WO2022044959A1 - 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体 - Google Patents

熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体 Download PDF

Info

Publication number
WO2022044959A1
WO2022044959A1 PCT/JP2021/030389 JP2021030389W WO2022044959A1 WO 2022044959 A1 WO2022044959 A1 WO 2022044959A1 JP 2021030389 W JP2021030389 W JP 2021030389W WO 2022044959 A1 WO2022044959 A1 WO 2022044959A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
mol
less
mole
Prior art date
Application number
PCT/JP2021/030389
Other languages
English (en)
French (fr)
Inventor
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to EP21861387.5A priority Critical patent/EP4205948A1/en
Priority to KR1020237009464A priority patent/KR20230056715A/ko
Priority to US18/042,516 priority patent/US20230323021A1/en
Priority to JP2022544518A priority patent/JPWO2022044959A1/ja
Priority to CN202180051882.2A priority patent/CN116096551A/zh
Publication of WO2022044959A1 publication Critical patent/WO2022044959A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/34Coverings or external coatings
    • B65D25/36Coverings or external coatings formed by applying sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2267/00Use of polyesters or derivatives thereof as reinforcement
    • B29K2267/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/744Labels, badges, e.g. marker sleeves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a heat-shrinkable polyester-based film.
  • the present invention is a heat-shrinkable polyester-based film, which can obtain a recycled PET resin that can be mixed with a PET bottle and recycled without any problem. It relates to labels and packages.
  • stretched films made of polyvinyl chloride resin, polystyrene resin, polyester resin, etc. have been used for label packaging, cap seals, integrated packaging, etc. that protect glass bottles and PET bottles and display products.
  • Heat-shrinkable films are becoming widely used.
  • polyvinyl chloride-based films have problems such as low heat resistance and generation of hydrogen chloride gas during incineration, which causes dioxin.
  • polystyrene film is inferior in solvent resistance, it is necessary to use ink with a special composition at the time of printing, and it is necessary to incinerate it at a high temperature, and a large amount of black smoke is generated with an offensive odor at the time of incineration.
  • polyester-based heat-shrinkable films having high heat resistance, easy incineration, and excellent solvent resistance have been widely used as shrinkage labels, and the distribution amount of PET containers has increased. With the increase, the amount used tends to increase.
  • a normal heat-shrinkable polyester film that shrinks significantly in the width direction is widely used.
  • the film is stretched by a tenter stretching method or the like to produce a wide master roll, and then the master roll is slit at an arbitrary width and wound into a roll of an arbitrary length to obtain a film roll product.
  • the film is given a design and is applied to the printing process in the form of a roll for the purpose of displaying the product. After printing, it is slit again to the required width and wound into a roll, then it is made into a tube through a center sealing process by solvent adhesion and wound into a roll (it becomes a roll of a label).
  • the label that was made into a tube and rolled up is cut to the required length while being unwound from the roll, and becomes a label in a ring shape.
  • the annular label is attached to the object to be packaged by a method such as covering with a hand, and is shrunk through a steam tunnel or a hot air tunnel to form a label.
  • PET bottle containers are also recycled, recycled as recycled PET resin, and used in various plastic products. Due to the increasing demand for the environment, the amount of recycled PET resin used is increasing, and the recycling ratio of PET bottles is also increasing.
  • PET bottle containers with no contents are recycled and used as recycled PET resin, but labels that give design to PET bottles for beverages are generally not recycled. It is a target.
  • the label of the polystyrene-based heat-shrinkable film as described in Patent Document 1 is incompatible with PET, which is a raw material for PET bottles. Therefore, if the polystyrene-based heat-shrinkable film is mixed in the step of making the recycled PET resin, the transparency of the recycled PET resin is lost, which is not preferable.
  • the laminated film of polyester and polystyrene described in Patent Document 2 is also not preferable because polystyrene incompatible with PET is similarly mixed.
  • Patent Document 3 is an invention of a polyester-based heat-shrinkable film, which is preferably mixed with a cyclic olefin or the like in order to form a cavity, and is preferably mixed with PET and an incompatible olefin-based raw material as described above. do not have.
  • Patent Document 4 is an invention of a transparent polyester-based heat-shrinkable film, and since it does not contain a raw material incompatible with PET, transparency is not impaired in the process of making recycled PET resin.
  • polyester-based heat-shrinkable films are produced from an amorphous PET raw material to which an amorphous monomer is added in order to exhibit heat-shrinking characteristics. Since the raw material used in PET bottles is homo-PET, it is a crystalline raw material. Therefore, if an amorphous polyester-based heat-shrinkable film is mixed in the process of making recycled PET resin, the resulting recycled PET resin becomes difficult to reuse as a homopet raw material, and is used again as a raw material for making PET bottles. I can't do that.
  • the amorphous raw material is not uniformly extruded, and the die after melt extrusion pulsates. It is not preferable because troubles such as running out of toe and toe are likely to occur.
  • the heat-shrinkable polyester film of the present invention has a high heat-shrinkability in the main shrinkage direction, and even when recycled together with a used PET bottle for beverages, a good recycled PET resin can be obtained.
  • An object of the present invention is to provide a sex polyester film.
  • the invention of the present application which solves the above problems, has the following configuration.
  • 1. In 100 mol% of the dicarboxylic acid component, 95 mol% or more and 100 mol% or less of dicarboxylic acid, 0 mol% or more and 5 mol% or less of isophthalic acid are contained, and the ethylene terephthalate unit is 85 mol in 100 mol% of all ester units.
  • a heat-shrinkable polyester-based film containing% or more and 98 mol% or less and containing 2 mol% or more and 15 mol% or less of diethylene glycol in 100 mol% of a polyhydric alcohol component, which meets the following requirements (1) to (5).
  • a heat-shrinkable polyester-based film characterized by filling.
  • the hot water heat shrinkage rate when the film is immersed in hot water at 90 ° C for 10 seconds is 40% or more and 70% or less in the film width direction.
  • the film is heated to 300 ° C using a differential scanning calorimeter (DSC) to melt it, then rapidly cooled, and then heated to 300 ° C again.
  • the heat absorption peak temperature due to melting obtained in the above process is 245 ° C or higher and 260 ° C or lower.
  • the film is heated to 300 ° C using a differential scanning calorimeter (DSC), melted, and then rapidly cooled to 300 ° C again.
  • the calorific value due to crystallization obtained by raising the temperature is 10 mJ / mg or more.
  • the film is heated to 300 ° C using a differential scanning calorimeter (DSC), melted, and then rapidly cooled to 300 ° C again. 2.
  • the amount of heat absorbed by melting obtained by raising the temperature is 10 mJ / mg or more. 1.
  • the density of the film is 1.33 g / cm 3 or more and 1.39 g / cm 3 or less.
  • the heat-shrinkable polyester-based film described in. 3. 3. 1.
  • the haze at a film thickness of 20 ⁇ m is 2% or more and 10% or less.
  • the heat-shrinkable polyester-based film described in. 4. The above 1. ⁇ 3.
  • 4. The package according to the above description, wherein the package is formed by covering at least a part of the outer periphery of the object to be packaged and heat-shrinking the label. 6.
  • the heat-shrinkable polyester-based film of the present invention has a high heat-shrinkability in the main shrinkage direction, and the raw material component used is close to the raw material used in PET bottles for beverages, and a differential scanning calorimeter. Since the melting point, calorific value, and heat absorption film obtained in (hereinafter sometimes referred to as DSC) are close to the raw materials used in PET bottles, even if the heat-shrinkable polyester film is recycled at the same time as the PET bottle, it will be recycled. PET resin can be obtained.
  • the heat-shrinkable polyester film of the present invention will be described in detail.
  • the method for producing the heat-shrinkable polyester film will be described in detail later, but the heat-shrinkable film is usually obtained by transporting and stretching it using a roll or the like.
  • the transport direction of the film is referred to as a longitudinal direction
  • the direction orthogonal to the longitudinal direction is referred to as a film width direction. Therefore, the width direction of the heat-shrinkable polyester film shown below is a direction perpendicular to the roll unwinding direction
  • the film longitudinal direction is a direction parallel to the roll unwinding direction.
  • the heat-shrinkable polyester-based film of the present invention contains an ethylene terephthalate unit in 100 mol% of all ester units in an amount of 85 mol% or more and 98 mol% or less, and a dicarboxylic acid component in 100 mol% and a dicarboxylic acid content of 95 mol% or more and 100% or more.
  • a heat-shrinkable polyester-based film containing 0 mol% or more and 5 mol% or less of isophthalic acid and 2 mol% or more and 15 mol% or less of diethylene glycol in 100 mol% of polyhydric alcohol components. It is a heat-shrinkable polyester-based film characterized by satisfying the following requirements (1) to (5).
  • the hot water heat shrinkage rate when the film is immersed in hot water at 90 ° C for 10 seconds is 40% or more and 70% or less in the film width direction.
  • the film is heated to 300 ° C using a differential scanning calorimeter (DSC) to melt it, then rapidly cooled, and then heated to 300 ° C again.
  • the heat absorption peak temperature due to melting obtained in the above process is 245 ° C or higher and 260 ° C or lower.
  • the film is heated to 300 ° C using a differential scanning calorimeter (DSC), melted, and then rapidly cooled to 300 ° C again.
  • the calorific value due to crystallization obtained by raising the temperature is 10 mJ / mg or more.
  • the film is heated to 300 ° C using a differential scanning calorimeter (DSC), melted, and then rapidly cooled to 300 ° C again.
  • the amount of heat absorbed by melting obtained by raising the temperature is 10 mJ / mg or more.
  • the present inventor uses 1H-NMR (Varian, UNITY50) as a raw material composition for commercially available PET bottles for beverages (PET bottles for beverages sold by Coca-Cola, Suntory, Ito En, Kirin, and Asahi). Used and analyzed. In 100 mol% of the dicarboxylic acid component, 97 to 98.5 mol% of dicarboxylic acid and 1.5 to 3 mol% of isophthalic acid were contained. Further, 97 to 99 mol% of the ethylene terephthalate unit was contained in 100 mol% of the ester unit, and 1 to 3 mol% of diethylene glycol was contained in 100 mol% of the polyhydric alcohol component. It is considered that isophthalic acid is intentionally added so that the neck portion of the PET bottle does not whiten during the molding of the PET bottle. Diethylene glycol is considered to be a by-product during raw material polymerization.
  • the heat-shrinkable polyester film a raw material in which only dicarboxylic acid and isophthalic acid are used as dicarboxylic acid components and only ethylene terephthalate unit and diethylene glycol are used as ester units is preferable because it is easy to recycle with a PET bottle.
  • the weight ratio of PET bottles and labels was also compared with PET bottles for beverages with a capacity of 500 ml. Assuming that the weight ratio of the PET bottle was 1, the weight ratio of the label was 0.05 to 0.2, and the weight ratio of the label was low. As described above, although the weight ratio of the label is low when the PET bottle and the label are mixed and recycled, the composition and characteristics of the label cause fluctuations in the resin size and the like in the recycling process. The inventor found.
  • a homopolymer (PET) made of ethylene terephthalate may be copolymerized with another polyvalent carboxylic acid component or another polyhydric alcohol component. It is widely done.
  • the polyhydric alcohol component used as the copolymerizing component for example, neopentyl glycol and 1,4-cyclohexaneditanol are considered and widely used.
  • the raw material composition is different from that of the raw material of the PET bottle for beverages described above, so that the recyclability with the PET bottle is deteriorated, which is not preferable.
  • PET Polyethylene terephthalate
  • Any production method such as a transesterification method in which an ester (including a methyl ester of another dicarboxylic acid if necessary) and ethylene glycol (including another diol component if necessary) are subjected to a transesterification reaction can be used. ..
  • Dicarboxylic acid components other than terephthalic acid constituting polyester include aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decandicarboxylic acid, and fats. Examples include cyclic dicarboxylic acid.
  • aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid
  • aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid and decandicarboxylic acid
  • fats examples include cyclic dicarboxylic acid.
  • isophthalic acid which is the same component as the raw material of the PET bottle.
  • the content of the isophthalic acid component is 0 mol% or more, preferably 1 mol% or more, more preferably 1.5 mol% having the same composition as the raw material of the PET bottle, out of 100 mol% of the polyvalent carboxylic acid component. That is all.
  • the weight of the label is 5 to 20% with respect to the PET bottle, so 15 mol%, which is 5 times the content of isophthalic acid in the PET bottle, is not preferable.
  • Isophthalic acid is amorphous, and if the amount of isophthalic acid is large, the amorphousness becomes high, and problems such as pulsation occur when mixing with a PET bottle to prepare a recycled PET raw material, which is not preferable.
  • the amount of isophthalic acid is 5 mol% or less, preferably 4 mol% or less, and more preferably 3 mol% or less, which is the same as the PET bottle raw material.
  • diethylene glycol is 2 mol% or more and 15 mol% or less in 100 mol% of the polyhydric alcohol component constituting the polyester used in the film of the present invention. If the content of diethylene glycol is less than 2 mol%, it is difficult to develop shrinkage characteristics as a heat-shrinkable film, which is not preferable. Diethylene glycol is preferably 3 mol% or more, more preferably 4 mol% or more. On the other hand, regarding the upper limit, as described above, the label weight is 5 to 20% of the PET bottle weight. Therefore, even if it is mixed with a PET bottle in the recycling process, the amount of diethylene glycol is 1/5 to 1/20 or less.
  • the diethylene glycol contained in the raw material of the PET bottle is 1 to 3 mol%, if the diethylene glycol in the recycled PET resin is 15 mol% or less, the diethylene glycol of the PET bottle resin will be used when the recycled PET resin is used. It will be within the range. Diethylene glycol is preferably 13 mol% or less, more preferably 11 mol% or less.
  • a diol having 8 or more carbon atoms for example, octane diol
  • a polyhydric alcohol having 3 or more valences for example, trimethylolpropane, trimeritol ethane, glycerin, diglycerin, etc.
  • a heat-shrinkable polyester-based film obtained by using a polyester containing these diols or a polyhydric alcohol makes it difficult to achieve the required high shrinkage.
  • various additives such as waxes, antioxidants, antistatic agents, crystal nucleating agents, thickeners, and heat-stabilizing agents are included as required.
  • Agents, coloring pigments, anticoloring agents, ultraviolet absorbers and the like can be added.
  • the inorganic fine particles include silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate and the like
  • the organic fine particles include, for example, an acrylic resin. Examples thereof include particles, melamine resin particles, silicone resin particles, crosslinked polystyrene particles and the like.
  • the average particle size of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter), and can be appropriately selected as needed.
  • the particles can be added at any stage of producing the polyester-based resin, but at the stage of esterification or the transesterification reaction. After completion, it is preferable to add it as a slurry dispersed in ethylene glycol or the like at a stage before the start of the transesterification reaction to proceed with the transesterification reaction. Further, a method of blending a slurry of particles dispersed in ethylene glycol or water using a kneaded extruder with a vent and a polyester resin raw material, or a method of blending dried particles and a polyester resin raw material using a kneaded extruder. It is also preferable to use a method of blending with and the like.
  • the heat-shrinkable polyester film of the present invention is the main shrinkage direction of the film calculated by the following formula 1 from the length before and after shrinkage when treated in warm water at 90 ° C. under no load for 10 seconds.
  • the heat shrinkage rate (that is, the heat shrinkage rate of hot water at 90 ° C.) is preferably 40% or more and 70% or less.
  • Heat shrinkage rate ⁇ (length before shrinkage-length after shrinkage) / length before shrinkage ⁇ x 100 (%) ... Equation 1
  • the shrinkage rate of hot water at 90 ° C. is more preferably 43% or more, particularly preferably 46% or more, and most preferably 50% or more. There is no problem even if the hot water heat shrinkage rate in the main shrinkage direction at 90 ° C is higher than 70%, but in the present invention, a film having a hot water heat shrinkage rate of 90 ° C. higher than 70% could not be obtained, so the upper limit is 70. %.
  • the heat-shrinkable polyester film of the present invention preferably has a hot water heat-shrinkage rate of ⁇ 5% or more and 15% or less in the longitudinal direction orthogonal to the main shrinkage direction at 90 ° C. If the shrinkage rate of hot water at 90 ° C. in the longitudinal direction is less than -5%, the label is stretched and the label height in the PET bottle becomes long, which is not preferable when used for beverage labels.
  • the shrinkage rate of hot water at 90 ° C. in the longitudinal direction is more preferably -4% or more, and particularly preferably -3% or more. If the shrinkage rate of hot water at 90 ° C.
  • the shrinkage rate of hot water at 90 ° C. in the longitudinal direction is more preferably 13% or less, further preferably 11% or less, particularly preferably 8% or less, and most preferably 5% or less.
  • the heat-shrinkable polyester film of the present invention is melted by raising the temperature to 300 ° C. using a differential scanning calorimeter (hereinafter referred to as DSC), cooling the film, and then raising the temperature to 300 ° C. again to obtain melting.
  • DSC differential scanning calorimeter
  • the endothermic peak temperature is 245 ° C. or higher and 260 ° C. or lower.
  • the peak amount of heat of fusion when the PET bottle was measured by the same method was in the range of 250 to 260 ° C. Therefore, if the peak of the amount of heat of melting is significantly different from that of the PET bottle, problems such as pulsation occur in the melt extrusion process when the recycled PET resin is produced, which is not preferable.
  • It is more preferably 247 ° C. or higher and 260 ° C. or lower, and particularly preferably 250 ° C. or higher and 255 ° C. or lower.
  • the heat-shrinkable polyester film of the present invention is heated to 300 ° C. using DSC, melted, cooled, and then heated to 300 ° C. again to obtain a calorific value of 10 mJ / mg or more due to crystallization. Is preferable.
  • the calorific value when the PET bottle was measured by the same method showed the calorific value in the range of 25 to 55 mJ / mg. If the amount of amorphous material in the heat-shrinkable polyester film is high, the amount of heat generated is not shown, which is not preferable because problems such as pulsation occur in the melt-extrusion step when the recycled PET resin is produced.
  • the calorific value due to crystallization is preferably 10 mJ / mg or more, more preferably 20 mJ / mg or more, and particularly preferably 25 mJ / mg or more.
  • the upper limit of the calorific value due to crystallization is not particularly set, but the polyester raw material does not exceed 60 mJ / mg.
  • the heat-shrinkable polyester film of the present invention has a heat absorption amount of 10 mJ / mg or more due to melting obtained by raising the temperature to 300 ° C. using DSC, melting the film, cooling the film, and raising the temperature to 300 ° C. again. preferable.
  • the amount of heat absorbed when the PET bottle was measured by the same method showed the amount of heat absorbed in the range of 30 to 65 mJ / mg. If the amount of amorphous material in the heat-shrinkable polyester film is high, the amount of heat absorption is not shown, which is not preferable because problems such as pulsation occur in the melt-extrusion step when the recycled PET resin is produced.
  • the amount of heat absorbed by melting is preferably 10 mJ / mg or more, more preferably 20 mJ / mg or more, and particularly preferably 30 mJ / mg or more.
  • the upper limit of the amount of heat absorbed by melting is not particularly set, but the polyester raw material does not exceed 70 mJ / mg.
  • the heat-shrinkable polyester film of the present invention preferably has a density of 1.33 g / cm 3 or more. Density has been reported in many reports as an indicator of crystallinity. Therefore, a low density indicates a large amount of amorphous material when the crystallization is low. If the density is less than 1.33 g / cm 3 , problems such as pulsation occur in the melt extrusion process when the recycled PET resin is produced, which is not preferable. It is more preferably 1.34 g / cm 3 or more, and particularly preferably 1.35 g / cm 3 or more. On the other hand, if the density is too high, it will crystallize and the shrinkage characteristics as described above cannot be obtained, which is not preferable. The density is more preferably 1.38 g / cm 3 or less, and particularly preferably 1.37 g / cm 3 or less.
  • the thickness of the heat-shrinkable polyester film of the present invention is not particularly limited, but is preferably 15 to 50 ⁇ m as the heat-shrinkable film for label applications and bento packaging applications. If the film thickness is less than 15 ⁇ m, the firmness of the film is significantly reduced, and wrinkles are likely to occur in the roll, which is not preferable. On the other hand, although there is no problem as a film roll even if the film thickness is thick, it is preferable to make the film thinner from the viewpoint of cost.
  • the thickness of the film is more preferably 17 to 45 ⁇ m, and particularly preferably 20 ⁇ m to 40 ⁇ m.
  • the heat-shrinkable polyester film of the present invention preferably has a haze value of 2% or more and 10% or less at a thickness of 20 ⁇ m. Since the heat-shrinkable film is a film that gives a design property, if the haze value is higher than 10%, the contents cannot be clearly seen when the label of the PET bottle is used, and the design property is deteriorated, which is not preferable.
  • the haze at a film thickness of 20 ⁇ m is more preferably 8% or less, and particularly preferably 6% or less.
  • the heat-shrinkable polyester film of the present invention can be obtained by melting and extruding the above-mentioned polyester raw material with an extruder to form an unstretched film, and stretching the unstretched film in the width direction.
  • the polyester can be obtained by polycondensing the above-mentioned suitable dicarboxylic acid component and diol component by a known method. Also, usually, chip-shaped polyester is used as a raw material for the film.
  • melt-extruding the raw material resin it is preferable to dry the polyester raw material using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in this way, it is melted at a temperature of 230 to 270 ° C. and extruded into a film using an extruder.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer.
  • the polyester raw material is dried in this way, it is melted at a temperature of 230 to 270 ° C. and extruded into a film using an extruder.
  • any existing method such as the T-die method and the tubular method can be adopted.
  • an unstretched film can be obtained by quenching the sheet-shaped molten resin after extrusion.
  • a method for rapidly cooling the molten resin a method of casting the molten resin from a base onto a rotary drum and quenching and solidifying the molten resin to obtain a substantially unoriented resin sheet can be preferably adopted.
  • the obtained unstretched film can be stretched in the width direction under predetermined conditions to obtain the heat-shrinkable polyester-based film of the present invention.
  • preferable stretching for obtaining the heat-shrinkable polyester-based film of the present invention will be described.
  • a normal heat-shrinkable polyester-based film is produced by stretching an unstretched film in a direction in which it is desired to shrink.
  • biaxial stretching is performed within the range of the stretching ratio described later.
  • Stretching in the longitudinal direction is preferably performed by a roll stretching method using rolls having different speeds. It was preheated with a roll having a surface temperature of Tg or more and Tg + 20 ° C. or less, and stretched at a magnification of 1.1 times or more and 1.3 times or less. If the surface temperature is Tg or less, the stretching stress becomes high and the fracture occurs, which is not preferable. Further, if the temperature is higher than Tg + 20 ° C., the film adheres to the roll and causes scratches on the film, which is not preferable.
  • the roll surface temperature is preferably Tg + 3 degrees or more and Tg + 17 degrees or less, and particularly preferably Tg + 5 degrees or more and Tg + 15 degrees or less.
  • the draw ratio is less than 1.1 times, the improvement in productivity is small, which is not preferable. It is preferably 1.15 times or more and 1.2 times or more, which is particularly preferable. If the stretching ratio in the longitudinal direction is higher than 1.3 times, the shrinkage rate in the longitudinal direction becomes high, which is not preferable. It is preferably 1.28 times or less, and particularly preferably 1.25 times or less.
  • Stretching in the width direction leads the film stretched in the longitudinal direction to a tenter device capable of gripping both ends of the film with clips and heating the film, heating the film to a predetermined temperature with hot air, and then transporting the film in the longitudinal direction. Stretch by increasing the distance between the clips.
  • the preheating temperature of the longitudinally stretched film is preferably Tg of the film + 30 ° C. or higher and + 80 ° C. or lower. If the temperature is less than Tg + 30 ° C., the stretching force becomes high due to insufficient preheating temperature, and fracture is likely to occur, which is not preferable.
  • the stretching force in the width direction of the unstretched sheet decreases, and the thickness accuracy (uneven thickness) in the width direction deteriorates, which is not preferable. More preferably, it is Tg + 40 ° C. or higher and + 70 ° C. or lower.
  • the film temperature during stretching in the width direction is preferably film Tg + 5 ° C. or higher and Tg + 30 ° C. or lower. If the film temperature is less than Tg + 5 ° C., the stretching force becomes too high and the film is likely to break, which is not preferable. When the film temperature exceeds Tg + 30 ° C., the stretching force is too low, and the heat shrinkage in the width direction measured at 90 ° C. as described above becomes low, which is not preferable. More preferably, it is Tg + 8 ° C. or higher and + 25 ° C. or lower.
  • the draw ratio in the width direction is preferably 3.4 times or more and 5 times or less. If the draw ratio is less than 3.4 times, the draw force is insufficient and the thickness accuracy in the film width direction (so-called uneven thickness) deteriorates. Further, if the draw ratio exceeds 5 times, the risk of breakage during film formation increases and the equipment becomes long, which is not preferable. More preferably, it is 3.5 times or more and 4.8 times or less. Further, although not particularly limited, heat treatment may be performed to adjust the shrinkage rate after stretching in the width direction.
  • the crystalline polyester raw material is weakly stretched in the longitudinal direction, and then the film is stretched in the width direction.
  • the molecules are generally oriented in the stretching direction, and the molecular orientation in the direction orthogonal to the stretching is generally reduced. Therefore, by first stretching in the width direction at a low draw ratio of 1.2 times or more and 1.7 times or less, the molecular orientation in the longitudinal direction of the film can be reduced and the heat shrinkage in the longitudinal direction can be reduced.
  • relaxation in the width direction at 5% or more and 20% or less in the width direction in the tenter device also relaxes the molecules in the longitudinal direction and has the effect of reducing the heat shrinkage rate in the longitudinal direction. growing.
  • the length is fixed in the tenter device, and then the second stage stretching is performed at 2 times or more and 4.2 times or less.
  • the second-stage stretching it is preferable to heat-treat in the tenter device at a stretching temperature of + 18 ° C. or higher. If the heat treatment temperature is lower than the stretching temperature, the purpose of the heat treatment step of relaxing the molecular chains is not achieved.
  • the heat treatment temperature is higher than the stretching temperature + 18 ° C.
  • the heat shrinkage rate is reduced, which is not preferable as a heat shrink film.
  • the stretching temperature is + 1 ° C. or higher and the stretching temperature is + 15 ° C. or lower.
  • the film evaluation method is as follows.
  • composition analysis Each sample was dissolved in a solvent in which chloroform D (manufactured by Eurisop) and trifluoroacetate D 1 (manufactured by Eurisop) were mixed at a ratio of 10: 1 (volume ratio) to prepare a sample solution, and NMR "GEMINI-200" was prepared. (Manufactured by Varian), the NMR of the protons of the sample solution was measured under the measurement conditions of a temperature of 23 ° C. and a total of 64 times of integration. In the NMR measurement, the peak intensity of a predetermined proton was calculated, and the amount of the component in 100 mol% of the diacid component and the amount of the component in 100 mol% of the polyhydric alcohol component were measured.
  • Heat shrinkage rate hot water heat shrinkage rate
  • the film is cut into 10 cm ⁇ 10 cm squares, immersed in warm water at a predetermined temperature of ⁇ 0.5 ° C for 10 seconds under no load, heat-shrinked, and then immersed in water at 25 ° C ⁇ 0.5 ° C for 10 seconds. Then, the film was taken out of water and the vertical and horizontal dimensions of the film were measured, and the heat shrinkage was determined according to the following formula (1). The direction in which the heat shrinkage rate was large was defined as the main shrinkage direction.
  • Thermal shrinkage ⁇ (length before shrinkage-length after shrinkage) / length before shrinkage ⁇ x 100 (%) Equation 1
  • Tg glass transition point
  • Endothermic peak temperature [Endothermic amount] It was determined according to JIS-K7121-1987 using a differential scanning calorimeter (model: DSC220) manufactured by Seiko Electronics Inc. 5 mg of the film after film formation was placed in a sample pan, the pan was covered, the temperature was raised to 300 ° C. at a heating rate of 10 ° C./min under a nitrogen gas atmosphere, and the temperature was maintained at 300 ° C. for 2 minutes after the temperature rise. .. Then, the sample pan was taken out and rapidly cooled with liquid nitrogen. The sample after quenching was returned to room temperature, and the temperature was raised again from 30 ° C. to 300 ° C.
  • the endothermic peak at which the sample melts was defined as the endothermic peak temperature.
  • the endothermic amount of melting was obtained from the endothermic peak area. When there was no melting peak, there was no melting peak temperature and the amount of heat absorbed was set to 0.
  • the calorific value was calculated from the heat generation peak area where the sample generated heat. When there was no exothermic peak, there was no exothermic peak temperature and the calorific value was set to 0.
  • the defects described below mean jumping up, wrinkles, insufficient shrinkage, folds at the end of the label, shrinkage whitening, and the like. 3 or more was passed. 5: Best finish (no defects) 4: Good finish (with one defect) 3: There are 2 defects 2: There are 3 to 5 defects 1: There are many defects (6 or more)
  • Polyesters B to D shown in Table 1 were obtained by the same method as in Synthesis Example 1. During the production of polyester B, SiO2 (Fuji Silysia Chemical Ltd. Silicia 266; average particle size 3 ⁇ m) was added as a lubricant at a ratio of 20000 ppm to the polyester. The ultimate viscosities of the polyesters were all 0.75 dl / g. In addition, each polyester was appropriately formed into chips. The composition of each polyester is shown in Table 1.
  • Example 1 The above-mentioned polyester A, polyester B, and polyester C were mixed at a weight ratio of 67: 3:30 and charged into an extruder. After that, the mixed resin is melted at 273 ° C. using a 4-axis screw, extruded from the T-die while cooling to 260 ° C., wound around a rotating metal roll cooled to a surface temperature of 20 ° C., and rapidly cooled. To obtain an unstretched film having a thickness of 201 ⁇ m. The Tg of the unstretched film was 65 ° C. The unstretched film was guided to a longitudinal stretching machine, preheated with a roll having a surface temperature of Tg + 10 ° C.
  • the film stretched in the width direction was heat-fixed at Tg + 12 ° C. (77 ° C.).
  • a biaxially stretched film of about 40 ⁇ m is continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. rice field.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and variation in recycled PET.
  • Example 2 Polyester A, polyester B, and polyester C were mixed at a weight ratio of 77: 3: 20 and charged into an extruder to obtain an unstretched film having a thickness of 201 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 70 ° C.
  • the unstretched film was stretched in the same manner as in Example 1 to obtain a film roll made of a heat-shrinkable polyester film having a thickness of 40 ⁇ m.
  • Tg + 10 ° C. (80 ° C.) Tg + 45 ° C. (115 ° C.), and Tg + 12 ° C. (82 ° C.).
  • the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and variation in recycled PET.
  • Example 3 Polyester A, polyester B, and polyester C were mixed at a weight ratio of 92: 3: 5 and charged into an extruder to obtain an unstretched film having a thickness of 201 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 74 ° C.
  • the unstretched film was stretched in the same manner as in Example 1 to obtain a film roll made of a heat-shrinkable polyester film having a thickness of 40 ⁇ m.
  • the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and variation in recycled PET.
  • Example 4 Polyester A, polyester B, polyester C, and polyester D were mixed at a weight ratio of 52: 3: 5: 40 and charged into an extruder to obtain an unstretched film having a thickness of 201 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 74 ° C.
  • the unstretched film was stretched in the same manner as in Example 1 to obtain a film roll made of a heat-shrinkable polyester film having a thickness of 40 ⁇ m.
  • the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and variation in recycled PET.
  • Example 5 Polyester A, polyester B, polyester C, and polyester D were mixed at a weight ratio of 57: 3:30 and charged into an extruder to obtain an unstretched film having a thickness of 201 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 65 ° C.
  • the unstretched film was stretched in the same manner as in Example 1 to obtain a film roll made of a heat-shrinkable polyester film having a thickness of 40 ⁇ m.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and variation in recycled PET.
  • Example 6 Polyester A, polyester B, polyester C, and polyester D were mixed at a weight ratio of 67: 3: 20: 10 and charged into an extruder to obtain an unstretched film having a thickness of 201 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 70 ° C.
  • the unstretched film was stretched in the same manner as in Example 1 to obtain a film roll made of a heat-shrinkable polyester film having a thickness of 40 ⁇ m.
  • Tg + 10 ° C. (80 ° C.) Tg + 45 ° C. (115 ° C.), and Tg + 12 ° C. (82 ° C.).
  • the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and variation in recycled PET.
  • the film stretched in the width direction was heat-fixed at Tg + 12 ° C. (70 ° C.).
  • a biaxially stretched film of about 40 ⁇ m is continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. rice field.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • Polyester B, polyester C, and polyester D were mixed at a weight ratio of 3: 7: 90 and charged into an extruder to obtain an unstretched film having a thickness of 201 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 73 ° C.
  • the unstretched film was stretched in the same manner as in Example 1 to obtain a film roll made of a heat-shrinkable polyester film having a thickness of 40 ⁇ m.
  • the temperature conditions for stretching since Tg was different from that in Example 1, the temperature conditions were changed to Tg + 10 ° C. (83 ° C.), Tg + 45 ° C. (118 ° C.), and Tg + 12 ° C. (85 ° C.).
  • the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • the film had no problem in shrinkage finish in practical use, the recycled PET resin mixed with PET bottles had a large variation in size, and there was a defect that troubles during granulation due to pulsation occurred twice.
  • Polyester A, polyester B, polyester C, and polyester E were mixed at a weight ratio of 12: 3: 5: 80 and charged into an extruder to obtain an unstretched film having a thickness of 201 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 74 ° C.
  • the unstretched film was stretched in the same manner as in Example 1 to obtain a film roll made of a heat-shrinkable polyester film having a thickness of 40 ⁇ m.
  • the temperature conditions for stretching since Tg was different from that in Example 1, the temperature conditions were changed to Tg + 10 ° C. (83 ° C.), Tg + 45 ° C. (118 ° C.), and Tg + 12 ° C.
  • the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • the film had good shrinkage finish, the recycled PET resin mixed with PET bottles had many variations in size, and there was a defect that troubles during granulation due to pulsation occurred many times.
  • the heat-shrinkable polyester film of the present invention has a high heat-shrinkability, the raw material component used is close to that of the raw material used in PET bottles for beverages. Therefore, in the process of recycling PET bottles to produce recycled PET resin, even if the heat-shrinkable polyester film used as a label is mixed, the recycled PET resin can be produced with stable quality.

Abstract

【課題】 主収縮方向に高い熱収縮率を有した上で、使用済みの飲料用PETボトルと一緒にリサイクルしても、良好なリサイクルPETレジンが得られる熱収縮性ポリエステル系フィルムを提供すること。 【解決手段】 ジカルボン酸成分100モル%中、ジカルボン酸を95モル%以上100モル%以下、イソフタル酸を0モル%以上5モル%以下含有するとともに、かつ エチレンテレフタレートユニットが全エステルユニット100モル%中、85モル%以上98モル%以下含有し、多価アルコール成分100モル%中、ジエチレングリコールを2モル%以上15モル%以下含有する熱収縮性ポリエステル系フィルムであって、所定の温湯熱収縮率を有すると共に、示差走査熱量計(DSC)を用いてフィルムを溶融させた後に急冷し、再度昇温して測定した融解ピーク温度、結晶化発熱量、および融解発熱量が所定範囲内である熱収縮性ポリエステル系フィルム。

Description

熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
 本発明は、熱収縮性ポリエステル系フィルムに関し、詳しくはPETボトルのリサイクル工程で、PETボトルと混合してリサイクルしても問題の無いリサイクルPETレジンが得られる熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体に関するものである。
近年、ガラス瓶やPETボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(所謂、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムの内、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生し、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという不具合を生じる。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広汎に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。
 通常の熱収縮性ポリエステル系フィルムは、幅方向に大きく収縮するものが広く利用されている。そのフィルムはテンター延伸法等によって延伸され、広幅のマスターロールを作製し、その後マスターロールを任意の幅でスリットしながら任意の巻長のロール状に巻取りフィルムロール製品とする。そのフィルムに意匠性を持たせ、商品の表示の目的で、ロール形態で印刷工程に掛けられる。印刷後は、必要な幅に再度スリットしロール状に巻き取られた後、溶剤接着によるセンターシール工程を経てチューブ状に製袋され、ロール状に巻き取られる(ラベルのロールになる)。
 チューブ状に製袋され巻き取られたラベルは、ロールから巻き出しながら必要な長さにカットされ、環状にラベルになる。環状ラベルは手かぶせ等の方法で、被包装物に装着され、スチームトンネルもしくは熱風トンネル等を通過して収縮させてラベルとなる。
近年、環境に対する要望が強くなっている。例えばPETボトルの容器もリサイクルされ、リサイクルPETレジンとして再生され、様々なプラスチック製品に使用されている。環境への要望の高まりにより、リサイクルPETレジンの使用量は増加し、PETボトルのリサイクル比率も増加している。
飲料用PETボトルは、内容物が無くなったPETボトル容器はリサイクルされ、リサイクルPETレジンとされているが、飲料用PETボトルへの意匠性を付与しているラベルについてはリサイクルされていないのが一般的である。
PETボトルの原料となるPETに対し、特許文献1に記載されているようなポリスチレン系熱収縮フィルムのラベルは PETに対し非相溶である。従って、リサイクルPETレジンを作る工程で、ポリスチレン系熱収縮フィルムが混合すると、リサイクルPETレジンの透明性を失い好ましくない。
特許文献2に記載されているポリエステルとポリスチレンの積層フィルムも、同様にPETと非相溶なポリスチレンが混合しており好ましくない。
特許文献3はポリエステル系熱収縮フィルムの発明であるが、空洞含有をつくる為に環状オレフィン等が混合されており、上記と同様にPETと非相溶なオレフィン系の原料が混合しており好ましくない。
特許文献4は透明なポリエステル系熱収縮フィルムの発明であり、PETと非相溶な原料が入っていないので、リサイクルPETレジンを作る工程で透明性は損なわない。しかし一般的にポリエステル系熱収縮フィルムは 熱収縮特性を発現させるために非晶性のモノマーを添加した非晶性PET原料で生産されている。PETボトルで使用されている原料はホモPETなので、結晶性の原料である。従って、リサイクルPETレジンを作る工程で、非晶性のポリエステル系熱収縮フィルムが混合すると、出来たリサイクルPETレジンはホモPET原料として再使用は困難になり、かつ 再度PETボトルを作る原料として使用する事はできない。また結晶性の原料と非晶性の原料では密度が異なるので、2つの原料が混合して再生レジンを作る工程で、非晶原料が均一に押出しされずに、溶融押出し後のダイで、脈動やトウ切れ等のトラブルが発生しやすくなり好ましくない。
特許5286763号公報 国際公開WO2020/021948号 特許5625912号公報 特許5633808号公報
 本発明の熱収縮性ポリエステル系フィルムは、主収縮方向に高い熱収縮率を有した上で、使用済みの飲料用PETボトルと一緒にリサイクルしても、良好なリサイクルPETレジンが得られる熱収縮性ポリエステル系フィルムを提供することを課題とする。
 上記課題を解決してなる本願発明は、以下の構成を有するものである。
 1.ジカルボン酸成分100モル%中、ジカルボン酸を95モル%以上100モル%以下、イソフタル酸を0モル%以上5モル%以下含有するとともに、かつ エチレンテレフタレートユニットが全エステルユニット100モル%中、85モル%以上98モル%以下含有し、多価アルコール成分100モル%中、ジエチレングリコールを2モル%以上15モル%以下含有する熱収縮性ポリエステル系フィルムであって、下記要件(1)~(5)を満たす事を特徴とする熱収縮性ポリエステル系フィルム。
 (1)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム幅方向で40%以上70%以下
 (2)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム長手方向で-5%以上15%以下
 (3)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた融解による吸熱ピーク温度が245℃以上260℃以下
 (4)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた結晶化による発熱量が10mJ/mg以上
 (5)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた融解による吸熱量が10mJ/mg以上
2.フィルムの密度が1.33g/cm以上1.39g/cm以下であることを特徴とする1.に記載の熱収縮性ポリエステル系フィルム。
3.フィルム厚み20μmでのヘイズが2%以上10%以下を特徴とする1.又は2.に記載の熱収縮性ポリエステル系フィルム。
 4.前記1.~3.のいずれかに記載の熱収縮性ポリエステル系フィルムを用いた熱収縮性ラベル。
5.前記4.に記載の熱収縮性ラベルで、包装対象物の少なくとも外周の一部を被覆して熱収縮させて形成されることを特徴とする包装体。
 6.熱収縮性ラベルに用いられ、次いでPETボトルリサイクル原料に用いられることを特徴とする、前記1.~3.のいずれかに記載の熱収縮性ポリエステル系フィルム。
 本発明の熱収縮性ポリエステル系フィルムは、主収縮方向に高い熱収縮率を有した上で、使用している原料成分が飲料用PETボトルで使用されている原料と近く、かつ 示差走査熱量計(以下 DSCと称する場合がある)で求めた融点、発熱量、吸熱量フィルムがPETボトルで使用されている原料と近いので、熱収縮性ポリエステル系フィルムをPETボトルと同時にリサイクルしても、リサイクルPETレジンを得られることができる。
本発明における、DSCを用いたフィルムの吸熱ピーク温度、結晶化による発熱量、および融解による吸熱量の測定例である。 本発明の熱収縮性ポリエステル系フィルムを製造する工程におけるTD(幅方向延伸)パターンの例(上面図)である。
 以下、本発明の熱収縮性ポリエステル系フィルムについて詳しく説明する。なお、熱収縮性ポリエステル系フィルムの製造方法は、後に詳述するが、熱収縮性フィルムは通常、ロール等を用いて搬送し、延伸することにより得られる。このとき、フィルムの搬送方向を長手方向と称し、前記長手方向に直交する方向をフィルム幅方向と称する。従って、以下で示す熱収縮性ポリエステル系フィルムの幅方向とは、ロール巻き出し方向に対し垂直な方向であり、フィルム長手方向とは、ロールの巻き出し方向に平行な方向をいう。
 本発明の熱収縮性ポリエステル系フィルムは、エチレンテレフタレートユニットを全エステルユニット100モル%中、85モル%以上98モル%以下含有し、ジカルボン酸成分100モル%中、ジカルボン酸を95モル%以上100モル%以下、イソフタル酸を0モル%以上5モル%以下含有するとともに、多価アルコール成分100モル%中、ジエチレングリコールを2モル%以上15モル%以下含有する熱収縮性ポリエステル系フィルムであって、下記要件(1)~(5)を満たす事を特徴とする熱収縮性ポリエステル系フィルムである。
 (1)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム幅方向で40%以上70%以下
 (2)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム長手方向で-5%以上15%以下
 (3)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた融解による吸熱ピーク温度が245℃以上260℃以下
 (4)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた結晶化による発熱量が10mJ/mg以上
 (5)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた融解による吸熱量が10mJ/mg以上
 本発明者は、市販の飲料用PETボトル(コカコーラ社、サントリー社、伊藤園社、キリン社、アサヒ社が販売している飲料用PETボトル)の原料組成を1H-NMR(varian製、UNITY50)を用いて分析した。ジカルボン酸成分100モル%中、ジカルボン酸が97~98.5モル%、イソフタル酸が1.5~3モル%含有されていた。またエステルユニット100モル%中、エチレンテレフタレートユニットを97~99モル%、多価アルコール成分100モル%中、ジエチレングリコールを1~3モル%含有していた。イソフタル酸はPETボトル成型時にPETボトルのネック部が白化しないように意図的に添加していると考えられる。ジエチレングリコールは、原料重合時の副成物と考えられる。
 従って、熱収縮性ポリエステルフィルムもジカルボン酸成分は ジカルボン酸とイソフタル酸、エステルユニットはエチレンテレフタレートユニットとジエチレングリコールのみが使用されている原料の方が、PETボトルとリサイクルが容易になり好ましい。
 またPETボトルとラベルの重量比も 500ml容量の飲料用PETボトルで比較を行った。重量比はPETボトルを1とすると、ラベルは0.05~0.2と、ラベルの重量比率は低かった。このように、PETボトルとラベルを混合してリサイクル使用する場合のラベルの重量比率は低いにも関わらず、ラベルの組成及び特性がリサイクルの工程におけるレジンサイズ等の変動の要因となることを本発明者は見出した。
熱収縮性ポリエステル系フィルムにおいて、高い収縮性を得るために例えばエチレンテレフタレートからなるホモポリマー(PET)に、他の多価カルボン酸成分や他の多価アルコール成分を共重合して使用することが広く行われている。該共重合する成分として使用する多価アルコール成分として、例えばネオペンチルグリコールや1,4-シクロヘキサンジタノールが考えられ広く使用されている。これらの成分を共重合したフィルムの場合、上記した飲料用PETボトルの原料と異なる原料組成になるので、PETボトルとのリサイクル性が悪くなり好ましくない。
 ポリエチレンテレフタレート(以下、単にPETということがある)の重合法としては、テレフタル酸とエチレングリコール、および必要に応じて他のジカルボン酸成分およびジオール成分を直接反応させる直接重合法、およびテレフタル酸のジメチルエステル(必要に応じて他のジカルボン酸のメチルエステルを含む)とエチレングリコール(必要に応じて他のジオール成分を含む)とをエステル交換反応させるエステル交換法等の任意の製造方法が利用され得る。
ポリエステルを構成するテレフタル酸以外のジカルボン酸成分としてはイソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸等が挙げられる。本発明の熱収縮性ポリエステル系フィルムにおいては、PETボトルの原料と同じ成分であるイソフタル酸を用いることが好ましい。イソフタル酸成分の含有率は多価カルボン酸成分100モル%のうち0モル%以上で、1モル%以上であることが好ましく、より好ましくはPETボトルの原料と同じ組成となる1.5モル%以上である。上限においては、ラベルの重量はPETボトルに対して5~20%なので、PETボトルのイソフタル酸の含有量の5倍である15mol%では好ましくない。イソフタル酸は非晶性で、イソフタル酸が多いと非晶性が高くなり、PETボトルと混合しリサイクルPET原料を作製する際に脈動等の不具合が生じるので好ましくない。イソフタル酸は5モル%以下で、4モル%以下が好ましく、PETボトル原料と同じ3モル%以下がより好ましい。
本発明のフィルムで使用するポリエステルを構成する多価アルコール成分100モル%のうちジエチレングリコールが、2モル%以上15モル%以下であることが必要である。
ジエチレングリコールが2モル%未満だと、熱収縮フィルムとしての収縮特性が発現し難くなり好ましくない。ジエチレングリコールは3モル%以上が好ましく、4モル%以上がより好ましい。
一方上限については前述しているようにラベル重量はPETボトル重量の5~20%である。従って、リサイクル工程でPETボトルと混合してもジエチレングリコールは1/5~1/20以下になる。上述しているがPETボトルの原料に含まれているジエチレングリコール1~3モル%なので、リサイクルPETレジン中のジエチレングリコールは15モル%以下であれば、リサイクルPETレジンになった時にPETボトルレジンのジエチレングリコールの範囲内となる。ジエチレングリコールは13モル%以下が好ましく、11モル%以下がより好ましい。
炭素数8個以上のジオール(例えばオクタンジオール等)、又は3価以上の多価アルコール(例えば、トリメチロールプロパン、トリメリトールエタン、グリセリン、ジグリセリン等)は含有させないことが好ましい。これらのジオール、又は多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮を達成しにくくなる。
 本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。
 本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、フィルムの作業性(滑り性)を良好にする滑剤としての微粒子を添加することが好ましい。微粒子としては、任意のものを選択することができるが、例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等、有機系微粒子としては、例えば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタで測定した場合)で、必要に応じて適宜選択することができる。
 熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、例えば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、下式1により算出したフィルムの主収縮方向の熱収縮率(すなわち、90℃の温湯熱収縮率)が、40%以上70%以下であることが好ましい。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%)・・式1
 90℃における主収縮方向の温湯熱収縮率が40%未満であると、飲料ラベル用途や弁当包装のフィルムとして使用する場合に、収縮量が小さいために、熱収縮した後のラベルシワやタルミが生じてしまうので好ましくない。90℃の温湯収縮率は43%以上であるとより好ましく、46%以上であると特に好ましく、50%以上であると最も好ましい。
 90℃における主収縮方向の温湯熱収縮率が70%より高くても問題無いが、本発明では90℃の温湯熱収縮率が70%より高いフィルムを得る事ができなかったので、上限を70%とした。
 本発明の熱収縮性ポリエステル系フィルムは、90℃における主収縮方向と直交する長手方向の温湯熱収縮率が-5%以上15%以下であることが好ましい。長手方向の90℃の温湯収縮率が-5%未満であると、飲料ラベル用途で使用する場合に、ラベルが伸びてPETボトルでのラベル高さが長くなり好ましくない。長手方向の90℃の温湯収縮率は-4%以上であるとより好ましく、-3%以上であると特に好ましい。
長手方向の90℃の温湯収縮率が15%より大きいと、飲料ラベル用途で使用する場合に、ラベルが縮みPETボトルでのラベル高さが短くなり好ましくない。また収縮後のラベル歪みの原因ともなる。長手方向の90℃の温湯収縮率は13%以下であるとより好ましく、11%以下であるとさらに好ましく、8%以下であると特に好ましく、5%以下であると最も好ましい。
 本発明の熱収縮性ポリエステル系フィルムは、示差走査熱量計(以下DSCと記す)を用いて300℃まで昇温して溶融させた後に冷却し、再度300℃まで昇温して得られた融解による吸熱ピーク温度が245℃以上260℃以下であることが好ましい。PETボトルを同様の方法で測定した時の融解熱量のピークは 250~260℃の範囲内であった。従ってPETボトルと融解熱量のピークが大きく異なると、リサイクルPETレジンを作製する際に溶融押出し工程で脈動等の不具合が生じるので好ましくない。247℃以上260℃以下であるとより好ましく、250℃以上255℃以下であると特に好ましい。
 本発明の熱収縮性ポリエステル系フィルムは、DSCを用いて300℃まで昇温して溶融させた後に冷却し、再度300℃まで昇温して得られた結晶化による発熱量は10mJ/mg以上が好ましい。PETボトルを同様の方法で測定した時の発熱量は25~55mJ/mgの範囲内で発熱量を示した。熱収縮性ポリエステル系フィルムの非晶量が高いと、発熱量を示さないので、リサイクルPETレジンを作製する際に溶融押出し工程で脈動等の不具合が生じるので好ましくない。
従って結晶化による発熱量は10mJ/mg以上が好ましく、20mJ/mg以上であるとより好ましく、25mJ/mg以上であると特に好ましい。
 結晶化による発熱量の上限は特に定めていないが、ポリエステル原料で60mJ/mgを超えることは無い。
 本発明の熱収縮性ポリエステル系フィルムは、DSCを用いて300℃まで昇温して溶融させた後に冷却し、再度300℃まで昇温して得られた融解による吸熱量は10mJ/mg以上が好ましい。PETボトルを同様の方法で測定した時の吸熱量は30~65mJ/mgの範囲内で吸熱量を示した。熱収縮性ポリエステル系フィルムの非晶量が高いと、吸熱量を示さないので、リサイクルPETレジンを作製する際に溶融押出し工程で脈動等の不具合が生じるので好ましくない。
従って融解による吸熱量は10mJ/mg以上が好ましく、20mJ/mg以上であるとより好ましく、30mJ/mg以上であると特に好ましい。
 融解による吸熱量の上限は特に定めていないが、ポリエステル原料では70mJ/mgを超えることは無い。
 本発明の熱収縮性ポリエステル系フィルムは、密度が1.33g/cm以上であることが好ましい。密度は結晶化度を表す指標として多くの報告がされている。従って密度が低いと、結晶化が低いと非晶量が多いことを示す。
密度が1.33g/cm未満であると、リサイクルPETレジンを作製する際に溶融押出し工程で脈動等の不具合が生じるので好ましくない。1.34g/cm以上であるとより好ましく、1.35g/cm以上であると特に好ましい。
一方密度が高すぎると結晶化してしまい上述したような収縮特性が得られなくなり好ましくない。密度は1.38g/cm以下であるとより好ましく、1.37g/cm以下であると特に好ましい。
 本発明の熱収縮性ポリエステル系フィルムの厚みは、特に限定されるものではないが、ラベル用途や弁当包装用途の熱収縮性フィルムとして15~50μmが好ましい。フィルム厚みが15μm未満であるとフィルムのコシ感が著しく低下するためロールにシワが入りやすくなり好ましくない。一方、フィルム厚みは厚くてもフィルムロールとして問題はないが、コストの観点から薄肉化することが好ましい。フィルムの厚みは17~45μmがより好ましく、20μm~40μmが特に好ましい。
 本発明の熱収縮性ポリエステル系フィルムは、厚み20μmでのヘイズ値が2%以上10%以下であると好ましい。熱収縮フィルムは意匠性を出すフィルムであるので、ヘイズ値が10%より高いと、PETボトルのラベルとなったさいに内容物がきれいに見えなくなり、意匠性が低下するので好ましくない。フィルム厚み20μmでのヘイズは8%以下であるとより好ましく、6%以下であると特に好ましい。
フィルム厚み20μmでのヘイズは2%未満でも問題無いが、本発明ではヘイズ値が2%未満になると、フィルムの滑り性が悪化したので、下限を2%とした。
 本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機で溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを幅方向に延伸して得ることができる。なお、ポリエステルは、前記した好適なジカルボン酸成分とジオール成分を公知の方法で重縮合させることで得ることができる。また、通常は、チップ状のポリエステルをフィルムの原料として使用する。
 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、230~270℃の温度で溶融しフィルム状に押し出す。押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
 そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
さらに、得られた未延伸フィルムを、後述するように、所定の条件で幅方向に延伸し本発明の熱収縮性ポリエステル系フィルムを得ることが可能となる。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好ましい延伸について説明する。
通常の熱収縮性ポリエステル系フィルムは、収縮させたい方向に未延伸フィルムを延伸することによって製造される。本発明では 長手方向にも延伸することで生産速度が上がり生産性が向上するので、後述する延伸倍率の範囲内で二軸延伸する。
長手方向の延伸は 速度差のあるロールを用いてロール延伸の方式で行うことが好ましい。表面温度がTg以上Tg+20℃以下のロールで予熱し、1.1倍以上1.3倍以下の倍率で延伸を行った。表面温度がTg以下だと延伸応力が高くなり破断するので好ましくない。またTg+20℃より温度が高いと、フィルムがロールに粘着し、フィルム傷の原因となるので好ましくない。ロール表面温度はTg+3度以上Tg+17度以下が好ましく、Tg+5度以上Tg+15度以下だと特に好ましい。
延伸倍率が1.1倍未満では 生産性の向上が小さく好ましくない。好ましくは1.15倍以上で1.2倍以上だと特に好ましい。長手方向の延伸倍率は1.3倍より高いと長手方向の収縮率が高くなり好ましくない。好ましくは1.28倍以下で1.25倍以下だと特に好ましい。
幅方向の延伸は、長手方向に延伸されたフィルムをフィルム両端をクリップで把持して加熱することができるテンター装置に導き、熱風によりフィルムを所定の温度まで加熱した後、長手方向に搬送しながらクリップ間の距離を広げることで延伸する。
長手方向延伸フィルムの予熱温度は フィルムのTg+30℃以上+80℃以下の温度で予熱することが好ましい。Tg+30℃未満では、予熱温度不足で延伸力が高くなり破断が生じやすくなり好ましくない。またTg+80℃より高い温度で加熱すると、未延伸シートの幅方向への延伸力が低下し、幅方向の厚み精度(偏肉)が悪くなり好ましくない。より好ましくはTg+40℃以上+70℃以下である。
 幅方向延伸時のフィルム温度は、フィルムTg+5℃以上Tg+30℃以下であることが好ましい。フィルム温度がTg+5℃未満であると、延伸力が高くなりすぎて、フィルムの破断が生じやすくなり好ましくない。フィルム温度がTg+30℃を超えると、延伸力が低すぎるために、上記したように90℃で測定した幅方向の熱収縮率が低くなり好ましくない。より好ましくはTg+8℃以上+25℃以下である。
幅方向への延伸倍率は3.4倍以上5倍以下が好ましい。延伸倍率が3.4倍未満であると、延伸力が不十分で、フィルム幅方向の厚み精度(所謂 偏肉)が悪くなる。また延伸倍率が5倍を超えると、製膜時に破断するリスクが高くなる上に、設備が長大になるため好ましくない。より好ましくは3.5倍以上4.8倍以下である。また特に限定しないが、幅方向の延伸後に、収縮率の調整のため熱処理を行ってもよい。
幅方向へ延伸するさいに、2段以上に分けて延伸することが望ましい。本発明は結晶性のポリエステル原料を、長手方向へ弱延伸した後にフィルムを幅方向へ延伸する。フィルムは延伸方向へ分子が配向し、延伸と直交する方向の分子配向が低下することは一般的である。従って、幅方向へ最初に1.2倍以上1.7倍以下の低い延伸倍率で延伸することで、フィルム長手方向の分子配向を小さくし、長手方向の熱収縮率を低減できる。さらに幅方向へ一段延伸後、テンター装置内で幅方向へ5%以上20%以下で幅方向へ弛緩(所謂TDリラックス)すると、長手方向の分子も緩和され長手方向の熱収縮率低減の効果が大きくなる。幅方向へ弛緩後にテンター装置内で定長にし、その後に二段目の延伸を2倍以上4.2倍以下で行うことが好ましい。
二段目の延伸後にテンター装置内で延伸温度以上延伸温度+18℃以下で熱処理することが好ましい。熱処理温度が延伸温度未満であると、分子鎖の緩和という熱処理工程の目的を達しなくなる。また熱処理温度が延伸温度+18℃より高いと、熱収縮率が低減し、熱収縮フィルムとして好ましくない。より好ましくは延伸温度+1℃以上延伸温度+15℃以下である。
 以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。
また、フィルムの評価方法は下記の通りである。
 [極限粘度 (IV)]
 ポリエステル0.2gをフェノール/1,1,2,2-テトラクロルエタン(60/40(重量比))の混合溶媒50ml中に溶解し、30℃でオストワルド粘度計を用いて測定した。単位はdl/gである。
[組成分析]
各試料を、クロロホルムD ( ユーリソップ社製) とトリフルオロ酢酸D 1 ( ユーリソップ社製) を10:1(体積比) で混合した溶媒に溶解させて、試料溶液を調製し、NMR「GEMINI-200」(Varian社製) を用いて、温度23 ℃ 、積算回数64 回の測定条件で試料溶液のプロトンのNMRを測定した。NMR測定では、所定のプロトンのピーク強度を算出して、二酸成分100モル%中の成分量及び多価アルコール成分100モル%中の成分量を測定した。
[熱収縮率(温湯熱収縮率)]
 フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中に無荷重状態で10秒間浸漬して熱収縮させた後、25℃±0.5℃の水中に10秒間浸漬し、水中から引き出してフィルムの縦および横方向の寸法を測定し、下記式(1)にしたがって、それぞれ熱収縮率を求めた。熱収縮率の大きい方向を主収縮方向とした。 
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) 式1
[Tg(ガラス転移点)]
 セイコー電子工業株式会社社製の示差走査熱量計(型式:DSC220)を用いて、JIS-K7121-1987に従ってTgを求めた。詳細には未延伸フィルム10mgを、-40℃から120℃まで、昇温速度10℃/分で昇温し、吸熱曲線を測定した。得られた吸熱曲線の変曲点の前後に接線を引き、その交点をガラス転移点(Tg;℃)とした。
[吸熱ピーク温度][吸熱量]
 セイコー電子工業株式会社社製の示差走査熱量計(型式:DSC220)を用いて、JIS-K7121-1987に従って求めた。製膜後のフィルム5mgをサンプルパンに入れ、パンの蓋をして、窒素ガス雰囲気下で300℃まで10℃/分の昇温速度で昇温し、昇温後2分間300℃で保持した。その後、サンプルパンを取り出し、液体窒素で急冷した。急冷後のサンプルを常温に戻し、再度、示差走査熱量分析装置で30℃~300℃まで10℃/分の昇温速度で昇温し、DSCを測定した。サンプルが融解する吸熱ピークを吸熱ピーク温度とした。また吸熱ピーク面積から融解の吸熱量を求めた。また融解ピークがない場合は、融解ピーク温度は無し、吸熱量を0とした。
[発熱量]
 セイコー電子工業株式会社社製の示差走査熱量計(型式:DSC220)を用いて、JIS-K7121-1987に従って求めた。製膜後のフィルム5mgをサンプルパンに入れ、パンの蓋をして、窒素ガス雰囲気下で300℃まで10℃/分の昇温速度で昇温し、昇温後2分間300℃で保持した。その後、サンプルパンを取り出し、液体窒素で急冷した。急冷後のサンプルを常温に戻し、再度、示差走査熱量分析装置で30℃~300℃まで10℃/分の昇温速度で昇温し、DSCを測定した。サンプルが発熱する発熱ピーク面積から発熱量を求めた。また発熱ピークがない場合は、発熱ピーク温度は無し、発熱量を0とした。
[フィルムの厚み]
 JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
[フィルムの密度]
 JIS-K-7112の密度勾配管法により、硝酸カルシウム水溶液を用いて約3mm四方のサンプルの密度を測定した。
[フィルムのヘイズ]
 JIS K7361-1に準拠し、フィルムを1辺10cmの正方形状に切り出し、日本電飾(株)製ヘイズメーターNDH2000を用い、ヘイズ測定を行った。3か所で実施し、その平均値をヘイズ実測値とし、下式(2)により20μm換算のヘイズを算出した。
 ヘイズ=ヘイズ実測値×20/フィルムの厚み(%/20μm) 式2
[収縮仕上り性]
熱収縮性フィルムの端部をインパルスシーラー(富士インパルス社製)で溶着し、幅方向を周方向とした円筒状ラベルを得た。ラベルの収縮方向の直径は68mmであった。このラベルを、市販の500mlのPETボトル(内容物入り; 胴直径 62mm、ネック部の最小直径25mm)に被せて、90℃に調整したFuji Astec Inc 製スチームトンネル(型式;SH-1500-L)を用いスチームに通して熱収縮させた(トンネル通過時間5秒)。ラベルの収縮仕上がり性を、以下の基準に従って目視で評価を行った。以下の基準に従って目視で5段階評価した。以下に記載の欠点とは、飛び上がり、シワ、収縮不足、ラベル端部折れ込み、収縮白化等を意味する。3以上を合格とした。
5:仕上がり性最良(欠点なし)
4:仕上がり性良(欠点1箇所あり)
3:欠点2箇所あり
2:欠点3~5箇所あり
1:欠点多数あり(6箇所以上)
[リサイクルPETレジンのバラツキ]
 上記した収縮仕上り性を評価した500mlサイズのPETボトルの内容物を出し、水で洗浄した後に、PETボトルとラベルを粉砕機(株式会社フジテックス製 48型)で8~10mmのサイズに粉砕しフラフを作製した。
 得られたフラフをペレタイザー(日本油機製 SRH-V55/48)で280℃に溶融してペレットを1時間辺り120kgの吐出量で30分リサイクルPETレジンを作製した。この時のリサイクルPETレジンのサイズを長さ3±0.8mm(2.2~3.8mm)、粒重量を30±10mg/個(20~40mg/個)になるようカットして作製した。そして造粒開始から5分後、15分後、25分後にリサイクルPETレジンを300粒サンプリングし(計900粒)、リサイクルPETレジンのサイズを測定した。以下の方法で判定を行い、〇を合格とした。
 〇: サイズ(長さ、粒重)外れたレジンが全体の10%以下、かつ脈動等による造粒時のトラブル無し
 △: サイズ(長さ、粒重)外れたレジンが全体の30%以下、かつ脈動等による造粒時のトラブルが2回以下
 × : サイズ(長さ、粒重)外れたレジンが全体の30%より高く、かつ脈動等による造粒時のトラブルが3回以上
 <ポリエステル原料の調製>
 [合成例1]
 撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)100モル%とを、エチレングリコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、280℃で26.7Paの減圧条件のもとで重縮合反応を行い、極限粘度0.75dl/gのポリエステルAを得た。組成を表1に示す。
 [合成例2~5]
 合成例1と同様の方法により、表1に示すポリエステルB~Dを得た。ポリエステルBの製造の際には、滑剤としてSiO2(富士シリシア社製サイリシア266;平均粒径3μm)をポリエステルに対して20000ppmの割合で添加した。なおポリエステルの極限粘度は、全て0.75dl/gであった。
なお、各ポリエステルは、適宜チップ状にした。各ポリエステルの組成は表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
上記したポリエステルA、ポリエステルB、およびポリエステルCを重量比 67:3:30で混合して押出機に投入した。しかる後、その混合樹脂を273℃で4軸のスクリューを用いて溶融させて、260℃へ冷却しながらTダイから押出し、表面温度20℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは65℃であった。
当該未延伸フィルムを縦延伸機へ導き、Tg+10℃(75℃)の表面温度のロールで予熱して、ロール間の速度差を利用して縦(長手)方向へ1.2倍延伸した。長手方向へ一軸延伸したフィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度がTg+45℃(110℃)になるまで予熱し、その後、フィルム温度をTg+10℃(75℃)で横方向に1段目で1.5倍延伸し、その後にTg+10℃(75℃)で幅方向へ10%弛緩した。幅方向へ弛緩後のフィルムをTg+10℃(75℃)で2段目に3.1倍(Totalの延伸倍率4.2倍)延伸した。幅方向へ延伸後のフィルムをTg+12℃(77℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約40μmの二軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、リサイクルPETのバラツキ共に実用上問題無いフィルムであった。
[実施例2]
ポリエステルA、ポリエステルB、およびポリエステルCを重量比 77:3:20で混合して押出機に投入し、実施例1と同様に厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは70℃であった。
当該未延伸フィルムを実施例1と同じように延伸し、厚み40μmの熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。ただし延伸の温度条件に関しては、実施例1とTgが異なるので、Tg+10℃(80℃)、Tg+45℃(115℃)、Tg+12℃(82℃)に変更した。得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、リサイクルPETのバラツキ共に実用上問題無いフィルムであった。
[実施例3]
ポリエステルA、ポリエステルB、およびポリエステルCを重量比 92:3:5で混合して押出機に投入し、実施例1と同様に厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは74℃であった。
当該未延伸フィルムを実施例1と同じように延伸し、厚み40μmの熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。ただし延伸の温度条件に関しては、実施例1とTgが異なるので、Tg+10℃(84℃)、Tg+45℃(119℃)、Tg+12℃(86℃)に変更した。得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、リサイクルPETのバラツキ共に実用上問題無いフィルムであった。
[実施例4]
ポリエステルA、ポリエステルB、ポリエステルC、およびポリエステルDを重量比 52:3:5:40で混合して押出機に投入し、実施例1と同様に厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは74℃であった。
当該未延伸フィルムを実施例1と同じように延伸し、厚み40μmの熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。ただし延伸の温度条件に関しては、実施例1とTgが異なるので、Tg+10℃(84℃)、Tg+45℃(119℃)、Tg+12℃(86℃)に変更した。得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、リサイクルPETのバラツキ共に実用上問題無いフィルムであった。
[実施例5]
ポリエステルA、ポリエステルB、ポリエステルC、およびポリエステルDを重量比 57:3:30:10で混合して押出機に投入し、実施例1と同様に厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは65℃であった。
当該未延伸フィルムを実施例1と同じように延伸し、厚み40μmの熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、リサイクルPETのバラツキ共に実用上問題無いフィルムであった。
[実施例6]
ポリエステルA、ポリエステルB、ポリエステルC、およびポリエステルDを重量比 67:3:20:10で混合して押出機に投入し、実施例1と同様に厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは70℃であった。
当該未延伸フィルムを実施例1と同じように延伸し、厚み40μmの熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。ただし延伸の温度条件に関しては、実施例1とTgが異なるので、Tg+10℃(80℃)、Tg+45℃(115℃)、Tg+12℃(82℃)に変更した。得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、リサイクルPETのバラツキ共に実用上問題無いフィルムであった。
[比較例1]
上記したポリエステルA、ポリエステルB、およびポリエステルCを重量比 47:3:50で混合して押出機に投入した。しかる後、その混合樹脂を273℃で4軸のスクリューを用いて溶融させて、260℃へ冷却しながらTダイから押出し、表面温度20℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは58℃であった。
当該未延伸フィルムを縦延伸機へ導き、Tg+10℃(68℃)の表面温度のロールで予熱して、ロール間の速度差を利用して縦(長手)方向へ1.2倍延伸した。長手方向へ一軸延伸したフィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度がTg+45℃(103℃)になるまで予熱し、その後、フィルム温度をTg+10℃(68℃)で横方向に1段目で1.5倍延伸し、その後にTg+10℃(68℃)で幅方向へ10%弛緩した。幅方向へ弛緩後のフィルムをTg+10℃(68℃)で2段目に3.1倍(Totalの延伸倍率4.2倍)延伸した。幅方向へ延伸後のフィルムをTg+12℃(70℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約40μmの二軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性は実用上問題無いフィルムであったが、PETボトルと混合してリサイクルPETレジンは サイズのバラツキが多く、脈動による造粒時のトラブルが1回発生する不良があった。
[比較例2]
ポリエステルB、ポリエステルC、およびポリエステルDを重量比 3:7:90で混合して押出機に投入し、実施例1と同様に厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは73℃であった。
当該未延伸フィルムを実施例1と同じように延伸し、厚み40μmの熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。ただし延伸の温度条件に関しては、実施例1とTgが異なるので、Tg+10℃(83℃)、Tg+45℃(118℃)、Tg+12℃(85℃)に変更した。得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性は実用上問題無いフィルムであったが、PETボトルと混合してリサイクルPETレジンは サイズのバラツキが多く、脈動による造粒時のトラブルが2回発生する不良があった。
[比較例3]
ポリエステルA、ポリエステルB、ポリエステルC、およびポリエステルEを重量比 12:3:5:80で混合して押出機に投入し、実施例1と同様に厚さが201μmの未延伸フィルムを得た。未延伸フィルムのTgは74℃であった。
当該未延伸フィルムを実施例1と同じように延伸し、厚み40μmの熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。ただし延伸の温度条件に関しては、実施例1とTgが異なるので、Tg+10℃(83℃)、Tg+45℃(118℃)、Tg+12℃(85℃)に変更した。得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性は良好なフィルムであったが、PETボトルと混合してリサイクルPETレジンは サイズのバラツキが多く、脈動による造粒時のトラブルが何度も発生する不良があった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の熱収縮性ポリエステル系フィルムは、高い熱収縮率を有しているにも関わらず、使用している原料成分が飲料用PETボトルで使用されている原料に近い。その為、PETボトルをリサイクルしてリサイクルPETレジンを作製する工程で、ラベルとして使用された熱収縮性ポリエステルフィルムが混ざっても、安定した品質でリサイクルPETレジンを作製することができるものである。

Claims (6)

  1.  ジカルボン酸成分100モル%中、ジカルボン酸を95モル%以上100モル%以下、イソフタル酸を0モル%以上5モル%以下含有するとともに、かつ エチレンテレフタレートユニットが全エステルユニット100モル%中、85モル%以上98モル%以下含有し、多価アルコール成分100モル%中、ジエチレングリコールを2モル%以上15モル%以下含有する熱収縮性ポリエステル系フィルムであって、下記要件(1)~(5)を満たす事を特徴とする熱収縮性ポリエステル系フィルム。
     (1)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム幅方向で40%以上70%以下
     (2)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム長手方向で-5%以上15%以下
     (3)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた融解による吸熱ピーク温度が245℃以上260℃以下
     (4)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた結晶化による発熱量が10mJ/mg以上
     (5)示差走査熱量計(DSC)を用いてフィルムを300℃まで昇温して溶融させた後に急冷し、再度300℃まで昇温して得られた融解による吸熱量が10mJ/mg以上
  2. フィルムの密度が1.33g/cm以上1.39g/cm以下であることを特徴とする請求項1に記載の熱収縮性ポリエステル系フィルム。
  3. フィルム厚み20μmでのヘイズが2%以上10%以下を特徴とする請求項1又は2に記載の熱収縮性ポリエステル系フィルム。
  4.  請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルムを用いた熱収縮性ラベル。
  5. 請求項4に記載の熱収縮性ラベルで、包装対象物の少なくとも外周の一部を被覆して熱収縮させて形成されることを特徴とする包装体。
  6.  熱収縮性ラベルに用いられ、次いでPETボトルリサイクル原料に用いられることを特徴とする、請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
PCT/JP2021/030389 2020-08-27 2021-08-19 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体 WO2022044959A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21861387.5A EP4205948A1 (en) 2020-08-27 2021-08-19 Heat shrinkable polyester film, heat shrinkable label, and package
KR1020237009464A KR20230056715A (ko) 2020-08-27 2021-08-19 열수축성 폴리에스테르계 필름, 열수축성 라벨 및 포장체
US18/042,516 US20230323021A1 (en) 2020-08-27 2021-08-19 Heat-shrinkable polyester film, heat-shrinkable label, and package product
JP2022544518A JPWO2022044959A1 (ja) 2020-08-27 2021-08-19
CN202180051882.2A CN116096551A (zh) 2020-08-27 2021-08-19 热收缩性聚酯系薄膜、热收缩性标签、及包装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020143696 2020-08-27
JP2020-143696 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022044959A1 true WO2022044959A1 (ja) 2022-03-03

Family

ID=80355098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030389 WO2022044959A1 (ja) 2020-08-27 2021-08-19 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体

Country Status (7)

Country Link
US (1) US20230323021A1 (ja)
EP (1) EP4205948A1 (ja)
JP (1) JPWO2022044959A1 (ja)
KR (1) KR20230056715A (ja)
CN (1) CN116096551A (ja)
TW (1) TW202219135A (ja)
WO (1) WO2022044959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032429A1 (ja) * 2021-08-31 2023-03-09 タキロンシーアイ株式会社 ポリエステル系熱収縮フィルム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103545A (ja) * 2000-10-03 2002-04-09 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP2008274160A (ja) * 2007-05-01 2008-11-13 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法
WO2011114934A1 (ja) * 2010-03-15 2011-09-22 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、その包装体、及び熱収縮性ポリエステル系フィルムの製造方法
JP5286763B2 (ja) 2006-12-20 2013-09-11 東洋紡株式会社 熱収縮性ポリスチレン系フィルム、およびその製造方法
JP5625912B2 (ja) 2009-06-12 2014-11-19 東洋紡株式会社 空洞含有熱収縮性ポリエステル系フィルム及びその製造方法
JP5633808B2 (ja) 2009-05-26 2014-12-03 東洋紡株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
WO2018025801A1 (ja) * 2016-08-01 2018-02-08 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2020021948A1 (ja) 2018-07-25 2020-01-30 グンゼ株式会社 熱収縮性多層フィルム及び熱収縮性ラベル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123348A (en) 1977-04-04 1978-10-27 Honda Motor Co Ltd Multiispot welding device
JPS55119320A (en) 1979-03-09 1980-09-13 Fujikoshi Kk Overvoltage preventive relay contact protector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103545A (ja) * 2000-10-03 2002-04-09 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム
JP5286763B2 (ja) 2006-12-20 2013-09-11 東洋紡株式会社 熱収縮性ポリスチレン系フィルム、およびその製造方法
JP2008274160A (ja) * 2007-05-01 2008-11-13 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法
JP5633808B2 (ja) 2009-05-26 2014-12-03 東洋紡株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP5625912B2 (ja) 2009-06-12 2014-11-19 東洋紡株式会社 空洞含有熱収縮性ポリエステル系フィルム及びその製造方法
WO2011114934A1 (ja) * 2010-03-15 2011-09-22 東洋紡績株式会社 熱収縮性ポリエステル系フィルム、その包装体、及び熱収縮性ポリエステル系フィルムの製造方法
WO2018025801A1 (ja) * 2016-08-01 2018-02-08 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2020021948A1 (ja) 2018-07-25 2020-01-30 グンゼ株式会社 熱収縮性多層フィルム及び熱収縮性ラベル

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032429A1 (ja) * 2021-08-31 2023-03-09 タキロンシーアイ株式会社 ポリエステル系熱収縮フィルム
JPWO2023032429A1 (ja) * 2021-08-31 2023-03-09
JP2023145475A (ja) * 2021-08-31 2023-10-11 タキロンシーアイ株式会社 Petボトル
JP7375258B2 (ja) 2021-08-31 2023-11-07 タキロンシーアイ株式会社 ポリエステル系熱収縮フィルム
JP7411136B2 (ja) 2021-08-31 2024-01-10 タキロンシーアイ株式会社 Petボトル及びその製造方法

Also Published As

Publication number Publication date
KR20230056715A (ko) 2023-04-27
TW202219135A (zh) 2022-05-16
JPWO2022044959A1 (ja) 2022-03-03
CN116096551A (zh) 2023-05-09
EP4205948A1 (en) 2023-07-05
US20230323021A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
JP7070727B2 (ja) 熱収縮性ポリエステル系フィルム
JPWO2016152517A1 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP7439848B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
KR20130031242A (ko) 열수축성 폴리에스테르계 필름, 그의 포장체, 및 열수축성 폴리에스테르계 필름의 제조방법
JP6927124B2 (ja) 熱収縮性ポリエステル系フィルム
US8722161B2 (en) Heat shrinkable polyester film, method for producing same, and packaged body
TWI696551B (zh) 熱收縮性聚酯系膜及包裝體
JP6791310B2 (ja) 熱収縮性ポリエステル系フィルムロール
JP7119504B2 (ja) 熱収縮性ポリエステル系フィルム
JP2005047959A (ja) 熱収縮性ポリエステル系フィルム
JP2019177930A (ja) 包装体および包装容器
WO2022044959A1 (ja) 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP6760434B2 (ja) 熱収縮性ポリエステル系フィルムロール
JP2005335111A (ja) 熱収縮性ポリエステル系フィルム
JP7056322B2 (ja) 熱収縮性ポリエステル系フィルム
WO2021020167A1 (ja) 熱収縮性ポリエステル系フィルム
JP2021127377A (ja) 熱収縮性ポリエステル系フィルム
JP7364085B2 (ja) 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
KR20230009902A (ko) 필름용 공중합 폴리에스테르 원료, 열수축성 폴리에스테르계 필름, 열수축성 라벨, 및 포장체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544518

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009464

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021861387

Country of ref document: EP

Effective date: 20230327