.
  • the mass ratio of PET chips, antioxidant, dispersant, protective agent and modifier is 100:0.1-0.5:0.1-0.3:0.4-0.8:0.1-0.4.
  • the PET chip prefferably, heat the PET chip to 250-260°C, add antioxidant and dispersant and stir for 10-15 minutes at 500-700 rad/min, then add the mixture of protective agent and plant extract, and mix at high speed for 20-40 Minutes, the modifier is added at last, the temperature is lowered to 220-230°C to obtain the mixture, which is extruded and granulated to obtain the plant functional polyester masterbatch.
  • the antioxidant is composed of tert-butyl hydroquinone and zinc powder in a mass ratio of 1:2-5.
  • the dispersant is composed of sodium tripolyphosphate, ethylenediaminetetraacetic acid and sodium pyrophosphate in a mass ratio of 1:1 to 4:2 to 4.
  • the protective agent is composed of nano carbon powder and cross-linked porous chitosan microspheres in a mass ratio of 1:1 to 4;
  • the cross-linked chitosan porous microspheres are obtained according to the following steps:
  • the mass ratio of chitosan solution, emulsifying and dispersing agent and formaldehyde is 100:50 ⁇ 55:4 ⁇ 8.
  • the modifier is composed of ethylene bis stearic acid amide and silicone oil in a mass ratio of 1:3-5.
  • ordinary PET chips and plant functional polyester masterbatch are uniformly mixed, screw extruded and melted, and the melt is extruded and spun from the spinning nozzle to obtain plant functional polyester filament.
  • the present invention has the following advantages:
  • the plant functional polyester filament of the present invention has both the higher mechanical strength of polyester fiber and the anti-mite and antibacterial properties of plant extracts, antibacterial and deodorizing, good abrasion resistance, high elasticity, comfortable hand feeling, not easy to pilling, and not easy to Contaminated, the breaking strength is 6.8 ⁇ 7.8cN/dtex; the elastic modulus is 90 ⁇ 101cN/dtex, the elongation at break is 12 ⁇ 18%, and the wear resistance is high.
  • the wear resistance reciprocating test machine is used for 2000 times. If it is less than 0.001g, the mite repellent rate can reach more than 90%, and the antibacterial rate of Escherichia coli and Staphylococcus aureus are both above 98%.
  • the point-to-point resistance and charged charge data of the fabric prepared from the plant functional polyester filament of the present invention have reached the standard of Class A antistatic clothing, and it is not easy to pilling, will not be charged with static electricity and dust, and effectively solves the existing problem.
  • the problem of pilling, static electricity, and easy staining of polyester fibers has expanded the scope of application of polyester fibers.
  • the preparation method of the plant functional polyester filament of the present invention prevents the discoloration of plant extracts when added to the high-temperature melt due to the addition of antioxidants, and the addition of antioxidants in the initial stage makes the molten PET fiber stronger in oxidation resistance.
  • plant extracts When plant extracts are added later, it can better prevent the high temperature discoloration of plant extracts and prevent the appearance of flower colors;
  • the preparation method of the plant functional polyester filament of the present invention due to the addition of a dispersant, can quickly and evenly disperse the plant extract in the PET melt, preventing the plant extract from agglomerating, causing local high temperature in the PET melt and forming a cross-linked three The degree of polymer, causing the melt color to darken, from liquid to colloidal.
  • the preparation method of the plant functional polyester filament of the present invention uses nano carbon powder and self-made cross-linked chitosan porous microspheres as protective agents. Since the surface of nano carbon powder and cross-linked chitosan microspheres have many micropores, they can be The plant extract is coated in the micropores, thereby avoiding the carbonization of the plant extract; especially the preferred process is to mix the protective agent and the plant extract uniformly before adding it to the melt, so that the plant extract can fully enter the protection In the micropores of the agent, the carbonization of plant extracts is better prevented.
  • the preparation method of the plant functional polyester filament of the present invention adds a modifier to improve the peelability of the melt, avoids the phenomenon of sticking of the melt due to the appearance of the expansion zone after the spinneret is pressed out, and ensures the spinning process The normal production and the quality of the silk.
  • the purpose of the present invention is to provide a plant functional polyester filament and a preparation method thereof, which are achieved through the following technical solutions:
  • a plant functional polyester filament contains 0.1-1.5% of plant extracts.
  • Plant extract is an impurity for polyester fiber. If the content is too high, the dispersibility will be poor during the preparation process, and it is easy to agglomerate. Moreover, the melt containing impurities has poor peelability and is easy to stick to the spinneret, which affects the spinning.
  • the preferred plant extract is one or a combination of peppermint extract, valerian extract, lavender extract, wormwood extract, chitin extract, and seaweed extract. Of course, it can also be other plant extracts. , This article will not repeat it.
  • the present invention also includes a method for preparing plant functional polyester filament, which includes the following steps:
  • the preparation steps of plant functional polyester masterbatch including: heating PET chips to 250 ⁇ 260°C, adding antioxidant and dispersant, stirring at 500 ⁇ 700rad/min for 10 ⁇ 15 minutes, then adding protective agent and Mix the mixture of plant extracts at high speed for 20-40 minutes, finally add the modifier, cool to 220-230°C to obtain the mixture, extrude and granulate to obtain the plant functional polyester masterbatch;
  • the mass ratio of PET chip, antioxidant, dispersant, protective agent, plant extract and modifier is 100:0.1 ⁇ 0.5:0.1 ⁇ 0.3:0.4 ⁇ 0.8:0.5 ⁇ 5:0.1 ⁇ 0.4.
  • the plant extract is one or a combination of peppermint extract, valerian extract, lavender extract, wormwood extract, and seaweed extract.
  • Plant extracts can be purchased or self-extracted.
  • the extraction method can be water extraction, acid extraction, or alcohol extraction.
  • the antioxidant is composed of tert-butyl hydroquinone and zinc powder in a mass ratio of 1:2-5; the function of the antioxidant is to prevent the plant extract from discoloring when it is added to the high-temperature melt, and the antioxidant is added in the initial stage, Make the molten PET fiber stronger in antioxidant performance. When plant extracts are added in the later stage, it can better prevent the high temperature discoloration of plant extracts and prevent the appearance of flower colors;
  • the dispersant is composed of sodium tripolyphosphate, ethylenediaminetetraacetic acid and sodium pyrophosphate in a mass ratio of 1:1 ⁇ 4:2 ⁇ 4; the function of the dispersant is to quickly and uniformly disperse the plant extract in the PET melt , To prevent the agglomeration of plant extracts, causing local high temperature in the PET melt, forming a cross-linked three-degree polymer, causing the color of the melt to darken and change from liquid to colloidal, which affects the mechanical properties of the fiber after spinning. The color of the back fiber is uneven, with dark spots;
  • the protective agent is composed of nano carbon powder and cross-linked chitosan porous microspheres in a mass ratio of 1:1 to 4;
  • the cross-linked chitosan porous microspheres are obtained according to the following steps:
  • the mass ratio of chitosan solution, emulsifying and dispersing agent and formaldehyde is 100:50 ⁇ 55:4 ⁇ 8.
  • the cross-linked chitosan porous microspheres use traditional reverse emulsification and cross-linking method.
  • the chitosan acetic acid solution is added to the emulsifying and dispersing agent, and the nano-silica is fully dispersed around the chitosan molecules through mechanical stirring, and then the cross-linking is added.
  • the linking agent cross-links chitosan into spheres by adjusting the pH conditions, and loads nano-silica particles during the reaction process.
  • the cross-linking After the linking is completed, the nano-silica is removed by sodium hydroxide solution, and the cross-linked chitosan porous microspheres can be obtained, and the micropores are uniform, and the plant extract can be filled in the micropores to prevent plant extraction after adding the melt Carbonization of objects.
  • the role of the protective agent is to prevent the carbonization of plant extracts. This is because the nano-carbon powder and cross-linked chitosan microspheres have many micropores on the surface, which can coat the plant extracts in the micropores, thereby avoiding the Carbonization; the preferred process is to mix the protective agent and the plant extract uniformly before adding it to the melt, so that the plant extract can fully enter the micropores of the protective agent, and better prevent the carbonization of the plant extract.
  • the modifier is composed of ethylene bisstearic acid amide and silicone oil in a mass ratio of 1:3 ⁇ 5; the addition of modifier can improve the peelability of the melt, and avoid the expansion of the melt due to the expansion zone after the spinneret is extruded. The phenomenon of sticking to the board occurs to ensure the normal production and quality of the spinning process.
  • polyester filament the preferred mass ratio of ordinary PET chips and plant functional polyester masterbatch is 2 ⁇ 50:1; the blending spinning of ordinary PET chips and plant functional polyester masterbatch can ensure that the plant extracts are in While the effective content of plant functional polyester filaments is reduced, the production of plant functional polyester masterbatch is reduced and the production efficiency is improved.
  • a plant functional polyester filament containing 0.1% of plant extracts A plant functional polyester filament containing 0.1% of plant extracts.
  • a plant functional polyester filament containing 1.5% of plant extracts A plant functional polyester filament containing 1.5% of plant extracts.
  • a plant functional polyester filament containing 0.5% of plant extracts A plant functional polyester filament containing 0.5% of plant extracts.
  • a plant functional polyester filament containing 1.0% of plant extracts 1.0% of plant extracts.
  • a plant-functional polyester filament containing 1.2% of plant extracts A plant-functional polyester filament containing 1.2% of plant extracts.
  • a preparation method of plant functional polyester filament includes the following steps:
  • the preparation steps of plant functional polyester masterbatch including: heating PET chips to 250 ⁇ 260°C, adding antioxidant and dispersant after melting, stirring at 500rad/min for 10 minutes, then adding protective agent and plant The mixture of extracts is mixed at high speed for 20 minutes, finally the modifier is added, and the temperature is reduced to 230°C to obtain the mixture, which is extruded and granulated to obtain the plant functional polyester masterbatch;
  • the mass ratio of PET chips, antioxidants, dispersants, protective agents, plant extracts and modifiers is 100:0.1:0.1:0.4:0.5:0.1.
  • the antioxidant is composed of tert-butyl hydroquinone and zinc powder in a mass ratio of 1:2;
  • the dispersant is composed of sodium tripolyphosphate, ethylenediaminetetraacetic acid and sodium pyrophosphate in a mass ratio of 1:1:2;
  • the protective agent is composed of nano carbon powder and cross-linked chitosan porous microspheres in a mass ratio of 1:1;
  • the cross-linked chitosan porous microspheres are obtained according to the following steps:
  • Dissolve chitosan in a 2% acetic acid solution with a mass concentration stand still to remove bubbles, and prepare a uniform and transparent chitosan solution; the mass ratio of chitosan to acetic acid solution is 1:95;
  • the chitosan solution was added dropwise to the emulsifying and dispersing agent, heated to 40°C, mixed uniformly, added formaldehyde, adjusted the pH of the reaction system to 4, kept the reaction for 2 hours, and washed the product with water after the reaction was completed. Soaked in% sodium hydroxide solution and washed with water to obtain cross-linked chitosan porous microspheres;
  • the mass ratio of chitosan solution, emulsifying and dispersing agent and formaldehyde is 100:50:4.
  • the modifier is composed of ethylene bis stearic acid amide and silicone oil in a mass ratio of 1:3;
  • a preparation method of plant functional polyester filament includes the following steps:
  • the preparation steps of plant functional polyester masterbatch including: heating PET chips to 250 ⁇ 260°C, adding antioxidant and dispersant after melting, stirring at 700rad/min for 15 minutes, then adding protective agent and plant The mixture of extracts is mixed at high speed for 40 minutes, finally the modifier is added, and the temperature is reduced to 220°C to obtain the mixture, which is extruded and granulated to obtain plant functional polyester masterbatch;
  • the mass ratio of PET chips, antioxidants, dispersants, protective agents, plant extracts and modifiers is 100:0.5:0.3:0.4:5:0.4.
  • the antioxidant is composed of tert-butyl hydroquinone and zinc powder in a mass ratio of 1:5;
  • the dispersant is composed of sodium tripolyphosphate, ethylenediaminetetraacetic acid and sodium pyrophosphate in a mass ratio of 1:4:4;
  • the protective agent is composed of nano carbon powder and cross-linked chitosan porous microspheres in a mass ratio of 1:4;
  • the cross-linked chitosan porous microspheres are obtained according to the following steps:
  • Dissolve chitosan in a 5% mass concentration acetic acid solution leave it to stand to remove bubbles, and prepare a uniform and transparent chitosan solution; the mass ratio of chitosan to acetic acid solution is 1:100;
  • the chitosan solution was added dropwise to the emulsifying and dispersing agent, heated to 50°C, mixed uniformly, added formaldehyde, adjusted the pH of the reaction system to 5, kept for 3 hours, and then washed the product with water after the reaction was completed. Soaked in% sodium hydroxide solution and washed with water to obtain cross-linked chitosan porous microspheres;
  • the mass ratio of chitosan solution, emulsifying and dispersing agent and formaldehyde is 100:55:8.
  • the modifier is composed of ethylene bis stearic acid amide and silicone oil in a mass ratio of 1:5;
  • the ordinary PET chips and plant functional polyester masterbatch are mixed uniformly according to the mass ratio of 4:1, screw extruded and melted, and the melt is extruded and spun from the spinning nozzle to obtain a plant containing 1.0% of plant extract Functional polyester filament.
  • a preparation method of plant functional polyester filament includes the following steps:
  • the preparation steps of plant functional polyester masterbatch including: heating PET chips to 250 ⁇ 260°C, adding antioxidant and dispersant after melting, stirring for 12 minutes at 600rad/min, and then adding protective agent and plant
  • the mixture of extracts is mixed at high speed for 30 minutes, finally the modifier is added, and the temperature is reduced to 225°C to obtain the mixture, which is extruded and granulated to obtain plant functional polyester masterbatch;
  • the mass ratio of PET chips, antioxidants, dispersants, protective agents, plant extracts and modifiers is 100:0.2:0.2:0.5:4.5:0.2.
  • the antioxidant is composed of tert-butyl hydroquinone and zinc powder in a mass ratio of 1:3;
  • the dispersant is composed of sodium tripolyphosphate, ethylenediaminetetraacetic acid and sodium pyrophosphate in a mass ratio of 1:2:3;
  • the protective agent is composed of nano carbon powder and cross-linked chitosan porous microspheres in a mass ratio of 1:2;
  • the cross-linked chitosan porous microspheres are obtained according to the following steps:
  • the mass ratio of chitosan solution, emulsifying and dispersing agent and formaldehyde is 100:52:6.
  • the modifier is composed of ethylene bis stearic acid amide and silicone oil in a mass ratio of 1:4;
  • a preparation method of plant functional polyester filament includes the following steps:
  • the preparation steps of plant functional polyester masterbatch including: heating PET chips to 250 ⁇ 260°C, adding antioxidant and dispersant after melting, stirring for 14 minutes at a speed of 550rad/min, and then adding protective agent and plant The mixture of extracts is mixed at high speed for 25 minutes, finally the modifier is added, and the temperature is reduced to 225°C to obtain the mixture, which is extruded and granulated to obtain the plant functional polyester masterbatch;
  • the mass ratio of PET chips, antioxidants, dispersants, protective agents, plant extracts and modifiers is 100:0.4:0.15:0.5:4:0.3.
  • the antioxidant is composed of tert-butyl hydroquinone and zinc powder in a mass ratio of 1:4;
  • the dispersant is composed of sodium tripolyphosphate, ethylenediaminetetraacetic acid and sodium pyrophosphate in a mass ratio of 1:3:2.5;
  • the protective agent is composed of nano carbon powder and cross-linked chitosan porous microspheres in a mass ratio of 1:3;
  • the cross-linked chitosan porous microspheres are obtained according to the following steps:
  • the mass ratio of chitosan solution, emulsifying and dispersing agent and formaldehyde is 100:54:5.
  • the modifier is composed of ethylene bis stearic acid amide and silicone oil in a mass ratio of 1:3.5;
  • the plant extract contained in the plant functional polyester filaments of Examples 1-9 may be one or a combination of peppermint extract, valerian extract, lavender extract, wormwood extract, and seaweed extract .
  • the detection indexes of plant functional polyester filaments containing plant extracts prepared in Examples 6 to 9 of the present invention are shown in Table 1.
  • the antibacterial rate is tested by the method of GB/T20944.3-2008 antibacterial properties of textiles: oscillation method, and the test standard for mite repellent rate adopts the evaluation of GB/T24253-2009 textile antibacterial performance.
  • the plant functional polyester filament fiber containing plant extracts of the present invention has all the indicators reaching the normal indicators required by the polyester fiber, and has relatively suitable breaking strength, elastic modulus and breaking elongation.
  • Elongation, breaking strength is 6.8 ⁇ 7.8cN/dtex
  • modulus of elasticity is 90 ⁇ 101cN/dtex
  • elongation at break is 12 ⁇ 18%
  • the plant functional polyester filament fiber containing plant extracts of the present invention due to the addition of plant extracts, also has the function of antibacterial and anti-mite, and the repellent rate can reach more than 90%.
  • the inhibitory rates of Escherichia coli and Staphylococcus aureus are above 98%.
  • Example 7 In order to compare the effects of antioxidants, dispersants, protective agents and modifiers in the process, we designed a comparative example. Since the parameters of Example 7 are moderate, taking Example 7 as a reference, the specifics are as follows:
  • Comparative Example 1 adopts the preparation method of Example 7 in turn, and under the condition that other processes remain unchanged, only the step of adding the antioxidant is removed.
  • Comparative Example 2 adopts the preparation method of Example 7 in turn, and under the condition that other processes remain unchanged, only the step of adding the dispersant is removed.
  • Comparative Example 3 adopts the preparation method of Example 7 in turn, and under the condition that other processes remain unchanged, only the step of adding the protective agent is removed.
  • Comparative Example 4 adopts the preparation method of Example 7 in turn, and under the condition that other processes remain unchanged, only the step of adding the modifier is removed.
  • Comparative Example 4 The test data of Comparative Example 4 is not much different from that of Example 7, but the peelability of the melt is very poor during the production process, and it is easy to stick to the plate after melt spinning. In order to smooth the spinning, it is necessary to continuously spray silicone oil on the surface of the spinneret. And the amount of silicone oil sprayed is not easy to control. Too much spraying of the spinneret is easy to get dirty, which affects the quality of the filament. Too little spraying makes it easy to stick to the plate, and it is necessary to stop repeatedly to clean the spinneret.
  • Example 6 3.5 ⁇ 10 6 0.09
  • Example 7 5.0 ⁇ 10 6 0.14
  • Example 8 5.2 ⁇ 10 6 0.18
  • Example 9 4.6 ⁇ 10 6 0.12

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Filaments (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明公开了一种植物功能性涤纶长丝及其制备方法,该植物功能性涤纶长丝中含有植物提取物0.1-1.5%;制备方法包括植物功能性涤纶母粒的制备步骤,包括:将PET切片加热至熔融,先加入抗氧化剂和分散剂搅拌,然后加入保护剂和植物提取物,高速混合,最后加入改性剂,混合均匀后得到混合料,挤出造粒。本发明的植物功能涤纶长丝兼具涤纶纤维较高的力学强度和植物提取物的抑螨抗菌性能,抑菌除臭,耐磨性好,并且具有高弹性,手感舒适,不易起球,不易沾污。

Description

一种植物功能性涤纶长丝及其制备方法 技术领域
本发明涉及纺织技术领域,具体说是一种植物功能性涤纶长丝及其制备方法。
背景技术
涤纶纤维作为合成纤维的重要品种,其产量占世界合成纤维产量的60%以上,具有结实耐用、弹性好、不易变形、耐腐蚀、绝缘的优点,尤其是其优异的抗皱性和保形性,涤纶面料耐洗耐磨、免烫抗皱,因此被广泛用于外套服装、家纺、箱包和帐篷等领域。
含有植物提取物的涤纶纤维,因其理论上同时具有植物提取物的功能作用和涤纶纤维的性质,应用前景广泛,但是在实际生产中主要存在以下问题:
第一,与其他功能材料混合使用容易改变原涤纶纤维的性状,如影响涤纶纤维的弹性和耐磨性能等指标,第二,各个功能材料之间相容性差,采用现有方法将植物提取物直接加入熔融PET中,植物提取物容易团聚,在熔体中分散不均匀,也容易被高温氧化;第三,现有的植物功能性涤纶母粒在纺丝过程中的剥离性较差,这是由于添加植物提取物的PET熔体在喷丝板压出后,很容易产生膨胀区,膨胀区的出现会影响熔体离开喷丝孔的形态,极易出现粘板现象,影响喷丝工艺的正常生产;
另外,涤纶纤维作为人工合成纤维的一种,本身也具有缺点,如涤纶纤维制备的面料使用一段时间会起球,同时易带静电、沾灰尘,影响美观和舒适,但是现有技术中并没有很好的改进方法,影响了涤纶纤维的使用:
如中国发明专利号CN201811438662.1,发明名称为一种含植物提取物的涤纶纤维,该纤维具有良好的天然功能性,具有较高的干热收缩率、断裂强度和弹性延伸率,耐磨性也有较大的提高,无毒不燃,安全环保,该专利主要解决了植物功能涤纶纤维机械强度的问题,不能解决现有涤纶纤维容易起球起毛、易带静电、沾灰尘的缺点。
基于以上理由,发明一种兼具良好的植物功能性,抑菌除臭,耐磨性好,并且具有高弹性,手感舒适,不易起球,不易沾污的涤纶纤维长丝具有重要的意义。
发明内容
为解决上述问题,本发明的目的是提供一种植物功能性涤纶长丝及其制备方法,
本发明为实现上述目的,通过以下技术方案实现:
一种植物功能性涤纶长丝,该植物功能性涤纶长丝中含有植物提取物0.1-1.5%。
优选的植物提取物为薄荷提取物、缬草提取物、薰衣草提取物、艾草提取物和海藻提取物中的一种或者几种的组合,当然也可以是其他植物提取物,不再赘述。
本发明还包括一种植物功能性涤纶长丝的制备方法,包括植物功能性涤纶母粒的制备步骤,包括:将PET切片加热至熔融,先加入抗氧化剂和分散剂搅拌,然后加入保护剂和植物提取物,高速混合,最后加入改性剂,混合均匀后得到混合料,挤出造粒。
优选的,PET切片、抗氧化剂、分散剂、保护剂和改性剂的质量比为100:0.1~0.5:0.1~0.3:0.4~0.8:0.1~0.4。
优选的,将PET切片加热至250~260℃,加入抗氧化剂和分散剂在500~700rad/min的转速下搅拌10~15分钟,然后加入保护剂和植物提取物的混合物,高速混合20~40分钟,最后加入改性剂,降温至220~230℃得到混合料,挤出造粒,得到植物功能性涤纶母粒。
优选的,抗氧化剂由叔丁基对苯二酚和锌粉按照质量比1:2~5组成。
优选的,分散剂由三聚磷酸钠、乙二胺四乙酸和焦磷酸钠按照质量比1:1~4:2~4组成。
优选的,保护剂为纳米碳粉和交联壳聚糖多孔微球按照质量比1:1~4组成;
其中交联壳聚糖多孔微球按照以下步骤得到:
将壳聚糖溶于质量浓度2~5%醋酸溶液中,静置去除气泡,配制得到均匀透明的壳聚糖溶液;壳聚糖和醋酸溶液的质量比为1:95~100;
向液体石蜡和纳米二氧化硅中加入乳化剂,搅拌均匀得到乳化分散剂;液体石蜡、纳米二氧化硅和乳化剂的质量比为50~60:2~5:1;
在搅拌下,将壳聚糖溶液滴加至乳化分散剂中,加热至40~50℃,混合均匀后加入甲醛,调节反应体系的pH为4~5,保温反应2~3小时,反应结束后将产物水洗,用20~30%的氢氧化钠溶液浸泡,水洗,得到交联壳聚糖多孔微球;
其中壳聚糖溶液、乳化分散剂和甲醛的质量比为100:50~55:4~8。
优选的,改性剂由乙撑双硬脂酸酰胺和硅油按照质量比1:3~5组成。
优选的,将普通的PET切片和植物功能性涤纶母粒混合均匀,螺杆挤压熔融,将熔体从纺丝口中挤压纺丝,得到植物功能性涤纶长丝。
本发明相比现有技术具有以下优点:
本发明的植物功能涤纶长丝兼具涤纶纤维较高的力学强度和植物提取物的抑螨抗菌性能,抑菌除臭,耐磨性好,并且具有高弹性,手感舒适,不易起球,不易沾污,断裂强度在6.8~7.8cN/dtex;弹性模量在90~101cN/dtex,断裂伸长率在12~18%,并且耐磨性能高,采用耐磨往复式试验机2000次损耗均小于0.001g,驱螨率能达到90%以上,对大肠杆菌和金黄色葡萄球菌的抑菌率均在98%以上。
本发明的植物功能涤纶长丝制备成的面料的点对点电阻和带电电荷量的数据均达 到了A类抗静电服的标准,并且不易起球,不会带静电和沾灰尘,有效解决了现有涤纶纤维起球,带静电,易沾灰的问题,扩大了涤纶纤维的使用范围。
本发明的植物功能涤纶长丝的制备方法,由于加入了抗氧化剂,防止植物提取物加入到高温熔体时变色,并且在初期加入了抗氧化剂,使熔融的PET纤维抗氧化性能更强,在后期加入植物提取物时,可以更好地阻止植物提取物的高温变色,防止出现花色的情况;
本发明的植物功能涤纶长丝的制备方法,由于加入了分散剂,能将植物提取物快速均匀分散在PET熔体中,防止植物提取物团聚,造成PET熔体局部高温,形成交联的三度聚合体,导致熔体颜色变暗,由液态变为胶态。
本发明的植物功能涤纶长丝的制备方法,采用纳米碳粉和自制交联壳聚糖多孔微球作为保护剂,由于纳米碳粉和交联壳聚糖微球表面有很多微孔,可以将植物提取物包覆在微孔内,从而避免了植物提取物的碳化;尤其是优选的工艺将保护剂和植物提取物先混合均匀后再加入熔体中,这样可以使植物提取物充分进入保护剂微孔内,更好的防止植物提取物的碳化。
本发明的植物功能涤纶长丝的制备方法,加入了改性剂,提高熔体的剥离性,避免熔体在喷丝板压出后由于膨胀区的出现导致的粘板现象,保证喷丝工艺的正常生产和出丝质量。
具体实施方式
本发明的目的是提供一种植物功能性涤纶长丝及其制备方法,通过以下技术方案实现:
一种植物功能性涤纶长丝,该植物功能性涤纶长丝中含有植物提取物0.1-1.5%。植物提取物对涤纶纤维来说属于杂质,含量过高在制备过程中分散性会变差,容易团聚,而且含有杂质的熔体剥离性差,容易粘喷丝板,影响喷丝。
优选的植物提取物为薄荷提取物、缬草提取物、薰衣草提取物、艾草提取物、甲壳素提取物和海藻提取物中的一种或者几种的组合,当然也可以是其他植物提取物,本文不再赘述。
本发明还包括一种植物功能性涤纶长丝的制备方法,包括以下步骤:
一、植物功能性涤纶母粒的制备步骤,包括:将PET切片加热至250~260℃,加入抗氧化剂和分散剂在500~700rad/min的转速下搅拌10~15分钟,然后加入保护剂和植物提取物的混合物,高速混合20~40分钟,最后加入改性剂,降温至220~230℃得到混合料,挤出造粒,得到植物功能性涤纶母粒;
其中PET切片、抗氧化剂、分散剂、保护剂、植物提取物和改性剂的质量比为100:0.1~0.5:0.1~0.3:0.4~0.8:0.5~5:0.1~0.4。
植物提取物为薄荷提取物、缬草提取物、薰衣草提取物、艾草提取物和海藻提取物中的一种或者几种的组合。
植物提取物可以购买,也可以自提,提取方法可以是水提,酸提,也可以醇提。
所述抗氧化剂由叔丁基对苯二酚和锌粉按照质量比1:2~5组成;抗氧化剂的作用是防止植物提取物加入到高温熔体时变色,并且在初期加入了抗氧化剂,使熔融的PET纤维抗氧化性能更强,在后期加入植物提取物时,可以更好地阻止植物提取物的高温变色,防止出现花色的情况;
所述分散剂由三聚磷酸钠、乙二胺四乙酸和焦磷酸钠按照质量比1:1~4:2~4组成;分散剂的作用是将植物提取物快速均匀分散在PET熔体中,防止植物提取物团聚,造成PET熔体局部高温,形成交联的三度聚合体,导致熔体颜色变暗,由液态变为胶态,进而影响了纺丝后纤维的力学性能,纺丝后纤维颜色不均一,有发暗点状物;
所述保护剂由纳米碳粉和交联壳聚糖多孔微球按照质量比1:1~4组成;
其中交联壳聚糖多孔微球按照以下步骤得到:
将壳聚糖溶于质量浓度2~5%醋酸溶液中,静置去除气泡,配制得到均匀透明的壳聚糖溶液;壳聚糖和醋酸溶液的质量比为1:95~100;
向液体石蜡和纳米二氧化硅中加入乳化剂,搅拌均匀得到乳化分散剂;液体石蜡、纳米二氧化硅和乳化剂的质量比为50~60:2~5:1;
在搅拌下,将壳聚糖溶液滴加至乳化分散剂中,加热至40~50℃,混合均匀后加入甲醛,调节反应体系的pH为4~5,保温反应2~3小时,反应结束后将产物水洗,用20~30%的氢氧化钠溶液浸泡,水洗,得到交联壳聚糖多孔微球;
其中壳聚糖溶液、乳化分散剂和甲醛的质量比为100:50~55:4~8。
交联壳聚糖多孔微球是利用传统反相乳化交联法,将壳聚糖醋酸溶液加入乳化分散剂中,通过机械搅拌使纳米二氧化硅充分分散在壳聚糖分子周围,然后加入交联剂,通过调节pH条件将壳聚糖交联成球,并且在反应过程中负载纳米二氧化硅微粒,由于这些微粒在壳聚糖微球上占据一定的位置,并且颗粒均匀,这样在交联结束后通过氢氧化钠溶液将纳米二氧化硅去除后,可以得到交联壳聚糖多孔微球,并且微孔均匀,植物提取物可以填充在微孔内,在加入熔体后防止植物提取物的碳化。
保护剂的作用是防止植物提取物碳化,这是因为纳米碳粉和交联壳聚糖微球表面有很多微孔,可以将植物提取物包覆在微孔内,从而避免了植物提取物的碳化;优选的工艺是将保护剂和植物提取物先混合均匀后再加入熔体中,这样可以使植物提取物充分进入保护剂微孔内,更好的防止植物提取物的碳化。
改性剂由乙撑双硬脂酸酰胺和硅油按照质量比1:3~5组成;改性剂的加入能够提高熔体的剥离性,避免熔体在喷丝板压出后由于膨胀区的出现导致的粘板现象,保证喷丝工艺的正常生产和出丝质量。
二、将普通的PET切片和植物功能性涤纶母粒混合均匀,螺杆挤压熔融,将熔体从纺丝口中挤压,纺丝口的直径一般为5~50μm,熔融纺丝,得到植物功能性涤纶长丝;优选的普通的PET切片和植物功能性涤纶母粒的质量比为2~50:1;采用普通PET切片和植物功能性涤纶母粒混合纺丝,可以在保证植物提取物在植物功能性涤纶长丝有效含量的同时,减少植物功能性涤纶母粒的生产量,提高生产效率。
以下结合具体实施例来对本发明作进一步的描述。
实施例1
一种植物功能性涤纶长丝,该植物功能性涤纶长丝中含有植物提取物0.1%。
实施例2
一种植物功能性涤纶长丝,该植物功能性涤纶长丝中含有植物提取物1.5%。
实施例3
一种植物功能性涤纶长丝,该植物功能性涤纶长丝中含有植物提取物0.5%。
实施例4
一种植物功能性涤纶长丝,该植物功能性涤纶长丝中含有植物提取物1.0%。
实施例5
一种植物功能性涤纶长丝,该植物功能性涤纶长丝中含有植物提取物1.2%。
实施例6
一种植物功能性涤纶长丝的制备方法,包括以下步骤:
一、植物功能性涤纶母粒的制备步骤,包括:将PET切片加热至250~260℃,熔融状态后加入抗氧化剂和分散剂在500rad/min的转速下搅拌10分钟,然后加入保护剂和植物提取物的混合物,高速混合20分钟,最后加入改性剂,降温至230℃得到混合料,挤出造粒,得到植物功能性涤纶母粒;
其中PET切片、抗氧化剂、分散剂、保护剂、植物提取物和改性剂的质量比为100:0.1:0.1:0.4:0.5:0.1。
所述抗氧化剂由叔丁基对苯二酚和锌粉按照质量比1:2组成;
所述分散剂由三聚磷酸钠、乙二胺四乙酸和焦磷酸钠按照质量比1:1:2组成;
所述保护剂由纳米碳粉和交联壳聚糖多孔微球按照质量比1:1组成;
其中交联壳聚糖多孔微球按照以下步骤得到:
将壳聚糖溶于质量浓度2%醋酸溶液中,静置去除气泡,配制得到均匀透明的壳聚糖溶液;壳聚糖和醋酸溶液的质量比为1:95;
向液体石蜡和纳米二氧化硅中加入乳化剂,搅拌均匀得到乳化分散剂;液体石蜡、纳米二氧化硅和乳化剂的质量比为50:2:1;
在搅拌下,将壳聚糖溶液滴加至乳化分散剂中,加热至40℃,混合均匀后加入甲醛,调节反应体系的pH为4,保温反应2小时,反应结束后将产物水洗,用20%的氢氧化钠溶液浸泡,水洗,得到交联壳聚糖多孔微球;
其中壳聚糖溶液、乳化分散剂和甲醛的质量比为100:50:4。
改性剂由乙撑双硬脂酸酰胺和硅油按照质量比1:3组成;
二、将质量比为4:1的普通PET切片和植物功能性涤纶母粒混合均匀,螺杆挤压熔融,将熔体从纺丝口中挤压纺丝,得到含有植物提取物0.1%的植物功能性涤纶长丝。
实施例7
一种植物功能性涤纶长丝的制备方法,包括以下步骤:
一、植物功能性涤纶母粒的制备步骤,包括:将PET切片加热至250~260℃,熔融状态后加入抗氧化剂和分散剂在700rad/min的转速下搅拌15分钟,然后加入保护剂和植物提取物的混合物,高速混合40分钟,最后加入改性剂,降温至220℃得到混合料,挤出造粒,得到植物功能性涤纶母粒;
其中PET切片、抗氧化剂、分散剂、保护剂、植物提取物和改性剂的质量比为100:0.5:0.3:0.4:5:0.4。
所述抗氧化剂由叔丁基对苯二酚和锌粉按照质量比1:5组成;
所述分散剂由三聚磷酸钠、乙二胺四乙酸和焦磷酸钠按照质量比1:4:4组成;
所述保护剂由纳米碳粉和交联壳聚糖多孔微球按照质量比1:4组成;
其中交联壳聚糖多孔微球按照以下步骤得到:
将壳聚糖溶于质量浓度5%醋酸溶液中,静置去除气泡,配制得到均匀透明的壳聚糖溶液;壳聚糖和醋酸溶液的质量比为1:100;
向液体石蜡和纳米二氧化硅中加入乳化剂,搅拌均匀得到乳化分散剂;液体石蜡、纳米二氧化硅和乳化剂的质量比为60:5:1;
在搅拌下,将壳聚糖溶液滴加至乳化分散剂中,加热至50℃,混合均匀后加入甲醛,调节反应体系的pH为5,保温反应3小时,反应结束后将产物水洗,用30%的氢氧化钠溶液浸泡,水洗,得到交联壳聚糖多孔微球;
其中壳聚糖溶液、乳化分散剂和甲醛的质量比为100:55:8。
改性剂由乙撑双硬脂酸酰胺和硅油按照质量比1:5组成;
二、将普通的PET切片和植物功能性涤纶母粒按照质量比为4:1混合均匀,螺杆挤压熔融,将熔体从纺丝口中挤压纺丝,得到含有植物提取物1.0%的植物功能性涤纶长丝。
实施例8
一种植物功能性涤纶长丝的制备方法,包括以下步骤:
一、植物功能性涤纶母粒的制备步骤,包括:将PET切片加热至250~260℃,熔融状态后加入抗氧化剂和分散剂在600rad/min的转速下搅拌12分钟,然后加入保护剂和植物提取物的混合物,高速混合30分钟,最后加入改性剂,降温至225℃得到混合料,挤出造粒,得到植物功能性涤纶母粒;
其中PET切片、抗氧化剂、分散剂、保护剂、植物提取物和改性剂的质量比为100:0.2:0.2:0.5:4.5:0.2。
所述抗氧化剂由叔丁基对苯二酚和锌粉按照质量比1:3组成;
所述分散剂由三聚磷酸钠、乙二胺四乙酸和焦磷酸钠按照质量比1:2:3组成;
所述保护剂由纳米碳粉和交联壳聚糖多孔微球按照质量比1:2组成;
其中交联壳聚糖多孔微球按照以下步骤得到:
将壳聚糖溶于质量浓度3%醋酸溶液中,静置去除气泡,配制得到均匀透明的壳聚糖溶液;壳聚糖和醋酸溶液的质量比为1:96;
向液体石蜡和纳米二氧化硅中加入乳化剂,搅拌均匀得到乳化分散剂;液体石蜡、纳米二氧化硅和乳化剂的质量比为56:4:1;
在搅拌下,将壳聚糖溶液滴加至乳化分散剂中,加热至45℃,混合均匀后加入甲醛,调节反应体系的pH为4.5,保温反应2.5小时,反应结束后将产物水洗,用24%的氢氧化钠溶液浸泡,水洗,得到交联壳聚糖多孔微球;
其中壳聚糖溶液、乳化分散剂和甲醛的质量比为100:52:6。
改性剂由乙撑双硬脂酸酰胺和硅油按照质量比1:4组成;
二、将质量比为2:1普通的PET切片和植物功能性涤纶母粒混合均匀,螺杆挤压熔融,将熔体从纺丝口中挤压纺丝,得到含有植物提取物1.5%的植物功能性涤纶长丝。
实施例9
一种植物功能性涤纶长丝的制备方法,包括以下步骤:
一、植物功能性涤纶母粒的制备步骤,包括:将PET切片加热至250~260℃,熔融状态后加入抗氧化剂和分散剂在550rad/min的转速下搅拌14分钟,然后加入保护剂和植物提取物的混 合物,高速混合25分钟,最后加入改性剂,降温至225℃得到混合料,挤出造粒,得到植物功能性涤纶母粒;
其中PET切片、抗氧化剂、分散剂、保护剂、植物提取物和改性剂的质量比为100:0.4:0.15:0.5:4:0.3。
所述抗氧化剂由叔丁基对苯二酚和锌粉按照质量比1:4组成;
所述分散剂由三聚磷酸钠、乙二胺四乙酸和焦磷酸钠按照质量比1:3:2.5组成;
所述保护剂由纳米碳粉和交联壳聚糖多孔微球按照质量比1:3组成;
其中交联壳聚糖多孔微球按照以下步骤得到:
将壳聚糖溶于质量浓度4%醋酸溶液中,静置去除气泡,配制得到均匀透明的壳聚糖溶液;壳聚糖和醋酸溶液的质量比为1:98;
向液体石蜡和纳米二氧化硅中加入乳化剂,搅拌均匀得到乳化分散剂;液体石蜡、纳米二氧化硅和乳化剂的质量比为58:4:1;
在搅拌下,将壳聚糖溶液滴加至乳化分散剂中,加热至48℃,混合均匀后加入甲醛,调节反应体系的pH为4.5,保温反应2小时,反应结束后将产物水洗,用28%的氢氧化钠溶液浸泡,水洗,得到交联壳聚糖多孔微球;
其中壳聚糖溶液、乳化分散剂和甲醛的质量比为100:54:5。
改性剂由乙撑双硬脂酸酰胺和硅油按照质量比1:3.5组成;
二、将质量比为7:1普通的PET切片和植物功能性涤纶母粒混合均匀,螺杆挤压熔融,将熔体从纺丝口中挤压纺丝,得到含有植物提取物0.5%的植物功能性涤纶长丝。
实施例1~9的植物功能性涤纶长丝中含有的植物提取物可以是薄荷提取物、缬草提取物、薰衣草提取物、艾草提取物、海藻提取物中的一种或者几种的组合。
本发明实施例6~9制备的含植物提取物的植物功能性涤纶长丝的检测指标,如表1所示。抑菌率采用GB/T20944.3-2008纺织品抗菌性能的方法检测:振荡法,驱螨率检测标准采用GB/T24253-2009纺织品除螨性能的评价。
表1实施例6~9制备的植物功能性涤纶长丝的检测数据表
Figure PCTCN2020082977-appb-000001
Figure PCTCN2020082977-appb-000002
由表1的数据可以看出,本发明的含植物提取物的植物功能涤纶长丝纤维,各项指标均达到涤纶纤维所要求的正常指标,具有较合适的断裂强度、弹性模量和断裂伸长率,断裂强度在6.8~7.8cN/dtex;弹性模量在90~101cN/dtex,断裂伸长率在12~18%,并且耐磨性能高,采用耐磨往复式试验机2000次损耗均小于0.001g,耐磨性能稳定;本发明的含植物提取物的植物功能涤纶长丝纤维,由于添加了植物提取物,因此还具有抗菌抑螨的功能,驱螨率能达到90%以上,对大肠杆菌和金黄色葡萄球菌的抑菌率均在98%以上。
为了对比抗氧化剂、分散剂、保护剂和改性剂在工艺中的作用,我们设计了对比例,由于实施例7的参数适中,以实施例7为参照,具体的:
对比例1依次采用实施例7的制备方法,在其他工艺不变的情况下,只是将抗氧化剂的加入步骤去除。
对比例2依次采用实施例7的制备方法,在其他工艺不变的情况下,只是将分散剂的加入步骤去除。
对比例3依次采用实施例7的制备方法,在其他工艺不变的情况下,只是将保护剂的加入步骤去除。
对比例4依次采用实施例7的制备方法,在其他工艺不变的情况下,只是将改性剂的加入步骤去除。
对比例1~4制备的植物功能性涤纶长丝的检测数据及工艺生产中出现的情况,详述如表2:
表2对比例1~4制备的植物功能性涤纶长丝的检测数据
Figure PCTCN2020082977-appb-000003
Figure PCTCN2020082977-appb-000004
由表2的数据可以看出,对比例1由于没有加入抗氧化剂,虽然断裂强度、弹性模量、断裂伸长率和耐磨性能与实施例7相当,但是由于植物提取物发生了高温变色,因此出现了花色情况,并且降低了植物提取物的抑菌性能;
对比例2由于没有加入分散剂,其驱螨抑菌性能没有受到影响,但是由于植物提取物团聚,造成PET熔体局部高温,形成交联的三度聚合体,导致熔体颜色变暗,由液态变为胶态,影响了纺丝后纤维的力学性能,纺丝后纤维颜色不均一,有发暗点状物;
对比例3由于没有加入保护剂,虽然断裂强度、弹性模量、断裂伸长率和耐磨性能与实施例7相当,没有影响纤维的力学性能,但是纺丝后纤维的驱螨抑菌较低,这是由于植物提取物加入后发生了碳化,没有将全部植物提取物顺利添加入PET熔体中;
对比例4的检测数据与实施例7区别不大,但是在生产过程中熔体的剥离性很差,熔体喷丝后容易粘板,为了顺利喷丝需要在喷丝板面上不断喷涂硅油,并且喷涂硅油的量不易控制,喷涂太多喷丝板容易弄脏,影响出丝质量,喷涂太少,很容易粘板,并且需要反复停车清理喷丝板。
由于实施例6~9制备的植物功能性涤纶长丝的耐磨试验中,采用耐磨往复式试验机2000次损耗均小于0.001g,耐磨性能非常突出,并且实验过程中没有静电现象产生,因此我们实施例6~9制备的植物功能性涤纶长丝的抗静电性能进行了研究,将实施例6~9所得的植物功能性涤纶长丝采用现有方法纺织成面料,按照GB 12014-2009防静电服的标准进行抗静电测试,对面料的点对点电阻和带电电荷量数据如表3所示。
表3实施例6~9所得的植物功能性涤纶长丝面料的抗静电测试结果
  点对点电阻/Ω 带电电荷量/μC/m 2
实施例6 3.5×10 6 0.09
实施例7 5.0×10 6 0.14
实施例8 5.2×10 6 0.18
实施例9 4.6×10 6 0.12
由表3的数据可以看出,实施例6~9制备的植物功能性涤纶长丝的点对点电阻和带电电荷量的数据均达到了A类抗静电服的标准,并且不易起球,不会带静电和沾灰尘,这是本发明所未预料到的。

Claims (9)

  1. 一种植物功能性涤纶长丝,其特征在于,该植物功能性涤纶长丝中含有植物提取物0.1-1.5%。
  2. 一种植物功能性涤纶长丝的制备方法,其特征在于,包括植物功能性涤纶母粒的制备步骤,包括:将PET切片加热至熔融,先加入抗氧化剂和分散剂搅拌,然后加入保护剂和植物提取物,高速混合,最后加入改性剂,混合均匀后得到混合料,挤出造粒。
  3. 根据权利要求2所述的一种植物功能性涤纶长丝的制备方法,其特征在于,PET切片、抗氧化剂、分散剂、保护剂和改性剂的质量比为100:0.1~0.5:0.1~0.3:0.4~0.8:0.1~0.4。
  4. 根据权利要求2所述的一种植物功能性涤纶长丝的制备方法,其特征在于,将PET切片加热至250~260℃,加入抗氧化剂和分散剂在500~700rad/min的转速下搅拌10~15分钟,然后加入保护剂和植物提取物的混合物,高速混合20~40分钟,最后加入改性剂,降温至220~230℃得到混合料,挤出造粒,得到植物功能性涤纶母粒。
  5. 根据权利要求2所述的一种植物功能性涤纶长丝的制备方法,其特征在于,所述抗氧化剂由叔丁基对苯二酚和锌粉按照质量比1:2~5组成。
  6. 根据权利要求2所述的一种植物功能性涤纶长丝的制备方法,其特征在于,所述分散剂由三聚磷酸钠、乙二胺四乙酸和焦磷酸钠按照质量比1:1~4:2~4组成。
  7. 根据权利要求2所述的一种植物功能性涤纶长丝的制备方法,其特征在于,所述保护剂由纳米碳粉和交联壳聚糖多孔微球按照质量比1:1~4组成;
    其中交联壳聚糖多孔微球按照以下步骤得到:
    将壳聚糖溶于质量浓度2~5%醋酸溶液中,静置去除气泡,配制得到均匀透明的壳聚糖溶液;壳聚糖和醋酸溶液的质量比为1:95~100;
    向液体石蜡和纳米二氧化硅中加入乳化剂,搅拌均匀得到乳化分散剂;液体石蜡、纳米二氧化硅和乳化剂的质量比为50~60:2~5:1;
    在搅拌下,将壳聚糖溶液滴加至乳化分散剂中,加热至40~50℃,混合均匀后加入甲醛,调节反应体系的pH为4~5,保温反应2~3小时,反应结束后将产物水洗,用20~30%的氢氧化钠溶液浸泡,水洗,得到交联壳聚糖多孔微球;
    其中壳聚糖溶液、乳化分散剂和甲醛的质量比为100:50~55:4~8。
  8. 根据权利要求2所述的一种植物功能性涤纶长丝的制备方法,其特征在于,所述改性剂由乙撑双硬脂酸酰胺和硅油按照质量比1:3~5组成。
  9. 根据权利要求2所述的一种植物功能性涤纶长丝的制备方法,其特征在于,将普通的PET切片和植物功能性涤纶母粒混合均匀,螺杆挤压熔融,将熔体从纺丝口中挤压纺丝,得到植物功能性涤纶长丝。
PCT/CN2020/082977 2019-11-06 2020-04-02 一种植物功能性涤纶长丝及其制备方法 WO2021088307A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021105065A AU2021105065A4 (en) 2019-11-06 2021-08-06 Plant-based functional polyester filament and preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911076259.3 2019-11-06
CN201911076259.3A CN110863252A (zh) 2019-11-06 2019-11-06 一种植物功能性涤纶长丝及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021105065A Division AU2021105065A4 (en) 2019-11-06 2021-08-06 Plant-based functional polyester filament and preparation thereof

Publications (1)

Publication Number Publication Date
WO2021088307A1 true WO2021088307A1 (zh) 2021-05-14

Family

ID=69653022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082977 WO2021088307A1 (zh) 2019-11-06 2020-04-02 一种植物功能性涤纶长丝及其制备方法

Country Status (5)

Country Link
US (1) US11566348B2 (zh)
EP (1) EP3819410A3 (zh)
JP (1) JP7032826B2 (zh)
CN (1) CN110863252A (zh)
WO (1) WO2021088307A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863252A (zh) * 2019-11-06 2020-03-06 百事基材料(青岛)股份有限公司 一种植物功能性涤纶长丝及其制备方法
CN111118652B (zh) * 2020-03-03 2021-09-07 百事基材料(青岛)股份有限公司 一种海藻涤纶长纤维及其制备方法
CN111171531B (zh) * 2020-03-18 2021-07-30 百事基材料(青岛)股份有限公司 一种海藻涤纶母粒及其制备工艺
CN111171532B (zh) * 2020-03-18 2021-07-30 百事基材料(青岛)股份有限公司 一种甲壳素涤纶母粒及其制备工艺
CN111270334A (zh) * 2020-03-27 2020-06-12 百事基材料(青岛)股份有限公司 一种海洋生物提取物改性锦纶纤维及其制备方法
CN111304773A (zh) * 2020-04-01 2020-06-19 百事基材料(青岛)股份有限公司 易染改性锦纶纤维
CN111304776A (zh) * 2020-04-01 2020-06-19 百事基材料(青岛)股份有限公司 一种柚皮甙改性涤纶长丝
CN111440339B (zh) * 2020-06-08 2023-04-28 百草边大生物科技(青岛)有限公司 一种茶多酚、柚皮甙或大黄素改性pet母粒及其制备工艺
CN111850722B (zh) * 2020-07-16 2021-08-13 浙江理工大学 草莓状有机/无机交联微球取向填充增强化纤的制备方法
CN114150395A (zh) * 2020-08-17 2022-03-08 嘉兴中科奥度新材料有限公司 一种持久驱螨杀螨丝线的制备方法及制品
CN112030258A (zh) * 2020-09-24 2020-12-04 青岛百草新材料股份有限公司 一种含蒲公英的锦纶纤维及其制备方法
CN112030261A (zh) * 2020-09-24 2020-12-04 青岛百草新材料股份有限公司 一种含蒲公英的涤纶纤维及其制备方法
CN114108125A (zh) * 2021-09-22 2022-03-01 安徽农业大学 一种微穴中空抗紫外再生pet纤维长丝制备工艺
CN114395918A (zh) * 2021-12-29 2022-04-26 江苏恒生环保科技有限公司 一种能根治及预防螨虫危害的床品面料的制备方法
CN114395826B (zh) * 2021-12-30 2022-10-25 浙江大学 一种抗菌纤维的制备方法
CN114108130A (zh) * 2022-01-25 2022-03-01 江苏康溢臣生命科技有限公司 一种植物中药抗菌防螨功能涤纶纤维的制备方法及其应用
CN115449915B (zh) * 2022-08-29 2024-04-05 邦特云纤(青岛)新材料科技有限公司 一种含牛油果、乳木果提取物的抗菌合成纤维及其制备方法
CN116163026A (zh) * 2022-11-16 2023-05-26 青岛邦特生态纺织科技有限公司 一种积雪草功能性纤维的制备方法
CN116555933B (zh) * 2023-05-31 2024-02-02 芝诺(苏州)生物科技有限公司 一种含2’-岩藻糖基乳糖和海藻提取物的es大生物纤维及其制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172989A (zh) * 2013-04-15 2013-06-26 杭州昌翔化纤新材料有限公司 一种环保型抗菌聚酯材料及其制备方法
CN106192057A (zh) * 2016-06-19 2016-12-07 陆建益 一种含有海泥的多功能聚酯纤维及其制备方法
CN106498531A (zh) * 2016-10-20 2017-03-15 华南理工大学 一种抗菌防螨纤维及其制备方法
CN108691063A (zh) * 2018-06-05 2018-10-23 李海霞 一种薄荷纤维、大豆纤维与聚酯纤维的混纺交织面料及其制造方法
CN109487360A (zh) * 2018-08-22 2019-03-19 中科纺织研究院(青岛)有限公司 一种含植物提取物的涤纶纤维
CN109763192A (zh) * 2018-12-19 2019-05-17 百事基材料(青岛)股份有限公司 一种艾草聚酯纤维及其制备方法
CN109763191A (zh) * 2018-12-19 2019-05-17 中科纺织研究院(青岛)有限公司 一种海藻聚酯纤维及其制备方法
CN110735211A (zh) * 2019-11-06 2020-01-31 青岛百草新材料股份有限公司 一种植物功能座椅面料及其制备方法
CN110846735A (zh) * 2019-11-06 2020-02-28 青岛百草新材料股份有限公司 一种植物功能性汽车顶棚
CN110863252A (zh) * 2019-11-06 2020-03-06 百事基材料(青岛)股份有限公司 一种植物功能性涤纶长丝及其制备方法
CN111118652A (zh) * 2020-03-03 2020-05-08 百事基材料(青岛)股份有限公司 一种海藻涤纶长纤维及其制备方法
CN111172614A (zh) * 2020-03-03 2020-05-19 百事基材料(青岛)股份有限公司 一种含甲壳素的涤纶长丝及其制备方法
CN111172621A (zh) * 2020-03-03 2020-05-19 百事基材料(青岛)股份有限公司 一种含艾草提取物的涤纶长丝及其制备方法
CN111254515A (zh) * 2020-03-03 2020-06-09 百事基材料(青岛)股份有限公司 一种含薄荷提取物的涤纶长丝及其制备方法
CN111304776A (zh) * 2020-04-01 2020-06-19 百事基材料(青岛)股份有限公司 一种柚皮甙改性涤纶长丝
CN111304775A (zh) * 2020-04-01 2020-06-19 百事基材料(青岛)股份有限公司 一种茶多酚改性涤纶长丝及其制备方法
CN111304766A (zh) * 2020-04-01 2020-06-19 百事基材料(青岛)股份有限公司 含茶多酚的功能改性剂、茶多酚改性锦纶纤维及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658840B1 (fr) * 1989-12-20 1994-02-11 Rhone Poulenc Fibres Procede pour l'obtention de fils pet avec une meilleure productivite.
JPH0434012A (ja) * 1990-05-29 1992-02-05 Kuraray Co Ltd 植物の成長調節性および防黴性を有する合成繊維
JPH07238415A (ja) * 1994-02-28 1995-09-12 Toray Ind Inc 熱可塑性合成繊維の溶融紡糸方法
US7981946B2 (en) * 2003-07-03 2011-07-19 Mallard Creek Polymers, Inc. Antimicrobial and antistatic polymers and methods of using such polymers on various substrates
CN104674454B (zh) * 2015-01-27 2017-04-12 浙江大学 聚乳酸熔融纺纤维热粘合固化三维多孔无序支架的制备方法
CN109135208A (zh) * 2018-08-30 2019-01-04 宏佩(上海)建筑科技有限公司 一种pet抗菌母粒及其制备方法
CN110295409A (zh) * 2019-06-05 2019-10-01 仪征朋信化纤有限公司 一种抑菌防紫外的涤纶短纤维及其制备方法
CN110901488A (zh) * 2019-11-06 2020-03-24 青岛百草新材料股份有限公司 一种植物汽车地毯及其制备方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172989A (zh) * 2013-04-15 2013-06-26 杭州昌翔化纤新材料有限公司 一种环保型抗菌聚酯材料及其制备方法
CN106192057A (zh) * 2016-06-19 2016-12-07 陆建益 一种含有海泥的多功能聚酯纤维及其制备方法
CN106498531A (zh) * 2016-10-20 2017-03-15 华南理工大学 一种抗菌防螨纤维及其制备方法
CN108691063A (zh) * 2018-06-05 2018-10-23 李海霞 一种薄荷纤维、大豆纤维与聚酯纤维的混纺交织面料及其制造方法
CN109487360A (zh) * 2018-08-22 2019-03-19 中科纺织研究院(青岛)有限公司 一种含植物提取物的涤纶纤维
CN109763192A (zh) * 2018-12-19 2019-05-17 百事基材料(青岛)股份有限公司 一种艾草聚酯纤维及其制备方法
CN109763191A (zh) * 2018-12-19 2019-05-17 中科纺织研究院(青岛)有限公司 一种海藻聚酯纤维及其制备方法
CN110735211A (zh) * 2019-11-06 2020-01-31 青岛百草新材料股份有限公司 一种植物功能座椅面料及其制备方法
CN110846735A (zh) * 2019-11-06 2020-02-28 青岛百草新材料股份有限公司 一种植物功能性汽车顶棚
CN110863252A (zh) * 2019-11-06 2020-03-06 百事基材料(青岛)股份有限公司 一种植物功能性涤纶长丝及其制备方法
CN111118652A (zh) * 2020-03-03 2020-05-08 百事基材料(青岛)股份有限公司 一种海藻涤纶长纤维及其制备方法
CN111172614A (zh) * 2020-03-03 2020-05-19 百事基材料(青岛)股份有限公司 一种含甲壳素的涤纶长丝及其制备方法
CN111172621A (zh) * 2020-03-03 2020-05-19 百事基材料(青岛)股份有限公司 一种含艾草提取物的涤纶长丝及其制备方法
CN111254515A (zh) * 2020-03-03 2020-06-09 百事基材料(青岛)股份有限公司 一种含薄荷提取物的涤纶长丝及其制备方法
CN111304776A (zh) * 2020-04-01 2020-06-19 百事基材料(青岛)股份有限公司 一种柚皮甙改性涤纶长丝
CN111304775A (zh) * 2020-04-01 2020-06-19 百事基材料(青岛)股份有限公司 一种茶多酚改性涤纶长丝及其制备方法
CN111304766A (zh) * 2020-04-01 2020-06-19 百事基材料(青岛)股份有限公司 含茶多酚的功能改性剂、茶多酚改性锦纶纤维及其制备方法

Also Published As

Publication number Publication date
JP2021075836A (ja) 2021-05-20
EP3819410A3 (en) 2021-07-14
EP3819410A2 (en) 2021-05-12
CN110863252A (zh) 2020-03-06
US11566348B2 (en) 2023-01-31
US20210130986A1 (en) 2021-05-06
JP7032826B2 (ja) 2022-03-09

Similar Documents

Publication Publication Date Title
WO2021088307A1 (zh) 一种植物功能性涤纶长丝及其制备方法
CN106676664B (zh) 一种阻燃耐磨型锦纶6预取向丝
CN108796655A (zh) 一种改性医用涤纶及其制备方法
CN106637441B (zh) 一种抗菌耐磨型锦纶6预取向丝
CN106948171A (zh) 一种纤维制品的后处理方法、得到的改性纤维制品及其用途
CN109706546A (zh) 一种石墨烯海岛纤维及其制造方法
CN106120013B (zh) 一种应用于内衣的抗静电聚酰胺纤维
CN111235681A (zh) 一种大黄素改性涤纶长丝及其制备方法
WO2019114280A1 (zh) 一种夏用热湿舒适聚酯纤维fdy丝及其制备方法
CN114539773B (zh) 一种长效抗菌耐高温原液着色母粒及其制备方法和应用
CN101144206A (zh) 一种多微孔聚酯纤维及制备方法
JP7140950B2 (ja) ヒアルロン酸マイクロカプセル、それを含む繊維、調製方法および用途
CN115028968A (zh) 一种抗菌功能母粒及其制备方法、抗菌聚酯纤维和面料
CN110004508A (zh) 一种熔纺氨纶色母粒及其制备方法
AU2021105065A4 (en) Plant-based functional polyester filament and preparation thereof
CN106948170A (zh) 一种纤维制品的后处理方法、得到的改性纤维制品及其用途
CN109706545A (zh) 一种微孔中空石墨烯海岛纤维及其制造方法
CN107151389A (zh) 一种聚丙烯纺粘布专用亮黑色超分散色母粒及其制备方法
CN107189223A (zh) 一种聚丙烯熔喷布专用超分散色母粒及其制备方法
CN106978644B (zh) 一种抗菌耐磨型锦纶6高取向丝
JP7233585B2 (ja) ポリプロピレン樹脂組成物、ポリプロピレン樹脂成形体およびポリプロピレン樹脂成形体の製造方法
WO2020151116A1 (zh) 一种抗紫外锦纶超细纤长丝的生产方法及其生产设备
CN111041585A (zh) 一种拒水聚酯功能母粒及其制备方法
CN107779983B (zh) 一种纳米材料改性的pbt纺丝的制备方法
CN112796003B (zh) 一种具有高灵敏吸放热功能的智能调温腈纶纤维及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884199

Country of ref document: EP

Kind code of ref document: A1