WO2022024936A1 - 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体 - Google Patents

熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体 Download PDF

Info

Publication number
WO2022024936A1
WO2022024936A1 PCT/JP2021/027385 JP2021027385W WO2022024936A1 WO 2022024936 A1 WO2022024936 A1 WO 2022024936A1 JP 2021027385 W JP2021027385 W JP 2021027385W WO 2022024936 A1 WO2022024936 A1 WO 2022024936A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat
mol
polyester
less
Prior art date
Application number
PCT/JP2021/027385
Other languages
English (en)
French (fr)
Inventor
雅幸 春田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US18/006,521 priority Critical patent/US20230348661A1/en
Priority to JP2022540254A priority patent/JP7364085B2/ja
Priority to KR1020237006647A priority patent/KR20230042741A/ko
Priority to EP21849664.4A priority patent/EP4190845A1/en
Priority to CN202180059666.2A priority patent/CN116133825A/zh
Publication of WO2022024936A1 publication Critical patent/WO2022024936A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0842Sheets or tubes applied around the bottle with or without subsequent folding operations
    • B65D23/0878Shrunk on the bottle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • B65D65/22Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F3/0291Labels or tickets undergoing a change under particular conditions, e.g. heat, radiation, passage of time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/02Thermal shrinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2203/00Decoration means, markings, information elements, contents indicators
    • B65D2203/02Labels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/02Forms or constructions
    • G09F2003/0272Labels for containers
    • G09F2003/0273Labels for bottles, flasks

Definitions

  • the present invention relates to a heat-shrinkable polyester-based film, and more particularly, a heat-shrinkable polyester-based film having high piercing strength when used as a label for PET bottle beverages and having excellent bag-dropping property, and heat-shrinkable. It relates to labels and packages.
  • stretched films made of polyvinyl chloride resin, polystyrene resin, polyester resin, etc. have been used for label packaging, cap seals, integrated packaging, etc. that protect glass bottles and PET bottles and display products.
  • Heat-shrinkable films are becoming widely used.
  • polyvinyl chloride-based films have problems such as low heat resistance and generation of hydrogen chloride gas during incineration, which causes dioxin.
  • polystyrene film is inferior in solvent resistance, it is necessary to use ink with a special composition at the time of printing, and it is necessary to incinerate it at a high temperature, and a large amount of black smoke is generated with an offensive odor at the time of incineration.
  • polyester-based heat-shrinkable films having high heat resistance, easy incineration, and excellent solvent resistance have been widely used as shrinkage labels, and the distribution amount of PET containers has increased. With the increase, the amount used tends to increase.
  • a normal heat-shrinkable polyester film that shrinks significantly in the width direction is widely used.
  • the film is stretched by a tenter stretching method or the like to produce a wide master roll, and then the master roll is slit at an arbitrary width and wound into a roll of an arbitrary length to obtain a film roll product.
  • the film is given a design and is applied to the printing process in the form of a roll for the purpose of displaying the product. After printing, it is slit again to the required width and wound into a roll, then it is made into a tube through a center sealing process by solvent adhesion and wound into a roll (it becomes a roll of a label).
  • the label that was made into a tube and rolled up is cut to the required length while being unwound from the roll, and becomes a label in a ring shape.
  • the annular label is attached to the object to be packaged by a method such as covering with a hand, and is shrunk through a steam tunnel or a hot air tunnel to form a label.
  • the weight of PET bottle containers has been reduced and the thickness of PET bottle containers has also been reduced for the purpose of reducing the amount of garbage.
  • the thickness of the PET bottle container becomes thin, there arises a problem that the PET bottle container is deformed and the label is torn when dropped.
  • a label using a heat-shrinkable film is also required to have a thin thickness in order to reduce the volume.
  • the thickness of the film has also increased from 45 to 60 ⁇ m to 20 to 40 ⁇ m in recent years.
  • the bag-dropping property of the label deteriorates. Therefore, it is important to improve the bag-dropping property of the film.
  • the thickness becomes thin the feeling of waist is lowered, and there is a concern that the label may be bent and the label may be improperly attached in the process of printing the film into a label and then attaching the label to the PET bottle.
  • Patent Document 1 describes a method for improving the bag tear resistance when the film is dropped. According to the report, the piercing strength is an important factor for the bag resistance as a film characteristic. However, what is described in Patent Document 1 is an evaluation of bag breaking resistance when a non-heat-shrinkable film using a composition in which polyester and polybutylene terephthalate are mixed is made into a bag, and the heat-shrinkable film and heat-shrinkage are described. Not mentioned for labels with film.
  • Patent Document 2 describes a method for improving the problem that the label is bent and becomes defective in the process of mounting on a PET bottle. According to it, it is stated that the film strength in the height direction (non-shrinkage direction) when the label is attached is increased by stretching the film in two axes of the non-shrinkage direction and the shrinkage direction. However, in this method, since there is a biaxial stretching step of stretching not only in the film width direction but also in the longitudinal direction, the equipment is inevitably long, which is not preferable.
  • the present invention has a high heat shrinkage rate in the main shrinkage direction, has high film piercing strength, has bag-breaking resistance when a bottle is dropped, and has a high film density, so that it has an excellent heat shrinkage. It is an object of the present invention to provide a sex polyester film.
  • the present invention which solves the above problems, has the following configuration.
  • Ethylene terephthalate unit is contained in 100 mol% of all ester units, 60 mol% or more and 95 mol% or less, and diethylene glycol is contained in 100 mol% of polyhydric alcohol component.
  • a heat-shrinkable polyester-based film containing 5 mol% or more and 40 mol% or less and 0 mol% or more and 5 mol% or less of a constituent unit derived from a monomer component that can be an amorphous component in all polyester resin components.
  • a heat-shrinkable polyester-based film characterized by satisfying the following requirements (1) to (5).
  • the heat shrinkage rate of hot water when the film is immersed in hot water at 90 ° C for 10 seconds is 40% or more and 80% or less in the film width direction.
  • Shrinkage rate is -5% or more and 15% or less in the longitudinal direction of the film
  • Film piercing strength is 0.2 N / ⁇ m or more and 0.6 N / ⁇ m or less
  • Film density is 1.330 g / cm 3 or more 1 .385 g / cm 3 or less (5)
  • Refractive index in the longitudinal direction of the film is 1.575 or less 2.
  • the thickness of the film is 15 ⁇ m or more.
  • the haze at a film thickness of 20 ⁇ m is 2% or more and 10% or less.
  • the heat-shrinkable polyester-based film described in. 4. 1.
  • the puncture strength after shrinking the film by 10% in the width direction is 0.1 N / ⁇ m or more and 0.5 N / ⁇ m or less.
  • ⁇ 3. The heat-shrinkable polyester-based film according to any one of. 5.
  • the above 1. ⁇ 4.
  • the heat-shrinkable polyester film of the present invention not only has a high shrinkage rate, but also has a high piercing strength after shrinking by 10%, so that it is difficult to break the bag even if the label after being attached to the PET bottle falls. Moreover, since the density is high, it is possible to reduce defects when the PET bottle is mounted.
  • the heat-shrinkable polyester film of the present invention will be described in detail.
  • the method for producing the heat-shrinkable polyester film will be described in detail later, but the heat-shrinkable film is usually obtained by transporting and stretching it using a roll or the like.
  • the film transport direction film forming direction
  • the direction orthogonal to the longitudinal direction is referred to as a film width direction. Therefore, the width direction of the heat-shrinkable polyester film shown below is a direction perpendicular to the roll unwinding direction, and the film longitudinal direction is a direction parallel to the roll unwinding direction.
  • the heat-shrinkable polyester film of the present invention contains an ethylene terephthalate unit in 100 mol% of all ester units in an amount of 60 mol% or more and 95 mol% or less, and contains diethylene glycol in 100 mol% of a polyhydric alcohol component in an amount of 5 mol% or more and 40.
  • )-(5) is a heat-shrinkable polyester-based film.
  • the heat shrinkage rate of hot water when the film is immersed in hot water at 90 ° C for 10 seconds is 40% or more and 80% or less in the film width direction.
  • Shrinkage rate is -5% or more and 15% or less in the longitudinal direction of the film
  • Film piercing strength is 0.2 N / ⁇ m or more and 0.6 N / ⁇ m or less
  • Film density is 1.33 g / cm 3 or more 1 .385 g / cm 3 or less (5)
  • Refractive index in the longitudinal direction of the film is 1.575 or less
  • a homopolymer (PET) made of ethylene terephthalate may be copolymerized with another polyvalent carboxylic acid component or another polyhydric alcohol component. It is widely done.
  • the polyhydric alcohol component used as the copolymerizing component for example, neopentyl glycol and 1,4-cyclohexaneditanol are considered and widely used.
  • a film obtained by copolymerizing these components has a higher chemical cost than a diethylene glycol film.
  • neopentyl glycol when a raw material resin obtained by copolymerizing diethylene glycol is obtained, since diethylene glycol is a liquid at room temperature, a melting step essential for a powder raw material such as neopentyl glycol becomes unnecessary. Further, as compared with neopentyl glycol, there is an advantage that the polymerization activity is high and the foaming at the time of polymerization which leads to a decrease in productivity is small. Further, as compared with diethylene glycol, the polyester raw material copolymerized with neopentyl glycol or 1,4-cyclohexaneditanol has a lower density, so that the film formed by the copolymer has a lower density and a poor feeling of waist.
  • the film of the present invention contains ethylene terephthalate as a main component.
  • the main constituent component means that 60 mol% or more of all the polymer constituent components constituting the film is ethylene terephthalate. It is more preferable to contain 65 mol% or more of ethylene terephthalate.
  • PET Polyethylene terephthalate
  • Any production method such as a transesterification method in which an ester (including a methyl ester of another dicarboxylic acid if necessary) and ethylene glycol (including another diol component if necessary) are subjected to a transesterification reaction can be used. ..
  • dicarboxylic acid component other than terephthalic acid constituting the polyester used in the film of the present invention examples include aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, adipic acid, azelaic acid, sebacic acid and decandicarboxylic acid.
  • aromatic dicarboxylic acids such as isophthalic acid, naphthalenedicarboxylic acid and orthophthalic acid, adipic acid, azelaic acid, sebacic acid and decandicarboxylic acid.
  • aliphatic dicarboxylic acids and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid.
  • the content is preferably less than 3 mol%.
  • the heat-shrinkable polyester-based film obtained by using a polyester containing 3 mol% or more of these aliphatic dicarboxylic acids has insufficient film waist when worn at high speed.
  • a polyvalent carboxylic acid having a valence of 3 or more for example, trimellitic acid, pyromellitic acid and anhydrides thereof.
  • the heat-shrinkable polyester-based film obtained by using the polyester containing these multivalent carboxylic acids makes it difficult to achieve the required shrinkage.
  • diethylene glycol is 5 mol% or more and 40 mol% or less in 100 mol% of the polyhydric alcohol component constituting the polyester used in the film of the present invention.
  • diethylene glycol is more preferably 6 mol% or more, and particularly preferably 8 mol% or more.
  • the upper limit of diethylene glycol is high, but if it is too high, there is a concern that activation during polymerization will decrease, foaming, and foreign matter in the melt extrusion process when forming a film, so the upper limit is 40 mol% in the present invention. And said.
  • Examples of the polyhydric alcohol component other than ethylene glycol and diethylene glycol constituting the polyester used in the present invention include 1-3 propanediol, 2,2-diethyl-1,3-propanediol, and 2-n-butyl-2-ethyl.
  • -1,3-Propanediol 2,2-isopropyl-1,3-Propanediol, 2,2-di-n-butyl-1,3-propanediol, 1-4 butanediol, neopentyl glycol, hexanediol
  • aliphatic diols such as, alicyclic diols such as 1,4-cyclohexanedimethanol, and aromatic diols such as bisphenol A.
  • a diol having 8 or more carbon atoms for example, octane diol
  • a polyhydric alcohol having 3 or more valences for example, trimethylolpropane, trimeritol ethane, glycerin, diglycerin, etc.
  • a heat-shrinkable polyester-based film obtained by using a polyester containing these diols or a polyhydric alcohol makes it difficult to achieve the required high shrinkage.
  • various additives such as waxes, antioxidants, antistatic agents, crystal nucleating agents, thickeners, and heat-stabilizing agents are included as required.
  • Agents, coloring pigments, anticoloring agents, ultraviolet absorbers and the like can be added.
  • the inorganic fine particles include silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate and the like
  • the organic fine particles include, for example, an acrylic resin. Examples thereof include particles, melamine resin particles, silicone resin particles, crosslinked polystyrene particles and the like.
  • the average particle size of the fine particles is in the range of 0.05 to 3.0 ⁇ m (when measured with a Coulter counter), and can be appropriately selected as needed.
  • the particles can be added at any stage of producing the polyester-based resin, but at the stage of esterification or the transesterification reaction. After completion, it is preferable to add it as a slurry dispersed in ethylene glycol or the like at a stage before the start of the transesterification reaction to proceed with the transesterification reaction. Further, a method of blending a slurry of particles dispersed in ethylene glycol or water using a kneaded extruder with a vent and a polyester resin raw material, or a method of blending dried particles and a polyester resin raw material using a kneaded extruder. It is also preferable to use a method of blending with and the like.
  • examples of the monomer that can be an amorphous component include neopentyl glycol, 1,4-cyclohexanedimethanol, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, and 2,6-naphthalenedicarboxylic acid. Acid, 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di -n-butyl-1,3-propanediol and hexanediol can also be mentioned.
  • the content of the monomer that can be the amorphous component in the copolymerized polyester is preferably 0 mol% or more and 5 mol% or less, and more preferably not contained (that is, 0 mol%).
  • the heat-shrinkable polyester film of the present invention is the main shrinkage direction of the film calculated by the following formula 1 from the length before and after shrinkage when treated in warm water at 90 ° C. under no load for 10 seconds.
  • the heat shrinkage rate (that is, the heat shrinkage rate of hot water at 90 ° C.) is preferably 40% or more and 80% or less.
  • Heat shrinkage rate ⁇ (length before shrinkage-length after shrinkage) / length before shrinkage ⁇ x 100 (%) ... Equation 1
  • the shrinkage rate of hot water at 90 ° C. is more preferably 43% or more, particularly preferably 46% or more, and most preferably 50% or more. There is no problem if the hot water heat shrinkage rate in the main shrinkage direction at 90 ° C. is higher than 80%, but in the present invention, a film having a hot water heat shrinkage rate of 90 ° C. higher than 80% could not be obtained, so the upper limit is 80. %.
  • the heat-shrinkable polyester film of the present invention preferably has a hot water heat-shrinkage rate of ⁇ 5% or more and 15% or less in the longitudinal direction orthogonal to the main shrinkage direction at 90 ° C. If the shrinkage rate of hot water at 90 ° C. in the longitudinal direction is less than ⁇ 5%, the label is stretched and the label height in the PET bottle becomes long, which is not preferable when used for beverage labels.
  • the shrinkage rate of hot water at 90 ° C. in the longitudinal direction is more preferably -4% or more, and particularly preferably -3% or more. If the shrinkage rate of hot water at 90 ° C.
  • the shrinkage rate of hot water at 90 ° C. in the longitudinal direction is more preferably 13% or less, further preferably 11% or less, particularly preferably 8% or less, and most preferably 5% or less.
  • the heat-shrinkable polyester film of the present invention preferably has a piercing strength of 0.2 N / ⁇ m or more and 0.6 N / ⁇ m or less.
  • the piercing strength shall be measured by the method described in the examples. If it is 0.2 N / ⁇ m or less, a PET bottle label for beverages using a heat-shrinkable film having a thin thickness is not preferable because the label will break if dropped when purchased at a vending machine.
  • the piercing strength is more preferably 0.25 N / ⁇ m or more, and particularly preferably 0.3 N / ⁇ m or more.
  • the heat-shrinkable polyester film of the present invention preferably has a piercing strength of 0.1 N / ⁇ m or more and 0.5 N / ⁇ m or less after the film is shrunk by 10% in the width direction. Since the heat-shrinkable polyester-based film is generally heat-shrinked and used, the film after shrinking at 10% shrinkage is a film assuming a label after shrinking. If the piercing strength is 0.1 N / ⁇ m or less, a PET bottle label for beverages using a thin heat-shrinkable film is not preferable because the label will break if dropped when purchased at a vending machine.
  • the puncture strength of the film after 10% shrinkage is more preferably 0.15 N / ⁇ m or more, and particularly preferably 0.2 N / ⁇ m or more. There is no problem even if the piercing strength of the film after 10% shrinkage is higher than 0.5N / 15mm, but in the present invention, it is not possible to obtain a film having a piercing strength of the film after 10% shrinkage higher than 0.5N / ⁇ m. Therefore, the upper limit was set to 0.5 N / ⁇ m.
  • the heat-shrinkable polyester film of the present invention preferably has a refractive index of 1.575 or less in the longitudinal direction of the film.
  • the refractive index shall be measured by the method described in the examples.
  • the tensile breaking strength of the film increases, but the tensile elongation at breaking of the film decreases. Since the stretchability of the film at tensile break decreases, that is, the film is difficult to stretch (becomes brittle), PET bottle labels for beverages using a thin heat-shrinkable film will break if dropped when purchased at a vending machine. It is not preferable because it is a bag.
  • the film longitudinal direction is the non-shrinkage direction, perforations and notches are often formed so that the label can be easily opened, so that the refractive index in the film longitudinal direction is important.
  • the refractive index in the longitudinal direction of the film is more preferably 1.572 or less, and particularly preferably 1.569 or less.
  • the refractive index in the longitudinal direction of the unstretched film is about 1.55 to 1.56, so that it does not fall below 1.55.
  • the heat-shrinkable polyester film of the present invention preferably has a density of 1.33 g / cm 3 or more. If it is less than 1.330 g / cm 3 , the label using a thin heat-shrinkable film will not have enough waist in the process of attaching it to the PET bottle for beverages, and the label will break or the label will not be fixed in a fixed position. Not preferred.
  • the density of the film is more preferably 1.340 g / cm 3 or more, and particularly preferably 1.350 g / cm 3 or more. A high density of the film is preferable for the waist, but it is preferably 1.385 g / cm 3 or less.
  • the density of the heat-shrinkable polyester film is more preferably 1.384 g / cm 3 or less, and particularly preferably 1.383 g / cm 3 or less.
  • the thickness of the heat-shrinkable polyester film of the present invention is not particularly limited, but is preferably 15 to 50 ⁇ m as the heat-shrinkable film for label applications and bento packaging applications. If the film thickness is less than 15 ⁇ m, the firmness of the film is significantly reduced, and wrinkles are likely to occur in the roll, which is not preferable. On the other hand, although there is no problem as a film roll even if the film thickness is thick, it is preferable to make the film thinner from the viewpoint of cost.
  • the thickness of the film is more preferably 17 to 45 ⁇ m, and particularly preferably 20 ⁇ m to 40 ⁇ m.
  • the heat-shrinkable polyester film of the present invention preferably has a haze value of 2% or more and 10% or less at a thickness of 20 ⁇ m. Since the heat-shrinkable film is a film that gives a design property, if the haze value is higher than 10%, the contents cannot be clearly seen when the label of the PET bottle is used, and the design property is deteriorated, which is not preferable.
  • the haze at a film thickness of 20 ⁇ m is more preferably 8% or less, and particularly preferably 6% or less.
  • the heat-shrinkable polyester film of the present invention can be obtained by melting and extruding the above-mentioned polyester raw material with an extruder to form an unstretched film, and stretching the unstretched film in the width direction.
  • the polyester can be obtained by polycondensing the above-mentioned suitable dicarboxylic acid component and diol component by a known method. Also, usually, chip-shaped polyester is used as a raw material for the film.
  • melt-extruding the raw material resin it is preferable to dry the polyester raw material using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After the polyester raw material is dried in this way, it is melted at a temperature of 230 to 270 ° C. and extruded into a film using an extruder.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer.
  • the polyester raw material is dried in this way, it is melted at a temperature of 230 to 270 ° C. and extruded into a film using an extruder.
  • any existing method such as the T-die method and the tubular method can be adopted.
  • an unstretched film can be obtained by quenching the sheet-shaped molten resin after extrusion.
  • a method for rapidly cooling the molten resin a method of casting the molten resin from a base onto a rotary drum and quenching and solidifying the molten resin to obtain a substantially unoriented resin sheet can be preferably adopted.
  • the obtained unstretched film can be stretched in the width direction under predetermined conditions to obtain the heat-shrinkable polyester-based film of the present invention.
  • preferable stretching for obtaining the heat-shrinkable polyester-based film of the present invention will be described.
  • a normal heat-shrinkable polyester-based film is produced by stretching an unstretched film in a direction in which it is desired to shrink.
  • a manufacturing method of biaxial stretching in which longitudinal stretching is performed and then transverse stretching is performed, but in the case of biaxial stretching, large-scale equipment is required.
  • uniaxial stretching is performed in the width direction, which is the main contraction direction.
  • the manufacturing means by uniaxial stretching in the width (horizontal) direction has an advantage that it can be manufactured by simple equipment because it does not use stretching equipment in the longitudinal direction.
  • the preheating temperature of the unstretched film is preferably Tg of the film + 30 ° C. or higher and + 80 ° C. or lower. More preferably, it is Tg + 20 ° C. or higher and + 60 ° C. or lower. If the temperature is less than Tg + 30 ° C., the stretching force becomes high due to insufficient preheating temperature, and fracture is likely to occur, which is not preferable.
  • the stretching force in the width direction of the unstretched sheet decreases, and the thickness accuracy (uneven thickness) in the width direction deteriorates, which is not preferable. More preferably, it is Tg +40 or more and + 70 ° C. or less.
  • the film temperature during stretching in the width direction is preferably Tg ° C. or higher and Tg + 30 ° C. or lower. If the film temperature is less than Tg, the stretching force becomes too high and the film is likely to break, which is not preferable. When the film temperature exceeds Tg + 30 ° C., the stretching force is too low, and the heat shrinkage in the width direction measured at 90 ° C. as described above becomes low, which is not preferable. It is more preferably Tg + 3 ° C. or higher and + 25 ° C. or lower, and further preferably Tg + 5 ° C. or higher and + 25 ° C. or lower.
  • the draw ratio in the width direction is preferably 3.5 times or more and 6 times or less. If the draw ratio is less than 3.5 times, the draw force is insufficient and the thickness accuracy in the film width direction (so-called uneven thickness) deteriorates. Further, if the draw ratio exceeds 6 times, the risk of breakage during film formation increases and the equipment becomes long, which is not preferable. More preferably, it is 3.7 times or more and 5.5 times or less. Further, although not particularly limited, heat treatment may be performed to adjust the shrinkage rate after stretching in the width direction.
  • the film temperature during heat fixing is preferably Tg + 50 ° C. or higher than the film stretching temperature in the width direction.
  • the film stretching temperature in the width direction is + 1 ° C. or higher and Tg + 45 ° C. or lower, and more preferably the film stretching temperature in the width direction is + 2 ° C. or higher and Tg + 40 ° C. or lower.
  • the heat shrinkage rate in the longitudinal direction is generated by the residual stress of the stress (so-called necking force) in the direction orthogonal to the stretching direction generated when stretching in the width direction. Therefore, by relaxing in the longitudinal direction when stretching in the width direction, the residual stress in the longitudinal direction can be relaxed and the heat shrinkage rate in the longitudinal direction can be reduced. Relaxing in the longitudinal direction was done while shortening the distance between the clips.
  • the relaxation rate in the longitudinal direction is preferably 0% or more and 4% or less. Even if the relaxation rate in the longitudinal direction is 0%, there is no problem if the heat shrinkage rate in the longitudinal direction is as targeted.
  • the relaxation rate in the longitudinal direction is higher than 4%, the amount of relaxation is higher than the amount of shrinkage of the film, resulting in insufficient relaxation and poor flatness, which is not preferable. More preferably, it is 1% or more and 3% or less. If the relaxation rate is within this range, a film having a particularly high heat shrinkage rate in the width direction and a low heat shrinkage rate in the longitudinal direction can be obtained.
  • the film evaluation method is as follows.
  • Heat shrinkage rate hot water heat shrinkage rate
  • the film is cut into 10 cm ⁇ 10 cm squares, immersed in warm water at a predetermined temperature of ⁇ 0.5 ° C for 10 seconds under no load, heat-shrinked, and then immersed in water at 25 ° C ⁇ 0.5 ° C for 10 seconds. Then, the film was taken out of water and the vertical and horizontal dimensions of the film were measured, and the heat shrinkage was determined according to the following formula (1). The direction in which the heat shrinkage rate was large was defined as the main shrinkage direction.
  • Thermal shrinkage ⁇ (length before shrinkage-length after shrinkage) / length before shrinkage ⁇ x 100 (%) Equation 1
  • the refractive index in the longitudinal direction of the film was measured by an Abbe refractive index meter using diiodomethane as a contact liquid using a sodium D line as a light source.
  • Tg glass transition point
  • Polyesters B to D shown in Table 1 were obtained by the same method as in Synthesis Example 1. During the production of polyester B, SiO2 (Fuji Silysia Chemical Ltd. Silicia 266; average particle size 1.5 ⁇ m) was added as a lubricant at a ratio of 20000 ppm to the polyester. The ultimate viscosities of the polyesters were all 0.70 dl / g. In addition, each polyester was appropriately formed into chips. The composition of each polyester is shown in Table 1.
  • Example 1 The above-mentioned polyester A, polyester B, and polyester C were mixed at a mass ratio of 17: 3: 80 and charged into an extruder. After that, the mixed resin is melted at 270 ° C. using a 4-axis screw, extruded from the T-die while cooling to 260 ° C., wound around a rotating metal roll cooled to a surface temperature of 20 ° C., and rapidly cooled. To obtain an unstretched film having a thickness of 99 ⁇ m. The Tg of the unstretched film was 50 ° C. The unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 90 ° C.
  • Example 2 Polyester A, polyester B, and polyester C were mixed at a mass ratio of 7: 3: 90 and charged into an extruder to obtain an unstretched film having a thickness of 99 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 48 ° C.
  • the unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 88 ° C. (Tg + 40 ° C.), and then laterally at a film temperature of 53 ° C. (Tg + 5 ° C.). It was stretched 5 times. At this time, the distance between the clips in the longitudinal direction was shortened, and 1% relaxation (relaxation) was performed in the longitudinal direction.
  • the film stretched in the width direction was heat-fixed at 55 ° C (Tg + 7 ° C).
  • Tg + 7 ° C 55 ° C
  • a uniaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. ..
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and bag drop evaluation.
  • Example 3 Polyester A, polyester B, and polyester C were mixed at a mass ratio of 57: 3: 40 and charged into an extruder to obtain an unstretched film having a thickness of 99 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 63 ° C.
  • the unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 103 ° C (Tg + 40 ° C), and then laterally at a film temperature of 68 ° C (Tg + 5 ° C). It was stretched 5 times. At this time, the distance between the clips in the longitudinal direction was shortened, and 1% relaxation (relaxation) was performed in the longitudinal direction.
  • the film stretched in the width direction was heat-fixed at 70 ° C. (Tg + 7 ° C.). By cutting and removing both edges of the stretched film, a uniaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. .. Then, the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and bag drop evaluation.
  • Example 4 Polyester A, polyester B, and polyester C were mixed at a mass ratio of 77: 3: 20 and charged into an extruder to obtain an unstretched film having a thickness of 79 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 70 ° C.
  • the unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 115 ° C (Tg + 45 ° C), and then laterally at a film temperature of 75 ° C (Tg + 5 ° C). It was stretched four times. At this time, the distance between the clips in the longitudinal direction was shortened, and relaxation was performed by 2% in the longitudinal direction.
  • the film stretched in the width direction was heat-fixed at 77 ° C. (Tg + 7 ° C.). By cutting and removing both edges of the stretched film, a uniaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. .. Then, the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and bag drop evaluation.
  • Example 5 Polyester A, polyester B, and polyester C were mixed at a mass ratio of 57: 3: 40 and charged into an extruder to obtain an unstretched film having a thickness of 118 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 63 ° C.
  • the unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 103 ° C (Tg + 40 ° C), and then laterally at a film temperature of 68 ° C (Tg + 5 ° C). It was stretched 6 times. At this time, the distance between the clips in the longitudinal direction was shortened, and relaxation was performed by 2% in the longitudinal direction.
  • the film stretched in the width direction was heat-fixed at 70 ° C. (Tg + 7 ° C.). By cutting and removing both edges of the stretched film, a uniaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. .. Then, the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and bag drop evaluation.
  • Example 6 Polyester A, polyester B, and polyester C were mixed at a mass ratio of 57: 3: 40 and charged into an extruder to obtain an unstretched film having a thickness of 79 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 63 ° C.
  • the unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 103 ° C (Tg + 40 ° C), and then laterally at a film temperature of 68 ° C (Tg + 5 ° C). It was stretched four times. At this time, the distance between the clips in the longitudinal direction was shortened, and 1% relaxation (relaxation) was performed in the longitudinal direction.
  • the film stretched in the width direction was heat-fixed at 70 ° C. (Tg + 7 ° C.). By cutting and removing both edges of the stretched film, a uniaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. .. Then, the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and bag drop evaluation.
  • Example 7 A film roll having a thickness of 15 ⁇ m was obtained by the same method as in Example 1 except that the thickness was changed to 74 ⁇ m by lowering the discharge of the extruder and winding the molten resin around a rotating metal roll and quenching the resin. Then, the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and bag drop evaluation.
  • Example 8 A film roll having a thickness of 40 ⁇ m was obtained by the same method as in Example 1 except that the thickness was changed to 198 ⁇ m by lowering the discharge of the extruder and winding the molten resin around a rotating metal roll and quenching. Then, the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3. It was a film that had no problem in practical use in terms of shrinkage finish and bag drop evaluation.
  • Polyester A, polyester B, and polyester C were mixed at a mass ratio of 77: 3: 20 and charged into an extruder to obtain an unstretched film having a thickness of 80 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 70 ° C.
  • the unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 75 ° C (Tg + 5 ° C), and then laterally at a film temperature of 75 ° C (Tg + 5 ° C). It was stretched four times.
  • the film stretched in the width direction was heat-fixed at 77 ° C. (Tg + 7 ° C.).
  • a uniaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. .. Then, the characteristics of the obtained film were evaluated by the above method.
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • the piercing strength was low, the refractive index in the longitudinal direction was high, and there were defects such as bag breakage and holes in the bag drop evaluation.
  • Polyester A, polyester B, and polyester D were mixed at a mass ratio of 17: 3: 80 and charged into an extruder to obtain an unstretched film having a thickness of 80 ⁇ m as in Example 1, but the Tg was increased. Since the temperature was as low as 38 ° C., it adhered to the cooling roll, and an unstretched film could not be continuously obtained, so that film formation could not be evaluated.
  • Polyester A, polyester B, and polyester C were mixed at a mass ratio of 92: 3: 5 and charged into an extruder to obtain an unstretched film having a thickness of 99 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 75 ° C.
  • the unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 115 ° C (Tg + 40 ° C), and then laterally at a film temperature of 80 ° C (Tg + 5 ° C). It was stretched 5 times. At this time, the distance between the clips in the longitudinal direction was shortened, and 1% relaxation (relaxation) was performed in the longitudinal direction.
  • the film stretched in the width direction was heat-fixed at 82 ° C (Tg + 7 ° C).
  • Tg + 7 ° C By cutting and removing both edges of the stretched film, a uniaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. ..
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • the shrinkage rate of hot water in the width direction measured at 90 ° C. for 10 seconds was low, the shrinkage was insufficient in the shrinkage finish evaluation, and the shrinkage finish and bag drop evaluation could not be performed.
  • Polyester A, polyester B, and polyester C were mixed at a mass ratio of 17: 3: 80 and charged into an extruder to obtain an unstretched film having a thickness of 101 ⁇ m as in Example 1.
  • the Tg of the unstretched film was 50 ° C.
  • the unstretched film is guided to a tenter, and with both ends of the film gripped by clips, it is preheated until the film temperature reaches 90 ° C. (Tg + 40 ° C.), and then laterally at a film temperature of 55 ° C. (Tg + 5 ° C.). It was stretched 5 times. At this time, the distance between the clips in the longitudinal direction was widened, and 2% stretching was performed in the longitudinal direction.
  • the film after being stretched 5 times in the width direction and 1.02 times in the longitudinal direction was heat-fixed at 57 ° C. (Tg + 7 ° C.).
  • Tg + 7 ° C. 57 ° C.
  • a uniaxially stretched film of about 20 ⁇ m was continuously formed over a predetermined length to obtain a film roll made of a heat-shrinkable polyester film. ..
  • the film forming conditions are shown in Table 2, and the evaluation results are shown in Table 3.
  • the refractive index in the longitudinal direction was high, and there was a defect that bag breakage occurred in the bag drop evaluation.
  • the heat-shrinkable polyester film of the present invention has a high heat-shrinkability, it has an excellent bag-dropping property, so that it can be suitably used for labeling applications such as containers.
  • the package such as a container obtained by using the heat-shrinkable polyester film of the present invention as a label has a beautiful appearance and is excellent in durability such as a bag.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Wrappers (AREA)
  • Packages (AREA)
  • Thermal Sciences (AREA)

Abstract

主収縮方向に高い熱収縮率を有した上で、フィルム突き刺し強度が高くボトル落下時の耐破袋性を有し、かつフィルムの密度が高いため、腰感に優れた熱収縮性ポリエステル系フィルムを提供することを課題とする。 エチレンテレフタレートユニットを全エステルユニット100モル%中、60モル%以上95モル%以下含有し、ジエチレングリコールを多価アルコール成分100モル%中、5モル%以上40モル%以下含有するとともに、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分由来の構成ユニットを0モル%以上5モル%以下含有し、90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率、フィルムの突き刺し強度、フィルムの密度、およびフィルム長手方向の屈折率を所定範囲内とする熱収縮性ポリエステル系フィルム。

Description

熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
 本発明は、熱収縮性ポリエステル系フィルムに関し、詳しくはフィルムの突き刺し強度、およびPETボトル飲料のラベルにした時の突き刺し強度が高く、落袋性に優れた熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体に関するものである。
近年、ガラス瓶やPETボトル等の保護と商品の表示を兼ねたラベル包装、キャップシール、集積包装等の用途に、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等からなる延伸フィルム(所謂、熱収縮性フィルム)が広範に使用されるようになってきている。そのような熱収縮性フィルムの内、ポリ塩化ビニル系フィルムは、耐熱性が低い上に、焼却時に塩化水素ガスを発生し、ダイオキシンの原因となる等の問題がある。また、ポリスチレン系フィルムは、耐溶剤性に劣り、印刷の際に特殊な組成のインキを使用しなければならない上、高温で焼却する必要があり、焼却時に異臭を伴って多量の黒煙が発生するという不具合を生じる。それゆえ、耐熱性が高く、焼却が容易であり、耐溶剤性に優れたポリエステル系の熱収縮性フィルムが、収縮ラベルとして広汎に利用されるようになってきており、PET容器の流通量の増大に伴って、使用量が増加している傾向にある。
 通常の熱収縮性ポリエステル系フィルムは、幅方向に大きく収縮するものが広く利用されている。そのフィルムはテンター延伸法等によって延伸され、広幅のマスターロールを作製し、その後マスターロールを任意の幅でスリットしながら任意の巻長のロール状に巻取りフィルムロール製品とする。そのフィルムに意匠性を持たせ、商品の表示の目的で、ロール形態で印刷工程に掛けられる。印刷後は、必要な幅に再度スリットしロール状に巻き取られた後、溶剤接着によるセンターシール工程を経てチューブ状に製袋され、ロール状に巻き取られる(ラベルのロールになる)。
 チューブ状に製袋され巻き取られたラベルは、ロールから巻き出しながら必要な長さにカットされ、環状にラベルになる。環状ラベルは手かぶせ等の方法で、被包装物に装着され、スチームトンネルもしくは熱風トンネル等を通過して収縮させてラベルとなる。
近年、ゴミの減量化を目的に、PETボトル容器の重量が低下し、PETボトル容器の厚みも薄くなっている。PETボトル容器の厚みが薄くなると、落下時にPETボトル容器が変形しラベルが破れてしまうといった問題が生じる。また熱収縮フィルムを用いたラベルも減容化として厚みが薄いラベルが求められている。フィルムの厚みも45~60μmから近年は20~40μmの厚みが増加している。しかしフィルム厚みを減少させる事でラベルの落袋性は悪くなる。従ってフィルムの落袋性を改善する事は重要である。
また厚みが薄くなると腰感が低下し、フィルムを印刷してラベルにした後に PETボトルへ装着する工程で、ラベルが屈曲し装着不良になる懸念がある。
 フィルムの落下時の耐破袋性を改善する方法が、特許文献1に記載されている。それによるとフィルム特性として耐破袋性には突き刺し強度が重要な要因となっている。しかし特許文献1に記載されているのは、ポリエステルとポリブチレンテレフタレートを混合した組成物を用いた非熱収縮フィルムを袋にした時の耐破袋性の評価であり、熱収縮フィルムや熱収縮フィルムを用いたラベルに関して記載されていない。
 また、PETボトルへ装着する工程でラベルが屈曲して装着不良になる事を改善する方法が、特許文献2に記載されている。それによると フィルムを非収縮方向と収縮方向の二軸に延伸する事で、ラベル装着時の高さ方向(非収縮方向)のフィルム強度を上げる事が記されている。しかしこの方法では、フィルム幅方向だけでなく長手方向にも延伸する二軸延伸の工程があるので、必然的に設備が長大となり好ましくない。
特開2020-12086号公報 特開2014-24253号公報
 本発明は、主収縮方向に高い熱収縮率を有した上で、フィルム突き刺し強度が高くボトル落下時の耐破袋性を有し、かつフィルムの密度が高いため、腰感に優れた熱収縮性ポリエステル系フィルムを提供することを目的としている。
 上記課題を解決してなる本発明は、以下の構成よりなる。
 1.エチレンテレフタレートユニットを全エステルユニット100モル%中、60モル%以上95モル%以下含有し、ジエチレングリコールを多価アルコール成分100モル%中、
5モル%以上40モル%以下含有するとともに、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分由来の構成ユニットを0モル%以上5モル%以下含有する熱収縮性ポリエステル系フィルムであって、下記要件(1)~(5)を満たす事を特徴とする熱収縮性ポリエステル系フィルム。
 (1)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム幅方向で40%以上80%以下
 (2)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム長手方向で-5%以上15%以下
 (3)フィルムの突き刺し強度が0.2N/μm以上0.6N/μm以下
(4)フィルムの密度が1.330g/cm以上1.385g/cm以下
(5)フィルム長手方向の屈折率が1.575以下
2.フィルムの厚みが15μm以上であることを特徴とする、1.に記載の熱収縮性ポリエステル系フィルム。
 3.フィルム厚み20μmでのヘイズが2%以上10%以下であることを特徴とする、1.又は2.に記載の熱収縮性ポリエステル系フィルム。
 4.フィルムを幅方向へ10%収縮させた後の突刺し強度が0.1N/μm以上0.5N/μm以下であることを特徴とする、1.~3.のいずれかに記載の熱収縮性ポリエステル系フィルム。
 5.前記1.~4.のいずれかに記載の熱収縮性ポリエステル系フィルムを用いた熱収縮性ラベル。
6.前記5.に記載の熱収縮性ラベルで、包装対象物の少なくとも外周の一部を被覆して熱収縮させて形成されることを特徴とする包装体。
 本発明の熱収縮性ポリエステル系フィルムは、高い収縮率を有するだけでなく、10%収縮後の突き刺し強度が高いので、PETボトルに装着した後のラベルが落下しても破袋し難い。また密度が高いので、PETボトルへの装着時への不良が低減できる。
 以下、本発明の熱収縮性ポリエステル系フィルムについて詳しく説明する。なお、熱収縮性ポリエステル系フィルムの製造方法は、後に詳述するが、熱収縮性フィルムは通常、ロール等を用いて搬送し、延伸することにより得られる。このとき、フィルムの搬送方向(製膜方向)を長手方向と称し、前記長手方向に直交する方向をフィルム幅方向と称する。従って、以下で示す熱収縮性ポリエステル系フィルムの幅方向とは、ロール巻き出し方向に対し垂直な方向であり、フィルム長手方向とは、ロールの巻き出し方向に平行な方向をいう。
 本発明の熱収縮性ポリエステル系フィルムは、エチレンテレフタレートユニットを全エステルユニット100モル%中、60モル%以上95モル%以下含有し、ジエチレングリコールを多価アルコール成分100モル%中、5モル%以上40モル%以下含有するとともに、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分由来の構成ユニットを0モル%以上5モル%以下含有する熱収縮性ポリエステル系フィルムであって、下記要件(1)~(5)を満たす事を特徴とする熱収縮性ポリエステル系フィルムである。
 (1)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム幅方向で40%以上80%以下
 (2)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム長手方向で-5%以上15%以下
 (3)フィルムの突き刺し強度が0.2N/μm以上0.6N/μm以下
(4)フィルムの密度が1.33g/cm以上1.385g/cm以下
(5)フィルム長手方向の屈折率が1.575以下
熱収縮性ポリエステル系フィルムにおいて、高い収縮性を得るために例えばエチレンテレフタレートからなるホモポリマー(PET)に、他の多価カルボン酸成分や他の多価アルコール成分を共重合して使用することが広く行われている。該共重合する成分として使用する多価アルコール成分として、例えばネオペンチルグリコールや1,4-シクロヘキサンジタノールが考えられ広く使用されている。これらの成分を共重合したフィルムの場合、ジエチレングリコールフィルムに比較し、ケミカルコストが高い。また、ジエチレングリコールを共重合した原料レジンを得る場合、ジエチレングリコールは常温で液体であるためネオペンチルグリコールなどの粉体原料で必須の溶融工程が不要となる。さらに、ネオペンチルグリコール比べて、重合活性が高い上に、生産性の低下に繋がる重合時の発泡が少ないというメリットもある。
またジエチレングリコールに比較し、ネオペンチルグリコールや1,4-シクロヘキサンジタノールを共重合したポリエステル原料は密度が低いので、それで製膜されたフィルムは密度が低くなり、腰感が劣る。
 本発明のフィルムは、エチレンテレフタレートを主たる構成成分とするものである。ここで主たる構成成分とは、フィルムを構成する全ポリマー構成成分のうち60モル%以上がエチレンテレフタレートであることを意味している。エチレンテレフタレートを65モル%以上含有することがより好ましい。エチレンテレフタレートを主たる構成成分として用いることにより、高い密度および優れた機械的強度と透明性を有することができる。
 ポリエチレンテレフタレート(以下、単にPETということがある)の重合法としては、テレフタル酸とエチレングリコール、および必要に応じて他のジカルボン酸成分およびジオール成分を直接反応させる直接重合法、およびテレフタル酸のジメチルエステル(必要に応じて他のジカルボン酸のメチルエステルを含む)とエチレングリコール(必要に応じて他のジオール成分を含む)とをエステル交換反応させるエステル交換法等の任意の製造方法が利用され得る。
本発明のフィルムで使用するポリエステルを構成するテレフタル酸以外のジカルボン酸成分としてはイソフタル酸、ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸等が挙げられる。
脂肪族ジカルボン酸(例えばアジピン酸、セバシン酸、デカジカルボン酸等)を含有させる場合、含有率は3モル%未満であることが好ましい。これらの脂肪族ジカルボン酸を3モル%以上含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、高速装着時のフィルム腰が不十分である。
また、3価以上の多価カルボン酸(例えば、トリメリット酸、ピロメリット酸およびこれらの無水物等)を含有させないことが好ましい。これらの多価カルボン酸を含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは必要な収縮性を達成しにくくなる。
本発明のフィルムで使用するポリエステルを構成する多価アルコール成分100モル%のうちジエチレングリコールが、5モル%以上40モル%以下であることが必要である。前記範囲内の量でジエチレングリコールを含有することにより、高い熱収縮性を付与することができる。ジエチレングリコールが5モル%未満であると、90℃の温湯収縮率が70%以上といった高い収縮率のフィルムを得ることが難しくなり好ましくない。ジエチレングリコールは 6モル%以上であるとより好ましく、8モル%以上であると特に好ましい。ジエチレングリコールの上限は高くても問題無いが、あまりに高いと重合時の活性化の低下や発泡、またフィルムにする際の溶融押出し工程での異物が懸念されるので、本発明では上限を40モル%とした。
本発明で使用するポリエステルを構成するエチレングリコール及びジエチレングリコール以外の多価アルコール成分としては、1-3プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、1-4ブタンジオール、ネオペンチルグリコール、ヘキサンジオール等の脂肪族ジオール、1,4-シクロヘキサンジメタノール等の脂環式ジオール、ビスフェノールA等の芳香族系ジオール等が挙げられる。
炭素数8個以上のジオール(例えばオクタンジオール等)、又は3価以上の多価アルコール(例えば、トリメチロールプロパン、トリメリトールエタン、グリセリン、ジグリセリン等)は含有させないことが好ましい。これらのジオール、又は多価アルコールを含有するポリエステルを使用して得た熱収縮性ポリエステル系フィルムでは、必要な高収縮を達成しにくくなる。
 本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤等を添加することができる。
 本発明の熱収縮性ポリエステル系フィルムを形成する樹脂の中には、フィルムの作業性(滑り性)を良好にする滑剤としての微粒子を添加することが好ましい。微粒子としては、任意のものを選択することができるが、例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウム等、有機系微粒子としては、例えば、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子等を挙げることができる。微粒子の平均粒径は、0.05~3.0μmの範囲内(コールターカウンタで測定した場合)で、必要に応じて適宜選択することができる。
 熱収縮性ポリエステル系フィルムを形成する樹脂の中に上記粒子を配合する方法としては、例えば、ポリエステル系樹脂を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコール等に分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールまたは水等に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法、または混練押出し機を用いて、乾燥させた粒子とポリエステル系樹脂原料とをブレンドする方法等によって行うのも好ましい。
 なお前述のモノマー成分のうち、非晶質成分となり得るモノマーとしては、例えば、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、イソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6--ナフタレンジカルボン酸、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオールを挙げることもできる。共重合ポリエステル中の該非晶質成分となり得るモノマーの含有量は0モル%以上5モル%以下の量であることが好ましく、含有しないこと(すなわち0モル%)がより好ましい。
本発明の熱収縮性ポリエステル系フィルムは、90℃の温水中で無荷重状態で10秒間に亘って処理したときに、収縮前後の長さから、下式1により算出したフィルムの主収縮方向の熱収縮率(すなわち、90℃の温湯熱収縮率)が、40%以上80%以下であることが好ましい。
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%)・・式1
 90℃における主収縮方向の温湯熱収縮率が40%未満であると、飲料ラベル用途や弁当包装のフィルムとして使用する場合に、収縮量が小さいために、熱収縮した後のラベルシワやタルミが生じてしまうので好ましくない。90℃の温湯収縮率は43%以上であるとより好ましく、46%以上であると特に好ましく、50%以上であると最も好ましい。
 90℃における主収縮方向の温湯熱収縮率が80%より高くても問題無いが、本発明では90℃の温湯熱収縮率が80%より高いフィルムを得る事ができなかったので、上限を80%とした。
 本発明の熱収縮性ポリエステル系フィルムは、90℃における主収縮方向と直交する長手方向の温湯熱収縮率が-5%以上15%以下であることが好ましい。長手方向の90℃の温湯収縮率がー5%未満であると、飲料ラベル用途で使用する場合に、ラベルが伸びてPETボトルでのラベル高さが長くなり好ましくない。長手方向の90℃の温湯収縮率は-4%以上であるとより好ましく、-3%以上であると特に好ましい。
長手方向の90℃の温湯収縮率が15%より大きいと、飲料ラベル用途で使用する場合に、ラベルが縮みPETボトルでのラベル高さが短くなり好ましくない。また収縮後のラベル歪みの原因ともなる。長手方向の90℃の温湯収縮率は13%以下であるとより好ましく、11%以下であるとさらに好ましく、8%以下であると特に好ましく、5%以下であると最も好ましい。
 本発明の熱収縮性ポリエステル系フィルムは、突き刺し強度が0.2N/μm以上0.6N/μm以下であることが好ましい。なお、突き刺し強度の測定は実施例に記載の方法で行うものとする。0.2N/μm以下であると、厚みが薄い熱収縮フィルムを使用した飲料用PETボトルラベルでは、自動販売機で購入する際に落下すると、ラベルが破袋するので好ましくない。突き刺し強度は0.25N/μm以上であるとより好ましく、0.3N/μm以上であると特に好ましい。突き刺し強度が0.6N/15mmより高くても問題無いが、本発明では突き刺し強度が0.6N/μmより高いフィルムを得る事ができなかったので、上限を0.6N/μmとした。
 本発明の熱収縮性ポリエステル系フィルムは、フィルムを幅方向へ10%収縮させた後の突き刺し強度が0.1N/μm以上0.5N/μm以下であることが好ましい。熱収縮性ポリエステル系フィルムは一般的に熱収縮させて使用するので、10%収縮は収縮後のフィルムは収縮後のラベルを想定したフィルムである。突き刺し強度が0.1N/μm以下であると、厚みが薄い熱収縮フィルムを使用した飲料用PETボトルラベルでは、自動販売機で購入する際に落下すると、ラベルが破袋するので好ましくない。10%収縮後のフィルムの突き刺し強度は0.15N/μm以上であるとより好ましく、0.2N/μm以上であると特に好ましい。10%収縮後のフィルムの突き刺し強度が0.5N/15mmより高くても問題無いが、本発明では10%収縮後のフィルムの突き刺し強度が0.5N/μmより高いフィルムを得る事ができなかったので、上限を0.5N/μmとした。
 本発明の熱収縮性ポリエステル系フィルムは、フィルム長手方向の屈折率が1.575以下であることが好ましい。なお、屈折率の測定は実施例に記載の方法で行うものとする。
フィルムは一般的に屈折率が高いとフィルムの引張破断強度は高くなるが、フィルム引張破断伸度は低下する。フィルム引張破断伸度が低下する、つまりフィルムが伸び難い(脆くなる)ので、厚みが薄い熱収縮フィルムを使用した飲料用PETボトルラベルでは、自動販売機で購入する際に落下すると、ラベルが破袋するので好ましくない。特にフィルム長手方向は非収縮方向となるので、ラベルを開放しやすいようにミシン目やノッチが入ることが多いので、フィルム長手方向の屈折率は重要となる。フィルム長手方向の屈折率は1.572以下であるとより好ましく、1.569以下であると特に好ましい。フィルム長手方向の屈折率の下限は規定していないが、未延伸フィルムでも長手方向の屈折率は1.55~1.56程度あるので、1.55を下回ることは無い。
 本発明の熱収縮性ポリエステル系フィルムは、密度が1.33g/cm以上であることが好ましい。1.330g/cm未満であると、厚みが薄い熱収縮フィルムを使用したラベルで、飲料用PETボトルへ装着する工程で腰が不足し、ラベルが折れる または ラベルが定まった位置で固定されなくなり好ましくない。フィルムの密度は1.340g/cm以上であるとより好ましく、1.350g/cm以上であると特に好ましい。フィルムの密度は高い方が腰には好ましいが、1.385g/cm以下であることが好ましい。1.385g/cmより高いと、フィルムが結晶化して上記したような90℃幅方向の収縮率を得られないためである。熱収縮性ポリエステル系フィルムの密度は1.384g/cm以下であるとより好ましく、1.383g/cm以下であると特に好ましい。
 本発明の熱収縮性ポリエステル系フィルムの厚みは、特に限定されるものではないが、ラベル用途や弁当包装用途の熱収縮性フィルムとして15~50μmが好ましい。フィルム厚みが15μm未満であるとフィルムのコシ感が著しく低下するためロールにシワが入りやすくなり好ましくない。一方、フィルム厚みは厚くてもフィルムロールとして問題はないが、コストの観点から薄肉化することが好ましい。フィルムの厚みは17~45μmがより好ましく、20μm~40μmが特に好ましい。
 本発明の熱収縮性ポリエステル系フィルムは、厚み20μmでのヘイズ値が2%以上10%以下であると好ましい。熱収縮フィルムは意匠性を出すフィルムであるので、ヘイズ値が10%より高いと、PETボトルのラベルとなったさいに内容物がきれいに見えなくなり、意匠性が低下するので好ましくない。フィルム厚み20μmでのヘイズは8%以下であるとより好ましく、6%以下であると特に好ましい。
フィルム厚み20μmでのヘイズは2%未満でも問題無いが、本発明ではヘイズ値が2%未満になると、フィルムの滑り性が悪化したので、下限を2%とした。
 本発明の熱収縮性ポリエステル系フィルムは、上記したポリエステル原料を押出機で溶融押し出しして未延伸フィルムを形成し、その未延伸フィルムを幅方向に延伸して得ることができる。なお、ポリエステルは、前記した好適なジカルボン酸成分とジオール成分を公知の方法で重縮合させることで得ることができる。また、通常は、チップ状のポリエステルをフィルムの原料として使用する。
 原料樹脂を溶融押し出しする際には、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後に、押出機を利用して、230~270℃の温度で溶融しフィルム状に押し出す。押し出しに際しては、Tダイ法、チューブラー法等、既存の任意の方法を採用することができる。
 そして、押し出し後のシート状の溶融樹脂を急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
さらに、得られた未延伸フィルムを、後述するように、所定の条件で幅方向に延伸し本発明の熱収縮性ポリエステル系フィルムを得ることが可能となる。以下、本発明の熱収縮性ポリエステル系フィルムを得るための好ましい延伸について説明する。
通常の熱収縮性ポリエステル系フィルムは、収縮させたい方向に未延伸フィルムを延伸することによって製造される。あるいは、縦延伸をした後に横延伸を行う二軸延伸する製造方法があるが、二軸延伸の場合大掛かりな設備が必要となる。本発明では主収縮方向である幅方向に一軸延伸する。なお幅(横)方向の一軸延伸による製造手段は、長手方向の延伸設備を使用しないので簡易な設備で製造できる利点を有する。
幅方向の延伸は、未延伸フィルムをフィルムの両端をクリップで把持して加熱することができるテンター装置に導き、熱風によりフィルムを所定の温度まで加熱した後、長手方向に搬送しながらクリップ間の距離を広げることで延伸する。
未延伸フィルムの予熱温度は フィルムのTg+30℃以上+80℃以下の温度で予熱することが好ましい。より好ましくは、Tg+20℃以上+60℃以下である。Tg+30℃未満では、予熱温度不足で延伸力が高くなり破断が生じやすくなり好ましくない。またTg+80℃より高い温度で加熱すると、未延伸シートの幅方向への延伸力が低下し、幅方向の厚み精度(偏肉)が悪くなり好ましくない。より好ましくはTg+40以上+70℃以下である。
 幅方向延伸時のフィルム温度は、フィルムTg℃以上Tg+30℃以下であることが好ましい。フィルム温度がTg未満であると、延伸力が高くなりすぎて、フィルムの破断が生じやすくなり好ましくない。フィルム温度がTg+30℃を超えると、延伸力が低すぎるために、上記したように90℃で測定した幅方向の熱収縮率が低くなり好ましくない。より好ましくはTg+3℃以上+25℃以下、さらに好ましくはTg+5℃以上+25℃以下である。
幅方向への延伸倍率は3.5倍以上6倍以下が好ましい。延伸倍率が3.5倍未満であると、延伸力が不十分で、フィルム幅方向の厚み精度(所謂 偏肉)が悪くなる。また延伸倍率が6倍を超えると、製膜時に破断するリスクが高くなる上に、設備が長大になるため好ましくない。より好ましくは3.7倍以上5.5倍以下である。また特に限定しないが、幅方向の延伸後に、収縮率の調整のため熱処理を行ってもよい。熱固定(熱処理)時のフィルム温度は、幅方向のフィルム延伸温度以上Tg+50℃以下であることが好ましい。フィルム温度が幅方向のフィルム延伸温度未満であると、幅方向の分子緩和が不十分となり、熱固定の効果が無いので好ましくない。フィルム温度がTg+50℃を超えると、フィルムが結晶化し収縮率が低くなり好ましくない。より好ましくは幅方向のフィルム延伸温度+1℃以上、Tg+45℃以下、さらに好ましくは幅方向のフィルム延伸温度+2℃以上、Tg+40℃以下である。
幅方向へ延伸するさいに、長手方向へ弛緩(リラックス)をすることが好ましい。長手方向の熱収縮率は 幅方向への延伸するさいに生じる延伸方向と直交する方向への応力(所謂ネッキング力)の残留応力によって生じる。従って、幅方向へ延伸する際に 長手方向へリラックスをすることにより、長手方向への残留応力を緩和し、長手方向の熱収縮率を小さくできる。長手方向へのリラックスは クリップ間の距離を縮めながら行った。長手方向へのリラックス率は0%以上4%以下が好ましい。長手方向へのリラックス率が0%でも長手方向の熱収縮率が目標通りなら問題無い。長手方向のリラックス率が4%より高いと、フィルムが縮む量よりもリラックスする量が高くなり、リラックス不足が生じて平面性が悪くなるので好ましくない。より好ましくは1%以上3%以下である。この範囲内のリラックス率とすれば、特に幅方向に高い熱収縮率を有し長手方向に低い熱収縮率を有するフィルムを得ることができる。
 以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。
また、フィルムの評価方法は下記の通りである。
 [極限粘度 (IV)]
 ポリエステル0.2gをフェノール/1,1,2,2-テトラクロルエタン(60/40(重量比))の混合溶媒50ml中に溶解し、30℃でオストワルド粘度計を用いて測定した。単位はdl/g。
[熱収縮率(温湯熱収縮率)]
 フィルムを10cm×10cmの正方形に裁断し、所定温度±0.5℃の温水中に無荷重状態で10秒間浸漬して熱収縮させた後、25℃±0.5℃の水中に10秒間浸漬し、水中から引き出してフィルムの縦および横方向の寸法を測定し、下記式(1)にしたがって、それぞれ熱収縮率を求めた。熱収縮率の大きい方向を主収縮方向とした。 
 熱収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%) 式1
[フィルムの突き刺し強度]
 JIS-Z1707に準拠した試験法で測定した値を下式(2)により1μm換算で算出した。
 突き刺し強度=突き刺し強度実測値/フィルムの厚み(N/μm)    式2
[10%収縮後のフィルムの突き刺し強度]
 隙間が200mmの長方形の枠(枠の間の隙間の長さは幅200mm、高さ250mm)を用意した。フィルム主収縮方向(幅方向)が23mm弛むように(枠の間のフィルム長さは223mm)フィルムを枠へ貼り付けた。この時 長手方向は固定せずに、長さ200mmで行った。枠に張り付けたフィルムを80℃±0.5℃へ加熱した温水中へ入れ、フィルムの弛みが無くなった直後にすぐ取り出し、25℃±0.5℃の水中に10秒間浸漬し、水中から引き出して、タオルで水をふき取った後に、上記した方法でフィルムの突き刺し強度を測定した。上式(2)より求めて、10%収縮後の突き刺し強度とした。
[フィルムの厚み]
 JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
[フィルムの密度]
 JIS-K-7112の密度勾配管法により、硝酸カルシウム水溶液を用いて約3mm四方のサンプルの密度を測定した。
[長手方向の屈折率]
JIS K 7142-1996 A法により、ナトリウムD線を光源として接触液としてジヨードメタンを用いてアッべ屈折率計によりフィルム長手方向の屈折率を測定した。
[フィルムのヘイズ]
 JIS K7361-1に準拠し、フィルムを1辺10cmの正方形状に切り出し、日本電飾(株)製ヘイズメーターNDH2000を用い、ヘイズ測定を行った。3か所で実施し、その平均値をヘイズ実測値とし、下式(3)により20μm換算のヘイズを算出した。
 ヘイズ=ヘイズ実測値×20/フィルムの厚み(%/20μm) 式3
[Tg(ガラス転移点)]
 セイコー電子工業株式会社社製の示差走査熱量計(型式:DSC220)を用いて、JIS-K7121-1987に従ってTgを求めた。詳細には未延伸フィルム10mgを、-40℃から120℃まで、昇温速度10℃/分で昇温し、吸熱曲線を測定した。得られた吸熱曲線の変曲点の前後に接線を引き、その交点をガラス転移点(Tg;℃)とした
[収縮仕上り性]
熱収縮性フィルムの端部をインパルスシーラー(富士インパルス社製)で溶着し、幅方向を周方向とした円筒状ラベルを得た。また0.5mmサイズの孔をフィルム長手方向に3mmピッチで入れた。またフィルム幅方向に10mmの間隔をあけて、同様にフィルム長手方向に0.5mmサイズの孔を3mmピッチで入れた(所謂 ラベルを剥がしやすくするミシン目)。ラベルの収縮方向の直径は68mmであった。このラベルを、市販の500mlのPETボトル(内容物入り; 胴直径 62mm、ネック部の最小直径25mm)に被せて、90℃に調整したFuji Astec Inc 製スチームトンネル(型式;SH-1500-L)を用いスチームに通して熱収縮させた(トンネル通過時間5秒)。ラベルの収縮仕上がり性を、以下の基準に従って目視で評価を行った。以下の基準に従って目視で5段階評価した。以下に記載の欠点とは、飛び上がり、シワ、収縮不足、ラベル端部折れ込み、収縮白化等を意味する。3以上を合格とした。
5:仕上がり性最良(欠点なし)
4:仕上がり性良(欠点1箇所あり)
3:欠点2箇所あり
2:欠点3~5箇所あり
1:欠点多数あり(6箇所以上)
[落袋時の落袋評価]
 上記した500mlのPETボトルにラベルを横にし、ミシン目が下を向くようにして1.2mの高さからコンクリートへ落下した。落下後のラベルを以下の基準に従って目視で評価した。
〇 : 10本の落袋評価でラベルの破袋が1本以下
×   :   10本の落袋評価でラベルの破袋が2本以上
[落袋時の孔空き評価]
 上記と同様に500mlのPETボトルにラベルを横にし、ミシン目が下を向くようにして1.2mの高さからコンクリートへ落下した。落下後のラベルを以下の基準に従って目視で評価した。
〇 : 10本の落袋評価で孔空きしたラベルが1本以下
×   :  10本の落袋評価で孔空きしたラベルが2本以上
 <ポリエステル原料の調製>
 [合成例1]
 撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)100モル%とを、エチレングリコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、280℃で26.7Paの減圧条件のもとで重縮合反応を行い、極限粘度0.70dl/gのポリエステルAを得た。組成を表1に示す。
 [合成例2~4]
 合成例1と同様の方法により、表1に示すポリエステルB~Dを得た。ポリエステルBの製造の際には、滑剤としてSiO2(富士シリシア社製サイリシア266;平均粒径1.5μm)をポリエステルに対して20000ppmの割合で添加した。なおポリエステルの極限粘度は、全て0.70dl/gであった。
なお、各ポリエステルは、適宜チップ状にした。各ポリエステルの組成は表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例1]
上記したポリエステルA、ポリエステルB、およびポリエステルCを質量比 17:3:80で混合して押出機に投入した。しかる後、その混合樹脂を270℃で4軸のスクリューを用いて溶融させて、260℃へ冷却しながらTダイから押出し、表面温度20℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが99μmの未延伸フィルムを得た。未延伸フィルムのTgは50℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が90℃(Tg+40℃)になるまで予熱し、その後、フィルム温度が55℃(Tg+5℃)で横方向に5倍延伸した。この時、長手方向のクリップ間の距離を縮めて長手方向へ1%弛緩(リラックス)を行った。幅方向へ延伸後のフィルムを57℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、落袋評価共に実用上問題無いフィルムであった。
[実施例2]
ポリエステルA、ポリエステルB、およびポリエステルCを質量比 7:3:90で混合して押出機に投入し、実施例1と同様に厚さが99μmの未延伸フィルムを得た。未延伸フィルムのTgは48℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が88℃(Tg+40℃)になるまで予熱し、その後、フィルム温度が53℃(Tg+5℃)で横方向に5倍延伸した。この時、長手方向のクリップ間の距離を縮めて長手方向へ1%弛緩(リラックス)を行った。幅方向へ延伸後のフィルムを55℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、落袋評価共に実用上問題無いフィルムであった。
[実施例3]
ポリエステルA、ポリエステルB、およびポリエステルCを質量比 57:3:40で混合して押出機に投入し、実施例1と同様に厚さが99μmの未延伸フィルムを得た。未延伸フィルムのTgは63℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が103℃(Tg+40℃)になるまで予熱し、その後、フィルム温度が68℃(Tg+5℃)で横方向に5倍延伸した。この時、長手方向のクリップ間の距離を縮めて長手方向へ1%弛緩(リラックス)を行った。幅方向へ延伸後のフィルムを70℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、落袋評価共に実用上問題無いフィルムであった。
[実施例4]
ポリエステルA、ポリエステルB、およびポリエステルCを質量比 77:3:20で混合して押出機に投入し、実施例1と同様に厚さが79μmの未延伸フィルムを得た。未延伸フィルムのTgは70℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が115℃(Tg+45℃)になるまで予熱し、その後、フィルム温度が75℃(Tg+5℃)で横方向に4倍延伸した。この時、長手方向のクリップ間の距離を縮めて長手方向へ2%弛緩(リラックス)を行った。幅方向へ延伸後のフィルムを77℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、落袋評価共に実用上問題無いフィルムであった。
[実施例5]
ポリエステルA、ポリエステルB、およびポリエステルCを質量比 57:3:40で混合して押出機に投入し、実施例1と同様に厚さが118μmの未延伸フィルムを得た。未延伸フィルムのTgは63℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が103℃(Tg+40℃)になるまで予熱し、その後、フィルム温度が68℃(Tg+5℃)で横方向に6倍延伸した。この時、長手方向のクリップ間の距離を縮めて長手方向へ2%弛緩(リラックス)を行った。幅方向へ延伸後のフィルムを70℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、落袋評価共に実用上問題無いフィルムであった。
[実施例6]
ポリエステルA、ポリエステルB、およびポリエステルCを質量比 57:3:40で混合して押出機に投入し、実施例1と同様に厚さが79μmの未延伸フィルムを得た。未延伸フィルムのTgは63℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が103℃(Tg+40℃)になるまで予熱し、その後、フィルム温度が68℃(Tg+5℃)で横方向に4倍延伸した。この時、長手方向のクリップ間の距離を縮めて長手方向へ1%弛緩(リラックス)を行った。幅方向へ延伸後のフィルムを70℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、落袋評価共に実用上問題無いフィルムであった。
[実施例7]
押出し機の吐出を下げて溶融樹脂を回転する金属ロールに巻き付けて急冷することにより、厚さを74μmに変更した以外は実施例1と同様の方法で厚さ15μmのフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、落袋評価共に実用上問題無いフィルムであった。
[実施例8]
押出し機の吐出を下げて溶融樹脂を回転する金属ロールに巻き付けて急冷することにより、厚さを198μmに変更した以外は実施例1と同様の方法で厚さ40μmのフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
収縮仕上り性、落袋評価共に実用上問題無いフィルムであった。
[比較例1]
上記したポリエステルA、ポリエステルB、およびポリエステルCを質量比 42:3:55で混合して押出機に投入した。しかる後、その混合樹脂を270℃で4軸のスクリューを用いて溶融させて、260℃へ冷却しながらTダイから押出し、表面温度20℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが130μmの未延伸フィルムを得た。未延伸フィルムのTgは57℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が97℃(Tg+40℃)になるまで予熱し、その後、フィルム温度が62℃(Tg+5℃)で横方向に6.5倍延伸した。幅方向へ延伸後のフィルムを64℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
長手方向への屈折率が高く、落袋評価で破袋が発生する不良があった。
[比較例2]
ポリエステルA、ポリエステルB、およびポリエステルCを質量比 77:3:20で混合して押出機に投入し、実施例1と同様に厚さが80μmの未延伸フィルムを得た。未延伸フィルムのTgは70℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が75℃(Tg+5℃)になるまで予熱し、その後、フィルム温度が75℃(Tg+5℃)で横方向に4倍延伸した。幅方向へ延伸後のフィルムを77℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
突き刺し強度が低く、長手方向への屈折率が高く、落袋評価で破袋や孔が発生する不良があった。
[比較例3]
ポリエステルA、ポリエステルB、およびポリエステルDを質量比 17:3:80で混合して押出機に投入し、実施例1と同様に厚さが80μmの未延伸フィルムを得ようとしたが、Tgが38℃と低かったので冷却ロールに粘着し、連続的に未延伸フィルムを得ることができず製膜評価できなかった。
[比較例4]
ポリエステルA、ポリエステルB、およびポリエステルCを質量比 92:3:5で混合して押出機に投入し、実施例1と同様に厚さが99μmの未延伸フィルムを得た。未延伸フィルムのTgは75℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が115℃(Tg+40℃)になるまで予熱し、その後、フィルム温度が80℃(Tg+5℃)で横方向に5倍延伸した。この時、長手方向のクリップ間の距離を縮めて長手方向へ1%弛緩(リラックス)を行った。幅方向へ延伸後のフィルムを82℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
90℃10秒で測定した幅方向の温湯収縮率が低く、収縮仕上り評価で収縮不足となり、収縮仕上り性や落袋評価ができなかった。
[比較例5]
ポリエステルA、ポリエステルB、およびポリエステルCを質量比 17:3:80で混合して押出機に投入し、実施例1と同様に厚さが101μmの未延伸フィルムを得た。未延伸フィルムのTgは50℃であった。当該未延伸フィルムをテンターに導き、フィルム両端部をクリップで把持した状態で、フィルム温度が90℃(Tg+40℃)になるまで予熱し、その後、フィルム温度が55℃(Tg+5℃)で横方向に5倍延伸した。この時、長手方向のクリップ間の距離を広げて、長手方向へ2%延伸を行った。幅方向へ5倍延伸、長手方向へ1.02倍延伸後のフィルムを57℃(Tg+7℃)で熱固定した。該当延伸後のフィルムの両縁部は裁断除去することで、約20μmの一軸延伸フィルムを所定の長さに亘って連続的に製膜して熱収縮性ポリエステル系フィルムからなるフィルムロールを得た。そして、得られたフィルムの特性を上記の方法により評価した。製膜条件を表2に、評価結果を表3に示す。
 長手方向への屈折率が高く、落袋評価で破袋が発生する不良があった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の熱収縮性ポリエステル系フィルムは、高い熱収縮率を有しているにも関わらず、優れた落袋性を有しているので、容器等のラベル用途に好適に用いることができる。本発明の熱収縮性ポリエステル系フィルムがラベルとして用いられて得られた容器等の包装体は美麗な外観を有し、落袋等の耐久性に優れているものである。

Claims (6)

  1.  エチレンテレフタレートユニットを全エステルユニット100モル%中、60モル%以上95モル%以下含有し、ジエチレングリコールを多価アルコール成分100モル%中、
    5モル%以上40モル%以下含有するとともに、全ポリエステル樹脂成分中において非晶質成分となりうるモノマー成分由来の構成ユニットを0モル%以上5モル%以下含有する熱収縮性ポリエステル系フィルムであって、下記要件(1)~(5)を満たす事を特徴とする熱収縮性ポリエステル系フィルム。
     (1)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム幅方向で40%以上80%以下
     (2)90℃の温水にフィルムを10秒間浸漬したときの温湯熱収縮率が、フィルム長手方向で-5%以上15%以下
     (3)フィルムの突き刺し強度が0.2N/μm以上0.6N/μm以下
    (4)フィルムの密度が1.330g/cm以上1.385g/cm以下
    (5)フィルム長手方向の屈折率が1.575以下
  2. フィルムの厚みが15μm以上であることを特徴とする、請求項1に記載の熱収縮性ポリエステル系フィルム。
  3.  フィルム厚み20μmでのヘイズが2%以上10%以下であることを特徴とする、請求項1又は2に記載の熱収縮性ポリエステル系フィルム。
  4.  フィルムを幅方向へ10%収縮させた後の突刺し強度が0.1N/μm以上0.5N/μm以下であることを特徴とする、請求項1~3のいずれかに記載の熱収縮性ポリエステル系フィルム。
  5.  請求項1~4のいずれかに記載の熱収縮性ポリエステル系フィルムを用いた熱収縮性ラベル。
  6. 請求項5に記載の熱収縮性ラベルで、包装対象物の少なくとも外周の一部を被覆して熱収縮させて形成されることを特徴とする包装体。
PCT/JP2021/027385 2020-07-29 2021-07-21 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体 WO2022024936A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/006,521 US20230348661A1 (en) 2020-07-29 2021-07-21 Heat-shrinkable polyester-based film, heat-shrinkable label, and packaging body
JP2022540254A JP7364085B2 (ja) 2020-07-29 2021-07-21 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
KR1020237006647A KR20230042741A (ko) 2020-07-29 2021-07-21 열수축성 폴리에스테르계 필름, 열수축성 라벨 및 포장체
EP21849664.4A EP4190845A1 (en) 2020-07-29 2021-07-21 Heat-shrinkable polyester film, heat-shrinkable label, and packaging body
CN202180059666.2A CN116133825A (zh) 2020-07-29 2021-07-21 热收缩性聚酯系薄膜、热收缩性标签、及包装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-128547 2020-07-29
JP2020128547 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022024936A1 true WO2022024936A1 (ja) 2022-02-03

Family

ID=80036914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027385 WO2022024936A1 (ja) 2020-07-29 2021-07-21 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体

Country Status (7)

Country Link
US (1) US20230348661A1 (ja)
EP (1) EP4190845A1 (ja)
JP (1) JP7364085B2 (ja)
KR (1) KR20230042741A (ja)
CN (1) CN116133825A (ja)
TW (1) TW202216841A (ja)
WO (1) WO2022024936A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024253A (ja) 2012-07-26 2014-02-06 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよび包装体
WO2017018345A1 (ja) * 2015-07-24 2017-02-02 東洋紡株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
WO2018147249A1 (ja) * 2017-02-13 2018-08-16 東洋紡株式会社 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP2020012086A (ja) 2018-07-20 2020-01-23 東洋紡株式会社 ポリエステル系フィルムロール
JP2020073637A (ja) * 2015-08-05 2020-05-14 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678219B2 (ja) 2001-07-23 2005-08-03 東洋紡績株式会社 熱収縮性ポリエステル系フィルムロール
JP2009114422A (ja) 2007-10-18 2009-05-28 Toyobo Co Ltd 熱収縮性ポリエステル系フィルム、およびその製造方法
JP2019177930A (ja) 2018-03-30 2019-10-17 東洋紡株式会社 包装体および包装容器
JP7056322B2 (ja) 2018-03-30 2022-04-19 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP7056325B2 (ja) 2018-03-30 2022-04-19 東洋紡株式会社 熱収縮性ポリエステル系フィルム
JP6760434B2 (ja) 2019-04-17 2020-09-23 東洋紡株式会社 熱収縮性ポリエステル系フィルムロール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024253A (ja) 2012-07-26 2014-02-06 Toyobo Co Ltd 熱収縮性ポリエステル系フィルムおよび包装体
WO2017018345A1 (ja) * 2015-07-24 2017-02-02 東洋紡株式会社 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2020073637A (ja) * 2015-08-05 2020-05-14 東洋紡株式会社 熱収縮性ポリエステル系フィルムおよび包装体
WO2018147249A1 (ja) * 2017-02-13 2018-08-16 東洋紡株式会社 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP2020097745A (ja) * 2017-02-13 2020-06-25 東洋紡株式会社 非晶性のフィルム用共重合ポリエステル原料、熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP2020012086A (ja) 2018-07-20 2020-01-23 東洋紡株式会社 ポリエステル系フィルムロール

Also Published As

Publication number Publication date
TW202216841A (zh) 2022-05-01
KR20230042741A (ko) 2023-03-29
JP7364085B2 (ja) 2023-10-18
EP4190845A1 (en) 2023-06-07
CN116133825A (zh) 2023-05-16
JPWO2022024936A1 (ja) 2022-02-03
US20230348661A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
JP6337774B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
WO2016152517A1 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP7070727B2 (ja) 熱収縮性ポリエステル系フィルム
JP6572907B2 (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP7439848B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP2008291200A (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP6927124B2 (ja) 熱収縮性ポリエステル系フィルム
JP6519331B2 (ja) 熱収縮性ポリエステル系フィルムおよび包装体
JP2022095616A (ja) 包装体および包装容器
JPWO2016067658A1 (ja) 熱収縮性ポリエステル系フィルム及び包装体
JP2015229242A (ja) 熱収縮性ポリエステル系フィルム及び包装体
JP2009202445A (ja) 熱収縮性ポリエステル系フィルムの製造方法、熱収縮性ポリエステル系フィルム、および包装体
JP6760434B2 (ja) 熱収縮性ポリエステル系フィルムロール
WO2022044959A1 (ja) 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
JP7056322B2 (ja) 熱収縮性ポリエステル系フィルム
JP5278821B2 (ja) 熱収縮性ポリエステル系フィルム
WO2022024936A1 (ja) 熱収縮性ポリエステル系フィルム、熱収縮性ラベル、及び包装体
WO2021020167A1 (ja) 熱収縮性ポリエステル系フィルム
JP2021127377A (ja) 熱収縮性ポリエステル系フィルム
JP2011102392A (ja) 熱収縮性ポリエステル系フィルム、およびその製造方法、包装体
JP2007001139A (ja) 多層熱収縮性ポリエステル系フィルム及びラベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849664

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540254

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237006647

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021849664

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021849664

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE