WO2021085301A1 - 熱収縮性ポリエステル系フィルムロール - Google Patents

熱収縮性ポリエステル系フィルムロール Download PDF

Info

Publication number
WO2021085301A1
WO2021085301A1 PCT/JP2020/039726 JP2020039726W WO2021085301A1 WO 2021085301 A1 WO2021085301 A1 WO 2021085301A1 JP 2020039726 W JP2020039726 W JP 2020039726W WO 2021085301 A1 WO2021085301 A1 WO 2021085301A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
polyester
raw material
roll
Prior art date
Application number
PCT/JP2020/039726
Other languages
English (en)
French (fr)
Inventor
井上 雅文
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020227016459A priority Critical patent/KR20220092527A/ko
Priority to CN202080075367.3A priority patent/CN114728723A/zh
Priority to US17/772,054 priority patent/US20220403156A1/en
Priority to JP2021553526A priority patent/JP7484928B2/ja
Priority to EP20881942.5A priority patent/EP4053037A4/en
Publication of WO2021085301A1 publication Critical patent/WO2021085301A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2563Mounting or handling of the hopper or feeder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2567Hopper or feeder parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/275Recovery or reuse of energy or materials
    • B29C48/277Recovery or reuse of energy or materials of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/025Quenching, i.e. rapid cooling of an object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0842Sheets or tubes applied around the bottle with or without subsequent folding operations
    • B65D23/0878Shrunk on the bottle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/002Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers in shrink films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a film roll formed by winding a heat-shrinkable polyester-based film. More specifically, while using PET bottle recycled raw materials, it has high shrinkage, small variation in shrinkage physical properties in the longitudinal direction of the film roll, and defects such as insufficient shrinkage, uneven shrinkage, distortion, and vertical shrinkage in the subsequent process. It relates to a heat-shrinkable polyester-based film roll that is less likely to occur.
  • stretched films made of polyvinyl chloride resin, polystyrene resin, polyester resin, etc. are used for label packaging, cap seals, integrated packaging, etc. that protect glass bottles, PET bottles, etc. and display products.
  • Heat-shrinkable films are becoming widely used.
  • polyvinyl chloride-based films have problems such as low heat resistance, generation of hydrogen chloride gas during incineration, and dioxin.
  • polystyrene films are inferior in solvent resistance, and ink with a special composition must be used for printing, and they must be incinerated at high temperatures, and a large amount of black smoke is generated with an offensive odor during incineration.
  • polyester-based heat-shrinkable films having high heat resistance, easy incineration, and excellent solvent resistance have been widely used as shrink labels, and PET containers (PET bottles).
  • PET containers PET bottles.
  • the heat-shrinkable polyester-based film generally needs to reduce the crystallinity of the polyester constituting the film in order to obtain high shrinkage.
  • PET bottle recycled raw materials are highly crystalline raw materials. Therefore, when using a PET bottle recycled raw material, it is essential to use a mixture of a highly amorphous raw material and at least two kinds of raw materials.
  • the heat-shrinkable film is once wound into a roll and sent to the printing process of various patterns in the form of a film roll. Slits are processed according to the size, and the left and right ends of the film are overlapped and sealed by means such as solvent adhesion to form a tubular body, and the tubular body is cut into a label, bag, etc. It will be processed. Then, a label or bag-shaped object is attached to the container, and steam is blown to heat-shrink the inside of the shrink-down tunnel (hot air tunnel) by placing it on a belt conveyor or the like and passing it through, heat-shrinking it and bringing it into close contact with the container. There is.
  • the shrink-down tunnel hot air tunnel
  • Segregation does not occur by adopting the method of using the ingredients required for the polyester film as raw material chips of a single composition (using one type of raw material chips), but when using PET bottle recycled raw materials as described above. , At least two types of raw material chips must be mixed and used, and there is a risk of segregation. In other words, as long as PET bottle recycled raw materials are used, there is a risk that the heat shrinkage rate will fluctuate in the longitudinal direction. For example, in the recycling process of PET bottles, it is also impossible to add amorphous polyester when crushing, washing and re-chipging to obtain a single-composition raw material chip containing all the necessary components for a film. However, recycled raw materials are not realistic because they are used for purposes other than film.
  • PET bottle recycling raw materials are often recycled by randomly mixing various PET bottles, the molecular weight and the like are reduced by repeated use, and additives such as highly crystallization nucleating agents are used.
  • the present inventors have found that when used as a raw material for a film, the influence on the fluctuation of the physical characteristics of the film due to the fluctuation of the blending amount due to segregation appears more than that of other raw materials.
  • Patent Document 1 describes a heat-shrinkable polyester-based film using a PET bottle recycled raw material, but does not describe fluctuations in the heat-shrinkage rate in the longitudinal direction.
  • Patent Document 2 describes a heat-shrinkable polyester-based film containing a high proportion of recycled PET bottle raw materials, but it is difficult to obtain a shrinkage rate of 45% or more at 90 ° C. by the described method. Moreover, there is no description about the fluctuation of the heat shrinkage rate in the longitudinal direction.
  • the present invention provides a heat-shrinkable polyester film roll that reduces the occurrence of defects such as wrinkles and vertical sink marks in the heat-shrinking process due to fluctuations in the heat-shrinkage rate in the film roll even if it contains a PET bottle recycled raw material.
  • the challenge is to provide it.
  • the present inventors have completed the present invention as a result of diligent studies in order to solve the above problems. That is, the present invention has the following configuration.
  • the film roll made of a heat-shrinkable polyester-based film composed of polyester containing 5% by mass or more and 50% by mass or less of a PET bottle recycled material and containing an isophthalic acid component, and has the following requirements (1) to (3).
  • the polyester constituting the film has an average value of ⁇ 0 for all isophthalic acid content ratios in 100 mol% of the total acid component. .
  • Thickness unevenness in the longitudinal direction of the roll should be 20% or less.
  • the heat-shrinkable polyester-based film is formed from a mixture of at least a PET bottle recycled material and one or more kinds of polymer chips having different compositions.
  • the polyester constituting the heat-shrinkable polyester film contains ethylene terephthalate as a main component. Or 2.
  • the polyester constituting the film has an average value of the isophthalic acid content ratio in 100 mol% of the total acid component of 0.3 mol% or more and 3.0 mol% or less. It is characterized by 1. ⁇ 3.
  • the roll length of the heat-shrinkable polyester film roll is 1000 m or more.
  • the heat-shrinkable polyester film roll according to any one of.
  • the heat-shrinkable polyester film roll of the present invention is used by mixing PET bottle recycled raw materials, the fluctuation of the heat-shrinkage rate in the film roll is small, and wrinkles and vertical sink marks in the heat-shrinking process due to the fluctuation are small. It is possible to extremely reduce the occurrence of defects.
  • the polyester used in the heat-shrinkable polyester-based film (hereinafter, may be referred to as the heat-shrinkable polyester-based film of the present invention) constituting the heat-shrinkable polyester-based film roll of the present invention contains ethylene terephthalate as a main component. To do. That is, it contains 50 mol% or more, preferably 60 mol% or more of ethylene terephthalate with respect to 100 mol% of all the constituents of the polyester. Further, as will be described later, the polyester contains an isophthalic acid component.
  • dicarboxylic acid component other than terephthalic acid and isophthalic acid constituting the polyester of the present invention examples include aromatic dicarboxylic acids such as naphthalenedicarboxylic acid and orthophthalic acid, adipic acid, azelaic acid, sebacic acid, and decandicarboxylic acid. Examples thereof include group dicarboxylic acids and alicyclic dicarboxylic acids.
  • an aliphatic dicarboxylic acid for example, adipic acid, sebacic acid, decandicarboxylic acid, etc.
  • the content is preferably less than 3 mol%.
  • a heat-shrinkable polyester-based film obtained by using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids is not preferable because the film waist becomes insufficient and problems occur after slitting and post-processing.
  • a polyvalent carboxylic acid having a valence of 3 or more for example, trimellitic acid, pyromellitic acid and anhydrides thereof.
  • the heat-shrinkable polyester-based film obtained by using the polyester containing these polyvalent carboxylic acids makes it difficult to achieve the required high shrinkage rate.
  • diol component other than ethylene glycol constituting the polyester used in the present invention examples include aliphatic diols such as 1-3propanediol, 1-4butanediol, neopentyl glycol and hexanediol, 1,4-cyclohexanedimethanol and the like.
  • diol component other than ethylene glycol constituting the polyester used in the present invention examples include aliphatic diols such as 1-3propanediol, 1-4butanediol, neopentyl glycol and hexanediol, 1,4-cyclohexanedimethanol and the like.
  • examples thereof include alicyclic diols, aromatic diols such as bisphenol A, and diethylene glycol.
  • the polyester used in the heat-shrinkable polyester-based film of the present invention is a cyclic diol such as 1,4-cyclohexanedimethanol or a diol having 3 to 6 carbon atoms (for example, 1-3 propanediol or 1-4 butanediol). , Neopentyl glycol, hexanediol, diethylene glycol, etc.), and a polyester whose glass transition point (Tg) is adjusted to 60 to 80 ° C. is preferable.
  • Tg glass transition point
  • the polyester used in the heat-shrinkable polyester-based film of the present invention is one or more kinds that can be an amorphous component in 100 mol% of the polyhydric alcohol component or 100 mol% of the polyvalent carboxylic acid component in the total polyester resin.
  • the total amount of the monomer components is preferably 14 mol% or more, more preferably 16 mol% or more, and particularly preferably 18 mol% or more.
  • examples of the monomer that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,2-diethyl1,.
  • 3-Propanediol, 2-n-butyl2-ethyl1,3-propanediol, 2,2-isopropyl1,3-propanediol, 2,2-din-butyl1,3-propanediol, 1,4 -Butandiol and hexanediol can be mentioned, but among them, neopentyl glycol or 1,4-cyclohexanedimethanol is preferably used.
  • the upper limit of the total of the monomer components that can be amorphous components is preferably 40 mol% or less. It is more preferably 38 mol% or less, still more preferably 36 mol% or less.
  • the polyester used in the heat-shrinkable polyester-based film of the present invention includes a diol having 8 or more carbon atoms (for example, octanediol) or a polyhydric alcohol having 3 or more valences (for example, trimethylolpropane, trimethylolethane, glycerin). , Diglycerin, etc.) is preferably not contained.
  • a heat-shrinkable polyester-based film obtained by using a polyester containing these diols or a polyhydric alcohol makes it difficult to achieve the required high shrinkage rate.
  • the intrinsic viscosity of the heat-shrinkable polyester film of the present invention is preferably 0.55 dl / g or more and 1.50 dl / g or less. If the intrinsic viscosity is less than 0.55 dl / g, the strength of the film is remarkably lowered and the film is easily broken during film formation and processing, which is not preferable. Further, even when the intrinsic viscosity exceeds 1.50 dl / g, stretching becomes difficult and causes breakage, which is not preferable. It is more preferably 0.58 dl / g or more and 1.47 dl / g or less, and further preferably 0.61 dl / g or more and 1.44 dl / g or less.
  • various additives such as waxes, antioxidants, antistatic agents, crystal nucleating agents, and thickeners are included, if necessary.
  • a heat stabilizer, a coloring pigment, a coloring inhibitor, an ultraviolet absorber and the like can be added. It is preferable to improve the workability (slipperiness) of the polyethylene terephthalate resin film by adding fine particles as a lubricant in the resin forming the heat-shrinkable polyester film of the present invention. Any fine particles can be selected, and examples of the inorganic fine particles include silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate and the like.
  • organic fine particles examples include acrylic resin particles, melamine resin particles, silicone resin particles, crosslinked polystyrene particles, and the like.
  • the average particle size of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter), and can be appropriately selected as needed. Further, the amount of fine particles added is in the range of 300 to 1200 ppm for the film, and good slipperiness (friction) and transparency can be achieved at the same time.
  • the above particles in the resin forming the heat-shrinkable polyester-based film for example, it can be added at any stage of producing the polyester-based resin, but it can be added at the stage of esterification or the ester exchange reaction. After completion, it is preferable to add it as a slurry dispersed in ethylene glycol or the like at a stage before the start of the polycondensation reaction to proceed with the polycondensation reaction.
  • a method of blending a slurry of particles dispersed in ethylene glycol or water using a kneading extruder with a vent and a polyester resin raw material or a method of blending dried particles and a polyester resin raw material using a kneading extruder. It is also preferable to carry out by a method of blending with.
  • the heat-shrinkable polyester-based film of the present invention can be subjected to a corona treatment, a coating treatment, a flame treatment, or the like in order to improve the adhesiveness of the film surface.
  • the heat-shrinkable polyester-based film of the present invention contains 5% by mass or more and 50% by mass or less of a PET bottle recycled raw material. If it is less than 5% by mass, the contribution to the reduction of the environmental load is extremely small, and the effect of the present invention is not exhibited. When used in excess of 50% by mass, it is necessary to make the amorphous (amorphous component amount) of the raw materials other than the PET bottle recycled raw materials extremely high, and it is not economical because the polymerization time of the raw materials becomes long. Not preferred.
  • the more preferable content of the PET bottle recycled raw material is 10% by mass or more and 45% by mass or less, and more preferably 20% by mass or more and 40% by mass or less.
  • the average value of the shrinkage rate in the main shrinkage direction is It is 40% or more, and the shrinkage rate of all samples is within ⁇ 3% on average.
  • Equation 1 If the average value of the shrinkage rate is less than 40%, since the shrinkage amount is small, wrinkles and insufficient shrinkage occur on the label after heat shrinkage, which is not preferable as a heat shrinkage film.
  • the upper limit of the shrinkage rate is not particularly set, but the upper limit is about 80%.
  • the shrinkage rate of the film sampled at a pitch of 100 m exceeds the range of the average value of ⁇ 3%, the fluctuation of the shrinkage rate for each label becomes large when the label is processed, and wrinkles are formed when the film is finished in the shrinkage tunnel. Labels with poor appearance such as are likely to occur, which is not preferable.
  • the average value is ⁇ 2.5%, further preferably the average value is ⁇ 2.0%, particularly preferably the average value is ⁇ 1.5% or less, and most preferably the average value is ⁇ 1.0. % Or less.
  • the film is sampled at a pitch of 100 m in the longitudinal direction of the roll, and the shrinkage rate in warm water at 90 ° C. (shrinkage rate in hot water at 90 ° C.) is measured for each film sample.
  • the shrinkage rate in the orthogonal direction is within the range of the average value ⁇ 3%.
  • the average value is ⁇ 2.5%, further preferably the average value is ⁇ 2.0%, particularly preferably the average value is ⁇ 1.5% or less, and most preferably the average value is ⁇ 1.0. % Or less. Further, the upper limit of the average value of the contraction rate in the direction orthogonal to the main contraction direction of all the samples is 20%.
  • the average value exceeds 20%, vertical sink marks during shrinkage finishing will increase, which is not preferable. It is more preferably 17% or less, still more preferably 14% or less. The lower the contraction rate in the direction orthogonal to the main contraction direction, the more preferable.
  • the isophthalic acid content ratio in 100 mol% of the total acid component of the polyester is within ⁇ 0.3 mol% on average. Is preferable.
  • the content ratio of isophthalic acid is measured and calculated by NMR measurement as described later.
  • the variation in heat shrinkage also greatly occurs as the composition fluctuates. The shrinkage rate varies, and appearance defects such as wrinkles are likely to occur, which is not preferable.
  • the film roll of the present invention uses a PET bottle recycled raw material, and as will be described later, the PET bottle recycled raw material generally contains a small amount of isophthalic acid as an acid component. Fluctuations in the proportion of isophthalic acid mean that PET bottle recycled raw material chips and chips of other raw materials are segregated. As described above, PET bottle recycled raw materials often contain additives such as highly crystallization nucleating agents, and their molecular weights have decreased due to repeated use. Therefore, changes in physical properties in film rolls due to segregation. The effect on is greater than other raw materials. The method for reducing segregation will be described later. A more preferable range of the isophthalic acid ratio is an average value of ⁇ 0.2 mol%, and even more preferably an average value of ⁇ 0.1 mol%.
  • the average value of the content ratio of isophthalic acid is preferably 0.3 mol% or more and 3.0 mol% or less in 100 mol% of the total acid component of the polyester. Crystalline is controlled in the polyester used for PET bottles in order to improve the appearance of the bottle, and as a result, polyester containing 10 mol% or less of isophthalic acid is generally used. Is the target.
  • the upper limit of the average value of the content ratio of isophthalic acid is preferably 3.0 mol% or less. It is more preferably 2.8 mol% or less, still more preferably 2.6 mol% or less, and particularly preferably 2.4 mol% or less.
  • the lower limit of the average value of the content ratio of isophthalic acid is preferably 0.3 mol%, more preferably 0.4 mol%, further preferably 0.5 mol%, and particularly preferably 0.6 mol. %.
  • the thickness of the heat-shrinkable polyester film of the present invention is preferably 5 ⁇ m or more and 40 ⁇ m or less. If the thickness is less than 5 ⁇ m, the risk of breakage in film formation increases, and the feeling of waist when labeled is reduced, which is not preferable because wrinkles are likely to occur. In addition, the thicker the film, the more stable the film formation and the greater the feeling of waist, so troubles such as wrinkles tend to be less likely to occur. It is not preferable because it goes backwards from the viewpoint. More preferably, the film thickness is 8 ⁇ m or more and 37 ⁇ m or less, and further preferably 11 ⁇ m or more and 34 ⁇ m or less.
  • the heat-shrinkable polyester film roll width of the present invention is preferably 500 mm or more, more preferably 1000 mm or more, and particularly preferably 1500 mm or more.
  • the winding length of the film roll is preferably 2000 m or more, more preferably 4000 m or more, and particularly preferably 8000 m or more.
  • the heat-shrinkable polyester film roll of the present invention has a step of storing and supplying the raw material resin, a step of extruding the resin while melting it, a step of making the extruded resin into an unstretched sheet, and a step of stretching the unstretched sheet. And, it is manufactured by going through a step of winding up the obtained stretched film. On top of that, in order to obtain a film roll having the characteristics of the present invention, it is important to suppress fluctuations in the film composition. The specific methods are described below.
  • the heat-shrinkable film generally requires an amorphous component as a raw material, but since the heat-shrinkable polyester-based film of the present invention uses a PET bottle recycled raw material chip, it inevitably includes a PET bottle recycled raw material.
  • a blending method is generally used, but segregation of raw material chips is likely to occur. Therefore, in the present invention, it is preferable to suppress segregation of raw material chips in the blending method by various methods as shown below and a combination of the methods.
  • a plurality of raw material polyester chips having different compositions are usually blended inside a hopper, then melt-kneaded and extruded into a film by an extruder.
  • PET bottle recycled raw material chips and other amorphous raw material chips are continuously or intermittently supplied, mixed inside the hopper, and finally mixed raw material chips to the popper (final hopper) directly above the extruder. Is supplied, and the raw material is supplied according to the extrusion amount of the extruder to form a film.
  • the mixing ratio of the chips supplied to the hopper or extruder thereafter when the amount of chips inside the hopper is large or the total amount is small.
  • This problem becomes prominent when the shapes and specific gravities of various polyester raw material chips are different.
  • the content of isophthalic acid varies in the present invention.
  • the shape of the raw material chip used as a means for reducing the composition fluctuation of the polyester constituting the film is matched. It is preferable to suppress the raw material segregation phenomenon inside the hopper.
  • polyester raw material chips are taken out in a strand form from a polymerization apparatus in a molten state after passing through a tree and polymerized, immediately cooled with water, and then cut and molded by a strand cutter.
  • the PET bottles are sorted, crushed, and washed, and the flake-shaped polyester is extruded again with an extruder, taken out in a strand shape, immediately water-cooled, and cut with a strand cutter to be molded.
  • polyester chips usually have an elliptical columnar cross section.
  • the average major axis (mm), the average minor axis (mm), and the average chip length (mm) of the cross-sectional ellipse of the polyester chip are within ⁇ 20%, respectively. Further, it is more preferable that these average values are in the range of ⁇ 15% or less, respectively.
  • the average major axis and average minor axis of the cross-section ellipse can be adjusted by adjusting the size of the nozzle hole of the die when extruding into a strand shape, and the tip length can be adjusted by the extrusion rate of the strand, the transport speed of the strand, and the strand. This is possible by adjusting the rotation speed of the cutter.
  • the angle of repose is an index showing the fluidity of the raw material chips, that is, the ease of falling.
  • the angle of repose is the angle between the slope of the mountain and the horizontal plane formed when a certain amount of raw material chips are dropped from a certain height.
  • the angle of repose is determined by the shape and particle size of the tip. The smaller the tip, the smaller the angle of repose, and the smaller the angle of repose of the resin, the easier it is to fall. It is preferable that the difference between the angle of repose of the resin having the smallest angle of repose and the angle of repose of the chip having the largest angle of repose is 5 degrees or less.
  • (b) Optimizing the hopper shape is also a preferable means as a countermeasure against segregation of raw materials.
  • a funnel-shaped hopper is used as the hopper that contains the mixed chips, and by setting the inclination angle to 65 ° or more, it is possible to easily drop large chips as well as small chips, while keeping the upper end of the contents horizontal. Since it descends, it is effective in reducing segregation of raw materials.
  • a more preferable tilt angle is 70 ° or more.
  • the inclination angle of the hopper is an angle between the funnel-shaped hypotenuse and the horizontal line segment.
  • the appropriate capacity of the hopper is within the range of 15 to 120% by mass of the one-hour discharge amount of the extruder. If the hopper does not have a capacity of 15% by mass or more of this discharge amount, it is difficult to stably supply the raw material, and if the hopper is too large, the raw material chip mixture will stay in the hopper for a long time, and the chips will stay in the hopper during that time. The reason why the hopper capacity is within the above range is that segregation may occur.
  • the hopper capacity is more preferably in the range of 20 to 100% by mass of the discharge amount per hour of the extruder. ..
  • (d) Reduction of fine powder Reducing the ratio of fine powder generated by scraping of the raw material chips used is also a preferable means for suppressing segregation of raw materials. Fine powder enters between the chips, and the friction between the chips is reduced, which makes it easier for small chips to fall off, which promotes segregation. It is preferable to remove the fine powder generated in the process to reduce the ratio of the fine powder contained in the hopper.
  • the fine powder to ratio contained is preferably controlled within 1% by mass, more preferably within 0.5% by mass, throughout the entire process of the raw material chips entering the extruder.
  • the fine powder may be removed by a method such as passing through a sieve at the time of chip formation with a strand cutter or passing through a cyclone type air filter when the raw material chips are sent by air.
  • the raw material chips undergo a drying step in order to reduce the water content of the resin before being charged into the extruder, or the raw material chips that have been separately dried are charged into the hopper.
  • the chips are heated to about 160 ° C. and dried in order to shorten the drying time.
  • the polyester crystallizes and the specific gravity increases as compared with the chips before drying. Therefore, the difference in specific gravity between the heat-dried PET bottle recycled raw material chips and the amorphous raw material chips further increases, and segregation is promoted. Therefore, in order to dry the raw material chips used in the present invention without crystallizing them, a method of evacuating at room temperature to reduce the water content is preferable.
  • the raw material chips that have not been dried that is, in the state where crystallization has not occurred, are used, and the extruder is a twin-screw extruder with a vent to perform melt extrusion while removing water from the vent. It is preferable to take the method of
  • (F) Stirring inside the hopper It is also effective to reduce the segregation of the raw material by stirring the inside of the hopper containing the mixture of the raw material chips.
  • the resins can be agitated and mixed and supplied to the next process (hopper or extruder) to segregate the raw materials. Can be reduced.
  • the position of the hopper having a stirring function is not particularly limited, but it is more preferable that the hopper is close to the extruder, and it is particularly preferable that the hopper is stirred by the final hopper directly above the extruder.
  • the capacity level of the hopper will always fluctuate, that is, the powder pressure to the lower part of the hopper will also fluctuate. Fluctuations in powder pressure are not preferable because they promote segregation of raw materials. Therefore, it is preferable to install a cone baffle (jinkasa) in the lower part of the hopper to cut the pressure from the raw material chip in the upper part of the hopper.
  • the lowest capacity level is set above the cone baffle, and the powder pressure applied to the raw material chips below the cone baffle at the bottom of the hopper can be kept constant, and the segregation of the raw material can be reduced.
  • the shape of the cone baffle is not particularly limited, but it is preferably conical or triangular pyramidal.
  • FIG. 1 is a schematic view showing an example of the relationship between an extruder 2 provided with a hopper 1 and an inner pipe
  • FIG. 2 is an enlarged view of a portion A in FIG. As shown in FIGS.
  • the raw material chips to be mixed are supplied from the inner pipe 3, and the other raw material chips are supplied from the upper part of the hopper 1. Since the outlet 4 of the inner pipe 3 is directly above the extruder (to be exact, directly above the raw material chip supply port 5 of the extruder 2), the mixing ratio of the raw material mixing chips can be kept constant.
  • the height (H2) of the outlet 4 of the inner pipe 3 preferably satisfies the relationship of the following formula 3, and more preferably satisfies both the relationships of the formulas 3 and 4.
  • H2 ⁇ H1 ... (Equation 3) In the formula, H1 indicates the height of the portion where the inner wall of the hopper is vertical (see FIG. 2)).
  • Equation 4 0.5 ⁇ L / tan ⁇ ⁇ H2 ⁇ ⁇ ⁇ (Equation 4)
  • L indicates the inner diameter of the outlet 4 of the inner pipe 3 (see FIG. 2).
  • is the angle of repose of the raw material chip that has been in the hopper before mixing.
  • the height H3 is preferably 0.3 m or more and 1.7 m or less, and more preferably 0.6 m or more and 1.4 m or less.
  • a method using a twin-screw extruder and a side feeder can be preferably used as a method of using the raw material chips without blending. Specifically, when two types of raw material chips, an amorphous raw material chip and a PET bottle recycled raw material chip, are used, the amorphous raw material chip is supplied to the twin-screw extruder 1, melted in the extruder, and further.
  • a PET bottle recycled raw material chip is supplied to another twin-screw extruder (hereinafter, the other twin-screw extruder is referred to as a twin-screw extruder 2), melted, and the twin-screw extruder 1 is supplied via a pipe.
  • a method of directly introducing the material in the middle by a side feed method and then mixing the two types of raw materials inside the twin-screw extruder 1 is preferable. Since there is no process of mixing the raw materials in the state of chips, the above-mentioned concern about segregation of the raw material chips is essentially eliminated.
  • the mixing ratio of the raw materials can be accurately adjusted by the rotation speed of the screw feeder or the like for the raw material chips to be charged into the twin-screw extruder 2 (side feeder). Therefore, it is possible to extremely reduce the variation in composition in the longitudinal direction of the film.
  • the twin-screw extruder 1 preferably has a venting function. In order to prevent air bubbles from being mixed when the raw materials are introduced by the side feeder, it is preferable to provide a vent at the start position where the raw materials are mixed to degas. It is preferable that the raw material chips supplied to the twin extruders 1 and 2 need to be single. This is to eliminate the process of mixing the raw material chips before supplying the raw material to the extruder, and to essentially eliminate the segregation of the raw material chips. When three or more kinds of raw materials are used, it is preferable to provide another twin-screw extruder 3 and directly introduce the twin-screw extruder 1 into the twin-screw extruder 1 by a side feed method.
  • the process for producing the heat-shrinkable polyester film of the present invention will be described below with (1) a melt-extruded and unstretched sheet casting step, (2) a transverse stretching step, and (3) a final heat treatment step.
  • the unstretched film can be obtained by quenching the film melted by extrusion.
  • a method for rapidly cooling the molten resin a method of casting the molten resin from a base onto a rotating drum and quenching and solidifying the molten resin to obtain a substantially unoriented resin sheet can be preferably adopted.
  • the shear rate when the molten resin is discharged from the mouth of the die is preferably 100 sec-1 or more, and more preferably 150 sec-1 or more.
  • the shear rate at the die outlet was calculated from the following equation 5.
  • 6Q / (W ⁇ H2) ⁇ ⁇ ⁇ (Equation 5) ⁇ ; Shear velocity (sec -1 )
  • Q Raw material discharge amount from the extruder (cm 3 / sec) W; width of the die mouth (cm) H; Dice mouth spacing (lip gap) (cm)
  • the film is preferably stretched horizontally and uniaxially, which stretches only in the width direction.
  • a method of performing longitudinal stretching in the pre-step of transverse stretching it is not preferable because the production machine base becomes long.
  • the unstretched sheet obtained as described above is guided to a tenter device capable of gripping both ends of the sheet with clips and heated, and the film is heated to a predetermined temperature by hot air in the preheating step, and then lengthened in the stretching step. It stretches by increasing the distance between the clips while transporting in the direction.
  • the film temperature during stretching in the width direction is preferably film Tg + 5 ° C. or higher and Tg + 40 ° C.
  • the stretching force becomes too high and the risk of breakage increases, which is not preferable. If the film temperature exceeds Tg + 40 ° C., the stretching force is too low, and sufficient shrinkage cannot be imparted to the film, which is not preferable.
  • the film after lateral stretching has a transverse stretching temperature of + 5 ° C. or higher and 45 ° C. or lower for a time of 5 seconds or longer and 10 seconds or shorter, with both ends in the width direction gripped by clips in the tenter. It is preferable that the heat treatment is finally performed over. If the temperature is higher than the transverse stretching temperature + 45 ° C., the shrinkage rate in the width direction decreases and the required shrinkage characteristics cannot be obtained, which is not preferable. Further, if the temperature is lower than the transverse stretching temperature + 5 ° C., the shrinkage in the width direction (so-called natural shrinkage rate) becomes large with time when the final product is stored at room temperature, which is not preferable.
  • the fluctuation range of the surface temperature of the film measured at arbitrary points in each of the preheating, stretching, and final heat treatment steps in the transverse stretching step and the final heat treatment step is preferably within ⁇ 1 ° C., more preferably the average temperature. It is preferable to control the average temperature within ⁇ 0.5 ° C. from the viewpoint of reducing the fluctuation of the heat shrinkage rate.
  • Heat shrinkage rate ((length before shrinkage-length after shrinkage) / length before shrinkage) x 100 (%) Equation (1)
  • composition analysis Each sample is dissolved in a solvent in which chloroform D (manufactured by Yurisop) and trifluoroacetate D 1 (manufactured by Yurisop) are mixed at a ratio of 10: 1 (volume ratio) to prepare a sample solution, and NMR "GEMINI-200" is prepared.
  • the NMR of the protons of the sample solution was measured under the measurement conditions of a temperature of 23 ° C. and a total number of integrations of 64 times. In the NMR measurement, the peak intensity of a predetermined proton was calculated, and the amount of the component in 100 mol% of the diacid component was measured.
  • the average value, the maximum value, and the minimum value of the component ratio (mol%) of isophthalic acid of the sample sampled every 100 m in the longitudinal direction were determined.
  • Tg glass transition point
  • polyester 1 having an intrinsic viscosity of 0.77 dl / g.
  • the average value was calculated from 100 resins. Assuming that the resin had an elliptical columnar shape, the major axis, minor axis and length (strand cut length) of the elliptical cross section were measured using calipers. As a result, the major axis was 3.1 mm, the minor axis was 2.1 mm, the height was 3.3 mm, and the angle of repose was 37 degrees.
  • the composition, chip size, and angle of repose are shown in Table 1.
  • Polyester B is a recycled material for PET bottles, and recycled raw material chips manufactured by Utsumi Recycling Systems Co., Ltd. were used. It contains 2 mol% of isophthalic acid with respect to all the dicarboxylic acid components constituting the polyester.
  • the resin size was measured by the same method as described above, and as a result, the major axis was 2.9 mm, the minor axis was 2.0 mm, the length was 3.4 mm, and the angle of repose was 36 degrees.
  • the major axis was ⁇ 6% with respect to polyester A, the minor axis was ⁇ 5% with respect to polyester A, and the length was + 3% with respect to polyester A.
  • the intrinsic viscosity of polyester B was 0.68 dl / g.
  • Polyester C was polymerized in the same manner as polyester A, and the resin size was changed by changing the hole size of the die when forming a strand and the cutter speed.
  • the major axis was 3.8 mm
  • the minor axis was 2.5 mm
  • the height was 4.3 mm
  • the angle of repose was 43 degrees.
  • the major axis was ⁇ 31% with respect to polyester B
  • the minor axis was + 25% with respect to polyester B
  • the length was + 26% with respect to polyester B.
  • the intrinsic viscosity of polyester C was 0.77 dl / g.
  • the stirring device used a method in which the spiral ribbon was rotated to stir the raw material chips.
  • the final hopper capacity was 190 kg, and the amount supplied to the extruder was 500 kg per hour.
  • the inclination angle of the hopper was 70 °.
  • the mixed raw material chips are supplied from the final hopper to the extruder, melt-extruded using a single-screw extruder at an extrusion temperature of 280 ° C., the molten resin is extruded from the T-die, and then rapidly cooled to obtain an unstretched film having a thickness of 135 ⁇ m.
  • Got The shear rate at this time was 180 sec -1 .
  • the glass transition temperature of the unstretched film was 65 ° C.
  • This unstretched film was guided to a tenter, preheated to a film temperature of 90 ° C., and then stretched 4.5 times in the width direction at a film temperature of 90 ° C. by widening the clip interval. Further, it was led to a final heat treatment zone and heat-treated at a film temperature of 100 ° C. for 6 seconds. At this time, the fluctuation range of the film temperature was within the range of the average temperature ⁇ 0.5 ° C. in all of the preheating step, the stretching step, and the final heat treatment step. The film after the heat treatment was cooled, and both ends were continuously cut and wound into a roll to obtain a master roll. The thickness of the film after stretching was 30 ⁇ m.
  • a slit roll having a width of 800 mm and a winding length of 4000 m was prepared in a slitter to obtain a heat-shrinkable polyester-based film roll.
  • the production method is shown in Table 2, and the evaluation results of the film are shown in Table 3.
  • it was a film roll from a film having sufficient shrinkage in the width direction, small variation in shrinkage rate and isophthalic acid ratio in the longitudinal direction, good shrinkage finish, and extremely low defect rate. ..
  • Example 2 A heat-shrinkable polyester film roll was produced in the same manner as in Example 1 except that the final hopper was not stirred and a conical cone baffle was provided. The production method is shown in Table 2, and the evaluation results of the film are shown in Table 3. As a result of the evaluation, it was a film roll from a film having sufficient shrinkage in the width direction, small variation in shrinkage rate and isophthalic acid ratio in the longitudinal direction, good shrinkage finish, and extremely low defect rate. ..
  • Example 3 A heat-shrinkable polyester-based film roll was produced in the same manner as in Example 1 except that the raw material chips of polyester A and polyester B were mixed by the inner pipe immediately before the extruder without stirring in the final hopper. At this time, the polyester A raw material chips were supplied from the upper part of the final hopper, and the polyester B raw material chips were supplied by the inner pipe. At this time, the inner diameter of the inner pipe was 0.2 m, the height H1 in FIGS. 1 and 2 was 5 m, the height H2 was 1.5 m, and the height H3 was 1.37 m. The production method is shown in Table 2, and the evaluation results of the film are shown in Table 3. As a result of the evaluation, it was a film roll from a film having sufficient shrinkage in the width direction, small variation in shrinkage rate and isophthalic acid ratio in the longitudinal direction, good shrinkage finish, and extremely low defect rate. ..
  • Example 4 After the polyester raw material A and the polyester raw material B were made into chips, they were put into their respective hoppers without being dried. Then, it was supplied to the extruder in the same manner as in Example 2. A twin-screw extruder with a vent is used as the extruder, and melt extrusion is performed while degassing from the vent and removing the water contained in the raw material chips from the extruder, in the same manner as in the method of Example 2. A film roll was manufactured. The production method is shown in Table 2, and the evaluation results of the film are shown in Table 3. As a result of the evaluation, it was a film roll from a film having sufficient shrinkage in the width direction, small variation in shrinkage rate and isophthalic acid ratio in the longitudinal direction, good shrinkage finish, and extremely low defect rate. ..
  • the twin-screw extruder 1 was designed to have a vent at the confluence of the resins from the twin-screw extruder 2, and degassed. Polyester A and polyester B were melt-extruded while being mixed inside the twin-screw extruder 1, then extruded from a T-die, and then rapidly cooled to obtain an unstretched sheet.
  • the subsequent manufacturing method was the same as in Example 1.
  • the production method is shown in Table 2, and the evaluation results of the film are shown in Table 3.
  • it was a film roll from a film having sufficient shrinkage in the width direction, small variation in shrinkage rate and isophthalic acid ratio in the longitudinal direction, good shrinkage finish, and extremely low defect rate. ..
  • the conditions were the same as in Example 5 except that the transverse stretching temperature in the tenter was 87 ° C. and the final heat treatment temperature was 96 ° C.
  • the Tg of the unstretched film was 62 ° C.
  • the thickness of the unstretched film was 135 ⁇ m
  • the thickness of the stretched film was 30 ⁇ m.
  • the production method is shown in Table 2, and the evaluation results of the film are shown in Table 3.
  • the conditions were the same as in Example 5 except that the transverse stretching temperature in the tenter was 94 ° C. and the final heat treatment temperature was 103 ° C.
  • the Tg of the unstretched film was 69 ° C.
  • the thickness of the unstretched film was 135 ⁇ m
  • the thickness of the stretched film was 30 ⁇ m.
  • the production method is shown in Table 2, and the evaluation results of the film are shown in Table 3.
  • Example 2 The amount supplied to the extruder was the same as in Example 2 except that the amount was changed to 120 kg per hour.
  • the production method is shown in Table 2, and the evaluation results of the film are shown in Table 3.
  • the shrinkage finish may be good, the film roll has a high defect rate.
  • Example 3 This was the same as in Example 2 except that the inclination angle of the final hopper was changed to 50 °.
  • the production method is shown in Table 2, and the evaluation results of the film are shown in Table 3.
  • the finish quality may be good, the film roll has a high defect rate.
  • Example 4 The same as in Example 3 except that the height H2 of the inner pipe was changed to 7 m. At this time, the height H3 was 6.87 m.
  • the production method is shown in Table 2, and the evaluation results of the film are shown in Table 3.
  • the shrinkage finish may be good, the film roll has a high defect rate.
  • the heat-shrinkable polyester film roll of the present invention contains a predetermined amount of the recycled PET bottle raw material as described above, has high shrinkage in the width direction, and has a small variation in composition in the longitudinal direction of the roll.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

【課題】 ペットボトルリサイクル原料を含有しても、フィルムロール内での熱収縮率の変動に起因する熱収縮工程でのシワやタテヒケなどの不良の発生を低減する熱収縮性ポリエステルフィルムロールを提供すること。 【解決手段】ペットボトル再生原料を5質量%以上50質量%以下含有すると共に、イソフタル酸成分を含有するポリエステルから構成される熱収縮性ポリエステル系フィルムからなるフィルムロールであり、以下の要件(1)~(3)を満足することを特徴とする熱収縮性ポリエステル系フィルムロール。 (1)ロール長手方向に100mピッチで採取したフィルムサンプルを、90℃温湯中に10秒浸漬させた時の主収縮方向における収縮率が、主収縮方向で平均値が40%以上であり、すべてのサンプルにおいての収縮率が平均値±3%以内であること (2)ロール長手方向に100mピッチで採取したフィルムサンプルにおいて、フィルムを構成するポリエステルは、の全酸成分100モル%中におけるイソフタル酸含有比率が全てその平均値±0.3mol%以内であること (3)ロール長手方向の厚みムラが20%以下であること

Description

熱収縮性ポリエステル系フィルムロール
本発明は、熱収縮性ポリエステル系フィルムを巻き取ってなるフィルムロールに関する。さらに詳しくは、ペットボトルリサイクル原料を使用していながら、高い収縮性を有し、フィルムロール長手方向の収縮物性のばらつきが小さく、後工程での収縮不足、収縮ムラ、歪み、タテ引け等の不良発生が少ない熱収縮性ポリエステル系フィルムロールに関するものである。
近年、ガラス瓶やペットボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(所謂、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムの内、ポリ塩化ビニル系フィルムは、耐熱性が低い上に焼却時に塩化水素ガスを発生したり、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという問題がある。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広汎に利用されるようになってきており、PET容器(ペットボトル)の流通量の増大に伴って、使用量が増加している傾向にある。
しかし、一方でペットボトル使用量の飛躍的な増大により、ごみ問題や省資源が社会的な課題となっている。その対策のひとつとして、使用済みのペットボトルを回収し、資源として再度使用する(リサイクル)動きが活発である。
 リサイクル技術としては、主にメカニカルリサイクル、ケミカルリサイクル、サーマルリサイクルなどがあるが、その中でもメカニカルリサイクルが最も広く普及しており、使用済みの容器を選別、粉砕、洗浄を行い、押出機で再度樹脂チップ化し、その後、再びペットボトルまたは繊維やフィルムに加工され使用される。
 熱収縮性ポリエステル系フィルムラベルにおいても、上記のようなペットボトルリサイクル(再生)原料を一部使用することで、PETの生産、使用、廃棄にわたるライフサイクルに寄与し、環境負荷低減に貢献することが可能である。
熱収縮性ポリエステル系フィルムは、一般的に、高い収縮性を得るためにフィルムを構成するポリエステルの結晶性を低下させる必要がある。しかしながら、ペットボトルリサイクル原料は結晶性の高い原料である。よって、ペットボトルリサイクル原料を使用する際は、非晶性の高い原料と少なくとも2種類の原料を混合して使用することが必須である。
熱収縮性フィルムは、製造後、一旦ロール状に巻き取られ、フィルムロールの形態で、各種図柄の印刷工程へ送られ、印刷終了後は、必要に応じて、最終製品に用いられるラベル等のサイズに合わせてスリット加工され、さらに溶剤接着等の手段によりフィルムの左右端部を重ね合わせてシールしてチューブ状体にされ、チューブ状体のものを裁断して、ラベル、袋等の形態に加工される。そして、ラベルや袋状のものを容器に装着し、スチームを吹き付けて熱収縮させるタイプの収縮トンネル(熱風トンネル)の内部をベルトコンベアー等にのせて通過させ、熱収縮させて容器に密着させている。
ところで、この熱収縮工程において、前記のラベルや袋等の単位において1個1個の熱収縮率ばらつく、つまり変動が大きいと、トンネル内の加熱条件は同じであるため、適正な熱収縮率を示さないラベルや袋等が発生することとなり、これらは収縮不足、収縮ムラ、シワ、図柄の歪み、タテヒケ等のよる外観不良を起こすため、最終製品とすることができなくなる。ここでタテヒケとは、収縮後のラベルの長さが不揃いになることで、ラベルの上端縁が下向きに湾曲するラインを描いたり、下端縁が上向きに湾曲ラインを描いたりす
る外観不良である。
このような、熱収縮率の変動は、ロール長手方向のフィルムを構成するポリエステル組成の変動が熱収縮率に与える影響が大きい。
通常熱収縮性ポリエステル系フィルムは、各種原料チップを押出機に投入、溶融してダイスから溶融樹脂を押し出して未延伸原反を得て、その後延伸されるが、組成の変動は、各種原料チップの押出機への供給までに発生している、つまり、各種原料チップの混合が均一でなく、偏析しているために組成の変動が発生していると考えられる。
ポリエステルフィルムに必要な成分を単一組成の原料チップにして使用する(原料チップを1種類にする)方法を採ることで、偏析は発生しないが、上述のようにペットボトルリサイクル原料を使用する場合、少なくとも2種類の原料チップを混合して使用する必要があり、偏析のリスクは存在する。つまり、ペットボトルリサイクル原料を使用する以上、長手方向の熱収縮率の変動が発生するリスクを含んでいる。例えば、ペットボトルのリサイクル工程で、粉砕・洗浄して再チップ化する際に非晶性ポリエステルを添加して、フィルムに必要な成分を全て含んだ単一組成の原料チップを得ることも不可能ではないが、リサイクル原料はフィルム以外の用途にも使用するため現実的ではない。
また、ペットボトルリサイクル原料は、様々なペットボトルを無作為に混合してリサイクルされている場合が多く、繰り返し使用により分子量等が低下しており、また高結晶化核剤等の添加剤が用いられている場合が多く、フィルムの原料として使用した場合、偏析による配合量の変動によるフィルム物性変動への影響が他の原料よりも大きく現れる悪さがあることを本願発明者らは見出した。
特許文献1にペットボトルリサイクル原料を使用した熱収縮性ポリエステル系フィルムが記載されているが、長手方向の熱収縮率の変動についての記載はない。
特許文献2においては、ペットボトルリサイクル原料を高比率含有した熱収縮性ポリエステル系フィルムが記載されているが、記載の方法では、90℃で45%以上の収縮率を得ることは困難であり、また長手方向の熱収縮率の変動についての記載はない。
特許第5320737号公報 特許第6402954号公報
本発明は、ペットボトルリサイクル原料を含有しても、フィルムロール内での熱収縮率の変動に起因する熱収縮工程でのシワやタテヒケなどの不良の発生を低減する熱収縮性ポリエステルフィルムロールを提供することを課題とするものである。
本発明者らは上記課題を解決するため、鋭意検討した結果、本発明を完成するに至った。即ち本発明は以下の構成よりなる。
1.ペットボトル再生原料を5質量%以上50質量%以下含有すると共に、イソフタル酸成分を含有するポリエステルから構成される熱収縮性ポリエステル系フィルムからなるフィルムロールであり、以下の要件(1)~(3)を満足することを特徴とする熱収縮性ポリエステル系フィルムロール。
(1)ロール長手方向に100mピッチで採取したフィルムサンプルを、90℃温湯中に10秒浸漬させた時の主収縮方向における収縮率が、平均値が40%以上であり、すべてのサンプルにおいて平均値±3%以内であること
(2)ロール長手方向に100mピッチで採取したフィルムサンプルにおいて、フィルムを構成するポリエステルは、全酸成分100モル%中におけるイソフタル酸含有比率が全てその平均値±0.3mol%以内であること
(3)ロール長手方向の厚みムラが20%以下であること
2.熱収縮ポリエステル系フィルムが、少なくともペットボトル再生原料と1種類以上の組成の異なるポリマーチップの混合物から形成されていることを特徴とする1.に記載の熱収縮性ポリエステル系フィルムロール。
3.熱収縮性ポリエステルフィルムを構成するポリエステルが、エチレンテレフタレートを主たる構成成分とすることを特徴とする1.又は2.に記載の熱収縮性ポリエステル系フィルムロール。
4.ロール長手方向に100mピッチで採取したフィルムサンプルにおいて、フィルムを構成するポリエステルは、全酸成分100モル%中におけるイソフタル酸含有比率の平均値が0.3モル%以上3.0モル%以下であることを特徴とする1.~3.のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
5.熱収縮ポリエステル系フィルムロールの巻長が1000m以上であることを特徴とする1.~4.のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
6.ロール長手方向に100mピッチで採取したフィルムサンプルを、90℃温湯中に10秒浸漬させた時の収縮率が、主収縮方向と直交する方向における平均値が0%以上15%以下であり、全てのサンプルの収縮率が平均値±3%以内であることを特徴とする1.~5.のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
本発明の熱収縮性ポリエステル系フィルムロールはペットボトルリサイクル原料を混合して使用しても、フィルムロール内での熱収縮率の変動が小さく、それに起因する熱収縮工程でのシワやタテヒケなどの不良の発生が極めて少なくすることが可能である。
ホッパー1を備えた押出機2とインナーパイプとの関係の一例を示す概略図である。 前記図1のAの部分を示す拡大図である。
本発明の熱収縮性ポリエステル系フィルムロールを構成する熱収縮性ポリエステル系フィルム(以下、本発明の熱収縮性ポリエステル系フィルムと称する場合がある)において使用するポリエステルは、エチレンテレフタレートを主たる構成成分とするものである。すなわち、ポリエステルの全構成成分100モル%に対してエチレンテレフタレートを50モル%以上、好ましくは60モル%以上含有するものである。また、後述するように該ポリエステルはイソフタル酸成分を含有する。本発明のポリエステルを構成するテレフタル酸、イソフタル酸以外の他のジカルボン酸成分としては、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等を挙げることができる。
脂肪族ジカルボン酸(たとえば、アジピン酸、セバシン酸、デカンジカルボン酸等)を含有させる場合、含有率は3モル%未満であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、フィルム腰が不十分となり、スリットや後加工次に不具合が発生するため好ましくない。
また、3価以上の多価カルボン酸(たとえば、トリメリット酸、ピロメリット酸およびこれらの無水物等)を含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
本発明で使用するポリエステルを構成するエチレングリコール以外のジオール成分としては、1-3プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等やジエチレングリコールを挙げることができる。
本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、1,4-シクロヘキサンジメタノール等の環状ジオールや、炭素数3~6個を有するジオール(たとえば、1-3プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール、ジエチレングリコール等)のうちの1種以上を含有させて、ガラス転移点(Tg)を60~80℃に調整したポリエステルが好ましい。
また、本発明の熱収縮性ポリエステル系フィルムに用いるポリエステルは、全ポリステル樹脂中における多価アルコール成分100モル%中あるいは多価カルボン酸成分100モル%中の非晶質成分となりうる1種以上のモノマー成分の合計が14モル%以上であることが好ましく、16モル%以上であることがより好ましく、特に18モル%以上であることが好ましい。ここで、非晶質成分となりうるモノマーとしては、たとえば、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル2-エチル1,3-プロパンジオール、2,2-イソプロピル1,3-プロパンジオール、2,2-ジn-ブチル1,3-プロパンジオール、1,4-ブタンジオール、ヘキサンジオールを挙げることができるが、その中でも、ネオペンチルグリコール、又は1,4-シクロヘキサンジメタノールを用いるのが好ましい。非晶成分となりうるモノマー成分の合計の上限としては40モル%以下が好ましい。より好ましくは38モル%以下であり、さらに好ましくは36モル%以下である。
本発明の熱収縮性ポリエステル系フィルムに用いるポリエステル中には、炭素数8個以上のジオール(たとえばオクタンジオール等)、または3価以上の多価アルコール(たとえば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリン等)を、含有させないことが好ましい。これらのジオール、または多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮率を達成しにくくなる。
本発明の熱収縮性ポリエステル系フィルムの固有粘度は0.55dl/g以上1.50dl/g以下が好ましい。固有粘度が0.55dl/g未満であるとフィルムの強度が著しく低下し、製膜および加工時に破断しやすくなるため好ましくない。また、固有粘度が1.50dl/gを超える場合においても、延伸が困難となり破断の原因となるため好ましくない。より好ましくは0.58dl/g以上1.47dl/g以下であり、さらに好ましくは0.61dl/g以上1.44dl/g以下である。
また、本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、たとえば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、滑剤として微粒子を添加することによりポリエチレンテレフタレート系樹脂フィルムの作業性(滑り性)を良好なものとするのが好ましい。微粒子としては任意のものを選択することができるが、たとえば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等を挙げることができる。また、有機系微粒子としては、たとえば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタにて測定した場合)で、必要に応じて適宜選択することができる。また微粒子の添加量はフィルムで300~1200ppmの範囲内で、良好な滑り性(摩擦)と透明性を両立することができる。
熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、たとえば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
さらに、本発明の熱収縮性ポリエステル系フィルムには、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したりすることも可能である。
本発明の熱収縮性ポリエステル系フィルムは、ペットボトルリサイクル原料を5質量%以上50質量%以下含有している。5質量%未満では、環境負荷低減への寄与は極めて小さく、また、本発明の効果が発揮されない。50質量%を超えて使用する場合、ペットボトルリサイクル原料以外の原料の非晶性(非晶質成分の量)を極めて高くする必要があり、原料の重合時間が長くなるなど経済的ではないため好ましくない。ペットボトルリサイクル原料のより好ましい含有量は10質量%以上45質量%以下であり、さらに好ましくは20質量%以上40質量%以下である。
本発明はフィルムロール長手方向に100mピッチでフィルムをサンプリングし、90℃温水中での収縮率(90℃温湯収縮率)を各フィルムサンプルで測定した時の、主収縮方向の収縮率平均値が40%以上であり、全てのサンプルの収縮率が平均値±3%以内である。
温湯収縮率は、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、下式1により算出する。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%)   ・・(式1)
収縮率の平均値が40%未満であると、収縮量が小さいために、熱収縮した後のラベルに皴や収縮不足が生じてしまうので、熱収縮フィルムとしては好ましくない。収縮率の上限は特に設けないが、80%程度が上限である。
また、100mピッチでサンプリングしたフィルムの収縮率が平均値±3%の範囲を超える場合、ラベルに加工した際に、各ラベル毎の収縮率の変動が大きくなり、収縮トンネルで仕上げた際にシワなどの外観不良となるラベルが発生しやすくなり好ましくない。より好ましくは、平均値±2.5%であり、さらに好ましくは平均値±2.0%であり、特に好ましくは平均値±1.5%以下であり、最も好ましくは平均値±1.0%以下である。
また、本発明はロール長手方向に100mピッチでフィルムをサンプリングし、90℃温水中での収縮率(90℃温湯収縮率)を各フィルムサンプルで測定した時の、全てのサンプルの主収縮方向と直交する方向の収縮率が平均値±3%の範囲内である。100mピッチでサンプリングしたフィルムの主収縮方向と直交する方向の収縮率が平均値±3%の範囲を超える場合、ラベルに加工した際に、各ラベル毎の収縮率の変動が大きくなり、収縮トンネルで仕上げた際にラベルの高さが各ラベルで異なってしまうため好ましくない。より好ましくは、平均値±2.5%であり、さらに好ましくは平均値±2.0%であり、特に好ましくは平均値±1.5%以下であり、最も好ましくは平均値±1.0%以下である。また、全てのサンプルの主収縮方向と直交する方向の収縮率の平均値の上限は20%である。平均値が20%を超えると、収縮仕上げ時のタテヒケが大きくなるため好ましくない。より好ましくは17%以下であり、さらに好ましくは14%以下である。なお、主収縮方向と直交する方向の収縮率は低ければ低いほど好ましい。
本発明の熱収縮性ポリエステル系フィルムロールは、ロール長手方向に100mピッチで採取したフィルムサンプルにおいて、ポリエステルの全酸成分100モル%中におけるイソフタル酸含有比率が全てその平均値±0.3mol%以内であることが好ましい。イソフタル酸の含有比率は後述するようにNMR測定によって測定、算出する。
イソフタル酸の含有比率が平均値±0.3mol%の範囲を超えて変動する場合、組成の変動に伴い、熱収縮のばらつきも大きく生じることになり、結果、ラベルに加工した際に、ラベル毎に収縮率がばらつき、シワなどの外観不良が発生しやすくなり好ましくない。
本発明のフィルムロールには、ペットボトルリサイクル原料を使用するが、後述するようにペットボトルリサイクル原料は酸成分としてイソフタル酸を少量含んでいることが一般的である。イソフタル酸の比率が変動することはつまり、ペットボトルリサイクル原料チップとその他原料のチップが偏析していることを意味する。前述のように、ペットボトルリサイクル原料には、高結晶化核剤等の添加剤が含まれる場合が多く、また繰り返し使用により分子量等が低下しているので、偏析によるフィルムロール内での物性変動への影響が他の原料よりも大きい。偏析を小さくする方法については、後述する。
イソフタル酸比率のより好ましい範囲は平均値±0.2mol%であり、さらに好ましくは平均値±0.1mol%である。
 なお、前記イソフタル酸の含有比率の平均値は、ポリエステルの全酸成分100モル%中において、0.3モル%以上3.0モル%以下であることが好ましい。ペットボトルに使用されているポリエステルにはボトル外観を良好にするために、結晶性の制御が行われており、その結果、10モル%以下のイソフタル酸を含むポリエステルが用いられている場合が一般的である。本発明においては、ペットボトルリサイクル原料を50質量%以下含有するので、イソフタル酸の含有比率の平均値の上限は3.0モル%以下であることが好ましい。より好ましくは2.8モル%以下であり、さらに好ましくは2.6モル%以下、特に好ましくは2.4モル%以下である。
イソフタル酸の含有比率の平均値の下限は好ましくは0.3モル%であり、より好ましくは0.4モル%であり、さらに好ましくは0.5モル%であり、特に好ましくは0.6モル%である。
また、本発明の熱収縮性ポリエステル系フィルムロールの長手方向における厚みムラは、下式2で表される式で20%以下である。長手方向の厚みムラが悪いと、ラベルに加工した際に、ラベル毎の厚みが異なってしまう。ラベルの厚みが異なると、スチームトンネル(熱風トンネル)内部でのラベルへの熱のかかり方が異なるため、シワなどの外観不良が発生しやすくなり好ましくない。好ましくは18%以下で、更に好ましいのは15%以下である。厚みムラの値は、小さければ小さいほど好ましい。
 厚みムラ={(厚みの最大値―厚みの最小値)÷平均厚み}×100(%)・・(式2)
また、本発明の熱収縮性ポリエステル系フィルムの厚みは、5μm以上40μm以下が好ましい。厚み5μm未満とすると製膜における破断リスクが高くなる、また、ラベルにした際の腰感が低下しシワになりやすく好ましくない。また、フィルム厚みは厚い方がより製膜は安定し、腰感が高まるためシワなどのトラブルは生じにくくなる傾向ではあるが、環境対応低減を目的とする本発明のフィルムと、減容化という観点から逆行するため好ましくない。より好ましくはフィルム厚みは8μm以上37μm以下であり、さらに好ましくは11μm以上34μm以下である。
本発明の熱収縮性ポリエステル系フィルムロール幅は500mm以上であることが好ましく、1000mm以上であるとさらに好ましく、1500mm以上であると特に好ましい。またフィルムロールの巻長は2000m以上であることが好ましく、4000m以上であることがさらに好ましく、8000m以上であることが特に好ましい。
以下、本発明の熱収縮性ポリエステル系フィルムロールの好ましい製造方法について説明する。
本発明の熱収縮性ポリエステル系フィルムロールは、原料樹脂を貯蔵し供給する工程と、樹脂を溶融しながら押し出す工程と、押出した樹脂を未延伸シートとする工程と、未延伸シートを延伸する工程と、得られた延伸フィルムを巻き取る工程を経ることにより製造される。
 その上で、本発明の特性をもつフィルムロールを得るためには、フィルム組成の変動を抑制することが重要となる。具体的な方法についてはそれぞれ下記する。
〈フィルム組成の変動の抑制の方法〉
熱収縮フィルムは一般的に原料に非晶性成分を必要とするが、本発明の熱収縮性ポリエステル系フィルムは、ペットボトルリサイクル原料チップを使用するため、必然的にペットボトルリサイクル原料を含めた少なくとも2種類以上の原料チップを使用する。使用する方法として、ブレンド方式が一般的であるが、原料チップの偏析が起こりやすくなる。そこで、下記に示すような各種方法およびその方法の組み合わせによりブレンド方式での原料チップの偏析を抑制することが本発明では好ましい。
(a) チップ形状の均一化
ブレンド方式では、通常組成の異なる複数の原料ポリエステルチップをホッパー内部でブレンドした後、溶融混練して押出機で押出しフィルム化する。本発明では、ペットボトルリサイクル原料チップとその他非晶性原料チップを連続式あるいは間欠式に供給して、ホッパー内部で混合し、最終的には押出機直上のポッパー(最終ホッパー)に混合原料チップを供給し、押出機の押し出し量に合わせて原料を供給してフィルムを形成する。
しかし、原料が混合されているホッパーおよび最終ホッパーの容量あるいは形状によっては、ホッパー内部のチップ量が多い場合と全量が少なくなった場合に、その後のホッパーあるいは押出機に供給されるチップの混合比が異なることがわかっている。この問題は、各種ポリエステル原料チップの形状および比重が異なっている場合に、顕著に現れる。その結果、本発明ではイソフタル酸の含有率が変動してしまう。
本発明の長手方向の収縮率の変動およびイソフタル酸含有率の変動が少ないフィルムロールを得るためには、フィルムを構成するポリエステルの組成変動を低減する手段として使用する原料チップの形状をあわせて、ホッパー内部での原料偏析現象を抑止することが好ましい。
ポリエステルの原料チップは、通樹、重合後に溶融状態で重合装置よりストランド状で取り出され、直ちに水冷された後、ストランドカッターでカットされて成形される。またペットボトルリサイクル原料の場合は、ペットボトルを選別、粉砕、洗浄したフレイク状のポリエステルを再度押出機で押出し、ストランド状で取り出され、直ちに水冷、ストランドカッターでカットされて成形される。このため、ポリエステルチップは、通常、断面が楕円形の楕円柱状となる。この時、ポリエステルチップの断面楕円の平均長径(mm)、平均短径(mm)および平均チップ長さ(mm)に対して、夫々±20%以内の範囲にすることが好ましい。さらに、これらの平均値が夫々±15%以内の範囲であるとより好ましい。断面楕円の平均長径、平均短径の調整は、ストランド状に押し出す際のダイスのノズル孔のサイズの調整により可能であり、チップの長さの調整はストランドの押出量、ストランドの搬送速度、ストランドカッターの回転速度の調整により可能である。
チップの大きさに違いがある場合、ホッパー内をチップ混合物が落下していくときに、小さいチップは先に落下しやすい、このためホッパー内部のチップ残量が少なくなると、大きいチップの比率が大きくなり、これが原料偏析の原因になる。しかし、上記範囲内の原料チップを用いることで、これらの原料偏析を抑制が可能となる。
また原料チップの粒体流動性つまり落下のしやすさを示す指標として、安息角がある。安息角とは、一定の量の原料チップを一定の高さから落下させたときに形成される山の斜面と水平面とのなす角度である。安息角はチップの形状や粒径によって決まるもので、チップが小さいほど安息角は小さく傾向があり、レジンの安息角が小さいほど落下しやすくなる傾向である。安息角がもっとも小さいレジンともっとも大きいチップの安息角の差が5度以下であることが好ましい。上記範囲内の原料チップを用いることで、これらの原料偏析を抑制が可能となるより好ましくは4度以下である。
(b)ホッパー形状最適化
上記のホッパー形状の最適化も、原料偏析の対策として好ましい手段である。混合チップが入るホッパーは、漏斗状ホッパーを用い、その傾斜角を65°以上にすることで、大きいチップも小さいチップと同様に落としやすくすることができ、内容物の上端部が水平面を保ちつつ下降していくため、原料偏析の低減に効果的である。より好ましい傾斜角度は70°以上である。なお、ホッパーの傾斜角とは、漏斗状の斜辺と、水平な線分との間の角度である。
(c)ホッパー容量の最適化
ホッパー内部で原料偏析を低減する手段として、使用するホッパーの容量を適正化することも好ましい手段である。ここで、ホッパーの適正な容量としては、押出機の1時間の吐出量の15~120質量%の範囲内である。この吐出量の15質量%以上の容量がホッパーにないと、原料の安定供給が難しいこと、また大きすぎるホッパーでは、原料チップ混合物が長時間に亘ってホッパー内にとどまることになり、その間にチップの偏析が生じる恐れがあること、などがホッパー容量を上記範囲内とする理由である、ホッパー容量は押出機の1時間あたりの吐出量の20~100質量%の範囲内であることがより好ましい。
(d) 微粉体の低減
使用する原料チップの削れなどにより発生する微粉体の比率を低減することも、原料偏析を抑制するために好ましい手段である。微粉体がチップとチップの間に入りこみ、チップ同士の摩擦低減により、サイズの小さいチップが落ちやすくなるため偏析を助長する。工程内で発生する微粉体を除去して、ホッパー内に含まれる微粉体の比率を低減することが好ましい。含まれる微粉対比率は、原料チップが押出機に入る全行程を通じて、1質量%以内に制御することが好ましく、0.5%質量%以内に制御することがさらに好ましい。
具体的には、ストランドカッターでチップ形成時に篩を通す方法、原料チップを空送などする場合にサイクロン式エアフィルターを通すなどの方法により、微粉体を除去すればよい。
(e) 未結晶化原料の使用
使用する複数の原料チップの間の、比重の差異が大きい場合も原料偏析が生じやすくなる。つまり、比重の大きい(重い)チップは、チップ混合物が落下していく際に、先に落下しやすく偏析を助長する。本発明では、ペットボトルリサイクル原料チップと非晶性原料チップを混合して使用するが、ペットボトルリサイクル原料は結晶性原料であるため、非晶性原料よりも比重が大きく、チップの間に比重の差異がある。
一方、原料チップは、押出機に投入する前にレジンの含有する水分率を低下させるため乾燥工程を経る、もしくは別途乾燥した原料チップをホッパーに投入する。ペットボトルリサイクル原料は乾燥時間の短縮のためにチップを160℃程度にまで加熱して乾燥させるが、この時、ポリエステルは結晶化し、乾燥前のチップよりも比重が増加する。そのため加熱乾燥したペットボトルリサイクル原料チップと、非晶性原料チップの比重差はさらに増加し、偏析を助長する。
そのため、本発明で使用する原料チップは、結晶化させず乾燥させるため常温で真空引きし水分率を低下させる方法が好ましい。あるいは乾燥自体を実施せずに、つまり結晶化が生じていない状態の原料チップを使用し、押出機をベント付きの二軸押出機を採用して溶融押出しを実施しながら、ベントから水分を除去する方法をとることが好ましい。
(f)ホッパー内部での撹拌
原料チップの混合物が入るホッパー内部を撹拌することで、原料偏析を低減することも有効である。例えば羽の付いた撹拌装置や、螺旋状のリボンの付いた撹拌装置をホッパーに設けることで、レジン同士を撹拌混合しながら次工程(ホッパーもしくは押出機)に供給することができ、原料偏析を低減できる。撹拌機能を有するホッパーの位置は特に限定しないが、押出機に近いホッパーであることがより好ましく、押出機直上の最終ホッパーで撹拌することが特に好ましい。
(g)コーンバッフルの設置
ホッパー下部の原料チップの落下は、その上部にある原料チップの重量による圧力(所謂、粉体圧)の影響を受ける。
フィルムは通常連続的に生産されるが、原料チップのホッパーへの供給は間欠式である場合が多い。連続的に原料レジンを供給すると、常にチップ輸送装置を稼働状態におく必要があり故障の頻度が上がる、また、供給量を消費量とバランス化する必要があり、原料供給量の少ないレジンチップの場合は正確な計量が困難となるためである。間欠的な供給は、つまり、ホッパー内部の原料が消費されて、ある容量レベルを下回ると、原料チップがある量供給され、あるレベルに達すると供給をやめ、その後消費が進むと再度供給するというサイクルであるが、その場合、ホッパーの容量レベルは常に変動することとなり、つまりは、ホッパー下部への粉体圧も変動することとなる。粉体圧の変動は原料偏析を助長するため好ましくない。
そこで、ホッパー下部にコーンバッフル(陣笠)を設置して、ホッパー上部にある原料チップからの圧力をカットする手段が好ましい。容量レベルの最低レベルをコーンバッフルよりも上部に設定し、ホッパー下部でコーンバッフルよりも下にある原料チップに掛かる粉体圧を一定に保つことが可能となり、原料偏析の低減が可能となる。
コーンバッフルの形状は特に限定しないが、円錐形もしくは三角錐形であることが好ましい。
(h)押出機直上での混合
押出機直上のホッパー(最終ホッパー)内部に配管を挿入して、押出直前にチップを混合する方法も好ましい手段である。偏析を起こす原料チップが押出機直前で混ぜ合わされるため、実質偏析が発生する機会が極めて少ないため偏析低減に効果的である。但し、少なくとも下式3を満たす設備を使用する必要がある。具体的な混合手順の一例を図1に示す。図1はホッパー1を備えた押出機2とインナーパイプの関係の一例を示す概略図であり、図2は前記図1のAの部分の拡大図である。図1,2に示すように、インナーパイプ3から混合する原料チップが供給され、その他原料チップはホッパー1の上部から供給される。そしてインナーパイプ3の出口4が押出機直上(正確には押出機2の原料チップ供給口5の直上)になっているため、原料混合チップの混合比率を一定に保つことができる。
前記インナーパイプ3の出口4の高さ(H2)は、以下の式3の関係を満たすものが好ましく、式3,4の両方の関係を満足しているのがより好ましい。
 H2<H1 ・・・(式3)
 (式中、H1はホッパーの内壁が鉛直になっている部分の高さを示す(図2参照))
 0.5×L/tanθ<H2 ・・・(式4)
 (式中、Lはインナーパイプ3の出口4の内径を示す(図2参照)。θは混合前からホッパーに入っている原料チップの安息角である。)
式3を満たすことで、原料チップが混合される位置(H3)を押出機よりも上にすることができ、押出機内に空気が入って気泡が生じるのを防止することができる。
原料チップの混合位置の高さH3(=H2-0.5×L/tanθ)は0mより高く、2m未満であることが好ましい。0mよりも高くすることで、押出機内への空気の侵入を防止することができるため好ましい。また、2m未満にすることで、押出機までの距離を短くすることができ、原料偏析を防止できる。高さH3は好ましくは0.3m以上1.7m以下であり、さらに好ましくは0.6m以上1.4m以下である。
ブレンド方式を採用して本発明の長手方向での熱収縮率のばらつき、およびイソフタル酸比率のばらつきが小さいフィルムロールを得るためには、上記の(a)~(d)は全て行うことが好ましい。ただし(a)~(d)を全て実施しても原料偏析を低減するには不十分であり、さらに(e)~(h)の4つの手段のうち1つ以上を採用することが好ましく、2つ以上採用することがより好ましい。
あるいは、上記ブレンド方式を採用せず、以下の(i)の手段を採用することができる。
(i)二軸押出機とサイドフィーダーの使用
上記の方法の他に、原料チップをブレンドせずに使用する方法として、二軸押出機とサイドフィーダーを用いた方法が好適に用いることができる。
具体的には、非晶性原料チップとペットボトルリサイクル原料チップの2種類を使用する場合において、非晶性の原料チップを二軸押出機1に供給して、押出機機内で溶融し、さらに別の二軸押出機(以下、該別の二軸押出機を、二軸押出機2とする)に、ペットボトルリサイクル原料チップを供給、溶融して、配管を介して二軸押出機1の途中へサイドフィードの方法で直接導入し、その後二軸押出機1の内部で2種類の原料を混合する方法が好ましい。
原料をチップの状態で混合する過程がないため、前述のような原料チップの偏析の懸念は本質的に解消される。
原料の混合比率は、二軸押出機2(サイドフィーダー)のに投入する原料チップをスクリューフィーダー等の回転数で正確に調整することができる。そのためフィルム長手方向での組成の変動を極めて小さくすることが可能である。
二軸押出機1はベント機能を有することが好ましい。サイドフィーダーにより原料が導入される際の気泡の混入を防ぐために、原料同士が混合する開始位置にベントを設けて脱気することが好ましい。
二軸押出機1および2に供給する原料チップはそれぞれ単一である必要があることが好ましい。それは押出機への原料供給以前に原料チップが混合する工程をなくし原料チップの偏析を本質的になくすためである。
3種類以上の原料を使用する場合は、さらに別の二軸押出機3を設けて、サイドフィード方式で二軸押出機1に直接導入する方法が好ましい。
本発明の熱収縮率ポリエステルフィルムの製造プロセスは、(1)溶融押出しおよび未延伸シートのキャスティング工程、(2)横延伸工程、(3)最終熱処理工程以下それぞれについて説明する。
(1)溶融押出しおよび未延伸シートのキャスティング工程
原料の混合や供給については上述した通りの原料偏析対策を実施し、押出機で220~280℃の温度で、Tダイ法、チューブラ法等、既存の方法を用いて、シート状に押し出す。なお、押し出し時の温度が280℃を超えると、ポリエステル樹脂の極限粘度が低下し、製膜工程中で破断が生じやすくなり、定常状態のフィルムを得にくくなるため好ましくない。220℃を下回ると原料の一部が未溶融となり機械に過負荷がかかったり、未溶融樹脂が製膜時の破断の起点となるため好ましくない。
その後、押し出しで溶融されたフィルムを急冷することにより、未延伸のフィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
さらに、溶融樹脂をダイスの口部から吐出するときのせん断速度は100sec-1以上であると好ましく、150sec-1以上であるとより好ましい。せん断速度が高いほど、フィルムの長手方向の収縮率変動と厚みムラを抑制できる。これは、せん断速度が高いほど、ダイス口部(出口)での樹脂吐出圧力が安定するためである。せん断速度が100sec-1未満であるとダイス出口での樹脂吐出圧力が不安定となり、脈動(長手方向における未延伸フィルムの厚み変動)が発生しやすくなる。このことにより、後述する長手方向への延伸が均一とならないため、長手方向への熱収縮率変動と厚みムラが大きくなってしまう。
一方、せん断速度が600sec-1より大きいと、ポリエステル分子鎖が切断(分解)されて極限粘度が低下するだけでなく、ダイスの吐出部分に樹脂カス等が付着して生産性が悪くなるため好ましくない。
なお、ダイス出口でのせん断速度は、以下の式5より求めた。
γ=6Q/(W×H2)          ・・・(式5)
         γ;せん断速度(sec-1
         Q;押し出し機からの原料吐出量(cm/sec)
         W;ダイス口部の幅(cm)
          H;ダイス口部の間隔(リップギャップ)(cm)
 
(2)横延伸工程 
フィルムの延伸は幅方向にのみ延伸を行う横一軸延伸が好ましい。横延伸の前工程で縦延伸を実施する方法も用いることは可能であるが、生産機台が長大になるため好ましくない。上述のようにして得た未延伸シートを、シートの両端をクリップで把持して加熱することができるテンター装置に導き、予熱工程で熱風によりフィルムを所定の温度まで加熱した後、延伸工程で長手方向に搬送しながらクリップ間の距離を広げることで延伸する。
幅方向延伸時のフィルム温度は、フィルムTg+5℃以上Tg+40℃であることが好ましい。フィルム温度がTg+5℃未満であると、延伸力が高くなりすぎて、破断するリスクが高まるため好ましくない。フィルム温度がTg+40℃を超えると、延伸力が低すぎるために、フィルムに十分な収縮性が付与できず好ましくない。
(3)最終熱処理工程
横延伸後のフィルムは、テンター内で幅方向の両端際をクリップで把持した状態で、横延伸温度+5℃以上45℃以下の温度で、5秒以上10秒以下の時間にわたって最終的に熱処理されることが好ましい。
温度が横延伸温度+45℃よりも高いと幅方向の収縮率が低下して必要な収縮特性を得られないため好ましくない。また、温度が横延伸温度+5℃よりも低いと、最終的な製品を常温下で保管した時に、経時で幅方向の収縮(いわゆる自然収縮率)が大きくなり好ましくない。また、熱処理時間は長いほど好ましいが、あまりに長いと設備が巨大化するので、10秒以下の時間が好ましい。
なお、前記の横延伸工程と最終熱処理工程における、予熱・延伸・最終熱処理の各工程の任意ポイントにおいて測定されるフィルムの表面温度の変動幅を、好ましくは平均温度±1℃以内、より好ましくは平均温度±0.5℃以内に制御することが、熱収縮率変動を低減する観点より好ましい。
次に実施例及び比較例を用いて、本発明を具体的に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。        
[評価試料のサンプリング方法]
フィルムロールからフィルムを長さ1m除去した部分を表層部とし、幅方向中央位置から1番目の試料を切り出す。その後、フィルムロールを巻き出し機等で巻き出しながら、100m毎に幅方向中央位置を試料として切り出した。フィルムロールの残巻長が100m未満になったところでサンプリングを終了し、それまでに採取した試料を評価した。
[熱収縮率]
フィルムを10cm×10cmの正方形に裁断し、温水温度90℃±0.5℃の温水中において、無荷重状態で10秒間処理して熱収縮させた後、フィルムの長手方向(主収縮方向と直交する方向)および幅方向(主収縮方向)の寸法を測定し、下記(1)式に従い熱収縮率を求めた。
また、収縮率の変動(ばらつき)については、上述の方法でサンプリングした試料で熱収縮率を測定し平均値、最大値、最小値を求めた。
熱収縮率=((収縮前の長さ-収縮後の長さ)/収縮前の長さ)×100(%) 式(1)
[組成分析]
各試料を、クロロホルムD ( ユーリソップ社製) とトリフルオロ酢酸D 1 ( ユーリソップ社製) を10:1(体積比) で混合した溶媒に溶解させて、試料溶液を調製し、NMR「GEMINI-200」(Varian社製)を用いて、温度23 ℃ 、積算回数64 回の測定条件で試料溶液のプロトンのNMRを測定した。NMR測定では、所定のプロトンのピーク強度を算出して、二酸成分100モル%中の成分量を測定した。上述で長手方向に100m毎でサンプリングした試料のイソフタル酸の成分比率(モル%)の平均値、最大値、最小値を求めた。
[長手方向の厚みムラ]
フィルム長手方向の長さ100 m×幅40 mmの長尺なロール状にサンプリングし、ミクロン測定器株式会社製の連続接触式厚み計を用いて、5(m/分)の速度で測定した。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式(2)から、フィルム幅方向の厚みムラを算出した。
 厚みムラ={(Tmax.-Tmin.)/Tave.}×100 (%)  式(2)
[Tg(ガラス転移点)]
示差走査熱量分析装置(セイコー電子工業株式会社製、DSC220)を用いて、未延伸フィルム5mgをサンプルパンに入れ、パンのふたをし、窒素ガス雰囲気下で-40℃から120℃に10℃/分の昇温速度で昇温して測定した。Tg(℃)はJIS-K7121-1987に基づいて求めた。
[固有粘度 (IV)]
ポリエステル0.2gをフェノール/1,1,2,2-テトラクロルエタン(60/40(重量比))の混合溶媒50ml中に溶解し、30℃でオストワルド粘度計を用いて測定した。単位はdl/gである。
[収縮仕上がり性評価]
フィルムの両端部をジオキソランで接着することにより、円筒状のラベル(熱収縮性フィルムの主収縮方向を周方向としたラベル)を作製し、それを裁断し3000枚のラベルを作製した。ラベルの収縮方向の直径は70mmであった。しかる後、Fuji Astec Inc 製スチームトンネル(型式;SH-1500-L)を用い、通過時間4秒、ゾーン温度90℃で、500mlのPETボトル(胴直径 62mm、ネック部の最小直径25mm)に熱収縮させることにより、ラベルを装着した。なお、装着の際には、ネック部においては、直径30mmの部分がラベルの一方の端になるように調整した。収縮後の仕上がり性の評価は目視で行い、基準は下記の通りとした。
5:仕上がり性最良
4:仕上がり性良
3:欠点少し有り(2ヶ所以内)
2:欠点有り(3~5ヶ所)
1:欠点多い(6ヶ所以上)
ここで欠点とは、シワ、ラベル端部の折れ込み、収縮ムラ、収縮不足である
評価結果の4以上を合格レベル、3以下を不良とし、3000個のサンプルを評価した。
下記式にしたがって、収縮仕上り不良率(%)を求めた
収縮仕上がり不良率(%)=不良サンプル数/全サンプル数×100
<安息角の測定>
先端出口の内径が18mmのステンレス製の漏斗を、ステンレス製の水平な板の直上に、先端から板までの距離(高さ)が200mmになるように設置した。原料チップ3kgを漏斗に注ぎ入れ、漏斗先端からステンレス板の上に落とした。この時約50g/minでチップを落下させた。落下させた原料チップは円錐状の山になり安定する。この時の山の斜面とステンレス板の間の角度を分度器を用いて測定し、安息角とした。
<非晶性ポリエステル原料(ポリエステルA)チップの調製>
撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)55モル%と、ネオペンチルグリコール(NPG)30モル%とジエチレングリコール15モル%を、多価アルコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、280℃で26.7Paの減圧条件のもとで重縮合反応を行い、固有粘度0.77dl/gのポリエステル1を得た。
ポリエステルAのレジンサイズについて、100個のレジンから平均値を算出した。レジンは楕円柱状であると仮定し、楕円断面の長径、短径と長さ(ストランドのカット長)をノギスを用いて測定した。結果長径3.1mm、短径は2.1mm、高さは3.3mmであり、安息角は37度であった。
組成およびチップサイズ、安息角は表1に示す。
〈ペットボトルリサイクル原料(ポリエステルB)〉
ポリエステルBはペットボトルリサイクル原料であり、ウツミリサイクルシステムズ(株)製のリサイクル原料チップを使用した。ポリエステルを構成する全ジカルボン酸成分に対してイソフタル酸を2モル%含んでいる。またレジンサイズは上述と同様の方法で測定し、結果長径2.9mm、短径2.0mm、長さ3.4mmで、安息角は36度であった。長径はポリエステルAに対して-6%、短径はポリエステルAに対して-5%、長さはポリエステルAに対して+3%であった。
なおポリエステルBの固有粘度は0.68dl/gであった。
<非晶性ポリエステル原料(ポリエステルC)チップの調製>
ポリエステルCはポリエステルAと同様の方法で重合して、ストランドにする際のダイの孔サイズ、またカッター速度を変更することでレジンサイズを変更した。ポリエステルCのレジンサイズについて、100個のレジンから平均値を算出した結果、長径3.8mm、短径は2.5mm、高さは4.3mmで安息角は43度であった。
長径はポリエステルBに対して±31%、短径はポリエステルBに対して+25%、長さはポリエステルBに対して+26%であった。
なおポリエステルCの固有粘度は0.77dl/gであった。
Figure JPOXMLDOC01-appb-T000001
<熱収縮性フィルムの製造方法>
 [実施例1] 
上記したポリエステルA原料チップは常温真空引きで乾燥させ水分率100ppm未満にした。一方、ポリエステルB原料チップは150℃で加熱真空引きして水分率100ppm未満とした。それぞれの原料チップが保管されているホッパーから、そのホッパーから定量スクリューフィーダーで別々に押出機直上の最終ホッパーに供給しながら混合した。前記供給は空送で行い、サイクロン式エアフィルターで微粉体を除去した。原料の混合比率はポリエステルA:ポリエステルB=70:30とした。最終ホッパーでは原料チップ同士の撹拌を実施した。前記攪拌装置は螺旋状のリボンが回転して原料チップが攪拌される方式を用いた。また、最終ホッパー容量は190kgであり、押出機への供給量は時間あたり500kgとした。ホッパーの傾斜角度は70°とした。
その後、最終ホッパーから押出機へ混合原料チップ供給し、押出温度280℃で単軸押出機を用いて溶融押出しし、Tダイから溶融樹脂を押し出し、その後急冷して、厚さ135μmの未延伸フィルムを得た。このときのせん断速度は180sec-1であった。また、未延伸フィルムのガラス転移温度は65℃であった。
この未延伸フィルムをテンターに導き、フィルム温度が90℃になるまで予熱し、その後クリップ間隔を広げることにより、フィルム温度90℃で幅方向に4.5倍延伸した。さらに、最終熱処理ゾーンに導き、フィルム温度100℃で6秒間にわたって熱処理した。
このときフィルム温度の変動幅は、予熱工程、延伸工程、および最終熱処理工程においていずれも平均温度±0.5℃の範囲内であった。熱処理後のフィルムを冷却して、両端部を連続的に裁断してロール状に巻き取ってマスターロールを得た。延伸後のフィルムの厚みは30μmであった。
上述で得られたマスターロールは、スリッターにおいて、幅800mm、巻長4000mのスリットロールを作製し、熱収縮性ポリエステル系フィルムロールを得た。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有し、かつ長手方向の収縮率、イソフタル酸比率のばらつきが小さく、収縮仕上がり性が良好で、不良率の極めて小さいフィルムからならフィルムロールであった。
[実施例2]
最終ホッパーで撹拌を実施せず、円錐状のコーンバッフルを設けた以外は実施例1と同様にして熱収縮性ポリエステル系フィルムロールを製造した。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有し、かつ長手方向の収縮率、イソフタル酸比率のばらつきが小さく、収縮仕上がり性が良好で、不良率の極めて小さいフィルムからならフィルムロールであった。
[実施例3]
最終ホッパーで撹拌を実施せず、インナーパイプにより押出機直前でポリエステルAとポリエステルBの原料チップを混合した以外は実施例1と同様にして熱収縮性ポリエステル系フィルムロールを製造した。この時、ポリエステルA原料チップは最終ホッパーの上部より供給し、ポリエステルB原料チップをインナーパイプにより供給した。
この時、インナーパイプの内径は0.2mであり、図1,2における高さH1は5m、高さH2は1.5mとして、高さH3は1.37mであった。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有し、かつ長手方向の収縮率、イソフタル酸比率のばらつきが小さく、収縮仕上がり性が良好で、不良率の極めて小さいフィルムからならフィルムロールであった。
[実施例4]
ポリエステル原料Aとポリエステル原料Bはチップ化した後に、乾燥を行わず、それぞれのホッパーに投入した。その後、実施例2と同様の方法で押出機に供給した。押出機はベント付二軸押出機を使用し、ベントから脱気して原料チップが含有していた水分を押出機から除去しながら、溶融押出を行い、実施例2の方法と同様の方法でフィルムロールを製造した。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有し、かつ長手方向の収縮率、イソフタル酸比率のばらつきが小さく、収縮仕上がり性が良好で、不良率の極めて小さいフィルムからならフィルムロールであった。
[実施例5]
実施例1と同様に原料チップを乾燥し、それぞれのホッパーに投入した。その後、ホッパー内での原料チップの混合は行わず、ポリエステルA原料チップをベント付二軸押出機1に投入した。一方で、ポリエステルB原料チップは別の二軸押出機2に投入し、二軸押出機2の先端から吐出されたポリエステルBの溶融樹脂が二軸押出機1の途中にサイドフィードされるように構成した。それぞれの原料チップはホッパーからスクリューフィーダーで定量しながら押出機に投入し、原料の混合比率がポリエステルA:ポリエステルB=70:30になるようにフィーダーの回転数を調整した。二軸押出機1において二軸押出機2からの樹脂の合流地点にベントを設ける設計とし、脱気を行った。ポリエステルAとポリエステルBは二軸押出機1の内部で混合されながら溶融押出し、その後Tダイから押し出して、その後急冷し、未延伸シートを得た。
その後の製造方法は実施例1と同様とした。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有し、かつ長手方向の収縮率、イソフタル酸比率のばらつきが小さく、収縮仕上がり性が良好で、不良率の極めて小さいフィルムからならフィルムロールであった。
[実施例6]
ポリエステル原料の混合比率をポリエステルA:ポリエステルB=80:20にした。テンターでの横延伸温度を87℃にして、最終熱処理温度を96℃にした以外は、実施例5と同様の条件で行った。この時未延伸フィルムのTgは62℃であり、未延伸フィルムの厚みは135μm、延伸後のフィルム厚みは30μmであった。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有し、かつ長手方向の収縮率、イソフタル酸比率のばらつきが小さく、収縮仕上がり性が良好で、不良率の極めて小さいフィルムからならフィルムロールであった。
[実施例7]
ポリエステル原料の混合比率をポリエステルA:ポリエステルB=60:40にした。テンターでの横延伸温度を94℃にして、最終熱処理温度を103℃にした以外は、実施例5と同様の条件で行った。この時未延伸フィルムのTgは69℃であり、未延伸フィルムの厚みは135μm、延伸後のフィルム厚みは30μmであった。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有し、かつ長手方向の収縮率、イソフタル酸比率のばらつきが小さく、収縮仕上がり性が良好で、不良率の極めて小さいフィルムからならフィルムロールであった。
[比較例1]
ポリエステルBとポリエステルCの原料チップを混合比ポリエステルB:ポリエステルC=30:70で、最終ホッパー内部で混合した。
上記以外の条件は実施例2と同様とした。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有するものの、原料チップのサイズの差異が大きく、安息角の差異が大きいために原料偏析が発生し、幅方向および長手方向の収縮率、イソフタル酸比率のばらつきが大きいために、収縮仕上がり性が良好となる場合もあるが、不良率が高いフィルムロールであった。
[比較例2]
押出機への供給量は時間あたり120kgに変更した以外は実施例2と同様とした。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有するものの、最終ホッパーでの滞留時間が長すぎるために原料偏析が発生し、幅方向および長手方向の収縮率、イソフタル酸比率のばらつきが大きいために、収縮仕上がり性が良好となる場合もあるが、不良率が高いフィルムロールであった。
[実施例3]
最終ホッパーの傾斜角度を50°に変更した以外は、実施例2と同様にした。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有するものの、ホッパーの傾向角度が小さいために、原料偏析が発生し、幅方向および長手方向の収縮率、イソフタル酸比率のばらつきが大きいために、収縮仕上がり性が良好となる場合もあるが、不良率が高いフィルムロールであった。
[実施例4]
インナーパイプの高さH2を7mに変更した以外は実施例3と同様にした。この時高さH3は6.87mであった。
製造方法は表2に、フィルムの評価結果は表3に示す。
評価の結果、幅方向に十分な収縮性を有するものの、インナーパイプの式3,4を満たさないために原料偏析が発生し、幅方向および長手方向の収縮率、イソフタル酸比率のばらつきが大きいために、収縮仕上がり性が良好となる場合もあるが、不良率が高いフィルムロールであった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
本発明の熱収縮性ポリエステルフィルムロールは、上記の如く所定量のペットボトル再生原料を含有するとともに、幅方向に高い収縮性を有する上で、ロール長手方向の組成の変動が小さいために、幅方向および長手方向の収縮性の変動が極めて小さく、連続的に飲料ラベルなどに加工し、収縮仕上げして使用した際にシワや歪みなどの不良の発生率が極めて小さくなる熱収縮性ポリエステル系フィルムロールである。

Claims (4)

  1. ペットボトル再生原料を5質量%以上50質量%以下含有すると共に、イソフタル酸成分を含有するポリエステルから構成される熱収縮性ポリエステル系フィルムからなるフィルムロールであり、以下の要件(1)~(3)を満足することを特徴とする熱収縮性ポリエステル系フィルムロール。
    (1)ロール長手方向に100mピッチで採取したフィルムサンプルを、90℃温湯中に10秒浸漬させた時の主収縮方向における収縮率が、平均値が40%以上であり、すべてのサンプルにおいて平均値±3%以内であること
    (2)ロール長手方向に100mピッチで採取したフィルムサンプルにおいて、フィルムを構成するポリエステルは、全酸成分100モル%中におけるイソフタル酸含有比率が全てその平均値±0.3mol%以内であること
    (3)ロール長手方向の厚みムラが20%以下であること
  2. 熱収縮ポリエステル系フィルムが、少なくともペットボトル再生原料と1種類以上の組成の異なるポリマーチップの混合物から形成されていることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルムロール。
  3. 熱収縮性ポリエステルフィルムを構成するポリエステルが、エチレンテレフタレートを主たる構成成分とすることを特徴とする請求項1又は2に記載の熱収縮性ポリエステル系フィルムロール。
  4. ロール長手方向に100mピッチで採取したフィルムサンプルにおいて、フィルムを構成するポリエステルは、全酸成分100モル%中におけるイソフタル酸含有比率の平均値が0.3モル%以上3.0モル%以下であることを特徴とする請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルムロール。
PCT/JP2020/039726 2019-10-31 2020-10-22 熱収縮性ポリエステル系フィルムロール WO2021085301A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227016459A KR20220092527A (ko) 2019-10-31 2020-10-22 열수축성 폴리에스테르계 필름 롤
CN202080075367.3A CN114728723A (zh) 2019-10-31 2020-10-22 热收缩性聚酯系薄膜卷
US17/772,054 US20220403156A1 (en) 2019-10-31 2020-10-22 Heat-shrinkable polyester-based film roll
JP2021553526A JP7484928B2 (ja) 2019-10-31 2020-10-22 熱収縮性ポリエステル系フィルムロール
EP20881942.5A EP4053037A4 (en) 2019-10-31 2020-10-22 ROLL OF HEAT-SHRINK POLYESTER-BASED FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-199026 2019-10-31
JP2019199026 2019-10-31

Publications (1)

Publication Number Publication Date
WO2021085301A1 true WO2021085301A1 (ja) 2021-05-06

Family

ID=75715083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039726 WO2021085301A1 (ja) 2019-10-31 2020-10-22 熱収縮性ポリエステル系フィルムロール

Country Status (7)

Country Link
US (1) US20220403156A1 (ja)
EP (1) EP4053037A4 (ja)
JP (1) JP7484928B2 (ja)
KR (1) KR20220092527A (ja)
CN (1) CN114728723A (ja)
TW (1) TW202124548A (ja)
WO (1) WO2021085301A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954484A (zh) * 2021-10-22 2022-01-21 山东圣和薄膜新材料有限公司 一种再生料的热收缩膜及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611876B1 (ko) * 2022-08-26 2023-12-08 코오롱인더스트리 주식회사 재생칩을 사용하여 제조된 재생 pet 필름

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320737B2 (ja) 1971-10-15 1978-06-28
JPS642954B2 (ja) 1982-12-27 1989-01-19 Mitsubishi Electric Corp
JP2005001287A (ja) * 2003-06-13 2005-01-06 Nippon Airitsuhi Kk 使用済み合成樹脂の再生装置およびその方法
JP2011140653A (ja) * 2000-01-24 2011-07-21 Krones Ag Pet組成物をリサイクルする方法及びその方法を実施する装置
JP5320737B2 (ja) 2007-12-28 2013-10-23 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび熱収縮性ラベル
JP2014065282A (ja) * 2012-09-27 2014-04-17 Toyobo Co Ltd Petボトル再生原料を使用した二軸配向ポリエステルフィルム
EP2868688A1 (en) 2012-09-27 2015-05-06 Toyobo Co., Ltd. Polyester film
WO2019089698A1 (en) * 2017-10-31 2019-05-09 Flex Films (Usa) Inc. Low carbon footprint thermoplastic films including recycled materials
WO2019188922A1 (ja) 2018-03-30 2019-10-03 東洋紡株式会社 熱収縮性ポリエステル系フィルム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090042024A1 (en) * 2005-04-08 2009-02-12 Shingo Fujii Heat-Shrinkable Polyester Film and Heat-Shrinkable Labels
JP2010120166A (ja) * 2008-11-17 2010-06-03 Toyobo Co Ltd 熱収縮性積層フィルムおよび該フィルムを用いた熱収縮性ラベル
WO2014021120A1 (ja) * 2012-08-03 2014-02-06 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP6167797B2 (ja) * 2012-09-27 2017-07-26 東洋紡株式会社 ポリエステルフィルム
JP6269399B2 (ja) * 2014-02-04 2018-01-31 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP6658513B2 (ja) * 2015-03-20 2020-03-04 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
JP6500629B2 (ja) * 2015-06-19 2019-04-17 東洋紡株式会社 積層フィルム
EP3333215B1 (en) * 2015-08-05 2021-01-06 Toyobo Co., Ltd. Heat shrinkable polyester film and package
JP7119504B2 (ja) * 2018-03-30 2022-08-17 東洋紡株式会社 熱収縮性ポリエステル系フィルム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320737B2 (ja) 1971-10-15 1978-06-28
JPS642954B2 (ja) 1982-12-27 1989-01-19 Mitsubishi Electric Corp
JP2011140653A (ja) * 2000-01-24 2011-07-21 Krones Ag Pet組成物をリサイクルする方法及びその方法を実施する装置
JP2005001287A (ja) * 2003-06-13 2005-01-06 Nippon Airitsuhi Kk 使用済み合成樹脂の再生装置およびその方法
JP5320737B2 (ja) 2007-12-28 2013-10-23 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび熱収縮性ラベル
JP2014065282A (ja) * 2012-09-27 2014-04-17 Toyobo Co Ltd Petボトル再生原料を使用した二軸配向ポリエステルフィルム
EP2868688A1 (en) 2012-09-27 2015-05-06 Toyobo Co., Ltd. Polyester film
WO2019089698A1 (en) * 2017-10-31 2019-05-09 Flex Films (Usa) Inc. Low carbon footprint thermoplastic films including recycled materials
WO2019188922A1 (ja) 2018-03-30 2019-10-03 東洋紡株式会社 熱収縮性ポリエステル系フィルム
EP3778727A1 (en) 2018-03-30 2021-02-17 Toyobo Co., Ltd. Heat-shrinkable polyester-based film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053037A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113954484A (zh) * 2021-10-22 2022-01-21 山东圣和薄膜新材料有限公司 一种再生料的热收缩膜及其制备方法

Also Published As

Publication number Publication date
TW202124548A (zh) 2021-07-01
CN114728723A (zh) 2022-07-08
KR20220092527A (ko) 2022-07-01
JPWO2021085301A1 (ja) 2021-05-06
EP4053037A4 (en) 2023-11-29
JP7484928B2 (ja) 2024-05-16
US20220403156A1 (en) 2022-12-22
EP4053037A1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
KR100538200B1 (ko) 열 수축성 폴리에스테르계 필름 롤의 제조 방법
JP3678186B2 (ja) 熱収縮性ポリエステル系フィルムロール
WO2021085301A1 (ja) 熱収縮性ポリエステル系フィルムロール
CN111164135B (zh) 热收缩性聚酯系薄膜卷
JP4158775B2 (ja) 熱収縮性ポリエステル系フィルムロールの製造方法
JP2005047959A (ja) 熱収縮性ポリエステル系フィルム
JP3678229B2 (ja) 熱収縮性ポリエステル系フィルムロール
WO2022044959A1 (ja) 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP3678226B2 (ja) 熱収縮性ポリエステル系フィルムロール
WO2022009780A1 (ja) 熱収縮性ポリエステル系フィルムロール
KR100592839B1 (ko) 열 수축성 폴리에스테르계 필름 롤
JP2005126492A (ja) 熱収縮性ポリエステル系フィルムロールおよびその製造方法
JP3678222B2 (ja) 熱収縮性ポリエステル系フィルムロール及びラベルの製造方法
JP2007118494A (ja) 多層熱収縮性ポリエステル系フィルム及びその製造方法及びラベル
WO2022024936A1 (ja) 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
US20240132683A1 (en) Heat-shrinkable polyester film
WO2021230207A1 (ja) フィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
KR19980040609A (ko) 고분자 필름 및 그 제조 방법
JP2006063260A (ja) 熱収縮性ポリエステル系フィルム及び熱収縮性ラベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021553526

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20227016459

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020881942

Country of ref document: EP

Effective date: 20220531