WO2021082256A1 - 列车自动驾驶方法、vobc、tias、区域控制器 - Google Patents

列车自动驾驶方法、vobc、tias、区域控制器 Download PDF

Info

Publication number
WO2021082256A1
WO2021082256A1 PCT/CN2019/128360 CN2019128360W WO2021082256A1 WO 2021082256 A1 WO2021082256 A1 WO 2021082256A1 CN 2019128360 W CN2019128360 W CN 2019128360W WO 2021082256 A1 WO2021082256 A1 WO 2021082256A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
target train
vobc
mode
target
Prior art date
Application number
PCT/CN2019/128360
Other languages
English (en)
French (fr)
Inventor
刘超
张强
Original Assignee
交控科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 交控科技股份有限公司 filed Critical 交控科技股份有限公司
Priority to US17/766,228 priority Critical patent/US20240051587A1/en
Priority to EP19951093.4A priority patent/EP4035971A4/en
Publication of WO2021082256A1 publication Critical patent/WO2021082256A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • B61L2027/204Trackside control of safe travel of vehicle or train, e.g. braking curve calculation using Communication-based Train Control [CBTC]

Definitions

  • the present invention relates to the field of communication, in particular to automatic train driving methods, VOBC, TIAS, and regional controllers.
  • the train may be unable to obtain the train position in real time and report the correct information to the zone controller (ZC) due to the failure of the positioning module of the vehicle-on-board controller (VOBC) or other reasons.
  • ZC zone controller
  • VOBC vehicle-on-board controller
  • the train automatic driving method, equipment, medium, VOBC, TIAS, ZC and RRM modes provided by the embodiments of the present invention can improve train operation efficiency.
  • an automatic train driving method is provided, which is applied to a GoA4 level driving scene, including: in FAM mode, if the target train position is lost and the target train is in an emergency braking state, sending a train message to TIAS, It also sends fault information that characterizes the loss of train position to ZC.
  • the train message includes RRM mode request information; receives RRM mode instructions sent by TIAS and movement instructions sent by ZC; and controls the target train to run in RRM mode according to RRM mode instructions and movement instructions.
  • the target train can be controlled to run in the RRM mode under the control of TIAS and ZC. Since the train running in the RRM mode can continue to run in the RRM mode instead of stopping directly on the track, it will not affect the normal operation of other trains, and the efficiency of train operation can be improved.
  • the RRM mode indicates that under the remote control of TIAS, the target train is controlled to enter the front platform at a speed within the speed limit range.
  • the target train with a position loss failure can automatically enter the front platform at a speed that does not exceed the speed limit under the remote control of TIAS and the direct control of VOBC, ensuring the efficiency of train operation .
  • the method further includes: receiving a movement prohibition instruction sent by the ZC; and controlling the target train to emergency brake and stop according to the movement prohibition instruction.
  • the ZC can also send a movement prohibition instruction to control the operation of the train, thereby ensuring the safety of the train in the RRM mode.
  • the method further includes: determining that the switching condition for re-entering the FAM mode is satisfied, and switching the operation mode of the target train to the FAM mode.
  • the train operation mode can be directly switched to the FAM mode.
  • the FAM mode corresponds to the normal running of the train, ensuring The normal operation of the train has been improved, and the operation efficiency of the train has been improved.
  • the handover conditions include one or more of the following conditions: re-acquire the train position, receive the mobile authorization MA information sent by ZC, receive the fully automatic driving authorization information sent by TIAS, and The driving mode with the highest level of automation is the FAM mode, the VOBC internal communication is faultless, and the target train is released from the emergency braking stop state.
  • the switching conditions can be refined into one or more of the above conditions, and it can be judged from multiple different angles whether the switching conditions for re-entering the FAM mode are met, and the control efficiency is improved. And accuracy.
  • the train message further includes one or more of the following information: a location identifier indicating that the train location is lost, direction information, activation terminal information, operation mode before the location is lost, train operation level, and characterization The status information of the target train in the emergency braking stop state, and the reason for the emergency braking.
  • various aspects of the train information can be reported to TIAS, which facilitates the command of the target train by the TIAS.
  • an automatic train driving method is provided, which is applied to a GoA4 level driving scenario, including: receiving a train message sent by VOBC, the train message includes RRM mode request information; if the target train is in an unsupervised driving state, respond to enter The trigger command of the RRM mode sends an RRM mode command to the VOBC, so that the VOBC controls the target train to run in the RRM mode based on the RRM mode command.
  • the RRM mode command is sent to the VOBC, because the VOBC can be controlled based on the RRM mode command
  • the target train continues to run in the RRM mode instead of staying on the track, which improves the efficiency of train operation.
  • an automatic train driving method is provided, which is applied to a GoA4 level driving scene, including: receiving fault information sent by VOBC indicating that the position of the target train is lost; if the target train meets the moving conditions, sending a movement instruction to the VOBC, For VOBC to control the target train to run in RRM mode based on the movement command.
  • the train automatic driving method provided by the third aspect of the embodiments of the present invention, if the fault information sent by the VOBC indicating the loss of the target train's position is received, and the target train meets the moving conditions, a movement instruction is sent to the VOBC, because the VOBC can be based on movement Command and control the target train to continue running in RRM mode instead of staying on the track, which improves the efficiency of train operation.
  • the movement conditions include one or more of the following conditions:
  • the route from the target train to the front platform is open, the section from the target train to the front platform is idle, the section from the target train to the front platform is locked, and the target train to the front platform is in a locked state All turnouts are locked, there are no other running trains between the target train and the front platform, there are no other faulty trains between the target train and the front platform, the front platform meets the conditions for pick-up, and the protection section outside the station is locked and the station No other trains occupy the outer protection section.
  • the method further includes: calculating a safety envelope, and calculating the MA of other trains according to the safety envelope; wherein, the safety envelope Characterize the estimated stopping range of the target train.
  • the safety envelope characterizes the estimated stopping range of the target train.
  • the position of the target train is lost, although it is impossible to directly determine the position and MA of the target train and control other trains according to the position and MA of the target train.
  • other trains can be controlled according to the safety envelope range to improve the reliability of train dispatching.
  • the safety envelope is the first safety envelope
  • the first safety envelope is the estimation of the first safety envelope The range and the overlapping range of the MA before the failure of the target train position loss
  • the safety envelope is the range between the maximum position of the first safety envelope and the position of the front platform; where the estimated range is based on The estimated parking location is determined.
  • the safety envelope of the train when the train is in an emergency braking state, the safety envelope of the train can be determined according to the estimated parking position.
  • the safety envelope of the train When the train enters the RRM mode, the safety envelope of the train can be determined according to the first safety envelope and The position of the target train is lost and the MA before the failure determines a new safety envelope. Since the first safety envelope represents the position where the train starts the RRM mode, the safety envelope of the train can be accurately calculated according to the train operating status and other information.
  • the method further includes: real-time monitoring of section occupancy information; if the section occupancy information includes information on the occupancy status of the front section within the safety envelope, Send a no-movement instruction to VOBC, where the safety envelope represents the estimated stopping range of the target train.
  • the VOBC can be accurately controlled according to the section occupancy information, and the safety of train operation is improved.
  • a VOBC including: a sending module, which is used to send a train message to TIAS and to ZC if the position of the target train is lost and the target train is in an emergency braking stop state in the FAM mode.
  • the train message includes RRM mode request information;
  • the receiving module is used to receive the RRM mode command sent by TIAS and the movement command sent by ZC;
  • the control module is used to control the target train to RRM according to the RRM mode command and the movement command Mode driving.
  • a TIAS including: a receiving module for receiving train messages sent by VOBC, the train message including RRM mode request information; a sending module for entering RRM mode in response if the target train is in an unsupervised driving state Send the RRM mode command to the VOBC for the VOBC to control the target train to run in the RRM mode based on the RRM mode command.
  • a ZC which includes: a receiving module for receiving fault information sent by VOBC, which indicates that the target train’s position is lost; a sending module, for sending a movement instruction to VOBC if the target train meets the moving conditions.
  • VOBC controls the target train to run in RRM mode based on movement commands.
  • an automatic train driving device including: a memory for storing programs;
  • the processor is configured to run the program stored in the memory to execute the first aspect, any optional implementation manner of the first aspect, the second aspect, any optional implementation manner of the second aspect,
  • the third aspect or any optional implementation of the third aspect provides a train automatic driving method.
  • a computer storage medium is provided, and computer program instructions are stored on the computer storage medium.
  • the computer program instructions are executed by a processor, the first aspect and any optional implementation manner of the first aspect are implemented.
  • the second aspect, any optional implementation manner of the second aspect, the third aspect, or any optional implementation manner of the third aspect provides a train automatic driving method.
  • Figure 1 is a system architecture diagram showing an automatic train driving system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the interaction flow of a method for automatic train driving according to an embodiment of the present invention
  • Figure 3 shows a schematic structural diagram of a VOBC provided according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of the structure of TIAS according to an embodiment of the present invention
  • Figure 5 shows a schematic diagram of the ZC structure according to an embodiment of the present invention
  • Fig. 6 is a structural diagram of an exemplary hardware architecture of an automatic train driving device in an embodiment of the present invention.
  • the automation level of train operation it can be divided into five driving levels: GoA0-GoA4.
  • GoA4 level is the highest level of automation in the urban rail transit system.
  • the system replaces manual train control and driving.
  • the train automatic control system in the embodiment of the present invention supports Full Automatic Mode (FAM), Creep Automatic Mode (CAM), Automatic Train Mode (AM), and restrictions Multiple driving modes such as Restricted Train Operating Mode (RM).
  • FAM Full Automatic Mode
  • CAM Creep Automatic Mode
  • AM Automatic Train Mode
  • RM Restricted Train Operating Mode
  • the FAM mode is completely controlled by the signal system, and the system does not require any driver operation under normal working conditions. If the train running in the FAM mode fails, the train is controlled to stop by emergency braking.
  • the embodiment of the present invention provides a new train operation mode, that is, the Remote Restricted Train Operating Mode (RRM).
  • RRM Remote Restricted Train Operating Mode
  • the VOBC can control the target train to be within the speed limit range
  • the speed inside enters the front platform.
  • the maximum speed limit within the speed limit range may be 25kmph.
  • VOBC controls the target train to travel to the next platform on the travel route at a speed no higher than 25kmph.
  • Fig. 1 is a system architecture diagram showing an automatic train driving system according to an embodiment of the present invention.
  • the automatic train driving system in the embodiment of the present invention may be a communication-based train control system (Communication Based Train Control, CBTC).
  • CBTC Communication Based Train Control
  • the automatic train driving system includes TIAS 11, ZC 12 and VOBC 13. All three can communicate with each other.
  • TIAS 11 is the core subsystem of the CBTC system, with functions such as train command, monitoring of trains across the line, monitoring of locomotive equipment, and monitoring of power equipment.
  • ZC 12 is the ground core control equipment in the CBTC system and the hub of ground-vehicle information interaction. It is mainly responsible for calculating and generating movement authorization (MA) for the communication trains within its control range based on the position information reported by the communication train and the track occupancy/vacancy information provided by the approach and trackside equipment arranged by the interlock. It controls the safe operation of communication trains in the area.
  • MA is used to maintain a safe train interval
  • MA is a specific track section that the train is authorized to enter and pass through in a given direction.
  • the starting end of the MA may be the tail of the train, and the terminal of the MA may be the end of the safety envelope (AP) of the preceding train, turnouts, entry terminals, ZC boundaries, track ends, buffer boundaries, etc.
  • AP safety envelope
  • VOBC 13 is responsible for the supervision and direct control of trains, realizing overspeed protection of trains, automatic train driving and completion of human-computer interaction, etc.
  • VOBC can include train overspeed protection system (Automatic Train Protection, ATP), automatic driving system (Automatic Train Operation, ATO), on-board man-machine interface system (Man Machine Interface, MMI), on-board recording system (Record System On Vehicle, RSOV), speed measurement and positioning system (speed sensor, radar, BTM, etc.), vehicle communication system (Data Communication System, DCS), etc.
  • VOBC reports the real-time position of the train to ZC.
  • ZC calculates the MA based on the real-time position of the train, and reports the calculated MA and the real-time position of the train to TIAS.
  • TIAS displays the current position of the train in real-time for traffic command and monitoring of trains across the line.
  • Fig. 2 is a schematic diagram showing an interaction flow of a method for automatic train driving according to an embodiment of the present invention.
  • the automatic train driving method 200 in this embodiment is applied to a GoA4 level driving scene, and the automatic train driving method 200 may include the following steps:
  • VOBC In the FAM mode, if the target train position is lost and the target train is in an emergency braking stop state, VOBC sends a train message to TIAS, and sends fault information indicating that the train position is lost to ZC. It should be noted that, for ease of description, in the following parts of the embodiments of the present invention, VOBC specifically refers to the VOBC of the target train, and ZC specifically refers to the ZC of the target train within its control range.
  • the loss of the train position means that the VOBC cannot obtain the real-time position of the train.
  • the position of the train may be lost due to the failure of the VOBC positioning module and the failure of the ground transponder.
  • the fault of the VOBC positioning module may be a fault of the Beautyse Transmission Module (BTM). For example, it may specifically respond to an antenna failure.
  • the target train running in FAM mode will first perform an emergency braking operation to control the train to stop. After the train has stopped, in order not to affect the operation of other trains, the VOBC of the target train will request to enter the RRM mode to automatically and safely control the target train to enter the front platform.
  • the VOBC of the target train In order to safely control the target train to enter the front platform, the VOBC of the target train needs to request TIAS and ZC to collaboratively determine whether the target train is allowed to enter the RRM mode, and assist in controlling the target train to run to the front platform in the RRM mode. Therefore, after the train is in the emergency braking stop state in S110, the VOBC of the target train can send a train message to TIAS to inform the TIAS of the failure of the target train's location loss and request to enter the RRM mode.
  • the train message includes RRM mode request information, and the RRM mode request information is used to request the TIAS to allow the target train to enter the RRM mode driving.
  • the VOBC of the target train sends fault information indicating the loss of the train position to ZC to inform ZC of the position loss fault of the target train and request ZC to assist in determining whether the target train is allowed to enter the RRM mode.
  • the train message further includes one or more of the following information A to information G.
  • a location identifier that characterizes the loss of the train location. Specifically, when the position of the train is not lost, the position identification position may be specific position information of the train. After the train position is lost, the position identifier can use a predefined character string to represent the train position loss, such as "0000", "FFFF”, etc., which is not specifically limited.
  • Direction information Specifically, after the train position is lost, the direction acquired last time may be used as the current direction information of the train.
  • Activation end information there is a driver's cab at both ends of the train. After one of the driver's cabs is activated, the activated driver's cab is called the activated end.
  • the operating mode before the position was lost.
  • the specific format of the operation mode before the position is lost may be "CBTC-FAM".
  • the embodiment of the present invention does not limit the specific format of the operation mode before the position is lost.
  • train operation levels can include: CBTC level (i.e. ATP/ATO operation level under infinite continuous communication control), BLOC level (i.e. ATP/ATO operation level under point control) , IL level (that is, the operating level under the interlock level).
  • CBTC level i.e. ATP/ATO operation level under infinite continuous communication control
  • BLOC level i.e. ATP/ATO operation level under point control
  • IL level that is, the operating level under the interlock level.
  • the train operation level is the CBTC level.
  • Information F State information indicating that the target train is in an emergency braking state.
  • Message G Reason for emergency braking. Specifically, the reason for the emergency braking of the train in the embodiment of the present invention is specifically the loss of the train position.
  • the above information A to G can assist TIAS to accurately determine whether to allow the target train to enter the RRM mode.
  • the above information A to information G can also inform TIAS of the train information of the target train, so that TIAS can direct and dispatch the target train according to the train message.
  • TIAS receives the train message sent by VOBC. If the target train is in an unsupervised driving state, TIAS responds to the trigger command to enter the RRM mode and sends an RRM mode command to the VOBC.
  • the trigger instruction can be initiated by the operator of TIAS or the relevant control module. Specifically, the operator of TIAS can click the corresponding trigger control on the human-computer interaction interface of TIAS to send a trigger instruction to TIAS.
  • TIAS responds to the trigger command to enter the RRM mode, and then TIAS determines to allow the VOBC to enter the RRM mode, and sends the RRM mode command to the VOBC.
  • the RRM mode command indicates that the VOBC is allowed to enter the RRM mode.
  • the human-computer interaction interface of the TIAS can display the train message in a pop-up window to remind the TIAS operator to perform state management operations according to the train message.
  • the human-machine interface of TIAS can also display the active terminal information of the target train.
  • the activation terminal information may indicate which of the driver's cabs at both ends of the target train is the activation terminal.
  • the TIAS after the TIAS receives the train message sent by the VOBC, the TIAS also needs to determine whether the target train is in an unsupervised driving state.
  • the operator of TIAS or the relevant judgment module can determine whether the target train is in an unsupervised driving state according to whether the driver is loaded on the train and whether the target train must wait for the driver to get on the train for rescue. If there is no driver on the train or the target train does not need to wait for the driver to get on the train for rescue, it is determined that the target train is in an unsupervised driving state.
  • judging whether the target train carries a driver can be judged based on information such as the driver's duty schedule, the image acquisition device in the driver's cab, the special communication equipment in the driver's cab and the TIAS center. It can be judged whether it is necessary to wait for the driver to get on the train for rescue according to whether the train has other failure causes besides the position loss failure. For example, if the target train still has a serious brake failure, it is determined that it is necessary to wait for the driver to get on the train for rescue.
  • the target train may be in a supervised driving state. For example, if there are drivers on the car or the target train must wait for the driver to get on the car for rescue, the driver controls the target train to drive. At this time, TIAS will not remotely control the target train, which means that TIAS will not send RRM mode commands to VOBC.
  • the driver can perform manual control operations such as opening the key or pressing the control button.
  • the ZC receives the fault information sent by the VOBC. If the target train meets the moving conditions, it sends a moving instruction to VOBC.
  • the moving condition is used to measure whether the train has the standard to move into the front platform.
  • the movement instruction characterizes that ZC determines that the driving environment of the target train is safe in the RRM mode, and ZC allows the target train to enter the RRM mode. Among them, it can be judged whether the target train meets the moving condition according to the section where the target train is located.
  • the movement conditions include one or more of the following movement sub-conditions A to G.
  • Movement sub-condition A The route between the target train and the front platform is in an open state.
  • the front platform means the stopable platform that is closest to the target train except for the non-jumping platform.
  • the approach refers to the path taken by the target train when it enters the front platform.
  • the front platform can be determined according to the section where the target train is located, and the section where the target train is located is the section where the target train was located before the position was lost.
  • the route is open, it means that the target train can be allowed to enter the route. Specifically, if the route includes one or more sections, it can be determined whether each section is in an open state according to the state of the start signal of each section. If the start signal of each section is in the allowed state, for example, the start signal emits an allowed light, it means that the section is in the open state.
  • Movement sub-condition B The section between the target train and the front platform is idle and the section between the target train and the front platform is locked. If it is determined that the section between the target train and the front platform is free and locked , It means that there are no other trains between the target train and the front platform.
  • whether the section is in an idle state can be determined by the axle counting device. If the front section is idle, it means that there is no train in the front section.
  • the locked state of a section means that if a switch section in the section is occupied by a train, the switch in the switch section cannot be switched.
  • Movement sub-condition C All turnouts between the target train and the front platform are in a locked state. Specifically, that the switch is in the locked state means that the switch must be locked in a prescribed position and cannot be switched.
  • Movement sub-condition D There is no other running train between the target train and the front platform.
  • Movement sub-condition E There is no other faulty train between the target train and the front platform.
  • Moving sub-condition F The front platform meets the pick-up conditions.
  • the front platform meets the pick-up conditions, which means that the front platform section is free, and the pick-up route has been prepared and the train is allowed to enter the front platform.
  • the pick-up conditions may be the pick-up conditions such as the pick-up line is idle, the approach switch position is correct, and the shunting operation that affects the approach has stopped.
  • Movement sub-condition G The protection zone outside the station is in a locked state and the protection zone outside the station is not occupied by other trains. Among them, the protection zone outside the station refers to a repetitive zone set up to prevent dangerous consequences caused by trains rushing into the signal.
  • VOBC controls the target train to maintain an emergency braking state and wait for the operator to get on the train for rescue.
  • VOBC can send to TIAS a prompt message indicating that the target train does not have the RRM mode, so that TIAS can notify relevant operators to get on the train for rescue.
  • S120 may be executed before S130, S120 and S130 may be executed simultaneously, or S120 may be executed after S130, and the specific execution order between S120 and S130 is not specifically limited.
  • S140 The VOBC receives the RRM mode command sent by TIAS and the movement command sent by ZC. VOBC controls the target train to run in RRM mode according to RRM mode commands and movement commands.
  • the VOBC controls the target train to run in the RRM mode, that is, in the RRM mode, the VOBC controls the start, coasting and stopping of the target train by issuing traction commands and braking commands to the target train.
  • the automatic train driving method 200 further includes S151 and S152.
  • the safety envelope is calculated.
  • the safety envelope represents the estimated stopping range of the target train. During driving, ensure that there are no other trains within the safety envelope of the target train.
  • the safety envelope is related to the operating state of the target train.
  • the safety envelope will be explained in detail through two situations of the target train.
  • the safety envelope can be called the first safety envelope [A 1 , B 1 ].
  • the first safety envelope [A 1 ,B 1 ] does not exceed the length range of the section where the target train is located.
  • this MA is the last MA generated by ZC before the target train position loss fault occurs.
  • the first safety envelope is the overlap range of the estimated range of the first safety envelope and the MA before the target train position is lost and the fault occurs.
  • the maximum position B 1 of the first safety envelope is the smaller position among the maximum position b 1 of the estimated range of the first safety envelope and the MAb 0 before the target train position is lost.
  • the first safety envelope minimum position estimate and A 1 is a 1 and the minimum position of the target loss MAa 0 train position before the fault position is large.
  • the estimated range [a 1 , b 1 ] of the first safety envelope may be determined according to the estimated parking position.
  • the tail of the target train can be determined as the minimum position a 1 of the safety envelope.
  • the estimated parking position of the front of the target train is taken as the maximum position b 1 of the safety envelope.
  • the estimated parking position may be a value obtained by adding the head position of the target train to the maximum travel distance L of the target train before the emergency stop.
  • the maximum travel distance L 1 of the target train during the position loss failure period satisfies the formula (2):
  • V 0 is the running speed of the target train when the VOBC reported the position information for the last time.
  • a 1 is the maximum acceleration in the traction state, which is a positive value.
  • the time difference T is the difference between the time when the train location failure information is received and the current time. That is to say, after the train position is lost, the target train runs normally within T seconds, and brakes urgently after T seconds.
  • a 2 is the maximum acceleration in the emergency brake parking state, and a 2 is a negative value.
  • V(T) is the running speed of the train after the train position is lost for T seconds, and V(T) satisfies the formula (4):
  • V(T) V 0 +a 1 *T (4)
  • the embodiment of the present invention uses the maximum travel distance L 1 and the maximum emergency braking distance L 2 during the location loss fault to calculate the maximum travel distance L.
  • the maximum acceleration in the traction state is used to calculate L 1 .
  • the maximum acceleration in the traction state is used to calculate L 2 , and the maximum L 2 can be obtained. Therefore, the accuracy of the calculated maximum travel distance L is guaranteed.
  • the larger position and the smaller position in the embodiment of the present invention are relative to the target train.
  • the position closest to the target train is called the minimum position
  • the position farthest from the target train is called the minimum position.
  • the position is called the maximum position.
  • the safety envelope is the range between the maximum position B 1 of the first safety envelope and the front platform C 1.
  • ZC can also send the safety envelope to TIAS, and display it to the dispatch personnel for viewing through the human-computer interaction system, so as to assist in the adjustment of the operation plan.
  • the automatic train driving method 200 when the target train is running in the RRM mode, in order to ensure that the train can run safely, after S140, the automatic train driving method 200 further includes S161, S162, and S163.
  • ZC monitors section occupancy information in real time. Among them, ZC can monitor the occupancy information of all sections within the scope of management.
  • the section occupancy information includes information that the section is in an idle state or that the section is in an occupied state.
  • the ZC sends a movement prohibition instruction to the VOBC.
  • the prohibition of movement instruction signifies that ZC does not allow the target train to enter the RRM mode.
  • the safety envelope is the range between the maximum position of the first safety envelope and the front platform. Therefore, the front section within the safety envelope refers to one or more adjacent sections next to the front platform and in front of the section where the target train is currently located.
  • ZC sends a movement prohibition instruction to VOBC.
  • VOBC receives the prohibition of movement instruction sent by ZC, and according to the prohibition of movement instruction, controls the target train to stop by emergency braking.
  • the target train when the target train is running in the RRM mode, if the train position is lost and the fault is restored, in order to improve the operation efficiency of the train, the target train can be controlled to automatically resume normal operation.
  • the train is automatically driven Method 200 also includes:
  • S170 The VOBC determines that the switching condition for re-entering the FAM mode is satisfied, and the VOBC switches the operation mode of the target train to the FAM mode. Through S170, the VOBC determines that the switching conditions for re-entering the FAM mode are met, and then it is determined that the train position of the target train is repaired or automatically restored, and the target train has the conditions to re-enter the FAM mode. Therefore, under the control of VOBC, the operation mode of the control target train can be switched to FAM mode. Specifically, under the control of VOBC, the target train can switch from RRM mode to FAM mode operation without stopping.
  • the switching condition includes one or more of the switching sub-conditions A-F:
  • Switching sub-condition A reacquire the target train position. Among them, if the VOBC detects the real-time position of the target train again, it means that the position of the target train is re-acquired.
  • Switching sub-condition B MA information sent by ZC is received. Among them, if VOBC re-acquires the real-time position of the train, it will send the real-time position of the target train to ZC. Based on the real-time position, ZC calculates the MA of the target train and sends the MA of the target train to VOBC. During the loss of train position, since ZC cannot obtain the real-time position of the target train, MA cannot be calculated.
  • Switching sub-condition C The authorization information for fully automatic driving sent by TIAS is received. After VOBC asks TIAS to enter FAM mode to drive, if TIAM allows VOBC to enter FAM mode, the authorization information will include the response information that allows VOBC to enter FAM mode.
  • the preset driving mode with the highest level of automation is FAM mode.
  • the highest driving mode will be set in advance. After the highest driving mode is set, the automation level during train operation will not be higher than the preset highest driving mode.
  • the preset driving mode with the highest automation level is the RRM mode
  • the train will not switch to the FAM mode for operation. Therefore, if it is desired to switch the operating mode of the train from RRM mode to FAM mode, it should be ensured that the preset driving mode with the highest level of automation is FAM mode.
  • Switching sub-condition E There is no fault in the internal communication of VOBC.
  • VOBC includes ATP, ATO, speed sensor, radar, BTM, etc. If you need to switch to FAM mode, you should ensure that the modules inside VOBC work normally.
  • Switching sub-condition F the target train is released from the emergency braking state.
  • the specific method for determining that the target train has been released from the emergency braking state includes: determining that the ATP direction handle is at the zero position and the traction brake handle is at the zero position before the output cab is activated.
  • the position information of the traction brake handle and the ATP direction handle can be obtained from the corresponding network interface.
  • VOBC 13 includes:
  • the sending module 310 is used for sending a train message to TIAS and fault information indicating that the train position is lost to ZC if the target train position is lost and the target train is in an emergency braking stop state in the FAM mode.
  • the train message includes the RRM mode Request information.
  • the first receiving module 320 is configured to receive RRM mode instructions sent by TIAS and movement instructions sent by ZC.
  • the first control module 330 is configured to control the target train to run in the RRM mode according to the RRM mode instruction and the movement instruction.
  • the RRM mode indicates that in a GoA4 level driving scenario, under the remote control of TIAS, the on-board controller VOBC controls the target train to enter the front platform at a speed within the speed limit.
  • VOBC 13 further includes:
  • the second receiving module is used to receive the movement prohibition instruction sent by ZC;
  • the second control module is used to control the target train to stop by emergency braking according to the prohibition of movement instruction.
  • VOBC 13 further includes:
  • the switching module is used to determine that the switching conditions for re-entering the FAM mode are met, and switch the operation mode of the target train to the FAM mode.
  • the handover condition includes one or more of the following conditions:
  • Re-acquire the location of the target train receive the MA information sent by ZC, receive the authorization information for fully automatic driving sent by TIAS, the preset driving mode with the highest level of automation is FAM mode, the VOBC internal communication is faultless, and the target train is relieved of emergency Braking state.
  • the train message further includes one or more of the following information:
  • TIAS 11 includes:
  • the first receiving module 410 is configured to receive a train message sent by VOBC, where the train message includes RRM mode request information;
  • the sending module 420 is configured to send an RRM mode command to the VOBC in response to a trigger command to enter the RRM mode if the target train is in an unsupervised driving state.
  • Fig. 5 shows a schematic structural diagram of a ZC provided according to an embodiment of the present invention.
  • ZC 12 includes:
  • the receiving module 510 is configured to receive the fault information sent by the VOBC, which indicates that the target train position is lost;
  • the first sending module 520 is configured to send a movement instruction to the VOBC if the target train satisfies the movement condition.
  • the movement conditions include one or more of the following conditions:
  • the route from the target train to the front platform is open, the section from the target train to the front platform is idle, the section from the target train to the front platform is locked, and the target train to the front platform is in a locked state All turnouts are locked, there are no other running trains between the target train and the front platform, there are no other faulty trains between the target train and the front platform, the front platform meets the conditions for pick-up, and the protection section outside the station is locked and the station No other trains occupy the outer protection section.
  • ZC 12 further includes:
  • the calculation module is used to calculate the safety envelope.
  • the safety envelope represents the minimum safety distance range between the target train and the preceding train.
  • the control module is used to calculate the MA of other trains according to the safety envelope.
  • the safety envelope is the first safety envelope, and the first safety envelope is the estimated range of the first safety envelope and The target train position is lost.
  • ZC 12 further includes:
  • Monitoring module for real-time monitoring of section occupancy information
  • the third sending module is used to send a movement prohibition instruction to the VOBC if the section occupancy information includes information about the occupancy state of the front section within the safety envelope, where the safety envelope represents the estimated parking range of the target train .
  • Fig. 6 is a structural diagram of an exemplary hardware architecture of an automatic train driving device in an embodiment of the present invention.
  • the automatic train driving device 600 includes an input device 601, an input interface 602, a central processing unit 603, a memory 604, an output interface 605, and an output device 606.
  • the input interface 602, the central processing unit 603, the memory 604, and the output interface 605 are connected to each other through the bus 610, and the input device 601 and the output device 606 are respectively connected to the bus 610 through the input interface 602 and the output interface 605, and then are connected to the train for automatic driving.
  • the other components of the device 600 are connected.
  • the input device 601 receives input information from the outside, and transmits the input information to the central processing unit 603 through the input interface 602; the central processing unit 603 processes the input information based on the computer executable instructions stored in the memory 604 to generate output Information, the output information is temporarily or permanently stored in the memory 604, and then the output information is transmitted to the output device 606 through the output interface 605; the output device 606 outputs the output information to the outside of the automatic train driving device 600 for the user to use.
  • the train automatic driving equipment shown in FIG. 6 can also be implemented as including: a memory storing computer-executable instructions; and a processor, which can be implemented when executing the computer-executable instructions in conjunction with FIGS. 1 to 5 shows the automatic train driving system, the automatic train driving method, VOBC, TIAS and ZC.
  • the train automatic driving device 600 shown in FIG. 6 may be implemented as a device, and the device may include: a memory for storing a program; a processor for running a program stored in the memory to execute The automatic train driving system, the automatic train driving method, VOBC, TIAS and ZC shown in Fig. 1 to Fig. 5 are realized.
  • the embodiment of the present invention also provides a computer storage medium.
  • the computer storage medium stores computer program instructions.
  • the computer program instructions are executed by the processor, the automatic train driving system and the automatic train driving method shown in FIGS. 1 to 5 are implemented. , VOBC, TIAS and ZC.
  • the functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, and so on.
  • ASIC application specific integrated circuit
  • the elements of the present invention are programs or code segments used to perform required tasks.
  • the program or code segment may be stored in a machine-readable medium, or transmitted on a transmission medium or a communication link through a data signal carried in a carrier wave.
  • "Machine-readable medium" may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and so on.
  • the code segment can be downloaded via a computer network such as the Internet, an intranet, and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种列车自动驾驶方法、VOBC、TIAS、ZC,该方法包括:在FAM模式下,若目标列车位置丢失,且目标列车处于紧急制动停车状态,向TIAS(11)发送列车消息,并向ZC(12)发送表征列车位置丢失的故障信息,列车消息包括RRM模式请求信息;接收TIAS(11)发送的允许进入RRM模式指令和ZC(12)发送的移动指令;根据RRM模式指令和移动指令,控制目标列车以RRM模式行驶。

Description

列车自动驾驶方法、VOBC、TIAS、区域控制器 技术领域
本发明涉及通信领域,尤其涉及列车自动驾驶方法、VOBC、TIAS、区域控制器。
背景技术
随着轨道交通技术的发展,城市轨道交通建设中已逐步采用全自动运行技术。
在列车运行过程中,列车可能会因为车载控制器(Vehicleon-board Controller,VOBC)的定位模块故障或其他原因导致VOBC无法实时获取列车位置以及无法向区域控制器(Zone Controller,ZC)上报正确的列车位置,即列车发生位置丢失故障。
现阶段,若列车发生位置丢失故障,如果列车处于人工驾驶状态,则可以由司机进行快速的故障恢复。在无人值守下的列车自动运行级别(Grades of Automation 4,GoA4)下的列车运营过程中,无司机在车内监督运行,发生列车位置丢失故障时,列车无法继续运行,只能通过控制中心(Operated Control Center,OCC)工作人员派司机到轨行区上车恢复故障,列车运行效率较低。
发明内容
本发明实施例提供的列车自动驾驶方法、设备、介质、VOBC、TIAS、ZC及RRM模式,可以提高列车运行效率。
第一方面,提供一种列车自动驾驶方法,应用于GoA4级别的驾驶场景中,包括:在FAM模式下,若目标列车位置丢失,且目标列车处于紧急制动停车状态,向TIAS发送列车消息,并向ZC发送表征列车位置丢失的故障信息,列车消息包括RRM模式请求信息;接收TIAS发送的RRM 模式指令和ZC发送的移动指令;根据RRM模式指令和移动指令,控制目标列车以RRM模式行驶。
根据本发明实施例的第一方面提供的列车自动驾驶方法,若列车在自动运行过程中,发生位置丢失故障,则可以在TIAS和ZC的控制下,控制目标列车以RRM模式行驶。由于RRM模式下运行的列车能够以RRM模式继续行驶,而不是直接停止在轨道上,不会影响其他列车正常运行,可以提高列车运行效率。
在一种可选的实施方式中,RRM模式表示,在TIAS远程操控下,控制目标列车以在限速范围内的速度进入前方站台。
通过本实施方式提供的列车自动驾驶方法,发生位置丢失故障的目标列车可以通过TIAS的远程控制和VOBC的直接控制下自动的、以不超过限速范围的速度进入前方站台,保证了列车运行效率。
在一种可选的实施方式中,控制目标列车以RRM模式行驶之后,方法还包括:接收ZC发送的禁止移动指令;根据禁止移动指令,控制目标列车紧急制动停车。
通过本实施方式提供的列车自动驾驶方法,控制目标列车以RRM模式行驶之后,还可以由ZC发送禁止移动指令的方式来控制列车的运行,进而保证了处于RRM模式下的列车的运行安全性。
在一种可选的实施方式中,控制目标列车以RRM模式行驶之后,方法还包括:确定满足重新进入FAM模式的切换条件,将目标列车的运行模式切换至FAM模式。
通过本实施方式提供的列车自动驾驶方法,若列车进入RRM模式行驶之后,列车重新满足进入FAM模式行驶的条件,可以直接将列车的运行模式切换至FAM模式,FAM模式对应着列车正常行驶,保证了轨道了列车的正常运行,提高了列车的运行效率。
在一种可选的实施方式中,切换条件包括以下条件的一种或多种:重新获取列车位置、接收到ZC发送的移动授权MA信息、接收到TIAS发送的全自动驾驶的授权信息、预设定的自动化等级最高的驾驶模式为FAM模式、VOBC内部通信无故障、目标列车解除紧急制动停止状态。
通过本实施方式提供的列车自动驾驶方法,可以将切换条件细化为上述条件中的一个或多个,可以从多个不同的角度判断是否满足重新进入FAM模式的切换条件,提高了控制的效率和准确性。
在一种可选的实施方式中,列车消息还包括以下信息的一种或多种:表征列车位置丢失的位置标识、方向信息、激活端信息、位置丢失前的运行模式、列车运行级别、表征目标列车处于紧急制动停止状态的状态信息、紧急制动原因。
通过本实施方式提供的列车自动驾驶方法,可以将列车各方面的信息上报至TIAS,便于TIAS对目标列车的指挥。
第二方面,提供一种列车自动驾驶方法,应用于GoA4级别的驾驶场景中,包括:接收VOBC发送的列车消息,列车消息包括RRM模式请求信息;若目标列车处于无人监督驾驶状态,响应进入RRM模式的触发指令,向VOBC发送RRM模式指令,以供所述VOBC基于所述RRM模式指令控制目标列车以RRM模式行驶。
根据本发明实施例的第二方面提供的列车自动驾驶方法,若接收到VOBC发送的列车消息,并且目标列车处于无人监督驾驶状态,向VOBC发送RRM模式指令,由于VOBC可以基于RRM模式指令控制目标列车以RRM模式继续行驶,而不是在停留在轨道上,提高了列车运行效率。
第三方面,提供一种列车自动驾驶方法,应用于GoA4级别的驾驶场景中,包括:接收由VOBC发送的表征目标列车位置丢失的故障信息;若目标列车满足移动条件,向VOBC发送移动指令,以供VOBC基于移动指令控制目标列车以RRM模式行驶。
根据本发明实施例的第三方面提供的列车自动驾驶方法,若接收到VOBC发送的表征目标列车位置丢失的故障信息,并且目标列车处满足移动条件,向VOBC发送移动指令,由于VOBC可以基于移动指令控制目标列车以RRM模式继续行驶,而不是在停留在轨道上,提高了列车运行效率。
在一种可选的实施方式中,移动条件包括以下条件一种或多种:
目标列车至前方站台之间的进路处于开放状态,目标列车至前方站台 之间的区段处于空闲状态且目标列车至前方站台之间的区段处于锁闭状态、目标列车至前方站台之间的所有道岔处于锁闭状态、目标列车至前方站台之间无其他运行列车、目标列车至前方站台之间无其他故障列车、前方站台满足接车条件、站外保护区段处于锁闭状态且站外保护区段无其他列车占用。
通过本实施方式提供的列车自动驾驶方法,可以从进路、道岔、区段等状态判断是否允许VOBC移动,提高了列车运行的安全性。
在一种可选的实施方式中,接收由VOBC发送的表征目标列车位置丢失的故障信息之后,方法还包括:计算安全包络,并根据安全包络计算其他列车的MA;其中,安全包络表征目标列车的预估停车范围。
通过本实施方式提供的列车自动驾驶方法,安全包络表征目标列车的预估停车范围。当目标列车位置丢失之后,虽然无法直接确定目标列车的位置和MA并根据目标列车的位置和MA控制其他列车。但是可以根据安全包络范围控制其他列车,提高列车调度的可靠性。
在一种可选的实施方式中,若目标列车位置丢失且目标列车处于紧急制动停车状态,则安全包络为第一安全包络,第一安全包络为第一安全包络的预估范围和目标列车位置丢失故障前的MA的重叠范围;若目标列车处于RRM模式,安全包络是第一安全包络的最大位置与前方站台的位置之间的范围;其中,预估范围是根据预估停车位置确定的。
通过本实施方式提供的列车自动驾驶方法,当列车处于紧急制动停车状态时,可以根据预估停车位置确定列车的安全包络,当列车进入RRM模式行驶之后,可以根据第一安全包络和目标列车位置丢失故障前的MA确定新的安全包络。由于第一安全包络表示列车启动RRM模式的位置,因此可以准确的根据列车运行状态等信息准确的计算列车的安全包络。
在一种可选的实施方式中,向VOBC发送移动指定指令之后,方法还包括:实时监控区段占用信息;若在区段占用信息包括安全包络范围内前方的区段占用状态的信息,向VOBC发送禁止移动指令,其中,安全包络表征目标列车的预估停车范围。
通过本实施方式提供的列车自动驾驶方法,可以根据区段占用信息准确的控制VOBC,提高了列车运行的安全性。
第四方面,提供一种VOBC,包括:发送模块,用于在FAM模式下,若目标列车位置丢失,且目标列车处于紧急制动停车状态,向TIAS发送列车消息,并向ZC发送表征列车位置丢失的故障信息,列车消息包括RRM模式请求信息;接收模块,用于接收TIAS发送的RRM模式指令和ZC发送的移动指令;控制模块,用于根据RRM模式指令和移动指令,控制目标列车以RRM模式行驶。
第五方面,提供一种TIAS,包括:接收模块,用于接收VOBC发送的列车消息,列车消息包括RRM模式请求信息;发送模块,用于若目标列车处于无人监督驾驶状态,响应进入RRM模式的触发指令,向VOBC发送RRM模式指令,以供VOBC基于RRM模式指令控制目标列车以RRM模式行驶。
第六方面,提供一种ZC,包括:接收模块,用于接收由VOBC发送的表征目标列车位置丢失的故障信息;发送模块,用于若目标列车满足移动条件,向VOBC发送移动指令,以供VOBC基于移动指令控制目标列车以RRM模式行驶。
第七方面,提供一种列车自动驾驶设备,包括:存储器,用于存储程序;
处理器,用于运行所述存储器中存储的所述程序,以执行第一方面、第一方面的任一可选的实施方式、第二方面、第二方面的任一可选的实施方式、第三方面或第三方面的任一可选的实施方式提供的列车自动驾驶方法。
第八方面,提供一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现第一方面、第一方面的任一可选的实施方式、第二方面、第二方面的任一可选的实施方式、第三方面或第三方面的任一可选的实施方式提供的列车自动驾驶方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是示出根据本发明实施例提供的列车自动驾驶系统的系统构架图;
图2是示出根据本发明实施例的列车自动驾驶方法的交互流程示意图;
图3示出了根据本发明实施例提供的VOBC的结构示意图;
图4示出了根据本发明实施例提供的TIAS的结构示意图;
图5示出了根据本发明实施例提供的ZC的结构示意图;
图6是本发明实施例中列车自动驾驶设备的示例性硬件架构的结构图。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
按照列车运行的自动化等级,可划分为GoA0-GoA4五个驾驶级别。其中,GoA4级别是城市轨道交通系统的自动化水平的最高等级。在GoA4级别下,由系统代替人工进行列车控制和驾驶。
在GoA4级别下,本发明实施例中的列车自动控制系统支持全自动驾驶模式(Full Automatic Mode,FAM)、蠕动模式(Creep Automatic Mode,CAM)、列车自动驾驶模式(Automatic Mode,AM)、限制人工驾驶模式(Restricted train operating mode,RM)等多种驾驶模式。
其中,FAM模式完全由信号系统控制列车运行,系统正常工作情况下不需要任何司机操作。若在FAM模式下运行的列车发生故障,则控制列车紧急制动停车。
为了提高列车运行效率,本发明实施例提供了一种新的列车运行模式,即远程限制人工驾驶模式(Remote Restricted Train Operating Mode,RRM)。在GoA4级别的驾驶场景中,在FAM模式下运行的列车紧急制动停车后,在行车综合自动化系统(Traffic Control Integrated Automation System,TIAS)远程操控下,可以由VOBC控制目标列车以在限速范围内的速度进入前方站台。其中,该限速范围内的最高限速可以是25kmph。也就是说,VOBC控制目标列车以不高于25kmph的速度行驶至行驶线路上的下一个站台。
为了更好的理解本发明,下面将结合附图,详细描述根据本发明实施例的列车自动驾驶方法、装置、设备和介质,应注意,这些实施例并不用来限制本发明公开的范围。
图1是示出根据本发明实施例提供的列车自动驾驶系统的系统构架图。本发明实施例的列车自动驾驶系统可以是基于通信的列车运行控制系统(Communication Based Train Control,CBTC)。如图1所示,列车自动驾驶系统包括TIAS 11,ZC 12和VOBC 13。三者之间均可以互相通信。
其中,TIAS 11,是CBTC系统的核心子系统,具备行车指挥、监控全线列车、监控机车设备、监控电力设备等功能。
ZC 12,是CBTC系统中的地面核心控制设备,是地-车信息交互的枢纽。主要负责根据通信列车所汇报的位置信息以及联锁所排列的进路和轨旁设备提供的轨道占用/空闲信息,为其控制范围内的通信列车计算生成移动授权(Movement Authority,MA),保证其控制区域内通信列车的安全运行。其中,MA用于维持安全的列车间隔,MA是列车按照给定的运行 方向,被授权进入和通过的一个特定的轨道区段。MA的起始端可以是列车的尾部,MA的终端可以是前方列车的安全包络(Automatic Protection,AP)的尾部、道岔、进路终端、ZC边界、轨道末端、缓冲区的边界等。
VOBC 13,负责列车的监督和直接控制,实现列车的超速防护,列车自动驾驶和完成人机交互等。其中,VOBC可包括列车超速防护系统(Automatic Train Protection,ATP)、自动驾驶系统(Automatic Train Operation,ATO)、车载人机界面系统(Man Machine Interface,MMI)、车载记录系统(Record System On Vehicle,RSOV)、测速定位系统(速度传感器、雷达、BTM等),车载通信系统(Data Communication System,DCS)等。
在列车以FAM模式正常运行过程中,VOBC将列车的实时位置上报至ZC,ZC根据列车的实时位置计算MA,并将计算得到的MA和列车的实时位置上报至TIAS。TIAS实时显示列车的当前位置,以供行车指挥、监控全线列车。
图2是示出根据本发明实施例的列车自动驾驶方法的交互流程示意图。如图2所示,本实施例中的列车自动驾驶方法200应用于GoA4级别的驾驶场景中,列车自动驾驶方法200可以包括以下步骤:
S110,在FAM模式下,若目标列车位置丢失,且目标列车处于紧急制动停车状态,VOBC向TIAS发送列车消息,并向ZC发送表征列车位置丢失的故障信息。需要说明的是,为了便于描述,本发明实施例的下述部分中VOBC特指目标列车的VOBC,ZC特指目标列车处于其管控范围内的ZC。
在S110中,列车位置丢失表示VOBC无法获取列车的实时位置。在FAM模式下的列车,可能会因为VOBC定位模块故障、地面应答器故障等原因导致列车位置丢失。其中,VOBC定位模块故障可以为应答器传输模块(Balise Transmission Module,BTM)故障。例如,可以具体为应答天线故障。
在FAM模式下运行的目标列车,若发现列车位置丢失,则会先执行紧急制动操作来控制列车停车。在列车停稳后,为了不影响其他列车的运 行,目标列车的VOBC会请求进入RRM模式,以全自动地、安全地控制目标列车进入前方站台。
为了安全地控制目标列车进入前方站台,目标列车的VOBC需要请求TIAS和ZC来协同判断是否允许目标列车进入RRM模式,以及协助控制目标列车以RRM模式运行至前方站台。因此,S110中列车处于紧急制动停车状态之后,目标列车的VOBC可以向TIAS发送列车消息,来告知TIAS目标列车的位置丢失故障并请求进入RRM模式。其中,列车消息包括RRM模式请求信息,该RRM模式请求信息用于向TIAS请求允许目标列车进入RRM模式驾驶。以及,目标列车的VOBC向ZC发送表征列车位置丢失的故障信息,以告知ZC目标列车的位置丢失故障并请求ZC辅助判断是否允许目标列车进入RRM模式。
在一个实施例中,列车消息还包括以下信息A至信息G的一种或多种。
信息A:表征列车位置丢失的位置标识。具体地,当列车位置未丢失时,位置标识位可以为列车具体的位置信息。列车位置丢失后,位置标识位可以用预定义字符串表征列车位置丢失,例如“0000”、“FFFF”等,对此不作具体限定。
信息B:方向信息。具体地,列车位置丢失后,可以将最后一次获取的方向作为列车的当前方向信息。
信息C:激活端信息。其中,列车两端各有一个司机室,其中一个司机室被激活后,则称该激活的司机室为激活端。
信息D:位置丢失前的运行模式。示例性的,由于本发明实施例中的列车位置丢失前以FAM模式运行,则位置丢失前的运行模式的具体格式可以为“CBTC-FAM”。本发明实施例对位置丢失前的运行模式的具体格式不作限制。
信息E:列车运行级别。具体地,按照由高到低的顺序,列车运行级别可以包括:CBTC级别(即无限连续式通信控制下ATP/ATO的运行级别),BLOC级别(即点式控制下ATP/ATO的运行级别)、IL级别(即联锁级下的运行级别)。在本发明实施例中,列车运行级别为CBTC级别。
信息F:表征目标列车处于紧急制动状态的状态信息。
信息G:紧急制动原因。具体地,本发明实施例中列车紧急制动原因具体为列车位置丢失。
通过上述信息A至信息G,可以辅助TIAS准确判断是否允许目标列车进入RRM模式。此外,上述信息A至信息G还可以将目标列车的列车消息告知TIAS,以便TIAS根据列车消息指挥和调度目标列车。
S120,TIAS接收VOBC发送的列车消息。若目标列车处于无人监督驾驶状态,TIAS响应进入RRM模式的触发指令,向VOBC发送RRM模式指令。其中,触发指令可以是TIAS的操作员或者相关控制模块发起的。具体地,TIAS的操作人员可以在TIAS的人机交互界面点击相应的触发控件来向TIAS发送触发指令。
在S120中,TIAS响应进入RRM模式的触发指令,则TIAS确定允许VOBC进入RRM模式,向VOBC发送RRM模式指令。其中,RRM模式指令表征允许VOBC进入RRM模式。
在一些实施例中,TIAS接收到VOBC发送的列车消息之后,TIAS的人机交互界面可以弹窗显示列车消息,以提醒TIAS的操作人员根据列车消息执行状态的管理操作。此外,为了辅助TIAS对目标列车进行控制,TIAS的人机交互界面还可以显示目标列车的激活端信息。激活端信息可以表示目标列车两端的司机室中哪一个为激活端。
在一些实施例中,TIAS接收到VOBC发送的列车消息之后,还需要TIAS判断目标列车是否处于无人监督驾驶状态。其中,可以由TIAS的操作员或者相关判断模块根据车上是否载有驾驶人员以及目标列车是否必须等待驾驶人员上车救援来确定目标列车是否处于无人监督驾驶状态。若车上未载有驾驶人员或者目标列车无需等待驾驶人员上车救援,则确定目标列车处于无人监督驾驶状态。具体地,判断目标列车是否载有司机可以根据司机值班表、司机室的图像采集装置、司机室与TIAS中心的专用通话设备等信息进行判断。可以根据列车是否存在除位置丢失故障之外的其他故障原因,来判断是否需要等待驾驶人员上车救援。例如,若目标列车还存在制动重故障,则确定需要等待驾驶人员上车救援。
此外,考虑到目标列车可能处于有人监督驾驶状态。例如,车上载有 驾驶人员或者目标列车必须等待驾驶人员上车救援,则由驾驶人员控制目标列车驾驶。此时,TIAS不会远程控制目标列车,也就是说TIAS不会向VOBC发送RRM模式指令。可选的,若确定目标列车处于有人监督驾驶状态,驾驶人员可以执行打开钥匙或按压控制按钮等人工控制操作。
S130,ZC接收由VOBC发送的故障信息。若目标列车满足移动条件,向VOBC发送移动指令。
其中,移动条件用于衡量列车是否具备移动进入前方站台的标准。移动指令表征ZC判定目标列车的RRM模式下的驾驶环境安全,ZC允许目标列车进入RRM模式。其中,可以根据目标列车所在区间来判断目标列车是否满足移动条件。具体的,移动条件包括以下移动子条件A至移动子条件G中的一个或多个。
移动子条件A:目标列车至前方站台之间的进路处于开放状态。其中,前方站台表示距离目标列车最近的除非跳停站台之外的可停靠站台。其中,该进路指目标列车运行进入前方站台时所经由的路径。前方站台可以根据目标列车所在区段确定,目标列车所在区段为目标列车位置丢失前所在区段。
若该进路处于开放状态,则表示可以允许目标列车驶入该进路。具体地,若进路包括一个或多个区段,可以根据各区段的始端信号机的状态判断各区段是否处于开放状态。若各区段的始端信号机处于允许状态,例如始端信号机发出允许灯光,则表示该区段处于开放状态。
移动子条件B:目标列车至前方站台之间的区段处于空闲状态且目标列车至前方站台之间的区段处于锁闭状态若确定目标列车至前方站台之间的区段空闲且处于闭锁状态,则表征目标列车和前方站台之间无其他列车。
具体地,区段是否处于空闲状态可以由计轴设备确定。若前方区段处于空闲状态则表征前方区段内无列车。
区段的锁闭状态表示若区段中的道岔区段被列车占用时,该道岔区段内的道岔不能转换。
移动子条件C:目标列车至前方站台之间的所有道岔处于锁闭状态。具体地,道岔处于锁闭状态表示道岔必须被锁闭在规定位置且不能转换。
移动子条件D:目标列车至前方站台之间无其他运行列车。
移动子条件E:目标列车至前方站台之间无其他故障列车。
移动子条件F:前方站台满足接车条件。其中,前方站台满足接车条件表征前方站台区段空闲,且已办好接车进路、允许列车驶入前方站台。例如,接车条件可以为接车线路空闲、进路道岔位置正确、影响进路的调车作业已停止等接车条件。
移动子条件G:站外保护区段处于闭锁状态且站外保护区段无其他列车占用。其中,站外保护区段是指为防止列车冒进信号造成危险后果而设的重复区。
此外,若目标列车不满足移动条件,则VOBC控制目标列车保持紧急制动状态并等待操作人员上车救援。可选的,VOBC可以向TIAS发送表征目标列车不具备进入RRM模式的提示信息,以供TIAS通知相关操作人员上车救援。
需要说明的是,在本发明实施例中S120可以先于S130执行,S120和S130可以同时执行,或者S120在S130之后执行,对S120和S130之间的具体执行次序不作具体限定。
S140,VOBC接收TIAS发送的RRM模式指令和ZC发送的移动指令。VOBC根据RRM模式指令和移动指令,控制目标列车以RRM模式行驶。
在S140中,若VOBC接收到RRM模式指令和移动指令之后,则确定TIAS和ZC均允许目标列车以RRM模式运行,目标列车的RRM模式下的驾驶环境安全。因此,VOBC控制目标列车以RRM模式行驶,也就是说,在RRM模式下,VOBC通过向目标列车发出牵引指令、制动指令,来控制目标列车启动、惰行和停车。
在本发明的一些实施例中,ZC接收到故障信息之后,列车自动驾驶方法200还包括S151和S152。
在S151中,计算安全包络。其中,安全包络表征目标列车的预估停车范围。在行车过程中,应保证目标列车的安全包络内无其他列车。
具体地,安全包络与目标列车的运行状态相关。下面通过目标列车的两种情况,对安全包络做具体说明。
第一种情况,若目标列车位置丢失且目标列车处于紧急制动停车状态,则安全包络可称为第一安全包络[A 1,B 1]。第一安全包络[A 1,B 1]不超出目标列车所在区段的长度范围。也就是说,计算得到第一安全包络的预估范围[a 1,b 1]之后,还需要利用目标列车在位置丢失故障前的MA[a 0,b 0]重新确定第一安全包络。其中,该MA为目标列车位置丢失故障发生前,ZC最后一次生成的MA。
其中,第一安全包络为第一安全包络的预估范围和目标列车位置丢失故障前的MA的重叠范围。具体地,第一安全包络的最大位置B 1为第一安全包络的预估范围的最大位置b 1和目标列车位置丢失故障前的MAb 0中的较小位置。第一安全包络的最小位置A 1为预估范围的最小位置a 1和目标列车位置丢失故障前的MAa 0中的较大位置。
可选的,第一安全包络的预估范围[a 1,b 1]可以是根据预估停车位置确定的。其中,可以将目标列车的尾部确定为安全包络的最小位置a 1。将目标列车车头的预估停车位置作为安全包络的最大位置b 1。具体地,预估停车位置可以是目标列车的头部位置加上紧急停车前目标列车的最大行驶距离L之后得到的值。
示例性的,为了准确的获取目标列车的预估停车位置,最大行驶距离L的计算公式如公式(1)所示:
L=L 1+L 2         (1)
其中,位置丢失故障期间的目标列车的最大行驶距离L 1满足公式(2):
Figure PCTCN2019128360-appb-000001
其中,V 0为VOBC最后一次上报位置信息时目标列车的运行速度。a 1为牵引状态下的最大加速度,为正值。时间差T是接收到列车位置故障丢失信息的时刻与当前时刻的差值。也就是说列车位置丢失之后,目标列车在T秒内正常行驶,T秒之后紧急制动。
紧急制动过程中的最大紧急制动距离L 2满足公式(3):
L 2=V(T)*V(T)/(2*a 2)           (3)
其中,a 2为紧急制动停车状态下的最大加速度,a 2为负值。V(T)为列车位置丢失T秒后列车的运行速度,V(T)满足公式(4):
V(T)=V 0+a 1*T         (4)
考虑到列车位置丢失之后,目标列车不会立即紧急制动停车,而是先正常运行T秒,确定位置丢失之后紧急制动停车。因此,本发明实施例利用位置丢失故障期间的最大行驶距离L 1和最大紧急制动距离L 2来计算最大行驶距离L。在计算位置丢失故障期间的行驶距离L 1时,为了得到最大的L 1,利用牵引状态下的最大加速度来计算L 1。在计算紧急制动过程中的最大紧急制动距离L 2时,利用牵引状态下的最大加速度来计算L 2,能够得到最大的L 2。因此,保证了计算得到的最大行驶距离L的准确性。
需要说明的是,本发明实施例中的较大位置和较小位置是相对目标列车而言的,沿着运列车行方向上,距离目标列车最近的位置称为最小位置,距离目标列车最远的位置称为最大位置。
第二种情况,若目标列车处于RRM模式,安全包络是第一安全包络的最大位置B 1与前方站台C 1之间的范围。
S152,根据安全包络计算其他列车的MA。
此外,ZC还可以将安全包络发送给TIAS,并通过人机交互系统显示给行调人员查看,以便于辅助运营计划调整。
在本发明的一些实施例中,目标列车以RRM模式行驶的过程中,为了保证列车能够安全行驶,S140之后,列车自动驾驶方法200还包括S161、S162和S163。
在S161中,ZC实时监控区段占用信息。其中,ZC可以对管控范围内的所有区段的占用信息进行监控。区段占用信息包括区段处于空闲状态或者区段处于占用状态的信息。
在S162中,若在区段占用信息包括安全包络内前方的区段处于占用状态的信息,ZC向VOBC发送禁止移动指令。其中,禁止移动指令表征ZC不允许目标列车进入RRM模式运行。
其中,由于列车进入RRM模式行驶之后,安全包络是第一安全包络的最大位置与前方站台之间的范围。因此,安全包络范围内前方的区段是指紧挨着前方站台的、处于目标列车当前所在区段的前方的1个或多个相邻的区段。
若安全包络范围内前方的区段处于占用状态,则证明目标列车和前方站台之间存在障碍物,目标列车无法在RRM模式下安全进入前方站台。为了提高目标列车的运行安全性,则ZC向VOBC发送禁止移动指令。
在S163中,VOBC接收ZC发送的禁止移动指令,并根据禁止移动指令,控制目标列车紧急制动停车。
在本发明的一些实施例中,目标列车以RRM模式行驶的过程中,若列车位置丢失故障恢复,为了提高列车的运行效率,可以控制目标列车以自动恢复正常运行状态,S140之后,列车自动驾驶方法200还包括:
S170,VOBC确定满足重新进入FAM模式的切换条件,VOBC将目标列车的运行模式切换至FAM模式。通过S170,VOBC确定满足重新进入FAM模式的切换条件,则确定目标列车的列车位置故障修复或自动恢复,且目标列车具备重新进入FAM模式行驶的条件。从而可以在VOBC的控制下,控制目标列车的运行模式切换至FAM模式。具体地,在VOBC的控制下,目标列车可以实现不停车的从RRM模式切换至FAM模式运行。
其中,切换条件包括切换子条件A-F中的一种或多种:
切换子条件A:重新获取目标列车位置。其中,若VOBC重新监测到目标列车的实时位置,则表征重新获取目标列车位置。
切换子条件B:接收到ZC发送的MA信息。其中,若VOBC重新获取到列车实时位置后,会将目标列车的实时位置发送至ZC,ZC根据实时位置,计算目标列车的MA,并将目标列车的MA发送至VOBC。在列车位置丢失期间,由于ZC无法获取目标列车的实时位置,也就无法计算MA。
切换子条件C:接收到TIAS发送的全自动驾驶的授权信息。VOBC向TIAS请求进入FAM模式驾驶后,若TIAM允许VOBC进入FAM模式,则授权信息中会包括允许VOBC进入FAM模式的响应信息。
切换子条件D:预设定的自动化等级最高的驾驶模式为FAM模式。其中,自动化驾驶过程中,会预先设定最高驾驶模式,设定最高驾驶模式之后,列车运行过程中自动化等级不会高于预设的最高驾驶模式。示例性的,若预设定的自动化等级最高的驾驶模式为RRM模式,由于FAM模式的自动化等级高于RRM模式,列车不会切换至FAM模式运行。因此,若希望 列车的运行模式从RRM模式切换至FAM模式,则应保证预设定的自动化等级最高的驾驶模式为FAM模式。
切换子条件E:VOBC内部通信无故障。其中,VOBC内部包括ATP、ATO、速度传感器、雷达、BTM等,若需要切换至FAM模式,则应保证VOBC内部的各模块正常工作。
切换子条件F:目标列车解除紧急制动状态。其中,确定目标列车已解除紧急制动状态的具体方式包括:在输出驾驶室激活前确定ATP方向手柄在零位和牵引制动手柄在零位。具体地,牵引制动手柄和ATP方向手柄的位置信息可以从相应的网络接口获取。
下面结合附图,详细介绍根据本发明实施例的装置。
基于相同的发明构思,本发明实施例提供了VOBC。图3示出了根据本发明实施例提供的VOBC的结构示意图。如图3所示,VOBC 13包括:
发送模块310,用于在FAM模式下,若目标列车位置丢失,且目标列车处于紧急制动停车状态,向TIAS发送列车消息,并向ZC发送表征列车位置丢失的故障信息,列车消息包括RRM模式请求信息。
第一接收模块320,用于接收TIAS发送的RRM模式指令和ZC发送的移动指令。
第一控制模块330,用于根据RRM模式指令和移动指令,控制目标列车以RRM模式行驶。
在本发明一些实施例中,RRM模式表示在GoA4级别的驾驶场景中,在TIAS远程操控下,由车载控制器VOBC控制目标列车以在限速范围内的速度进入前方站台。
在本发明一些实施例中,VOBC 13还包括:
第二接收模块,用于接收ZC发送的禁止移动指令;
第二控制模块,用于根据禁止移动指令,控制目标列车紧急制动停车。
在本发明一些实施例中,VOBC 13还包括:
切换模块,用于确定满足重新进入FAM模式的切换条件,将目标列车的运行模式切换至FAM模式。
在本发明一些实施例中,切换条件包括以下条件的一种或多种:
重新获取目标列车位置、接收到ZC发送的MA信息、接收到TIAS发送的全自动驾驶的授权信息、预设定的自动化等级最高的驾驶模式为FAM模式、VOBC内部通信无故障、目标列车解除紧急制动状态。
在本发明一些实施例中,列车消息还包括以下信息的一种或多种:
表征列车位置丢失的位置标识、方向信息、激活端信息、位置丢失前的运行模式、列车运行级别、表征目标列车处于紧急制动状态的状态信息、紧急制动原因。
根据本发明实施例的VOBC的其他细节与以上结合图1描述的根据本发明实施例的方法类似,在此不再赘述。
基于相同的发明构思,本发明实施例提供了TIAS。图4示出了根据本发明实施例提供的TIAS的结构示意图。如图4所示,TIAS 11包括:
第一接收模块410,用于接收VOBC发送的列车消息,列车消息包括RRM模式请求信息;
发送模块420,用于若目标列车处于无人监督驾驶状态,响应进入RRM模式的触发指令,向VOBC发送RRM模式指令。
根据本发明实施例的TIAS的其他细节与以上结合图1描述的根据本发明实施例的方法类似,在此不再赘述。
基于相同的发明构思,本发明实施例提供了ZC。图5示出了根据本发明实施例提供的ZC的结构示意图。如图5所示,ZC 12包括:
接收模块510,用于接收由VOBC发送的表征目标列车位置丢失的故障信息;
第一发送模块520,用于若目标列车满足移动条件,向VOBC发送移动指令。
在本发明一些实施例中,移动条件包括以下条件一种或多种:
目标列车至前方站台之间的进路处于开放状态,目标列车至前方站台之间的区段处于空闲状态且目标列车至前方站台之间的区段处于锁闭状态、目标列车至前方站台之间的所有道岔处于锁闭状态、目标列车至前方站台之间无其他运行列车、目标列车至前方站台之间无其他故障列车、前方站台满足接车条件、站外保护区段处于锁闭状态且站外保护区段无其他列车 占用。
在本发明一些实施例中,ZC 12还包括:
计算模块,用于计算安全包络。其中,安全包络表征目标列车与前方列车之间的最小安全距离范围。
控制模块,用于根据安全包络计算其他列车的MA。
在本发明一些实施例中,若目标列车位置丢失且目标列车处于紧急制动停车状态,则安全包络为第一安全包络,第一安全包络为第一安全包络的预估范围和目标列车位置丢失故障前的MA的重叠范围;若目标列车处于RRM模式,安全包络是第一安全包络的最大位置与前方站台之间的范围;其中,预估范围是根据预估停车位置确定的。
在本发明一些实施例中,ZC 12还包括:
监控模块,用于实时监控区段占用信息;
第三发送模块,用于若在区段占用信息包括安全包络范围内前方的区段占用状态的信息,向VOBC发送禁止移动指令,其中,安全包络表征所述目标列车的预估停车范围。
根据本发明实施例的ZC的其他细节与以上结合图1描述的根据本发明实施例的方法类似,在此不再赘述。
图6是本发明实施例中列车自动驾驶设备的示例性硬件架构的结构图。
如图6所示,列车自动驾驶设备600包括输入设备601、输入接口602、中央处理器603、存储器604、输出接口605、以及输出设备606。其中,输入接口602、中央处理器603、存储器604、以及输出接口605通过总线610相互连接,输入设备601和输出设备606分别通过输入接口602和输出接口605与总线610连接,进而与列车自动驾驶设备600的其他组件连接。
具体地,输入设备601接收来自外部的输入信息,并通过输入接口602将输入信息传送到中央处理器603;中央处理器603基于存储器604中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器604中,然后通过输出接口605将输出信息传送到输出设备606;输出设备606将输出信息输出到列车自动驾驶设备600的外部供用户使用。
也就是说,图6所示的列车自动驾驶设备也可以被实现为包括:存储有计算机可执行指令的存储器;以及处理器,该处理器在执行计算机可执行指令时可以实现结合图1至图5示出的列车自动驾驶系统、列车自动驾驶方法、VOBC、TIAS和ZC。
在一个实施例中,图6所示的列车自动驾驶设备600可以被实现为一种设备,该设备可以包括:存储器,用于存储程序;处理器,用于运行存储器中存储的程序,以执行实现结合图1至图5示出的列车自动驾驶系统、列车自动驾驶方法、VOBC、TIAS和ZC。
本发明实施例还提供了一种计算机存储介质,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现结合图1至图5示出的列车自动驾驶系统、列车自动驾驶方法、VOBC、TIAS和ZC。
需要明确的是,本发明并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
以上,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

Claims (18)

  1. 一种列车自动驾驶的方法,其特征在于,应用于GoA4级别的驾驶场景中,所述方法包括:
    在全自动驾驶模式FAM模式下,若目标列车位置丢失,且目标列车处于紧急制动停车状态,向行车综合自动化系统TIAS发送列车消息,并向区域控制器ZC发送表征列车位置丢失的故障信息,所述列车消息包括远程限制人工驾驶模式RRM模式请求信息;
    接收所述TIAS发送的RRM模式指令和所述ZC发送的移动指令;
    根据所述RRM模式指令和所述移动指令,控制所述目标列车以RRM模式行驶。
  2. 根据权利要求1所述的方法,其特征在于,所述RRM模式表示在TIAS远程操控下,控制目标列车以在限速范围内的速度进入前方站台。
  3. 根据权利要求1所述的方法,其特征在于,所述控制所述目标列车以RRM模式行驶之后,所述方法还包括:
    接收ZC发送的禁止移动指令;
    根据所述禁止移动指令,控制所述目标列车紧急制动停车。
  4. 根据权利要求1所述的方法,其特征在于,所述控制所述目标列车以RRM模式行驶之后,所述方法还包括:
    确定满足重新进入FAM模式的切换条件,将目标列车的运行模式切换至FAM模式。
  5. 根据权利要求4所述的方法,其特征在于,所述切换条件包括以下条件的一种或多种:
    重新获取目标列车位置、接收到所述ZC发送的移动授权MA信息、接收到所述TIAS发送的全自动驾驶的授权信息、预设定的自动化等级最高的驾驶模式为FAM模式、VOBC内部通信无故障、所述目标列车解除紧急制动状态。
  6. 根据权利要求1所述的方法,其特征在于,所述列车消息还包括以 下信息的一种或多种:
    表征列车位置丢失的位置标识、方向信息、激活端信息、位置丢失前的运行模式、列车运行级别、表征目标列车处于紧急制动状态的状态信息、紧急制动原因。
  7. 一种列车自动驾驶方法,其特征在于,应用于GoA4级别的驾驶场景中,所述方法包括:
    接收车载控制器VOBC发送的列车消息,所述列车消息包括RRM模式请求信息;
    若目标列车处于无人监督驾驶状态,响应进入RRM模式的触发指令,向所述VOBC发送RRM模式指令,以用于所述VOBC基于所述RRM模式指令控制所述目标列车以RRM模式行驶。
  8. 一种列车自动驾驶方法,其特征在于,应用于GoA4级别的驾驶场景中,所述方法包括:
    接收由VOBC发送的表征目标列车位置丢失的故障信息;
    若所述目标列车满足移动条件,向所述VOBC发送移动指令,以用于所述VOBC基于所述移动指令控制所述目标列车以RRM模式行驶。
  9. 根据权利要求8所述的方法,其特征在于,所述移动条件包括以下条件一种或多种:
    目标列车至前方站台之间的进路处于开放状态,所述目标列车至所述前方站台之间的区段处于空闲状态且所述目标列车至所述前方站台之间的区段处于锁闭状态、所述目标列车至所述前方站台之间的所有道岔处于锁闭状态、所述目标列车至所述前方站台之间无其他运行列车、所述目标列车至所述前方站台之间无其他故障列车、前方站台满足接车条件、站外保护区段处于锁闭状态且站外保护区段无其他列车占用。
  10. 根据权利要求8所述的方法,其特征在于,所述接收由VOBC发送的表征目标列车位置丢失的故障信息之后,所述方法还包括:
    计算安全包络,并根据所述安全包络计算其他列车的MA;
    其中,所述安全包络表征所述目标列车的预估停车范围。
  11. 根据权利要求10所述的方法,其特征在于,若目标列车位置丢失 且目标列车处于紧急制动停车状态,则所述安全包络为第一安全包络,所述第一安全包络为第一安全包络的预估范围和目标列车位置丢失故障前的MA的重叠范围;
    若目标列车处于RRM模式,所述安全包络是所述第一安全包络的最大位置与前方站台的位置之间的范围;
    其中,所述预估范围是根据预估停车位置确定的。
  12. 根据权利要求8所述的方法,其特征在于,所述向所述VOBC发送移动指定指令之后,所述方法还包括:
    实时监控区段占用信息;
    若所述区段占用信息包括安全包络内前方的区段处于占用状态的信息,向所述VOBC发送禁止移动指令,其中,所述安全包络表征所述目标列车的预估停车范围。
  13. 一种VOBC,其特征在于,应用于GoA4级别的驾驶场景中,所述VOBC包括:
    发送模块,用于在FAM模式下,若目标列车位置丢失,且目标列车处于紧急制动停车状态,向TIAS发送列车消息,并向ZC发送表征列车位置丢失的故障信息,所述列车消息包括RRM模式请求信息;
    第一接收模块,用于接收所述TIAS发送的RRM模式指令和所述ZC发送的移动指令;
    第一控制模块,用于根据所述RRM模式指令和所述移动指令,控制所述目标列车以RRM模式行驶。
  14. 一种TIAS,其特征在于,应用于GoA4级别的驾驶场景中,所述TIAS包括:
    接收模块,用于接收VOBC发送的列车消息,所述列车消息包括RRM模式请求信息;
    发送模块,用于若目标列车处于无人监督驾驶状态,响应进入RRM模式的触发指令,向所述VOBC发送RRM模式指令,以供所述VOBC基于所述RRM模式指令控制所述目标列车以RRM模式行驶。
  15. 一种ZC,其特征在于,应用于GoA4级别的驾驶场景中,所述ZC 包括:
    接收模块,用于接收由VOBC发送的表征目标列车位置丢失的故障信息;
    发送模块,用于若所述目标列车满足移动条件,向所述VOBC发送移动指令,以供所述VOBC基于所述移动指令控制所述目标列车以RRM模式行驶。
  16. 一种RRM模式,其特征在于,所述RRM模式包括:
    在GoA4级别的驾驶场景中,在TIAS远程操控下,由VOBC控制目标列车以在限速范围内的速度进入前方站台。
  17. 一种列车自动驾驶设备,其特征在于,所述设备包括:
    存储器,用于存储程序;
    处理器,用于运行所述存储器中存储的所述程序,以执行权利要求1-6任一权利要求所述的列车自动驾驶方法、以执行权利要求7所述的列车自动驾驶方法,或者以执行权利要求8-12任一权利要求所述的列车自动驾驶方法。
  18. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时使得机器实现权利要求1-6任一权利要求所述的列车自动驾驶方法,实现权利要求7所述的列车自动驾驶方法,或者实现权利要求8-12任一权利要求所述的列车自动驾驶方法。
PCT/CN2019/128360 2019-10-29 2019-12-25 列车自动驾驶方法、vobc、tias、区域控制器 WO2021082256A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/766,228 US20240051587A1 (en) 2019-10-29 2019-12-25 Automatic driving methods, vehicle on-board controllers, traffic control integrated automation systems, and zone controllers
EP19951093.4A EP4035971A4 (en) 2019-10-29 2019-12-25 AUTOMATIC TRAIN PROCEDURE, VOBC, TIAS AND ZONE CONTROL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911038667.XA CN110758484B (zh) 2019-10-29 2019-10-29 列车自动驾驶方法、vobc、tias、区域控制器
CN201911038667.X 2019-10-29

Publications (1)

Publication Number Publication Date
WO2021082256A1 true WO2021082256A1 (zh) 2021-05-06

Family

ID=69334472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128360 WO2021082256A1 (zh) 2019-10-29 2019-12-25 列车自动驾驶方法、vobc、tias、区域控制器

Country Status (4)

Country Link
US (1) US20240051587A1 (zh)
EP (1) EP4035971A4 (zh)
CN (1) CN110758484B (zh)
WO (1) WO2021082256A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212121A (zh) * 2021-12-09 2022-03-22 卡斯柯信号有限公司 一种非定位识别列车在区域控制器之间的移交方法
CN114261432A (zh) * 2021-12-21 2022-04-01 卡斯柯信号有限公司 全自动无人驾驶远程反向运行的实现方法、设备及介质
CN114919630A (zh) * 2022-05-17 2022-08-19 交控科技股份有限公司 列车降级运行方法、装置、电子设备和存储介质
CN115092219A (zh) * 2022-05-31 2022-09-23 通号城市轨道交通技术有限公司 NiTC列控系统与CBTC列控系统的制式切换方法
CN115402385A (zh) * 2022-08-30 2022-11-29 通号城市轨道交通技术有限公司 应急处理方法及系统
CN116125962A (zh) * 2022-12-30 2023-05-16 深圳市逸动蔚蓝科技有限公司 控制方法及其设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112874582B (zh) * 2019-11-29 2023-02-10 比亚迪股份有限公司 列车及其的控制方法、控制装置和车载控制设备
CN112061182B (zh) * 2020-08-25 2022-06-17 通号城市轨道交通技术有限公司 一种基于车-车通信的列车管理方法及装置
CN112124360A (zh) * 2020-09-02 2020-12-25 交控科技股份有限公司 道岔冲突防护方法、its、ivoc及vbtc系统
CN112026854B (zh) * 2020-09-11 2022-06-17 广东韶钢松山股份有限公司 机车控制方法和车载控制设备
CN112298279B (zh) * 2020-09-28 2022-07-15 卡斯柯信号有限公司 一种轨道交通全自动运行蠕动模式的分级控制方法及装置
CN112208589B (zh) * 2020-09-29 2022-10-18 通号城市轨道交通技术有限公司 跨线运营方法、系统、装置、电子设备及存储介质
CN112572547A (zh) * 2020-12-23 2021-03-30 卡斯柯信号有限公司 一种允许多个列车丢失位置重叠防护的方法
CN114684221B (zh) * 2020-12-25 2023-07-14 比亚迪股份有限公司 远程限制驾驶方法、存储介质和电子设备
CN113401184A (zh) * 2021-06-28 2021-09-17 通号城市轨道交通技术有限公司 远程限速运行控制方法、装置、电子设备及存储介质
CN113696936A (zh) * 2021-09-10 2021-11-26 湖南中车时代通信信号有限公司 一种ato设备故障时的列车全自动运行方法
CN114212125B (zh) * 2021-11-25 2024-03-29 通号城市轨道交通技术有限公司 列车运行控制方法、装置、电子设备及存储介质
CN114228788B (zh) * 2021-12-13 2023-09-08 卡斯柯信号有限公司 一种失位列车的轨旁辅助定位方法、装置、设备及介质
CN114179872B (zh) * 2021-12-24 2024-04-23 交控科技股份有限公司 全自动运行列车的远程rm切换方法
CN114394128B (zh) * 2022-01-27 2023-09-05 中铁第四勘察设计院集团有限公司 列车控制方法及系统、车载子系统和轨旁资源管理子系统
CN114524006B (zh) * 2022-01-27 2023-01-31 西门子交通技术(北京)有限公司 列车筛选的方法与装置
CN116149303B (zh) * 2023-04-20 2023-08-29 卡斯柯信号(北京)有限公司 一种列车远程限制驾驶模式的测试方法及装置
CN116890891B (zh) * 2023-09-11 2023-12-12 比亚迪股份有限公司 车辆控制方法、控制器、电子设备、存储介质及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104354728A (zh) * 2014-11-03 2015-02-18 北京交控科技有限公司 一种基于远程mmi的轨道交通列车监控系统
CN107856703A (zh) * 2017-09-11 2018-03-30 浙江众合科技股份有限公司 一种无人驾驶列车定位自动恢复方法
EP3461715A1 (en) * 2017-09-29 2019-04-03 Siemens Mobility GmbH On-board antenna for rail vehicle
CN109969232A (zh) * 2019-03-29 2019-07-05 卡斯柯信号有限公司 一种全自动运行系统中远程限制驾驶模式实现方法
CN110758485A (zh) * 2019-10-29 2020-02-07 交控科技股份有限公司 列车自动驾驶的方法、车载控制器、tias、设备和介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012075401A1 (en) * 2010-12-03 2012-06-07 Metrom Rail, Llc Rail line sensing and safety system
CN105480259B (zh) * 2015-11-24 2017-09-19 交控科技股份有限公司 一种全自动驾驶列车的驾驶方法和系统
CN107878513B (zh) * 2017-09-11 2020-07-24 浙江众合科技股份有限公司 一种无人驾驶列车失位救援方法
CN108216308B (zh) * 2017-12-22 2019-11-29 合肥工大高科信息科技股份有限公司 一种判断计轴区段故障占用的方法
CN109664920B (zh) * 2018-12-25 2021-03-12 交控科技股份有限公司 Rm模式下的列车位置获取方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104354728A (zh) * 2014-11-03 2015-02-18 北京交控科技有限公司 一种基于远程mmi的轨道交通列车监控系统
CN107856703A (zh) * 2017-09-11 2018-03-30 浙江众合科技股份有限公司 一种无人驾驶列车定位自动恢复方法
EP3461715A1 (en) * 2017-09-29 2019-04-03 Siemens Mobility GmbH On-board antenna for rail vehicle
CN109969232A (zh) * 2019-03-29 2019-07-05 卡斯柯信号有限公司 一种全自动运行系统中远程限制驾驶模式实现方法
CN110758485A (zh) * 2019-10-29 2020-02-07 交控科技股份有限公司 列车自动驾驶的方法、车载控制器、tias、设备和介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4035971A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212121A (zh) * 2021-12-09 2022-03-22 卡斯柯信号有限公司 一种非定位识别列车在区域控制器之间的移交方法
CN114212121B (zh) * 2021-12-09 2023-08-29 卡斯柯信号有限公司 一种非定位识别列车在区域控制器之间的移交方法
CN114261432A (zh) * 2021-12-21 2022-04-01 卡斯柯信号有限公司 全自动无人驾驶远程反向运行的实现方法、设备及介质
CN114261432B (zh) * 2021-12-21 2024-03-29 卡斯柯信号有限公司 全自动无人驾驶远程反向运行的实现方法、设备及介质
CN114919630A (zh) * 2022-05-17 2022-08-19 交控科技股份有限公司 列车降级运行方法、装置、电子设备和存储介质
CN115092219A (zh) * 2022-05-31 2022-09-23 通号城市轨道交通技术有限公司 NiTC列控系统与CBTC列控系统的制式切换方法
CN115092219B (zh) * 2022-05-31 2024-01-02 通号城市轨道交通技术有限公司 NiTC列控系统与CBTC列控系统的制式切换方法
CN115402385A (zh) * 2022-08-30 2022-11-29 通号城市轨道交通技术有限公司 应急处理方法及系统
CN116125962A (zh) * 2022-12-30 2023-05-16 深圳市逸动蔚蓝科技有限公司 控制方法及其设备

Also Published As

Publication number Publication date
CN110758484A (zh) 2020-02-07
CN110758484B (zh) 2021-04-27
EP4035971A1 (en) 2022-08-03
US20240051587A1 (en) 2024-02-15
EP4035971A4 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
WO2021082256A1 (zh) 列车自动驾驶方法、vobc、tias、区域控制器
CN110758485B (zh) 列车自动驾驶的方法、车载控制器、tias、设备和介质
CN110775101B (zh) 轨道交通信号系统全自动运行下的远程rm运行控制方法
CN107878513B (zh) 一种无人驾驶列车失位救援方法
CN109625031B (zh) 简化轨道占用检测设备的非通信车运行方法和控制系统
US20220410950A1 (en) Train, and control method, control apparatus and vehicle on-board controller therefor
EP2746132B1 (en) Ctcs level-3 onboard automatic train operation device and rail transit car
CN112208516A (zh) 支持自动代客泊车的系统和方法以及基础设施和车辆
CN109278807B (zh) 基于车车通信列控系统的列车跳停方法
CN109532955B (zh) 一种微轨调度控制方法及系统
CN113954924A (zh) 降级车自主运行方法、装置、电子设备和可读存储介质
CN113401184A (zh) 远程限速运行控制方法、装置、电子设备及存储介质
CN114261432B (zh) 全自动无人驾驶远程反向运行的实现方法、设备及介质
CN114179863B (zh) 一种进路控制方法、控制系统及存储介质
WO2022062525A1 (zh) 一种平交道口安全防护方法及系统
CN113401185B (zh) 轨道交通信号系统的停车控制方法、装置、设备及介质
CN108153297A (zh) 一种地面无人平台车载的运动控制方法及车载系统
CN105579323A (zh) 轨道车辆的运行
CN114394128B (zh) 列车控制方法及系统、车载子系统和轨旁资源管理子系统
WO2023016542A1 (zh) 基于车车通信的降级列车紧急救援方法及装置
CN113562038B (zh) 列车级位控制方法、列车控制单元及轨道交通车辆
CN114132365B (zh) 一种列车运行控制方法、装置、电子设备及存储介质
CN113442924A (zh) 一种车辆轨迹的规划方法及规划系统
JPH11129901A (ja) 走行支援装置
WO2018163509A1 (ja) 信号保安システム、地上管理装置、車上無線装置、及び、列車制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17766228

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019951093

Country of ref document: EP

Effective date: 20220429