WO2021078173A1 - 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法 - Google Patents

包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法 Download PDF

Info

Publication number
WO2021078173A1
WO2021078173A1 PCT/CN2020/122615 CN2020122615W WO2021078173A1 WO 2021078173 A1 WO2021078173 A1 WO 2021078173A1 CN 2020122615 W CN2020122615 W CN 2020122615W WO 2021078173 A1 WO2021078173 A1 WO 2021078173A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
fat
electric field
production method
starch
Prior art date
Application number
PCT/CN2020/122615
Other languages
English (en)
French (fr)
Inventor
曾新安
陈博儒
蔡锦林
韩忠
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/771,109 priority Critical patent/US20220369682A1/en
Publication of WO2021078173A1 publication Critical patent/WO2021078173A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/212Starch; Modified starch; Starch derivatives, e.g. esters or ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • A23L33/155Vitamins A or D

Definitions

  • the invention relates to a method for embedding fat-soluble vitamins, in particular to a method for producing an emulsion gel embedding fat-soluble vitamins by using a pulsed electric field, which belongs to the technical field of food engineering.
  • Fat-soluble vitamins are a general term for polypentadiene compounds composed of long hydrocarbon chains or fused rings. They can be divided into vitamin A, vitamin D, vitamin E, and vitamin K. They are used in regulating the growth and development of organisms. , It plays an important role in the process of metabolism. However, most fat-soluble vitamins cannot be synthesized in the body or the amount of synthesis is insufficient, and must be taken from the daily diet. However, fat-soluble vitamins are organic compounds with large molecular weights. They are insoluble in water and difficult to disperse. They are difficult to absorb by cells in the body, which greatly limits their application in the food industry; and some fat-soluble vitamins do not meet oxygen, acid and high temperature. Stable, easily affected by light, pH and oxygen during heat treatment or storage, resulting in reduced nutrient content in the product, and its potential health benefits have not been fully realized.
  • Emulsion gel refers to loading the emulsion into the gel matrix (protein, starch, natural polymer) to form a stable, homogeneous and transparent gel network structure.
  • the gel matrix protein, starch, natural polymer
  • emulsion gels can form a three-dimensional network structure to effectively "encapsulate" fat-soluble vitamins.
  • the gel matrix can further isolate the core material in the emulsion from contact with oxygen and light in the environment, which is beneficial to the nutrients in the emulsion. Protect, improve the stability of nutrients in the digestive tract, the degree of fat digestion in the emulsion gel and the in vitro bioavailability of fat-soluble vitamins are higher.
  • Chinese patent CN108669550A discloses a preparation method of myofibrillar protein emulsion gel. The protein stock solution and the xanthan gum stock solution are mixed and stirred for 2 to 4 hours, and the gel is prepared by thermal induction.
  • Chinese patent CN108822309A discloses a preparation method of nanofiber microemulsion composite hydrogel, which adopts mechanical methods such as ultrasound and homogenizer to pretreat cellulose, and then mix it with microemulsion uniformly to obtain composite gel.
  • Chinese patent CN108064976A discloses a polysaccharide emulsion gel.
  • the regenerated cellulose suspension and edible oil are homogenized to obtain an edible oil cellulose emulsion.
  • the emulsion is added to the emulsion, heated and cooled under stirring, to obtain the polysaccharide emulsion gel.
  • the preparation of these composite gels mostly adopts simple stirring mode to mix the two stock solutions uniformly, and the reaction time is long and insufficient, and the prepared emulsion gel has poor stability and low embedding rate.
  • Lu Yao et al. used gluconic acid- ⁇ -lactone induction method to prepare whey protein isolate emulsion gel. It is necessary to control the heat treatment time to change the degree of protein denaturation to regulate the microstructure of the emulsion gel, which is easy to produce other by-products.
  • the emulsion gel has poor stability and low embedding rate.
  • the induction method needs to control the heat treatment time to change the degree of protein denaturation to control the microstructure of the emulsion gel, and it is easy to produce other by-products.
  • high-voltage pulsed electric field technology has attracted domestic and foreign countries for its good application characteristics such as non-heat treatment, low energy consumption, time saving, high efficiency and good preservation of the original quality of food.
  • Chinese invention patent CN106036394A discloses a method for producing starch-selenium polysaccharides and selenium-enriched pre-gelatinized nutritional rice cereals using pulsed electric fields, which increases the selenium content in starchy rice cereals;
  • Chinese invention patent CN105995947A discloses a method for producing starches using pulsed electric fields The method of zinc complex nutrition fortifier increases the metal content and conversion rate in the starch zinc complex, and at the same time increases the slow digestion starch content in the complex;
  • Chinese invention patent CN107501600A discloses a pulse electric field modification
  • the preparation method of porous starch significantly improves the oil absorption, transparency and freeze-thaw stability of porous starch.
  • Chinese invention patent CN102627698A discloses a preparation method of sweet potato carboxymethyl modified starch, which effectively improves the degree of substitution of carboxymethyl starch.
  • none of the above-mentioned prior art involves the preparation of emulsion gel by pulsed electric field treatment.
  • the purpose of the present invention is to provide a green and environmentally friendly, short reaction time, low energy consumption, significantly improve the emulsification ability and stability of the emulsion gel, and the embedding rate reaches more than 90%
  • step (2) Add fat-soluble vitamin-dissolved edible oil to the starch octenyl succinate solution of step (1), prepare a coarse emulsion using a high-speed shearing machine, and then obtain the emulsion through a high-pressure homogenizer;
  • step (3) Add the methylcellulose solution to the mixed solution prepared in step (3), stir it evenly, and perform pulse electric field treatment; the electric field strength of the pulse electric field treatment is 5-15 kV/cm, and the frequency is 200-1000 Hz;
  • the mass fraction of the starch octenyl succinate is 5% to 15% by weight percentage.
  • the fat-soluble vitamin is any of retinol, ⁇ -carotene, lycopene, lutein, tocopherols, sterols, and vitamin K One or more.
  • the edible oil is any one or more of soybean oil, corn oil, peanut oil, rapeseed oil or olive oil.
  • the added amount of fat-soluble vitamins is 0.02% to 0.1% of the mass of the emulsion; in step (2), the added amount of edible oil is 5 of the volume of the emulsion. % ⁇ 25%.
  • the mass ratio of the starch to the emulsion is 10-20:100.
  • the methylcellulose solution is obtained by dissolving methylcellulose in a phosphate buffer with a pH of 7.0, wherein the concentration of methylcellulose is 0.2% to 0.5%.
  • the weight ratio of the methyl cellulose solution is 8% to 15% of the total mixture.
  • the pulse width of the pulse electric field treatment is 10-100 ⁇ s
  • the treatment time is 10-20 min
  • the waveform is a square wave
  • the treatment temperature is 30°C-40°C.
  • the emulsion gel embedding fat-soluble vitamins is produced by the above-mentioned production method.
  • the emulsion gel is starch octenyl succinate-methylcellulose emulsion gel embedding fat-soluble vitamins to replace saturated fatty acids , As a delivery system of functional factors to embed fat-soluble vitamins and probiotics.
  • Methyl cellulose is an indigestible polysaccharide with excellent adhesion, thickening, emulsification and gel structure characteristics. It is usually used as a thickener and emulsifier.
  • Starch is the most common in human diet Polysaccharides, rich in starch content, low in price, safe, easy to form hydrogels after heating, suitable for preparing food-grade filled hydrogels. The combination of methyl cellulose and starch is used as a gelling agent, and starch octenyl succinate is used as an emulsifier. Under the action of a bipolar pulsed electric field, the original hydrogen bond network in and between the methyl cellulose molecules is destroyed.
  • Starch octenyl succinate is a polymer emulsifier with surface activity. It also has the advantages of good emulsification, wide application and high safety, as well as edibility and biodegradability. It uses fast pulses and high-voltage electric fields to reduce The surface layer of octenyl succinate starch ester forms holes, which increases the solubility of octenyl succinate starch ester and exposes more octenyl succinate groups.
  • the ions of the emulsion oil droplets move and decrease
  • the interface energy of the emulsion oil droplets is improved, the emulsion droplets are stabilized, and the diffusion and penetration of the emulsion oil droplets in the pores of the gel network are promoted, so that the composite system is filled more uniformly and densely, and a stable three-dimensional network structure is formed.
  • An emulsion gel in the form of a soft solid is obtained, so that the system not only has the capacity of an emulsion carrier system to carry fat-soluble substances, but also has the ability of a hydrogel carrier system to protect the inner layer of the encapsulated substances to reach the designated digestion site, and control the release of internal nutrients.
  • the invention can effectively promote the dissolution of starch octenyl succinate through the pulsed electric field, reduce the interfacial tension of the emulsion, promote the compounding of methyl cellulose and starch, and greatly exert the synergistic effect of methyl cellulose and starch. It significantly improves the emulsification ability and stability of the emulsion gel, and the embedding rate reaches more than 90%, which can be applied to the development of functional foods.
  • the present invention has the following advantages and beneficial effects:
  • the novel starch-based emulsion gel produced by the pulse electric field in the present invention has a simple preparation process, is green and environmentally friendly, and the reaction process is easy to control.
  • novel starch-based emulsion gel produced by the present invention through a pulsed electric field shortens the reaction time, saves energy consumption, and improves economic benefits.
  • the present invention can effectively promote the solubility of starch octenyl succinate through the pulsed electric field, reduce the interface energy of the emulsion oil droplets, and significantly improve the emulsification ability and stability performance of the emulsion gel, and the embedding rate reaches more than 90% It effectively improves the storage stability and bioavailability of fat-soluble vitamins.
  • the new starch-based emulsion gel prepared by the present invention provides directional guidance for the effective construction of a semi-solid nutrient emulsion system, expands the practical application of functional nutrient emulsions, and can not only meet people's demand for high-quality nutrients, but also It can also fill the gaps in the domestic food market, and has broad application prospects in food, health products, biomedicine and other fields.
  • Fig. 1 is a diagram of the finished product of Example 1 lycopene-embedded emulsion gel.
  • Figure 2 shows the influence of different pulsed electric field strengths on the gel time of the emulsion gel in the embodiment of the present invention.
  • Fig. 3 shows the rheological performance curves of the emulsion gels embedded with ⁇ -carotene in Example 2 and Comparative Example 1.
  • Figure 4 shows the influence of different pulsed electric field strengths on the embedding rate of the emulsion gel in the embodiment of the present invention.
  • Fig. 5 is the slow release curve of ⁇ -carotene in the simulated gastrointestinal fluid of the emulsion gel prepared in Comparative Example 1, Comparative Example 2 and Example 2 of the present invention.
  • Embedding rate (content of fat-soluble vitamin in emulsion gel/initial addition amount of fat-soluble vitamin) ⁇ 100%
  • FIG. 1 shows the appearance of the emulsion gel prepared in Example 1 with embedded lycopene.
  • the gel time of the emulsion gel is 1680s, and the maximum storage modulus is 1463pa in the test range with a frequency of 0.01 to 10 Hz.
  • the embedding rate of lycopene by emulsion gel is 95.76%.
  • the strain is 0.1%
  • the frequency is 1Hz
  • the test time is 2h.
  • the frequency sweep range is 0.01-10 Hz
  • the strain is 0.1%.
  • the gel time is defined as the time corresponding to G'greater than or equal to 1Pa.
  • Figure 3 shows the rheological performance curves of the emulsion gels in Example 2 and Comparative Example 1 that have not been treated with a pulsed electric field.
  • the increase in storage modulus G'during the gel process of the emulsion is considered to be a manifestation of the increase in the strength or hardness of the emulsion gel.
  • the storage modulus of the emulsion gel is within the test range with a frequency of 0.01 to 10 Hz.
  • the maximum storage modulus of the emulsion gel is 1472pa, which is higher than the maximum storage modulus of 1200pa of the emulsion gel without pulse electric field treatment, indicating that the pulse electric field pretreatment can increase the storage elastic modulus of the emulsion gel and strengthen the emulsion gel. Elastic strength.
  • the gel time of the emulsion gel is 1550s
  • the storage elastic modulus of the emulsion gel is 1415 pa in the test range with a frequency of 0.01-10 Hz
  • the tocopherol embedding rate of the emulsion gel reaches 93.54%.
  • the gel time of the emulsion gel is 1570s
  • the storage modulus of the emulsion gel is 1550 pa in the test range with a frequency of 0.01-10 Hz
  • the lutein embedding rate of the emulsion gel reaches 92.28%.
  • a preparation method of emulsion gel the steps are as follows:
  • the gel time of the emulsion gel is 1910s
  • the storage elastic modulus of the emulsion gel is a maximum of 1200 Pa within a test range of 0.01-10 Hz
  • the ⁇ -carotene embedding rate of the emulsion gel reaches 85.27%.
  • Dissolve octenyl succinate starch ester in water heat it in a boiling water bath, stir until it is completely gelatinized and dissolve, cool to room temperature, add corn oil dissolved in ⁇ -carotene, and make the mixture contain 5% by mass Octenyl succinate starch ester, 0.02% ⁇ -carotene and 10% corn oil; use a high-speed disperser (IKAT25 high-speed disperser, Shanghai Shupei Experimental Equipment Co., Ltd.) to prepare the coarse emulsion, the shear speed is 15000r /min, the shear time is 2min.
  • a high-speed disperser IKAT25 high-speed disperser, Shanghai Shupei Experimental Equipment Co., Ltd.
  • the gel time of the emulsion gel is 2014s
  • the storage modulus of the emulsion gel is 1183 pa in the test range with a frequency of 0.01-10 Hz
  • the ⁇ -carotene embedding rate of the emulsion gel reaches 82.29%.
  • Figure 5 shows the sustained release curve of ⁇ -carotene in simulated gastrointestinal fluid; the sustained release effect of the emulsion gel obtained in Example 2 and Comparative Example 1 and Comparative Example 2 on ⁇ -carotene was studied.
  • the experimental method was as follows: Dissolve 2g NaCl and 7mL 37% HCl in 1L water, add 3.2g pepsin to prepare gastric digestive juice, take 1g sample and mix with 10mL simulated gastric digestive juice, adjust the pH to 2.5 at 37°C, and set the speed at 100r/min The next reaction, respectively take 0, 30, 60, 90, 120, 150min, then add sodium phosphate to adjust the pH of the solution to 6.8, weigh 6.8g of KH 2 PO 4 , add 600mL of distilled water to dissolve, and then use NaOH solution to adjust the pH to 6.8 , Add 10g pancreatin, dissolve, add water to dilute to 1000mL.
  • the pulsed electric field can promote the interaction between methylcellulose and starch molecules, the system has a higher elastic modulus, is easier to form a network structure that is more conducive to embedding fat-soluble vitamins, and methylcellulose and starch synergistically
  • the formed network structure can effectively "wrap" fat-soluble vitamins, reduce the rate of diffusion of fat-soluble vitamins and other functional factors after dissolution, so as to achieve the purpose of slow release of fat-soluble vitamins, so that it has a certain slow-release and targeted delivery function , Improve its bioavailability in the body, and contain healthy dietary fiber, which can meet people's needs for nutrition, health and diversification of food, and has potential application value in food, health products, biomedicine and other fields. It has opened up a new way for the research and development of new food base materials and improving the processing characteristics of food, and has a good market prospect.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

一种包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法。该生产方法是将辛烯基琥珀酸淀粉酯溶解于水中,水浴加热,搅拌至完全糊化溶解,冷却至室温;加入溶有脂溶性维生素的食用油,得到混合液;使用高速剪切机和高压均质机对得到的混合液进行剪切和均质处理,得到乳液;将乳液和天然淀粉添加到甲基纤维素溶液中,混合均匀后进行脉冲电场处理,水浴加热,脱气,冷却,得乳液凝胶。脉冲电场促进甲基纤维素和淀粉分子间的相互作用,具有更高的弹性模量,更易形成更利于包埋脂溶性维生素的网络结构,有效"包裹"脂溶性维生素,实现脂溶性维生素缓慢释放的目的。

Description

包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法 技术领域
发明涉及一种脂溶性维生素包埋方法,特别是涉及一种利用脉冲电场生产包埋脂溶性维生素的乳液凝胶的方法,属于食品工程技术领域。
背景技术
脂溶性维生素是一类由长的碳氢链或稠环组成的聚戊二烯化合物的总称,其可分为维生素A、维生素D、维生素E、维生素K几大类,在调节生物体生长发育、新陈代谢的过程中起着重要的作用。然而多数脂溶性维生素在体内不能合成或合成量不足,必须从日常饮食中进行摄取。但脂溶性维生素是大分子量的有机化合物,不溶于水,很难分散,机体内细胞吸收困难,极大地限制了其食品工业中的应用;且部分脂溶性维生素遇氧、遇酸及高温下不稳定,在热处理或贮藏过程中易受光、pH值和氧的影响,导致产品中营养素含量降低,其潜在的健康益处未得到充分实现。
为解决脂溶性维生素存在以上局限性,国内外学者相继将脂溶性维生素包埋在双亲性运载体系(乳液、脂质体、微胶囊或其修饰结构)的油脂相中,通过口服的方式被人体吸收和利用。但乳液到达小肠部位的前20min往往就已消化90%,过快的消化速率难以达到药物运载控释缓释的效果,使其缓释性能较差;且乳液在胃液中不稳定,其部分油脂在胃部就开始析出,以脂质形式存在的油脂到达小肠时难以迅速与油水界面的脂肪酶接触,抑制了其油脂的消化速率,从而降低了脂溶性维生素的吸收和利用。
乳液凝胶是指将乳液载入凝胶基质(蛋白质、淀粉、天然高分子聚合物)中,形成稳定、均质、透明的凝胶网状结构。与液态乳液相比,乳液凝胶可形成三维网络结构有效“包裹”脂溶性维生素,凝胶基质可进一步隔绝乳液中的芯材与环境中的氧气、光照等的接触,有利于乳液中营养素的保护,提高营养素在消化道中的稳定性,乳液凝胶中的脂肪消化程度和脂溶性维生素的体外生物可给率更高。
目前大部分研究都采用小分子表面活性剂或蛋白质作为乳化剂制备乳液,加入蛋白质或天然淀粉作为凝胶剂制备乳液凝胶。中国专利CN108669550A公开了一种肌原纤维蛋白乳液凝胶的制备方法,将蛋白储备液和黄原胶储备液混合搅拌2~4h,经热诱导制得凝胶。中国专利CN108822309A公开了一种纳米纤维微乳液复合水凝胶的制备方法,采用超声、 匀浆机匀质等机械方法对纤维素进行预处理,再与微乳液混合均匀得到复合凝胶。中国专利CN108064976A公开了一种多糖乳液凝胶,将再生纤维素悬浮液与食用油均质得到食用油纤维素乳液,向乳液中加入可得然,搅拌加热冷却,得到多糖乳液凝胶。这些复合凝胶其制备多采用单纯搅拌形式将两种储备液混合均匀,反应时间长且不充分,制得的乳液凝胶稳定性差,包埋率低。鹿瑶等人利用葡萄糖酸‐δ‐内酯诱导的方法制备乳清分离蛋白乳液凝胶,需要控制热处理时间改变蛋白质的变性程度来调控乳液凝胶的微结构,易产生其他副产物。
这些方法的缺点在于:
1)在复合凝胶制备过程中仅采用单纯搅拌形式将两种储备液混合均匀,反应时间长且不充分
2)乳液凝胶稳定性差,包埋率低。
3)采用诱导法制备需要控制热处理时间改变蛋白质的变性程度来调控乳液凝胶的微结构,易产生其他副产物。
高压脉冲电场技术作为新兴的食品非热加工技术之一,以其良好的应用特性如非热处理、能耗低、省时、效率高和对食品原有品质保存效果好等特点,吸引了国内外广大研究者的关注。中国发明专利CN106036394A公布了一种利用脉冲电场生产淀粉硒多糖、富硒预糊化营养米糊的方法,提高了淀粉米糊中的硒含量;中国发明专利CN105995947A公布了一种利用脉冲电场生产淀粉锌络合物营养强化剂的方法,提高了淀粉锌络合物中的金属含量和转化率,同时增加了络合物中的慢消化淀粉含量;中国发明专利CN107501600A公开了一种脉冲电场改性多孔淀粉的制备方法,显著提高了多孔淀粉吸油性、透明度和冻融稳定。中国发明专利CN102627698A公开了一种红薯羧甲基变性淀粉的制备方法,有效提高了羧甲基淀粉取代度。但上述所有现有技术都未涉及到采用脉冲电场处理制备乳液凝胶。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种绿色环保,反应时间短,能耗低,显著提升乳液凝胶的乳化能力和稳定性能,包埋率达到了90%以上的利用脉冲电场生产可包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法。
本发明目的通过以下技术方案实现:
包埋脂溶性维生素的乳液凝胶的基于脉冲电场的生产方法,包括以下制备步骤:
(1)将辛烯基琥珀酸淀粉酯溶解于水中,水浴加热,搅拌至完全糊化溶解,冷却至室温;
(2)向步骤(1)的辛烯基琥珀酸淀粉酯溶液中加入溶有脂溶性维生素的食用油,使用高速剪切机制备粗乳液,然后通过高压均质机得到乳液;
(3)将淀粉加入乳液中,搅拌均匀,得混合液;
(4)向步骤(3)制备的混合液加入甲基纤维素溶液,搅拌均匀后进行脉冲电场处理;所述的脉冲电场处理的电场场强为5~15kV/cm,频率为200~1000Hz;
(5)将脉冲电场处理后的总混合物于80℃~95℃水浴加热15~30min后,脱气,冷却,得乳液凝胶。
为进一步实现本发明目的,优选地,按重量百分比计,步骤(1)中,所述辛烯基琥珀酸淀粉酯的质量分数为5%~15%。
3、根据权利要求1的生产方法,其特征在于,所述的脂溶性维生素为视黄醇、β-胡萝卜素、番茄红素、叶黄素、生育酚、固醇类、维生素K中的任意一种或多种。
优选地,所述的食用油为大豆油、玉米油、花生油、菜籽油或橄榄油中的任意一种或多种。
优选地,按重量百分比计,步骤(2)中,所述的脂溶性维生素添加量为乳液质量的0.02%~0.1%;步骤(2)中,所述食用油添加量为乳液的体积的5%~25%。
优选地,步骤(3)中,所述淀粉与乳液的质量比为10~20:100。
优选地,步骤(4)中,所述的甲基纤维素溶液为将甲基纤维素溶解于pH7.0的磷酸盐缓冲液所得,其中,甲基纤维素的浓度为0.2%~0.5%。
优选地,甲基纤维素溶液的重量占比为总混合物的8%~15%。
优选地,所述的脉冲电场处理的脉宽为10~100μs,处理时间为10~20min,波形为方波,处理温度为30℃~40℃。
包埋脂溶性维生素的乳液凝胶,由上述的生产方法所生产,该乳液凝胶为包埋脂溶性维生素的辛烯基琥珀酸淀粉酯-甲基纤维素乳液凝胶,用来代替饱和脂肪酸,作为功能因子的递送体系包埋脂溶性维生素、益生菌。
甲基纤维素是一种不消化性多糖,具有优良的粘接性、增稠性、乳化性和形成凝胶结构的特点,通常用作增稠剂和乳化剂,淀粉是人类饮食中最常见的多糖,淀粉含量丰富,价格低廉,安全,加热后容易形成水凝胶,适合制备食品级填充水凝胶。以甲基纤维素和淀粉复配做为胶凝剂,辛烯基琥珀酸淀粉酯为乳化剂,在双极脉冲电场作用下,破坏甲基纤维素分子内和分子间原有氢键网络,使甲基纤维素内部有序的结晶区变成无序,甲基纤维素分子间静电排斥力减小,促进甲基纤维素与淀粉分子间交联程度增大并形成新的氢键。 辛烯基琥珀酸淀粉酯是一种具有表面活性的高分子乳化剂,同时具有乳化性好、应用性广和安全性高,以及可食用和生物降解性的优点,利用快速脉冲和高压电场将辛烯基琥珀酸淀粉酯分子表层形成孔洞,使得辛烯基琥珀酸淀粉酯可溶性增加,暴露出更多辛烯基琥珀酸酯基团,在电场的作用下,乳液油滴离子发生移动,降低了乳液油滴界面能,稳定乳液液滴,促进乳液油滴在凝胶网络孔隙内部的扩散和渗透,使复合体系填充更均匀且致密,形成稳定的三维网络结构。得到以软固体形式存在的乳液凝胶,使得该体系既具有乳液运载体系的运载脂溶性物质能力,又具有水凝胶运载体系的保护内层包载物质到达指定消化部位,控制内部营养素释放的特性,提高了脂溶性维生素在人体内的吸收和利用。本发明通过脉冲电场可有效促进辛烯基琥珀酸淀粉酯的溶解,降低乳液的界面张力,促进甲基纤维素-淀粉的复配,大大发挥了甲基纤维素和淀粉的协同增效作用,显著提升了乳液凝胶的乳化能力和稳定性能,包埋率达到了90%以上,可应用于功能性食品开发。
与现有技术相比,本发明具有以下优点和有益效果:
1)本发明利用脉冲电场生产的新型淀粉基乳液凝胶制备工艺简单,绿色环保,反应过程容易控制。
2)本发明通过脉冲电场生产的新型淀粉基乳液凝胶,缩短了反应时间,节省了能量消耗,提高了经济效益。
3)本发明通过脉冲电场可有效促进辛烯基琥珀酸淀粉酯的溶解性,降低了乳液油滴界面能,显著提升了乳液凝胶的乳化能力和稳定性能,包埋率达到了90%以上,有效提升了脂溶性维生素的贮藏稳定性及其生物利用率。
4)本发明制得的新型淀粉基乳液凝胶为半固体营养素乳液体系的有效构建提供了方向性指导,扩展了功能性营养素乳液的实际应用,不仅可以满足人们对高品质营养物的需求,而且还可填补国内食品市场上的空白,在食品、保健品、生物医药等领域应用前景广阔。
附图说明
图1为实施例1包埋番茄红素的乳液凝胶成品图。
图2为本发明的实施例中的不同脉冲电场强度对乳液凝胶的凝胶时间的影响。
图3为实施例2和对比例1中包埋β-胡萝卜素的乳液凝胶的流变性能曲线。
图4为本发明的实施例中的不同脉冲电场强度对乳液凝胶的包埋率的影响。
图5为本发明的对比例1,对比例2和实施例2制备得到的乳液凝胶对β-胡萝卜素在模拟胃肠液中的缓释曲线。
具体实施方式
为更好地理解本发明,下面结合附图和实施例对本发明作进一步的说明,但本发明的实施方式不限于此。
脂溶性维生素包埋率测定方法:
准确称取含脂溶性维生素的乳液凝胶样品2.0g,加无水乙醇20mL,超声提取5min后过滤,提取3次合并滤液。用紫外分光光度计在脂溶性维生素特定吸收波长下测定其吸光值,结合脂溶性维生素标准曲线计算出脂溶性维生素的含量。按下列公式计算
包埋率=(乳液凝胶中脂溶性维生素含量/脂溶性维生素初始添加量)×100%
实施例1
将辛烯基琥珀酸淀粉酯溶解于水中,置于沸水浴中加热,搅拌至完全糊化溶解,冷却至室温,加入溶有番茄红素的大豆油,使混合物中含有质量分数5%的辛烯基琥珀酸淀粉酯,0.1%的番茄红素和10%的大豆油,使用高速分散机(IKAT25高速分散机,上海书培实验设备有限公司)制备粗乳液,剪切转速为15000r/min,剪切时间为2min。然后倒入高压均质机(M-110EH微射流均质机,美国Microfluidics公司)中在80Mpa条件下均质三次后,得到乳液,然后加入质量分数8%的大米淀粉,混合均匀,得混合液。
将甲基纤维素溶解于磷酸盐缓冲液(10mM,pH 7.0)中,配置成质量浓度为0.5%的甲基纤维素溶液,将制备的混合液和甲基纤维素溶液以6:1(w/w)混合均匀后,在脉冲频率为300Hz,脉宽为100μs,脉冲场强为5kV/cm,处理温度为30℃时,用脉冲电场(脉冲电场SY-200,广州市心安食品科技有限公司)将总混合物处理20min,而后置于85℃热水浴中加热15min,加入圆柱形塑料试管中,脱气,并密封,置于冰水浴中冷却,得到乳液凝胶。图1为本实施例1制备得到的包埋番茄红素的乳液凝胶外观,该乳液凝胶的凝胶时间为1680s,在频率为0.01~10Hz的测试范围内的最大储能模量为1463pa,乳液凝胶对番茄红素的包埋率达95.76%。
利用流变仪监测乳液凝胶的形成时间和储能模量,将乳液凝胶样品分别置于平行板之间,两板之间的间隙设定为3mm,测试温度为25℃,测定储能模量(G')与时间t的函数,应变为0.1%,频率1Hz,测试时间2h,在时间扫描结束后,立即进行频率扫描,频率扫描范围为0.01‐10Hz,应变为0.1%。定义凝胶时间为G'大于等于1Pa对应的时间,结果表明该乳液凝胶的凝胶时间为1680s,短于未经脉冲电场处理的乳液凝胶形成时间为1900s,数据见图2。图2为上述条件下,不同脉冲电场强度对辛烯基琥珀酸淀粉酯-甲基纤维素乳液凝胶的凝胶时间的影响。这说明脉冲电场预处理可破坏甲基纤维素分子内和分子间原有氢键网络,并促使更多淀粉分子中的活性基团暴露出来,使得体系黏度提高,加速凝胶 网络结构的形成。
经测试,该乳液凝胶对番茄红素的包埋率达95.76%,数据见图4,图4为上述条件下,不同脉冲电场强度下,辛烯基琥珀酸淀粉酯-甲基纤维素乳液凝胶对番茄红素的包埋率的影响。包埋率高使脂溶性维生素不易与水相中的自由基和金属离子等发生氧化反应,提高了脂溶性维生素的贮藏稳定性;在消化过程中,促进了脂溶性维生素在胶束中的溶解吸收,提高了脂溶性维生素的生物利用率。
实施例2
将辛烯基琥珀酸淀粉酯溶解于水中,置于沸水浴中加热,搅拌至完全糊化溶解,冷却至室温,加入适量溶有β-胡萝卜素的玉米油,使混合物中含有质量分数为5%的辛烯基琥珀酸淀粉酯,0.02%的β-胡萝卜素和10%的玉米油。使用高速分散机(IKAT25高速分散机,上海书培实验设备有限公司)制备粗乳液,剪切转速为15000r/min,剪切时间为2min。然后倒入高压均质机中(M-110EH微射流均质机,美国Microfluidics公司)在80Mpa条件下均质三次后,得到乳液,然后加入质量分数10%的玉米淀粉,混合均匀,得混合液。
将甲基纤维素溶解于磷酸盐缓冲液(10mM,pH7.0)中,配置成质量浓度为0.5%的甲基纤维素溶液,将制备的混合液和甲基纤维素溶液以8:1(w/w)混合均匀后,在脉冲频率为600Hz,脉宽为40μs,脉冲场强为9kV/cm,处理温度为35℃时,用脉冲电场(脉冲电场SY-200,广州市心安食品科技有限公司)将总混合物处理15min,而后置于85℃热水浴加热15min,加入圆柱形塑料试管中,脱气,并密封,置于冰水浴冷却,凝固得到乳液凝胶。该乳液凝胶的凝胶时间为1500s,频率为0.01~10Hz的测试范围内的最大储能模量为1472pa,乳液凝胶β-胡萝卜素包埋率达96.39%。
图3为本实施例2和对比例1中未经过脉冲电场处理的乳液凝胶的流变性能曲线。乳液凝胶过程中储能模量G’的增加被认为是乳液凝胶强度或硬度增加的表现,如图3所示,该乳液凝胶储能模量在频率为0.01~10Hz的测试范围内的最大储能模量为1472pa,高于未经脉冲电场处理的乳液凝胶最大储能模量的1200pa,说明脉冲电场预处理可以提高乳液凝胶的储能模量,增强了乳液凝胶的弹性强度。
实施例3
将辛烯基琥珀酸淀粉酯溶解于水中,置于沸水浴中加热,搅拌至完全糊化溶解,冷却至室温。加入适量溶有生育酚的花生油,使混合物含有质量分数为10%的辛烯基琥珀酸淀粉酯,0.08%的生育酚和20%的花生油。使用高速分散机(IKAT25高速分散机,上海书培实验设备有限公司)制备粗乳液,剪切转速为15000r/min,剪切时间为2min。然后倒入 高压均质机中(M-110EH微射流均质机,美国Microfluidics公司)在80Mpa条件下均质三次后,得到乳液,然后加入质量分数12%的马铃薯淀粉,混合均匀,得混合液。
将甲基纤维素溶解于磷酸盐缓冲液(10mM,pH7.0)中,配置成质量浓度为3%的甲基纤维素溶液。将制备的混合液和甲基纤维素溶液以12:1(w/w)混合均匀后,在脉冲频率为1000Hz,脉宽为10μs,脉冲场强为12kV/cm,处理温度为30℃时,用脉冲电场(脉冲电场SY-200,广州市心安食品科技有限公司)将总混合物处理12min,而后置于85℃热水浴加热15min后,加入圆柱形塑料试管中,脱气,并密封,置于冰水浴冷却,凝固得到乳液凝胶。该乳液凝胶的凝胶时间为1550s,该乳液凝胶储能模量在频率为0.01~10Hz的测试范围内的最大为1415pa,乳液凝胶生育酚包埋率达93.54%。
实施例4
将辛烯基琥珀酸淀粉酯溶解于水中,置于沸水浴中加热,搅拌至完全糊化溶解,冷却至室温。加入适量溶有叶黄素的菜籽油,使混合物中含有质量分数为15%的辛烯基琥珀酸淀粉酯,0.06%的叶黄素和15%的菜籽油。使用高速分散机(IKAT25高速分散机,上海书培实验设备有限公司)制备粗乳液,剪切转速为15000r/min,剪切时间为2min。然后倒入高压均质机(M-110EH微射流均质机,美国Microfluidics公司)中在80Mpa条件下均质三次后,得到乳液,然后加入质量分数18%的木薯淀粉,混合均匀。
将甲基纤维素溶解于磷酸盐缓冲液(10mM,pH7.0)中,配置成质量浓度为5%的甲基纤维素溶液。将制备的乳液和甲基纤维素溶液以12:1(w/w)混合均匀后,在脉冲频率为200Hz,脉宽为80μs,脉冲场强为15kV/cm,处理温度为40℃时,用脉冲电场(脉冲电场SY-200,广州市心安食品科技有限公司)将总混合物处理10min,将上述混合物置于85℃热水浴加热15min后,加入圆柱形塑料试管中,脱气,并密封,置于冰水浴冷却,凝固得到乳液凝胶。该乳液凝胶的凝胶时间为1570s,该乳液凝胶储能模量在频率为0.01~10Hz的测试范围内的最大1550pa,乳液凝胶叶黄素包埋率达92.28%。
对比例1
一种乳液凝胶的制备方法,步骤如下:
将辛烯基琥珀酸淀粉酯溶解于水中,置于沸水浴中加热,搅拌至完全糊化溶解,冷却至室温,加入适量溶有β-胡萝卜素的玉米油,使混合物中含有质量分数为5%的辛烯基琥珀酸淀粉酯,0.02%的β-胡萝卜素和10%的玉米油。使用高速分散机(IKAT25高速分散机,上海书培实验设备有限公司)制备粗乳液,剪切转速为15000r/min,剪切时间为2min。然后倒入高压均质机(M-110EH微射流均质机,美国Microfluidics公司)中在80Mpa条 件下均质三次后,得到乳液,然后加入质量分数10%的玉米淀粉,混合均匀,得混合液。
将甲基纤维素溶解于磷酸盐缓冲液(10mM,pH7.0)中,配置成质量浓度为0.5%的甲基纤维素溶液,将制备的混合液和甲基纤维素溶液以8:1(w/w)混合均匀后,置于85℃热水浴加热15min,加入圆柱形塑料试管中,脱气,并密封,置于冰水浴冷却,凝固得到乳液凝胶。该乳液凝胶的凝胶时间为1910s,该乳液凝胶储能模量在频率为0.01~10Hz的测试范围内的最大1200pa,乳液凝胶β-胡萝卜素包埋率达85.27%。
对比例2
将辛烯基琥珀酸淀粉酯溶解于水中,置于沸水浴中加热,搅拌至完全糊化溶解,冷却至室温,加入溶有β-胡萝卜素的玉米油,使混合物中含有质量分数为5%的辛烯基琥珀酸淀粉酯,0.02%的β-胡萝卜素和10%的玉米油;使用高速分散机(IKAT25高速分散机,上海书培实验设备有限公司)制备粗乳液,剪切转速为15000r/min,剪切时间为2min。然后倒入高压均质机(M-110EH微射流均质机,美国Microfluidics公司)中在80Mpa条件下均质三次后,得到乳液,然后加入质量分数10%的玉米淀粉,混合均匀。置于85℃热水浴加热15min,加入圆柱形塑料试管中,脱气,并密封,置于冰水浴冷却,凝固得到乳液凝胶。该乳液凝胶的凝胶时间为2014s,该乳液凝胶储能模量在频率为0.01~10Hz的测试范围内的最大1183pa,乳液凝胶β-胡萝卜素包埋率达82.29%。
实施效果:对比例1和对比例2的凝胶时间较实施例2的凝胶时间长,弹性模量较实施例2的低,说明脉冲电场预处理加速凝胶网络结构的形成,并增强凝胶的弹性。对比例1未经过脉冲电场处理的乳液凝胶β-胡萝卜素包埋率达85.27%,对比例2中采用辛烯基琥珀酸淀粉酯与天然淀粉为原料,未添加甲基纤维素制备的乳液凝胶,其β-胡萝卜素包埋率达82.29%,低于实施例2中经脉冲电场作用后的乳液凝胶β-胡萝卜素包埋率的95.76%。这说明使用脉冲电场凝胶化预处理并对于脂溶性维生素具有较好的包埋效果,且甲基纤维素和淀粉复配能够协同增效,抑制脂滴絮凝使,脂溶性维生素不易与水相中的自由基和金属离子等发生氧化反应,提高了脂溶性维生素的贮藏稳定性,对于乳液凝胶的性质具有显著的改善作用。
图5为β-胡萝卜素在模拟胃肠液中的缓释曲线;对实施例2和对比例1、对比例2获得的乳液凝胶对β-胡萝卜素的缓释效果进行研究,实验方法:将2g NaCl和7mL浓度为37%HCl溶于1L水中,加入3.2g胃蛋白酶制得胃消化液,取1g样品与10mL模拟胃消化液混合,37℃下调节pH至2.5,在100r/min速度下反应,分别取0、30、60、90、120、150min,之后加入磷酸钠调节溶液pH为6.8,称取KH 2PO 46.8g,加入蒸馏水600mL溶解, 然后用NaOH溶液调整pH值至6.8,加入10g胰酶,溶解,加水稀释至1000mL。在此模拟肠液中继续测定2.5h内β-胡萝卜素的释放度,每隔30min取样,在472nm下测吸光度,根据β-胡萝卜素标准曲线计算释放度。实验结果如图5所示,从图5可以看出,经脉冲电场处理的乳液凝胶在胃中的150min内,释放速率相较对比例1和对比例2中的乳液凝胶慢,而到达肠道后,释放率可达到90%以上,实现了β-胡萝卜素的缓释。
本发明中脉冲电场可以促进甲基纤维素和淀粉分子间的相互作用,体系具有更高的弹性模量,更易形成更利于包埋脂溶性维生素的网络结构,甲基纤维素和淀粉协同增效形成的网络结构可以有效“包裹”脂溶性维生素,降低脂溶性维生素等功能因子溶解后向外扩散的速度,从而实现脂溶性维生素缓慢释放的目的,使其具有一定的缓释、靶向传递功能,提高其在体内的生物利用度,且含有益于健康的膳食纤维,能够满足人们对食品的营养、健康、多样化的需求,在食品、保健品、生物医药等领域有潜在应用价值,同时对于研究和开发新型食品基料、改善食品的加工特性开辟了一条新的途径,具有很好的市场前景。
本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 包埋脂溶性维生素的乳液凝胶的基于脉冲电场的生产方法,其特征在于包括以下制备步骤:
    (1)将辛烯基琥珀酸淀粉酯溶解于水中,水浴加热,搅拌至完全糊化溶解,冷却至室温;
    (2)向步骤(1)的辛烯基琥珀酸淀粉酯溶液中加入溶有脂溶性维生素的食用油,使用高速剪切机制备粗乳液,然后通过高压均质机得到乳液;
    (3)将淀粉加入乳液中,搅拌均匀,得混合液;
    (4)向步骤(3)制备的混合液加入甲基纤维素溶液,混合均匀后进行脉冲电场处理;所述的脉冲电场处理的电场场强为5~15kV/cm,频率为200~1000Hz;
    (5)将脉冲电场处理后的总混合物于80℃~95℃水浴加热15~30min后,脱气,冷却,得乳液凝胶。
  2. 根据权利要求1的生产方法,其特征在于,按重量百分比计,步骤(1)中,所述辛烯基琥珀酸淀粉酯的质量分数为5%~15%。
  3. 根据权利要求1的生产方法,其特征在于,所述的脂溶性维生素为视黄醇、β-胡萝卜素、番茄红素、叶黄素、生育酚、固醇类、维生素K中的任意一种或多种。
  4. 根据权利要求1的生产方法,其特征在于,所述的食用油为大豆油、玉米油、花生油、菜籽油或橄榄油中的任意一种或多种。
  5. 根据权利要求1的生产方法,其特征在于,按重量百分比计,步骤(2)中,所述的脂溶性维生素添加量为粗乳液质量的0.02%~0.1%;步骤(2)中,所述食用油添加量为粗乳液的体积的5%~25%。
  6. 根据权利要求1的生产方法,其特征在于,步骤(3)中,所述淀粉与乳液的质量比为10~20:100。
  7. 根据权利要求1的生产方法,其特征在于,步骤(4)中,所述的甲基纤维素溶液为将甲基纤维素溶解于pH7.0的磷酸盐缓冲液所得,其中,甲基纤维素的浓度为0.2%~0.5%。
  8. 根据权利要求1的生产方法,其特征在于,甲基纤维素溶液的重量占比为总混合物的8%~15%。
  9. 根据权利要求1的生产方法,其特征在于,所述的脉冲电场处理的脉宽为10~100μs,处理时间为10~20min,波形为方波,处理温度为30℃~40℃。
  10. 包埋脂溶性维生素的乳液凝胶,其特征在于,其由权利要求1~9任一项所述的生产方法所生产,该乳液凝胶为包埋脂溶性维生素的辛烯基琥珀酸淀粉酯-甲基纤维素乳液凝胶,用来代替饱和脂肪酸,作为功能因子的递送体系包埋脂溶性维生素、益生菌。
PCT/CN2020/122615 2019-10-23 2020-10-22 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法 WO2021078173A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/771,109 US20220369682A1 (en) 2019-10-23 2020-10-22 Emulsion gel embedding fat-soluble vitamin and pulsed electric field based production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911011058.5 2019-10-23
CN201911011058.5A CN110693003A (zh) 2019-10-23 2019-10-23 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法

Publications (1)

Publication Number Publication Date
WO2021078173A1 true WO2021078173A1 (zh) 2021-04-29

Family

ID=69201461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122615 WO2021078173A1 (zh) 2019-10-23 2020-10-22 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法

Country Status (3)

Country Link
US (1) US20220369682A1 (zh)
CN (1) CN110693003A (zh)
WO (1) WO2021078173A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452259A (zh) * 2021-07-28 2022-05-10 安徽旺盛添加剂有限公司 一种维生素d微囊钙片及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110693003A (zh) * 2019-10-23 2020-01-17 华南理工大学 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法
CN111264874A (zh) * 2020-03-10 2020-06-12 江西省农业科学院农产品质量安全与标准研究所 一种富硒凝胶乳液及制备方法、富硒酱牛肉及加工方法
CN111296728B (zh) * 2020-04-10 2023-03-07 武汉轻工大学 一种脉冲电场诱导的菊粉复合物及其制备方法
CN111528474B (zh) * 2020-05-12 2023-05-23 特康药业集团有限公司 一种葛根素-维生素-乳清蛋白三维凝胶营养品制备方法
CN111938136B (zh) * 2020-08-11 2022-11-25 齐鲁工业大学 一种富含脂溶性营养成分的淀粉凝胶及其制备方法与应用
CN112042930B (zh) * 2020-08-28 2023-08-01 南昌大学 一种淀粉基乳液填充凝胶脂肪模拟物的制备方法
CN112006100B (zh) * 2020-08-28 2023-08-29 南昌大学 一种dha低脂酸奶的制备方法
CN113477193B (zh) * 2021-07-30 2022-12-23 中国海洋大学 一种海藻酸钠基气凝胶的制备及应用
CN114569474A (zh) * 2022-03-09 2022-06-03 山东省食品发酵工业研究设计院 一种维生素e纳米乳及其制备方法
CN115152995A (zh) * 2022-05-27 2022-10-11 江苏艾兰得营养品有限公司 一种易吸收的富含类胡萝卜素3d打印产品的制备方法
CN115399461A (zh) * 2022-08-30 2022-11-29 常熟理工学院 一种益生菌缓释果冻及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240133A (zh) * 1998-06-24 2000-01-05 弗·哈夫曼-拉罗切有限公司 用于饮料的维生素粉末
CN102356838A (zh) * 2011-10-19 2012-02-22 南京农业大学 一种叶黄素微胶囊制剂及其制备方法
CN104470373A (zh) * 2012-07-20 2015-03-25 巴斯夫欧洲公司 含有乳化类胡萝卜素的含水透明的水包油乳液
US20150110924A1 (en) * 2013-08-08 2015-04-23 Philip J. Bromley Compositions containing water-soluble derivatives of vitamin e mixtures and modified food starch
CN105076670A (zh) * 2015-07-17 2015-11-25 东北农业大学 一种改性大豆蛋白-磷脂复合乳液的制备方法
WO2016119143A1 (zh) * 2015-01-28 2016-08-04 晨光生物科技集团股份有限公司 一种叶黄素微胶囊制剂及其制备方法
CN105996038A (zh) * 2016-07-05 2016-10-12 南昌大学 一种高稳定型可控营养物释放纳米乳液的制备方法
CN107136503A (zh) * 2017-04-10 2017-09-08 华南理工大学 一种淀粉包埋叶黄素制备微胶囊的方法
CN107501600A (zh) * 2017-08-31 2017-12-22 华南理工大学 一种利用脉冲电场制备改性多孔淀粉的方法
CN107594597A (zh) * 2017-07-31 2018-01-19 浙江新维普添加剂有限公司 一种脂溶性营养素微胶囊及其制备方法
CN108030063A (zh) * 2017-12-17 2018-05-15 江南大学 一种高载量高生物利用度的β-胡萝卜素微胶囊的制备方法
CN109288065A (zh) * 2018-11-01 2019-02-01 广州白云山汉方现代药业有限公司 一种负载脂溶性维生素的悬浮乳液凝胶及其制备方法
CN110693003A (zh) * 2019-10-23 2020-01-17 华南理工大学 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283350C (zh) * 2004-11-22 2006-11-08 上海理工大学 高压电场成囊低温萃取固化制备微胶囊方法
CN105166885A (zh) * 2015-08-07 2015-12-23 江南大学 一种包埋共轭亚油酸的微胶囊的制备方法
US10568843B2 (en) * 2015-10-12 2020-02-25 Zhejiang Medicine Co., Ltd Method of preparing highly stable microcapsule powders or microparticles containing fat-soluble nutrient having increased double bonds
CN109619536A (zh) * 2018-10-18 2019-04-16 山东海能生物工程有限公司 一种25-羟基维生素d3微囊粉及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240133A (zh) * 1998-06-24 2000-01-05 弗·哈夫曼-拉罗切有限公司 用于饮料的维生素粉末
CN102356838A (zh) * 2011-10-19 2012-02-22 南京农业大学 一种叶黄素微胶囊制剂及其制备方法
CN104470373A (zh) * 2012-07-20 2015-03-25 巴斯夫欧洲公司 含有乳化类胡萝卜素的含水透明的水包油乳液
US20150110924A1 (en) * 2013-08-08 2015-04-23 Philip J. Bromley Compositions containing water-soluble derivatives of vitamin e mixtures and modified food starch
WO2016119143A1 (zh) * 2015-01-28 2016-08-04 晨光生物科技集团股份有限公司 一种叶黄素微胶囊制剂及其制备方法
CN105076670A (zh) * 2015-07-17 2015-11-25 东北农业大学 一种改性大豆蛋白-磷脂复合乳液的制备方法
CN105996038A (zh) * 2016-07-05 2016-10-12 南昌大学 一种高稳定型可控营养物释放纳米乳液的制备方法
CN107136503A (zh) * 2017-04-10 2017-09-08 华南理工大学 一种淀粉包埋叶黄素制备微胶囊的方法
CN107594597A (zh) * 2017-07-31 2018-01-19 浙江新维普添加剂有限公司 一种脂溶性营养素微胶囊及其制备方法
CN107501600A (zh) * 2017-08-31 2017-12-22 华南理工大学 一种利用脉冲电场制备改性多孔淀粉的方法
CN108030063A (zh) * 2017-12-17 2018-05-15 江南大学 一种高载量高生物利用度的β-胡萝卜素微胶囊的制备方法
CN109288065A (zh) * 2018-11-01 2019-02-01 广州白云山汉方现代药业有限公司 一种负载脂溶性维生素的悬浮乳液凝胶及其制备方法
CN110693003A (zh) * 2019-10-23 2020-01-17 华南理工大学 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, Z. ; ZENG, X.A. ; ZHANG, B.S. ; YU, S.J.: "Effects of pulsed electric fields (PEF) treatment on the properties of corn starch", JOURNAL OF FOOD ENGINEERING, BARKING ESSEX, GB, vol. 93, no. 3, 1 August 2009 (2009-08-01), GB, pages 318 - 323, XP026080324, ISSN: 0260-8774, DOI: 10.1016/j.jfoodeng.2009.01.040 *
JIN, SHENGLANG ET AL.: "Effect of High Intensity Pulsed Electric Field Pretreatment on Elasticity of Starch-myofibril Protein Mixed Gelatin", JOURNAL OF JILIN UNIVERSITY (ENGINEERING AND TECHNOLOGY EDITION), vol. 44, no. 02, 31 March 2014 (2014-03-31), pages 573 - 578, XP055804116 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452259A (zh) * 2021-07-28 2022-05-10 安徽旺盛添加剂有限公司 一种维生素d微囊钙片及其制备方法

Also Published As

Publication number Publication date
US20220369682A1 (en) 2022-11-24
CN110693003A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021078173A1 (zh) 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法
CN107950684B (zh) 一种富含不饱和脂肪酸的油凝胶及其制备方法与应用
CN102525923B (zh) 类胡萝卜素乳液及微胶囊的制备方法
EP3821720B1 (en) Microencapsulated conjugated linoleic acid glyceride powder and preparation method thereof
WO2020248295A1 (zh) 一种植物软胶囊及其制备方法与用途
US20230082923A1 (en) Method for preparing emulsion gel-based fat substitute with adjustable phase change and use thereof
CN111466575A (zh) 一种功能性复合蛋白乳液凝胶的制备方法
Rong et al. The application of 3D printing technology on starch-based product: A review
CN104957622A (zh) 一种亚麻稳定乳液及其制备方法
Chen et al. Development of anti-photo and anti-thermal high internal phase emulsions stabilized by biomass lignin as a nutraceutical delivery system
Wang et al. Construction of 3D printable Pickering emulsion gels using complexes of fiber polysaccharide-protein extracted from Haematococcus pluvialis residues and gelatin for fat replacer
CN113100298A (zh) 一种用于替代氢化植物油的油凝胶的制备方法
CN106306639B (zh) 乳酸菌胶原蛋白果冻及其制造方法
CN110089694B (zh) 一种蛋黄-植物甾醇-多糖复合乳液凝胶及其制备方法
CN112056544B (zh) 一种可稳定负载脂溶性活性成分的果胶乳液凝胶的制备方法
CN111642745A (zh) 一种基于植物蛋白与坚果油的β-胡萝卜素乳液凝胶及其制备方法
Sun et al. Emerging trends in pectin functional processing and its fortification for synbiotics: A review
CN115474690B (zh) 一种以植物整蛋白为唯一蛋白来源的全营养特殊医学用途配方食品乳剂及其制备方法
CN114304283A (zh) 一种基于油脂凝胶和水凝胶的食品级双凝胶的制备方法
WO2023236326A1 (zh) 一种用于面部填充的透明质酸-胶原蛋白复合交联微球的制备方法
CN102552328A (zh) 一种鱼油复方纳米乳的制备方法
Okonkwo et al. Application of biogels for bioactives delivery: Recent developments and future research insights
Ni et al. Pickering emulsions stabilized by Chlorella pyrenoidosa protein–chitosan complex for lutein encapsulation
Li et al. Utilization of polysaccharide-based high internal phase emulsion for nutraceutical encapsulation and 3D printing: Reinforcement of curcumin stability and bioaccessibility
CN107969701A (zh) 一种适用于低能耗生产医用食品的高稳定性营养油脂原料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878836

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20878836

Country of ref document: EP

Kind code of ref document: A1