CN107136503A - 一种淀粉包埋叶黄素制备微胶囊的方法 - Google Patents

一种淀粉包埋叶黄素制备微胶囊的方法 Download PDF

Info

Publication number
CN107136503A
CN107136503A CN201710228551.7A CN201710228551A CN107136503A CN 107136503 A CN107136503 A CN 107136503A CN 201710228551 A CN201710228551 A CN 201710228551A CN 107136503 A CN107136503 A CN 107136503A
Authority
CN
China
Prior art keywords
lutein
starch
embedding
capsule
prepares microcapsules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710228551.7A
Other languages
English (en)
Inventor
黄强
李松南
张斌
扶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710228551.7A priority Critical patent/CN107136503A/zh
Publication of CN107136503A publication Critical patent/CN107136503A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/047Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates having two or more hydroxy groups, e.g. sorbitol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种淀粉包埋叶黄素制备微胶囊的方法。该方法先将一定浓度淀粉乳加热膨胀0.5~2h,形成膨胀淀粉,然后一边保温搅拌一边逐滴加入溶有叶黄素的溶剂,反应0.5~4h后冷却,4~25℃下重结晶4~12h,离心,洗涤,干燥后得到叶黄素微胶囊。所得叶黄素微胶囊中叶黄素的含量为2.40~2.54mg/g,在三周贮藏稳定性试验后其叶黄素保留率可达72.1%,且在人体肠液条件下释放率可达87.2%,达到靶向肠道缓释的目的,更有利人体对叶黄素的吸收和利用。该方法对于叶黄素的包埋操作简单、有效、节能,降低了生产成本,增强了贮藏和运输过程对叶黄素的保护,稳定性强且在人体肠道缓释效果好。

Description

一种淀粉包埋叶黄素制备微胶囊的方法
技术领域
本发明涉及叶黄素的包埋,特别是涉及一种淀粉包埋叶黄素制备微胶囊的方法,该方法涉及不同直链淀粉含量的淀粉包埋叶黄素以提高其稳定性,达到靶向肠道和缓释的目的,属于食品工业领域。
背景技术
叶黄素(Lutein,C40H56O2)是一种广泛存在于蔬菜、花卉、水果等植物中的天然色素,万寿菊中含量最多,属于“类胡萝卜类”族物质。叶黄素有多个共轭双键,具有抑制自由基的能力,有抗氧化、抗癌、保护视力和降低心血管疾病发病率等生理活性,近年来被广泛应用于食品和医药工业中。叶黄素水溶性和稳定性差,易受光照、氧气等环境条件的影响而加速降解,使其应用受到限制。
目前,叶黄素的微胶囊制备主要采用固体体系的微胶囊法和液体体系的乳液法。固体体系的微胶囊法主要以阿拉伯胶‐麦芽糊精(沈玲玲,2012,不同微胶囊化叶黄素理化性质及其应用,江南大学)、聚乙二醇‐聚己内酯和乙二醇双硬脂酸酯(钱俊,2010,水溶性叶黄素共聚物胶束的制备及稳定性研究,天津科技大学)为载体进行包埋,然后进行喷雾干燥得到微胶囊产品,存在包埋率低、耗能大和操作繁琐等问题。液体体系的乳液法是先将叶黄素溶于特定的油相中,协同乳化剂,如明胶‐阿拉伯胶(曾治平,2010,叶黄素的微胶囊制备及其稳定性的研究,华南理工大学)、壳聚糖‐三聚磷酸钠(沈玲玲,2012,不同微胶囊化叶黄素理化性质及其应用,江南大学)、吐温(Tan et al.,2016,Food&Function,7(4),2043‐2051;Tan et al.,2013,Journal of Agricultural&Food Chemistry,61(34),8175‐84;Gutiérrez et al.,2014,Colloids&Surfaces A Physicochemical&EngineeringAspects,442(10),111‐122)、酪蛋白酸钠(Tan et al.,2016,Food Chemistry,194,416)和聚乙烯吡咯烷酮(Losso et al.,2005,Food Chemistry,92(4),737‐744)等,形成水包油的乳液体系从而达到包埋叶黄素的目的,但叶黄素在油相中溶解度低,乳液不稳定,得到的产品为液体,不方便贮藏和运输。
中国发明专利2008100173471公开的一种冷水分散型叶黄素微胶囊,以叶黄素粉末为芯材,以改性淀粉与天然胶体组成壁材,并添加适量乳化剂。将上述物质混合,加适量水,加热搅拌,经过滤、喷雾干燥制得。该专利是以改性淀粉与天然胶体组成壁材,需要使用多种乳化剂,乳化剂的使用限制了其在食品和药品领域中应用,且该专利产品制备过程中需经喷雾干燥,耗能高,经过高温加热,不利于叶黄素的保护。
发明内容
本发明目的在于提供一种无需使用乳化剂、成本低廉、操作简单、耗能低、贮藏运输方便、叶黄素稳定性高且具有肠道靶向缓释功能的淀粉包埋叶黄素的方法,是对现有叶黄素微胶囊包埋技术的发展。
本发明的技术方案是先将不同直链淀粉含量的淀粉在低于糊化温度的条件下(50~70℃)吸水膨胀,形成膨胀淀粉,其颗粒表面的直链淀粉溢出,与分散在溶剂的叶黄素进行复合,反应一段时间后,在一定条件下重结晶,形成更稳定的结构,离心洗涤,鼓风干燥得到叶黄素微胶囊产品。本发明以不同直链淀粉含量的淀粉为壁材包埋叶黄素,具有工艺简单、成本低廉、耗能低、贮藏运输方便、叶黄素稳定性高且肠道靶向缓释特点。
本发明所得叶黄素微胶囊中叶黄素的含量为2.40~2.54mg/g,高于市场上的叶黄素产品中的叶黄素含量(百合康牌越橘叶黄素天然β‐胡萝卜素软胶囊,2.02mg/g;来益牌叶黄素咀嚼片,2.22mg/g)。而且在三周贮藏稳定性试验后其叶黄素保留率可达72.1%,在人体肠液条件下释放率可达87.2%,可达到靶向肠道缓释的目的,更有利人体对叶黄素的吸收和利用。本发明技术所得叶黄素微胶囊中的叶黄素含量高,稳定性好,靶向肠道缓释,优于市场上现有的叶黄素产品。
本发明的目的通过如下技术方案实现:
一种淀粉包埋叶黄素制备微胶囊的方法,包括如下步骤和工艺条件:
(1)叶黄素溶解:将叶黄素溶有机溶剂中,室温下搅拌,分散均匀;
(2)淀粉膨胀:用蒸馏水配制2~10wt%的淀粉浆液,搅拌混合,于50~70℃恒温水浴锅中反应0.5~2h,使淀粉颗粒充分膨胀,直链淀粉溢出,形成膨胀淀粉;
(3)混合,包埋:将步骤(1)所得的叶黄素溶液逐滴加入到步骤(2)所得的膨胀淀粉浆液中,搅拌混合,于50~70℃恒温水浴锅中反应0.5~4h,使叶黄素能被膨胀淀粉溢出的直链淀粉均匀包埋;
(4)重结晶,洗涤,干燥:将步骤(3)所得混合物冷却,在4~25℃下重结晶,离心,洗涤,干燥,所得干燥粉末即为叶黄素微胶囊。
优选地,所述有机溶剂为乙醇。
优选地,以质量份数计,步骤(1)中叶黄素为1质量份,有机溶剂为1‐5质量份。
优选地,所述淀粉为普通玉米、马铃薯或木薯淀粉。
优选地,步骤(3)中,以质量份数计,叶黄素溶液为1份,膨胀淀粉浆液为1‐5份,搅拌速率为100rpm~500rpm。
优选地,所述将步骤(1)所得的叶黄素溶液逐滴加入到步骤(2)所得的膨胀淀粉浆液中的滴加时间控制在10~30min。
优选地,所述重结晶的时间为4~12h。
优选地,所述洗涤溶液为30~70%的乙醇水溶液,洗涤次数为3~5次。
优选地,所述干燥是鼓风干燥箱中干燥,干燥温度为35~50℃,干燥时间为8~24h。
优选地,步骤(4)所得叶黄素微胶囊为淡黄色固体粉末,叶黄素含量为2.40~2.54mg/g;三周贮藏稳定性试验结果表明,叶黄素标品对照样在三周贮藏实验后,叶黄素保留率为32.0%,叶黄素微胶囊中的叶黄素保留率达72.1%。
本发明与现有技术相比,其优点在于:
1)本发明方法所采用的淀粉壁材,来源广泛,制备简单。相较于糊化的淀粉,淀粉在低于糊化温度的条件下吸水膨胀,形成膨胀淀粉,其直链淀粉溢出,在溶液中形成内腔疏水而外侧亲水的单螺旋链,这种单螺旋链可作为一种主体分子与叶黄素客体分子进行复合,再通过重结晶工艺形成更为稳定的结构,从而达到包埋效果,实现提高叶黄素的稳定性和肠道缓释的目的。本发明方法具有工艺简单易行,耗能低,产品便于贮藏和运输等特点。
2)本方法将叶黄素先溶于溶剂中,使其均匀地分散于膨胀淀粉溶液中,取得了更好的包埋效果。基于叶黄素的油溶性特点,先将叶黄素溶于溶剂,逐滴加入到膨胀淀粉浆液中,并持续搅拌混合,分散均匀的叶黄素更易与膨胀淀粉溢出的直链淀粉进行复合,再经过重结晶工艺的处理,从而使叶黄素微胶囊复合物的结构更为稳定,在光和氧的贮存条件下稳定性大大提高。
3)本方法所得淀粉叶黄素微胶囊的叶黄素含量高,包埋效果好。本发明所得叶黄素微胶囊中叶黄素的含量为2.40~2.54mg/g,高于市场上的叶黄素产品中的叶黄素含量(百合康牌越橘叶黄素天然β‐胡萝卜素软胶囊,2.02mg/g;来益牌叶黄素咀嚼片,2.22mg/g)。
4)本发明所得叶黄素微胶囊对叶黄素有明显稳定保护和肠道靶向缓释作用。经过三周贮藏稳定性试验,叶黄素标品对照样的叶黄素保留率仅为32.0%,而叶黄素微胶囊的叶黄素保留率可达72.1%,稳定性较好。与人体胃液条件(释放率11.28%)相比,在人体肠液条件下释放率可达87.2%,释放效果好,可达到靶向肠道缓释的目的。而且叶黄素的吸收部位就在人体小肠中,因此淀粉叶黄素微胶囊更有利人体对叶黄素的吸收和利用。
附图说明
图1为淀粉叶黄素微胶囊形成机理图。
图2为叶黄素标准品和实施例1所得淀粉叶黄素微胶囊产品的贮藏稳定性。
图3为实施例1所得淀粉叶黄素微胶囊产品在体外模拟胃肠液中释放规律。
具体实施方式
为了更好的理解本发明,下面结合附图和实施例对本发明做进一步说明,但本发明要求保护的范围并不仅仅局限于实施例表述的范围。
淀粉叶黄素微胶囊的形成原理见图1,具体如下:淀粉颗粒在低于糊化温度的条件下吸水膨胀,形成膨胀淀粉,其直链淀粉溢出,在溶液中形成内腔疏水而外侧亲水的单螺旋链,这种单螺旋链作为一种主体分子与叶黄素客体分子进行复合,再通过重结晶形成了更为稳定的结构,附着在淀粉颗粒表面,从而达到包埋效果,实现提高叶黄素的稳定性和肠道缓释的目的。
实施例中有关测试方法说明如下:
叶黄素微胶囊中叶黄素含量的测定:准确称取0.01g叶黄素微胶囊,分散在3mL二甲基亚砜中,在458nm下测定吸光值,用二甲基亚砜‐淀粉溶液作为对照。据所测样品的吸光值,可从标准曲线C=0.0311A+0.0769(R2=0.9937;C:叶黄素浓度;A:吸光值)上按照以下公式计算出叶黄素的含量:
X=C1×3/M0×1000
其中,X:每克微胶囊中叶黄素的含量(mg/g);
C1:根据标准曲线计算得出的叶黄素浓度(μg/mL);
M0:包合物质量(g)。
叶黄素微胶囊贮藏稳定性试验的测定:取1g制得的叶黄素微胶囊置于250mL的广口透明玻璃瓶中,盖上盖子,置于室内散射光下保存,室温约为33℃。分别于0、3、7、13、21天后,采用上述方法测定叶黄素含量,并计算叶黄素保留率。
叶黄素微胶囊模拟体外消化释放的测定:
(1)模拟胃液:叶黄素微胶囊(300mg)均匀分散在10mL HCl(pH=2)中,在37℃下保温搅拌,分别于20、40、60、80、100、120min取1mL冷冻干燥后,用上述方法测定叶黄素的含量,并计算叶黄素的释放率。
(2)模拟肠液:叶黄素微胶囊在肠液中的释放情况根据Englyst法进行测定。方法如下:准确称取300mg叶黄素微胶囊于50mL带盖离心管中,加入10mL乙酸钠缓冲溶液(pH5.2,0.1M)和5粒玻璃珠,涡旋混匀后,放于37℃恒温震荡水浴锅30min,加入含有猪胰酶和葡萄糖淀粉酶的混合酶5mL,充分涡旋,放于37℃恒温震荡水浴锅中消化,分别于20、40、60、80、100、120min取1mL冷冻干燥后,用上述方法测定叶黄素的含量,并计算叶黄素的释放率。
对比实施例1
将1g叶黄素标品置于250mL的广口透明玻璃瓶中,盖上盖子,置于室内散射光下保存,室温约为33℃。分别于0、3、7、13、21天后,按照上述方法测定叶黄素含量,并计算叶黄素保留率。
经测试,经过三周后,叶黄素降解严重,保留率仅为32.0%。
实施例1
普通玉米淀粉叶黄素微胶囊的制备,包括如下步骤:
(1)叶黄素溶解:以质量分数计,将1份质量为20mg的叶黄素标品溶于5份有机溶剂中,室温下搅拌使之分散均匀,有机溶剂为乙醇;
(2)普通玉米淀粉膨胀:以质量百分比计,用蒸馏水配制4%的普通玉米淀粉浆液,搅拌混合,于55℃恒温水浴锅加热1h,淀粉颗粒膨胀,直链淀粉溢出,形成膨胀普通玉米淀粉;
(3)混合,包埋:以质量份数计,将步骤(1)所得的1份叶黄素溶液在30min内逐滴加入到5份步骤(2)所得的膨胀普通玉米淀粉浆液中,搅拌混合,搅拌速率为300rpm,并于55℃恒温水浴锅中反应1h,使叶黄素能被膨胀普通玉米淀粉溢出的直链淀粉充分均匀包埋;
(4)重结晶,洗涤,干燥:将步骤(3)中混合物先冷却至室温,然后在4℃下重结晶12h,离心,50%乙醇水溶液洗涤3次,转移至40℃鼓风干燥箱中干燥12h,所得干燥粉末即为普通玉米淀粉叶黄素微胶囊。
经测试,所得的普通玉米淀粉叶黄素微胶囊中的叶黄素含量为2.47mg/g。图2为叶黄素标准品和实施例1所得淀粉叶黄素微胶囊产品的贮藏稳定性测试情况。由图中可知,随着贮藏时间的增加,叶黄素标准品和淀粉叶黄素微胶囊产品的保留率均有所降低,但叶黄素标准品保留率降低幅度更大。且经过三周贮藏稳定性测试后,叶黄素标准品的保留率仅为32.0%,而实施例1所得淀粉叶黄素微胶囊产品的保留率仍可以达到72.1%,说明淀粉叶黄素微胶囊产品对叶黄素的保护作用。
图3为实施例1所得淀粉叶黄素微胶囊产品在体外模拟胃肠液中释放情况图。由图中可以看出,随着消化时间的延长,淀粉叶黄素微胶囊产品中的叶黄素逐渐释放,模拟人体肠液条件下的叶黄素释放率始终远远高于模拟人体胃液条件。且模拟体外消化120min后,淀粉叶黄素微胶囊产品在模拟人体胃液条件中的释放率为11.28%,释放率较低,而在模拟人体肠液条件下释放率可达87.2%,释放效果较高,人体对叶黄素的吸收在小肠,因此淀粉叶黄素微胶囊产品更有利人体对叶黄素的吸收和利用。
普通玉米淀粉在低于糊化温度的条件下吸水膨胀,其直链淀粉溢出,形成膨胀普通玉米淀粉,其在溶液中形成内腔疏水而外侧亲水的单螺旋链,对叶黄素进行包埋,反应一段时间后可形成每个螺旋由6~8个葡萄糖单元组成的直链淀粉叶黄素络合物,再在一定条件下重结晶,形成更为稳定的结构,达到保护叶黄素和缓释的效果。
与对比实施例1相比,本方法所得的微胶囊产品中叶黄素的稳定性更高,经过三周贮藏稳定性试验后的叶黄素保留率为72.1%,是叶黄素标品对照样保留率的一倍多。主要有以下两方面原因:一、普通玉米淀粉在低于糊化温度的条件下吸水膨胀,其直链淀粉溢出,形成膨胀普通玉米淀粉,其在溶液中形成内腔疏水而外侧亲水的单螺旋链,对叶黄素进行包埋,反应一段时间后可形成每个螺旋由6~8个葡萄糖单元组成的直链淀粉叶黄素络合物,再在一定条件下重结晶,形成更为稳定的结构,达到保护叶黄素和缓释的作用;二、本发明先将叶黄素溶解于溶剂中,使油性叶黄素流动性增加,分散均匀的叶黄素更易与普通玉米淀粉溢出的直链淀粉进行复合,再经过重结晶的处理,从而使微胶囊复合物的结构更为稳定,抵抗光和氧的能力大大增强,相对于对比实施例1,本发明所得的微胶囊产品中叶黄素的稳定性明显提高。
与中国发明专利2008100173471公开的一种冷水分散型叶黄素微胶囊相比,本发明不采用任何乳化剂,不会限制其在食品和药品领域中的应用。本发明仅采用淀粉为壁材,原料来源广泛,制备简单,所得淀粉叶黄素微胶囊产品成分简单。本发明采用的干燥方法简单,干燥温度不超过70℃,防止了高温导致的叶黄素降解。本发明制备的淀粉叶黄素微胶囊产品,在人体小肠中释放效果好,更有利于人体的吸收和利用。通过本发明所得淀粉叶黄素微胶囊产品的外观、叶黄素含量和贮藏稳定性,以及其在人体胃肠液中的模拟消化释放情况测试,证明了本发明产品在人体小肠中具有良好的释放效果。
实施例2
马铃薯淀粉叶黄素微胶囊的制备,包括如下步骤:
(1)叶黄素溶解:以质量分数计,将1份质量为20mg的叶黄素标品溶于5份有机溶剂中,室温下搅拌使之分散均匀;所述有机溶剂为乙醇;
(2)马铃薯淀粉膨胀:以质量分数计,用蒸馏水配制6%的马铃薯淀粉浆液,搅拌混合,于55℃恒温水浴锅反应1h,使淀粉膨胀,直链淀粉溢出,形成膨胀马铃薯淀粉;
(3)混合,包埋:将步骤(1)所得的1份叶黄素溶液在30min内逐滴加入到3份步骤(2)所得的膨胀马铃薯淀粉浆液中,搅拌混合,搅拌速率为200rpm,并于65℃恒温水浴锅中反应1h,使叶黄素能被膨胀马铃薯淀粉溢出的直链淀粉充分、均匀地包埋;
(4)重结晶,洗涤,干燥:将步骤(3)中混合物冷却至室温,4℃下重结晶12h,离心,50%乙醇水溶液洗涤3次,转移至40℃鼓风干燥箱中干燥12h,所得干燥粉末即为马铃薯淀粉叶黄素微胶囊。
经测试,所得的马铃薯淀粉叶黄素微胶囊中的叶黄素含量为2.42mg/g。贮藏稳定性实验和模拟体外释放实验结果与实施例1的实验结果相似。
实施例3
普通玉米淀粉叶黄素微胶囊的制备,包括如下步骤:
(1)叶黄素溶解:以质量分数计,将1份质量为20mg的叶黄素标品溶于5份有机溶剂中,室温下搅拌使之分散均匀,所述有机溶剂为乙醇;
(2)普通玉米淀粉膨胀:以质量分数计,用蒸馏水配制6%的普通玉米淀粉浆液,搅拌混合,于65℃恒温水浴锅反应1h,使淀粉颗粒膨胀,直链淀粉溢出,形成膨胀普通玉米淀粉;
(3)混合,包埋:将步骤(1)所得的1份叶黄素溶液在30min内逐滴加入到5份步骤(2)所得的膨胀普通玉米淀粉浆液中,搅拌混合,搅拌速率为300rpm,并于65℃恒温水浴锅中反应2h,使叶黄素能被膨胀普通玉米淀粉溢出的直链淀粉充分、均匀地包埋;
(4)重结晶,洗涤,干燥:将步骤(3)中混合物冷却至室温,4℃下重结晶12h,离心,50%乙醇水溶液洗涤3次,转移至40℃鼓风干燥箱中干燥12h,所得干燥粉末即为普通玉米淀粉叶黄素微胶囊。
经测试,所得的普通玉米淀粉叶黄素微胶囊中的叶黄素含量为2.54mg/g。贮藏稳定性实验和模拟体外释放实验结果与实施例1的实验结果相似。
实施例4
木薯淀粉叶黄素微胶囊的制备,包括如下步骤:
(1)叶黄素溶解:以质量分数计,将1份质量为20mg的叶黄素标品溶于5份有机溶剂中,室温下搅拌使之分散均匀,所述有机溶剂为乙醇;
(2)木薯淀粉膨胀:以质量分数计,用蒸馏水配制8%的木薯淀粉浆液,搅拌混合,于55℃恒温水浴锅反应1h,使淀粉颗粒膨胀,直链淀粉溢出,形成膨胀木薯淀粉;
(3)混合,包埋:将步骤(1)所得的1份叶黄素溶液在30min内逐滴加入到3份步骤(2)所得的膨胀木薯淀粉浆液中,搅拌混合,搅拌速率为300rpm,并于65℃恒温水浴锅中反应2h,使叶黄素能被膨胀木薯淀粉溢出的直链淀粉充分、均匀地包埋;
(4)重结晶,洗涤,干燥:将步骤(3)中混合物冷却至室温,4℃下重结晶12h,离心,50%乙醇水溶液洗涤3次,转移至40℃鼓风干燥箱中干燥12h,所得干燥粉末即为木薯淀粉叶黄素微胶囊。
经测试,所得的木薯淀粉叶黄素微胶囊中的叶黄素含量为2.43mg/g。贮藏稳定性实验和模拟体外释放实验结果与实施例1的实验结果相似。

Claims (10)

1.一种淀粉包埋叶黄素制备微胶囊的方法,其特征在于包括如下步骤和工艺条件:
(1)叶黄素溶解:将叶黄素溶有机溶剂中,室温下搅拌,分散均匀;
(2)淀粉膨胀:用蒸馏水配制2~10wt%的淀粉浆液,搅拌混合,于50~70℃恒温水浴锅中反应0.5~2h,使淀粉颗粒充分膨胀,直链淀粉溢出,形成膨胀淀粉;
(3)混合,包埋:将步骤(1)所得的叶黄素溶液逐滴加入到步骤(2)所得的膨胀淀粉浆液中,搅拌混合,于50~70℃恒温水浴锅中反应0.5~4h,使叶黄素能被膨胀淀粉溢出的直链淀粉均匀包埋;
(4)重结晶,洗涤,干燥:将步骤(3)所得混合物冷却,在4~25℃下重结晶,离心,洗涤,干燥,所得干燥粉末即为叶黄素微胶囊。
2.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于:所述有机溶剂为乙醇。
3.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于,以质量份数计,步骤(1)中叶黄素为1质量份,有机溶剂为1‐5质量份。
4.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于,所述淀粉为普通玉米、马铃薯或木薯淀粉。
5.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于,步骤(3)中,以质量份数计,叶黄素溶液为1份,膨胀淀粉浆液为1‐5份,搅拌速率为100rpm~500rpm。
6.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于,所述将步骤(1)所得的叶黄素溶液逐滴加入到步骤(2)所得的膨胀淀粉浆液中的滴加时间控制在10~30min。
7.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于,所述重结晶的时间为4~12h。
8.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于,所述洗涤溶液为30~70%的乙醇水溶液,洗涤次数为3~5次。
9.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于,所述干燥是鼓风干燥箱中干燥,干燥温度为35~50℃,干燥时间为8~24h。
10.根据权利要求1所述的淀粉包埋叶黄素制备微胶囊的方法,其特征在于,步骤(4)所得叶黄素微胶囊为淡黄色固体粉末,叶黄素含量为2.40~2.54mg/g;三周贮藏稳定性试验结果表明,叶黄素标品对照样在三周贮藏实验后,叶黄素保留率为32.0%,叶黄素微胶囊中的叶黄素保留率达72.1%。
CN201710228551.7A 2017-04-10 2017-04-10 一种淀粉包埋叶黄素制备微胶囊的方法 Pending CN107136503A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710228551.7A CN107136503A (zh) 2017-04-10 2017-04-10 一种淀粉包埋叶黄素制备微胶囊的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710228551.7A CN107136503A (zh) 2017-04-10 2017-04-10 一种淀粉包埋叶黄素制备微胶囊的方法

Publications (1)

Publication Number Publication Date
CN107136503A true CN107136503A (zh) 2017-09-08

Family

ID=59773566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710228551.7A Pending CN107136503A (zh) 2017-04-10 2017-04-10 一种淀粉包埋叶黄素制备微胶囊的方法

Country Status (1)

Country Link
CN (1) CN107136503A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107594406A (zh) * 2017-09-14 2018-01-19 天津科技大学 一种利用淀粉原位包埋新鲜大蒜中大蒜素的方法
WO2021078173A1 (zh) * 2019-10-23 2021-04-29 华南理工大学 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法
CN115349638A (zh) * 2022-09-16 2022-11-18 齐鲁工业大学 一种高益生性抗性淀粉及其制备方法
CN115530367A (zh) * 2021-06-29 2022-12-30 华南理工大学 一种含β-胡萝卜素的氧化高直链淀粉乳液及其制备方法与应用
CN115778917A (zh) * 2023-01-03 2023-03-14 聊城大学 一种叶黄素微胶囊及其制备方法和应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107594406A (zh) * 2017-09-14 2018-01-19 天津科技大学 一种利用淀粉原位包埋新鲜大蒜中大蒜素的方法
WO2021078173A1 (zh) * 2019-10-23 2021-04-29 华南理工大学 包埋脂溶性维生素的乳液凝胶及其基于脉冲电场的生产方法
CN115530367A (zh) * 2021-06-29 2022-12-30 华南理工大学 一种含β-胡萝卜素的氧化高直链淀粉乳液及其制备方法与应用
CN115530367B (zh) * 2021-06-29 2023-09-26 华南理工大学 一种含β-胡萝卜素的氧化高直链淀粉乳液及其制备方法与应用
CN115349638A (zh) * 2022-09-16 2022-11-18 齐鲁工业大学 一种高益生性抗性淀粉及其制备方法
CN115778917A (zh) * 2023-01-03 2023-03-14 聊城大学 一种叶黄素微胶囊及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN107136503A (zh) 一种淀粉包埋叶黄素制备微胶囊的方法
Lin et al. Anthocyanin-loaded double Pickering emulsion stabilized by octenylsuccinate quinoa starch: Preparation, stability and in vitro gastrointestinal digestion
Zhang et al. Influence of anionic alginate and cationic chitosan on physicochemical stability and carotenoids bioaccessibility of soy protein isolate-stabilized emulsions
Donhowe et al. Characterization and in vitro bioavailability of β-carotene: Effects of microencapsulation method and food matrix
Xiong et al. Construction of food-grade pH-sensitive nanoparticles for delivering functional food ingredients
Park et al. Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels
Liu et al. The hydrogel of whey protein isolate coated by lotus root amylopectin enhance the stability and bioavailability of quercetin
US20220369682A1 (en) Emulsion gel embedding fat-soluble vitamin and pulsed electric field based production method therefor
JP5008980B2 (ja) 胃腸管送達系
Pan et al. Microencapsulation of blueberry anthocyanins by spray drying with soy protein isolates/high methyl pectin combination: Physicochemical properties, release behavior in vitro and storage stability
CN109452621A (zh) 一种pH敏感型淀粉基微胶囊及其制备方法
Yang et al. Comparison of bioaccessibility of astaxanthin encapsulated in starch-based double emulsion with different structures
Calligaris et al. Nanoemulsions as delivery systems of hydrophobic silybin from silymarin extract: effect of oil type on silybin solubility, in vitro bioaccessibility and stability
Song et al. Stability and release of peach polyphenols encapsulated by Pickering high internal phase emulsions in vitro and in vivo
TW201117734A (en) Composition containing fat-soluble vitamin
CN110547455A (zh) 一种含有唾液酸与类胡萝卜素的微胶囊及其制备方法和应用
Gao et al. Preparation and characterization of octenyl succinylated starch microgels via a water-in-oil (W/O) inverse microemulsion process for loading and releasing epigallocatechin gallate
Zhang et al. Protein and Peptide‐Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins
CN103549635B (zh) 基于金属有机骨架的抗性淀粉营养载体的制备方法及产品
Guo et al. Microcapsules with slow-release characteristics prepared by soluble small molecular starch fractions through the spray drying method
CN107455751A (zh) 一种维生素e与大豆异黄酮稳定态的制备方法
Yang et al. Effect of soybean protein isolate-pectin composite nanoparticles and hydroxypropyl methyl cellulose on the formation, stabilization and lipidolysis of food-grade emulsions
Geng et al. An investigation on pickering nano-emulsions stabilized by dihydromyricetin/high-amylose corn starch composite particles: Preparation conditions and carrier properties
He et al. Ultrasound-assisted multilayer Pickering emulsion fabricated by WPI-EGCG covalent conjugates for encapsulating probiotics in colon-targeted release
Tang et al. Influence of covalent conjugates of zein peptide-phenolic acids with different hydrophobicity on performance of resultant lutein-loaded emulsion gels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170908