WO2021075393A1 - 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ - Google Patents

組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ Download PDF

Info

Publication number
WO2021075393A1
WO2021075393A1 PCT/JP2020/038426 JP2020038426W WO2021075393A1 WO 2021075393 A1 WO2021075393 A1 WO 2021075393A1 JP 2020038426 W JP2020038426 W JP 2020038426W WO 2021075393 A1 WO2021075393 A1 WO 2021075393A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
resin
composition
preferable
Prior art date
Application number
PCT/JP2020/038426
Other languages
English (en)
French (fr)
Inventor
敬史 川島
雅臣 牧野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021552374A priority Critical patent/JPWO2021075393A1/ja
Priority to KR1020227012463A priority patent/KR20220063238A/ko
Priority to CN202080072694.3A priority patent/CN114556215A/zh
Publication of WO2021075393A1 publication Critical patent/WO2021075393A1/ja
Priority to US17/720,543 priority patent/US20220244637A1/en
Priority to JP2023091766A priority patent/JP7451807B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/20Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the present invention relates to a composition, a film, a cured film and a method for producing the same, a near infrared transmission filter, a solid-state image sensor, and an infrared sensor.
  • a film containing a pigment such as a color filter is used for the solid-state image sensor.
  • a film containing a pigment such as a color filter is manufactured by using a composition containing a colorant, a resin, and a solvent.
  • Patent Document 1 describes an alkali-soluble resin having a specific structural unit, which is characterized by containing each structural unit in a specific content, and a photosensitive resin for a color filter containing the above resin.
  • the resin composition and the like are described.
  • Patent Document 2 is selected from a group of acrylamide-based monomers consisting of ⁇ -substituted acrylamide, N-mono-substituted acrylamide, N, N-di-substituted acrylamide and N-mono-substituted methacrylamide.
  • a water-soluble colored photosensitive resin composition comprising a water-soluble resin having a polymer using at least one of the above-mentioned monomers, a cross-linking agent having a water-soluble azide compound, and a colorant. ing.
  • a film such as a color filter is formed using a composition containing a colorant, a resin, and a solvent, and then subjected to a step requiring heat treatment at a high temperature (for example, 320 ° C. or higher). That is also being considered. Therefore, it is desired to provide a composition having excellent heat resistance of the obtained film.
  • the present invention provides a novel composition for obtaining a film having excellent heat resistance, a film obtained from the above composition, a cured film obtained by curing the above composition and a method for producing the same, the above film or the above cured film. It is an object of the present invention to provide a near-infrared transmissive filter including the film, a solid-state imaging device including the film or the cured film, and an infrared sensor including the film or the cured film.
  • a composition containing a colorant, a resin, and a solvent contains at least one repeating unit selected from the group consisting of repeating units represented by any of the following formulas (1-1) to (1-5).
  • the ratio of the total amount of repeating units represented by any of the following formulas (1-1) to (1-5) to the total molar amount of all repeating units contained in the resin is 10 mol% or more.
  • the total content of the colorant and the near-infrared absorber is 30% by mass or more based on the total solid content of the composition.
  • a composition in which Amin / B, which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm of the composition to the absorbance B in the wavelength range of 1,500 nm of the composition, is 5 or more.
  • R 11 , R 12 and R 13 may be independently substituted with an alkyl group which may be substituted with a hydrogen atom, a fluorine atom or a fluorine atom, or an alkyl group which may be substituted with a fluorine atom.
  • R 21 , R 22 and R 23 may be independently substituted with a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with a fluorine atom, or a fluorine atom.
  • R 24 and R 25 independently represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and R 24 and R respectively.
  • R 31 , R 32 and R 33 may be independently substituted with an alkyl group which may be substituted with a hydrogen atom, a fluorine atom or a fluorine atom, or an alkyl group which may be substituted with a fluorine atom.
  • R 34 and R 35 independently represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and R 34 and R respectively.
  • R 41 and R 42 are independently substituted with a hydrogen atom, a fluorine atom, an alkyl group or a fluorine atom, or an aromatic carbide which may be substituted with a fluorine atom.
  • R 51 to R 54 are independently substituted with a hydrogen atom, a fluorine atom, an alkyl group or a fluorine atom, or an aromatic carbide which may be substituted with a fluorine atom.
  • R 55 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the ratio of the total amount of the repeating units represented by the above formula (1-1) to the total molar amount of all the repeating units contained in the resin is 10 mol% or more, according to ⁇ 1>.
  • ⁇ 4> The composition according to any one of ⁇ 1> to ⁇ 3>, wherein Ar has a substituent containing a heteroatom as a substituent in the above formula (1-1).
  • ⁇ 5> The wavelength of the film having a thickness of 1 ⁇ m formed from the above composition and showing a light transmittance of 50% in the thickness direction of the film is 700 to 950 nm, and the wavelength of the film is 950 to 1,300 nm.
  • ⁇ 6> The wavelength of the film having a thickness of 1 ⁇ m formed from the above composition and showing a light transmittance of 50% in the thickness direction of the film is 700 to 800 nm, and the wavelength of the film is 800 to 1,300 nm.
  • ⁇ 7> The composition according to any one of ⁇ 1> to ⁇ 6>, wherein the colorant is an organic pigment.
  • ⁇ 8> The composition according to any one of ⁇ 1> to ⁇ 7>, which contains a near-infrared absorber.
  • the colorant contains at least one color material selected from the group consisting of a red color material, a green color material, a blue color material, a yellow color material, and a purple color material, ⁇ 1> to ⁇ 9>.
  • composition according to any one of ⁇ 1> to ⁇ 13> which comprises the following resin 1 and the following resin 2 as the resin;
  • Resin 1 The resin containing an acid group and a group having an ethylenically unsaturated bond;
  • Resin 2 The resin having at least one group selected from the group consisting of a hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, and an amino group, and a molecular weight of 500 to 10,000.
  • ⁇ 15> The composition according to any one of ⁇ 1> to ⁇ 14>, further comprising a polymerizable compound.
  • ⁇ 16> The composition according to any one of ⁇ 1> to ⁇ 15>, further comprising a polymerization initiator.
  • ⁇ 17> The composition according to ⁇ 16>, wherein the polymerization initiator is a photopolymerization initiator.
  • ⁇ 18> The composition according to any one of ⁇ 1> to ⁇ 17>, which is used for pattern formation in a photolithography method.
  • ⁇ 19> The composition according to any one of ⁇ 1> to ⁇ 18>, which is for a solid-state image sensor.
  • ⁇ 20> A film obtained from the composition according to any one of ⁇ 1> to ⁇ 19>.
  • ⁇ 21> A cured film obtained by curing the composition according to any one of ⁇ 1> to ⁇ 19>.
  • ⁇ 22> A near-infrared transmissive filter containing the film according to ⁇ 20> or the cured film according to ⁇ 21>.
  • ⁇ 23> A solid-state image sensor containing the film according to ⁇ 20> or the cured film according to ⁇ 21>.
  • ⁇ 24> An infrared sensor containing the film according to ⁇ 20> or the cured film according to ⁇ 21>.
  • ⁇ 25> A method for producing a cured film, which comprises a step of curing a film formed from the composition according to any one of ⁇ 1> to ⁇ 19> by at least one of exposure and heating.
  • ⁇ 26> The method for producing a cured film according to ⁇ 24>, which comprises a step of curing a film formed from the composition according to any one of ⁇ 1> to ⁇ 19> by exposure.
  • a method for producing a cured film which comprises a developing step of developing the film after exposure.
  • a novel composition for obtaining a film having excellent heat resistance a film obtained from the above composition, a cured film obtained by curing the above composition and a method for producing the same, the above film or the above cured film.
  • a near-infrared transmissive filter including the above-mentioned film or a solid-state imaging device including the above-mentioned cured film, and an infrared sensor including the above-mentioned film or the above-mentioned cured film are provided.
  • the present invention is not limited to the specified embodiments.
  • "-" is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
  • the notation not describing substitution and non-substituent also includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • exposure includes not only exposure using light but also drawing using particle beams such as an electron beam and an ion beam.
  • the light used for exposure include the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, active rays such as electron beams, or radiation.
  • EUV light extreme ultraviolet rays
  • active rays such as electron beams, or radiation.
  • the (meth) allyl group represents both allyl and metharyl, or either
  • (meth) acrylate” represents both acrylate and methacrylate, or either, and "(meth)”.
  • “Acrylic” represents both acrylic and methacrylic, or either, and “(meth) acryloyl” represents both acryloyl and methacrylic, or either.
  • the weight average molecular weight and the number average molecular weight are polystyrene-equivalent values measured by a GPC (gel permeation chromatography) method.
  • the near infrared ray means light having a wavelength of 700 to 2,500 nm.
  • the total solid content means the total mass of all the components of the composition excluding the solvent.
  • process does not mean only an independent process, but even if it cannot be clearly distinguished from other processes, if the desired action of the process is achieved, the term is used. included. In the present specification, the combination of preferred embodiments is a more preferred embodiment.
  • composition of the present invention is a composition containing a colorant, a resin, and a solvent, and the resin is repeatedly represented by any of the following formulas (1-1) to (1-5). Any one of the following formulas (1-1) to (1-5) with respect to the total molar amount of all the repeating units contained in the resin, which contains at least one repeating unit selected from the group consisting of units.
  • the ratio of the total amount of the repeating units represented by is 10 mol% or more, and the total content of the colorant and the near-infrared absorber is 30% by mass or more with respect to the total solid content of the composition.
  • Amin / B which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm of the composition to the absorbance B in the wavelength range of 1,500 nm of the composition, is 5 or more.
  • R 11 , R 12 and R 13 may be independently substituted with an alkyl group which may be substituted with a hydrogen atom, a fluorine atom or a fluorine atom, or an alkyl group which may be substituted with a fluorine atom.
  • R 21 , R 22 and R 23 may be independently substituted with a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with a fluorine atom, or a fluorine atom.
  • R 24 and R 25 independently represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and R 24 and R respectively.
  • R 31 , R 32 and R 33 may be independently substituted with an alkyl group which may be substituted with a hydrogen atom, a fluorine atom or a fluorine atom, or an alkyl group which may be substituted with a fluorine atom.
  • R 34 and R 35 independently represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and R 34 and R respectively.
  • R 41 and R 42 are independently substituted with a hydrogen atom, a fluorine atom, an alkyl group or a fluorine atom, or an aromatic carbide which may be substituted with a fluorine atom.
  • R 51 to R 54 are independently substituted with a hydrogen atom, a fluorine atom, an alkyl group or a fluorine atom, or an aromatic carbide which may be substituted with a fluorine atom.
  • R 55 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the composition of the present invention contains a colorant and, if necessary, a near-infrared absorber, and further contains a resin and an organic solvent.
  • the total content of the colorant contained in the composition and the near-infrared absorber which may be contained if necessary is 30% by mass or more with respect to the total solid content of the composition.
  • the present inventors have found that the content of the above-mentioned colorant and the near-infrared absorber which may be contained as needed, including such a colorant, a resin and a solvent, is the total content of the composition.
  • a composition having a solid content of 30% by mass or more when a conventionally used acrylic resin or the like is used as the resin, the composition is subjected to, for example, a step requiring heat treatment at a high temperature (for example, 320 ° C. or higher). It was found that there is room for further improvement in the heat resistance of the film, such as an increase in the film shrinkage rate of the film obtained in this case.
  • the present inventors have speculated that the film shrinkage is caused by the decomposition of the acrylic resin at a high temperature. Therefore, as a result of diligent studies, the present inventors have made a resin in which the ratio of the total amount of the repeating units represented by any of the above formulas (1-1) to (1-5) is 10 mol% or more.
  • the composition of the present invention has an Amin / B ratio of 5 or more, which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm to the absorbance B in the wavelength range of 1,500 nm.
  • an Amin / B ratio of 5 or more which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm to the absorbance B in the wavelength range of 1,500 nm.
  • the present inventors may hinder the transmission of ultraviolet light in the exposure at the time of pattern formation, and there is room for further improvement in the exposure sensitivity. I found that there is. Therefore, as a result of diligent studies, the present inventors have expressed one of the formulas (1-1) to (1-5), which is a structure having a higher polarity than the structure contained in the conventional acrylic resin.
  • the exposure sensitivity can be easily improved by using a specific resin having a repeating unit. This is because, for example, by using the above-mentioned specific resin, there is a high possibility that the polymerizable groups in the specific resin or the polymerizable compound having a low polarity structure are close to each other in the composition, and the above-mentioned polymerizable groups at the time of exposure It is presumed that this is because the cross-linking is easy to proceed.
  • the composition of the present invention has an Amin / B ratio of 5 or more, which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm to the absorbance B in the wavelength range of 1,500 nm. Since the composition of the present invention transmits near infrared rays, it can be said to be a near infrared ray transmitting composition.
  • the value of Amin / B is preferably 10 or more, more preferably 15 or more, and further preferably 30 or more. In the composition of the present invention, the value of Amin / B is designed, for example, by adjusting the type of colorant and the content of the colorant.
  • the absorbance A ⁇ at a certain wavelength ⁇ is defined by the following equation (1).
  • a ⁇ -log (T ⁇ / 100) ...
  • a ⁇ is the absorbance at the wavelength ⁇
  • T ⁇ is the transmittance (%) at the wavelength ⁇ .
  • the absorbance value may be a value measured in the state of the composition or a value in a film formed by using the composition.
  • a composition is applied onto a glass substrate by a method such as spin coating so that the thickness of the film after drying becomes a predetermined thickness, and the temperature is 100 ° C. using a hot plate. , It is preferable to measure using a membrane prepared by drying for 120 seconds.
  • the thickness of the film can be measured by using a stylus type surface shape measuring device (DEKTAK150 manufactured by ULVAC, Inc.) for the substrate having the film.
  • the absorbance can be measured using a conventionally known spectrophotometer.
  • the measurement condition of the absorbance is not particularly limited, but the absorbance B in the wavelength range of 1,500 nm is adjusted so that the minimum value Amin of the absorbance in the wavelength range of 400 to 640 nm is 0.1 to 3.0. It is preferable to measure. By measuring the absorbance under such conditions, the measurement error can be further reduced.
  • the method for adjusting the minimum absorbance Amin in the wavelength range of 400 to 640 nm to be 0.1 to 3.0 is not particularly limited. For example, when measuring the absorbance in the state of the composition, a method of adjusting the optical path length of the sample cell can be mentioned. Further, when measuring the absorbance in the state of a film, a method of adjusting the film thickness and the like can be mentioned.
  • the composition of the present invention is applied onto a glass substrate by a method such as spin coating so that the thickness of the film after drying becomes a predetermined thickness, and dried at 100 ° C. for 120 seconds using a hot plate.
  • the thickness of the film is measured by using a stylus type surface shape measuring device (DEKTAK150 manufactured by ULVAC) on the dried substrate having the film.
  • the transmittance of the dried substrate having this film is measured in the wavelength range of 300 to 1,500 nm using an ultraviolet-visible near-infrared spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation).
  • the composition of the present invention satisfies any of the following spectral characteristics (1A) to (4A).
  • Amin4 / Bmax4 which is the ratio of the minimum absorbance Amin4 in the wavelength range of 400 to 950 nm and the maximum absorbance Bmax4 in the wavelength range of 1,100 to 1,500 nm, is 5 or more and 10 or more. It is preferably 15 or more, more preferably 30 or more, and even more preferably 30 or more. According to this aspect, for example, it is possible to block light in the wavelength range of 400 to 950 nm to form a film capable of transmitting near infrared rays having a wavelength of more than 1,040 nm.
  • the maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 640 nm is 20% or less. It is preferable that the light transmittance in the thickness direction of the film satisfies the spectral characteristics of 70% or more at a wavelength of 1,500 nm.
  • the maximum value in the wavelength range of 400 to 640 nm is more preferably 15% or less, and more preferably 10% or less.
  • the lower limit is not particularly limited and may be 0% or more.
  • the value at a wavelength of 1,500 nm is more preferably 75% or more, and more preferably 80% or more.
  • the upper limit is not particularly limited and may be 100% or less.
  • the composition of the present invention satisfies any of the following spectral characteristics (1B) to (4B).
  • the maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 750 nm is 20. % Or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the light transmittance in the film thickness direction in the wavelength range of 900 to 1,500 nm is 70% or more (preferably 75%). Above, more preferably 80% or more).
  • the maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 830 nm is 20. % Or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the light transmittance in the film thickness direction in the wavelength range of 1,000 to 1,500 nm is 70% or more (preferably). 75% or more, more preferably 80% or more).
  • the maximum value of the light transmittance in the thickness direction of the film in the wavelength range of 400 to 950 nm is 20. % Or less (preferably 15% or less, more preferably 10% or less), and the minimum value of the light transmittance in the film thickness direction in the wavelength range of 1,100 to 1,500 nm is 70% or more (preferably). 75% or more, more preferably 80% or more).
  • ⁇ Film thickness due to heating> When a film having a thickness of 0.60 ⁇ m was formed by heating at 200 ° C. for 30 minutes using the composition of the present invention, the film was heat-treated at 320 ° C. for 3 hours in a nitrogen atmosphere.
  • the thickness is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more of the thickness of the film before the heat treatment.
  • the thickness of the film after being heat-treated at 350 ° C. for 5 hours in a nitrogen atmosphere is preferably 70% or more, preferably 80% or more of the thickness of the film before the heat treatment. Is more preferable, and 90% or more is further preferable.
  • the above physical characteristics can be achieved by a method such as adjusting the type and content of the specific resin to be used or other resin.
  • ⁇ Spectroscopic change due to heating> when the composition of the present invention was heated at 200 ° C. for 30 minutes to form a film having a thickness of 0.60 ⁇ m, the film was heat-treated at 320 ° C. for 3 hours in a nitrogen atmosphere.
  • A1 is the maximum value of the absorbance in the wavelength range of 400 to 1,500 nm of the film before the heat treatment.
  • A2 is the absorbance of the film after the heat treatment, and is the absorbance at a wavelength indicating the maximum value of the absorbance of the film before the heat treatment in the wavelength range of 400 to 1,500 nm.
  • the above physical characteristics can be achieved by a method such as adjusting the type and content of the specific resin to be used or other resin.
  • a wavelength indicating the maximum value of absorbance in the wavelength range of 400 to 1,500 nm of the film is preferably 50 nm or less, preferably 45 nm or less. It is more preferably present, and further preferably 40 nm or less.
  • the above physical characteristics can be achieved by a method such as adjusting the type and content of the specific resin to be used or other resin.
  • the film when the composition of the present invention was heated at 200 ° C. for 30 minutes to form a film having a thickness of 0.60 ⁇ m, the film was heat-treated at 320 ° C. for 3 hours in a nitrogen atmosphere.
  • the maximum value of the rate of change ⁇ A ⁇ of the absorbance in the wavelength range of 400 to 1,500 nm after the treatment is preferably 30% or less, more preferably 27% or less, and more preferably 25% or less. More preferred.
  • the rate of change in absorbance ⁇ A ⁇ is a value calculated from the following equation (2).
  • ⁇ A ⁇
  • a ⁇ is the rate of change in absorbance at the wavelength ⁇ of the film after heat treatment.
  • A1 ⁇ is the absorbance at the wavelength ⁇ of the film before heat treatment.
  • A2 ⁇ is the absorbance at the wavelength ⁇ of the film after the heat treatment.
  • the above physical characteristics can be achieved by a method such as adjusting the type and content of the specific resin to be used or other resin.
  • the film when the composition of the present invention was heated at 200 ° C. for 30 minutes to form a film having a thickness of 0.60 ⁇ m, the film was heat-treated at 320 ° C. for 3 hours in a nitrogen atmosphere to heat the film.
  • the maximum value of the rate of change ⁇ B of the absorbance B at a wavelength of 1,500 nm after the treatment is preferably 30% or less, more preferably 27% or less, still more preferably 25% or less.
  • B1 is the absorbance of the film before heat treatment at a wavelength of 1,500 nm.
  • B2 is the absorbance of the film after heat treatment at a wavelength of 1,500 nm.
  • the above physical characteristics can be achieved by a method such as adjusting the type and content of the specific resin to be used or other resin.
  • the wavelength of the film having a film thickness of 1 ⁇ m formed from the composition of the present invention and showing a light transmittance of 50% in the thickness direction of the film is preferably 700 to 950 nm, more preferably 700 to 900 nm. It is more preferably 700 to 850 nm, and particularly preferably 700 to 800 nm. Further, it is preferable that the minimum value of the light transmittance in the wavelength range of 950 to 1,300 nm in the thickness direction of the film formed from the composition of the present invention and having a film thickness of 1 ⁇ m is 90% or more, and the wavelength is 900.
  • the minimum value of the light transmittance in the range of ⁇ 1,300 nm is more preferably 90% or more, and the minimum value of the light transmittance in the wavelength range of 850 to 1,300 nm is more preferably 90% or more. It is particularly preferable that the minimum value of the light transmittance in the wavelength range of 800 to 1,300 nm is 90% or more.
  • T1 the embodiment described in the following (T1) is preferable, and the embodiment described in the following (T2) is more preferable.
  • the wavelength of the film having a thickness of 1 ⁇ m formed from the composition of the present invention and showing a light transmittance of 50% in the thickness direction of the film is 700 to 950 nm, and the wavelengths of the film are 950 to 1,
  • the minimum value of the light transmittance in the range of 300 nm is 90% or more
  • the wavelength indicating the light transmittance of 50% in the thickness direction of the film having a thickness of 1 ⁇ m formed from the composition of the present invention is A film having a thickness of 1 ⁇ m formed from the composition of the present invention having a thickness of 700 to 800 nm and a minimum value of light transmittance of 90% or more in the wavelength range of 800 to 1,300 nm of the film is, for example, ,
  • the composition can be formed by applying the composition to a glass substrate and heating at 100 ° C. for 120 seconds.
  • the composition of the present invention can be preferably used as a composition for a near-infrared transmission filter. Specifically, it can be preferably used as a composition for forming pixels of a near-infrared transmission filter. Further, the composition of the present invention is preferably for a solid-state image sensor. For example, it can be preferably used as a composition for forming pixels of a near-infrared transmission filter used in a solid-state image sensor.
  • the composition of the present invention is a composition for pattern formation by a photolithography method. According to this aspect, finely sized pixels can be easily formed. Therefore, it can be particularly preferably used as a composition for forming pixels of a color filter used in a solid-state image sensor.
  • a composition containing a component having a polymerizable group for example, a resin having a polymerizable group or a polymerizable compound
  • a photopolymerization initiator is preferably used as a composition for pattern formation in a photolithography method.
  • the composition for pattern formation in the photolithography method preferably further contains an alkali-soluble resin (for example, resin 1 described later or a resin having alkali developability described later).
  • the composition of the present invention contains a colorant.
  • the colorant include a white color material, a black color material, and a chromatic color material.
  • the white color material includes not only pure white color material but also a light gray color material close to white (for example, grayish white, light gray, etc.).
  • the color material preferably contains at least one color material selected from the group consisting of a chromatic color material and a black color material, more preferably a chromatic color material, and a red color material and a green color material. It is more preferable to include at least one color material selected from the group consisting of a color material, a blue color material, a yellow color material and a purple color material.
  • the colorant also preferably contains a black colorant.
  • the colorant examples include dyes and pigments, and pigments are preferable from the viewpoint of heat resistance.
  • the pigment may be either an inorganic pigment or an organic pigment, but is preferably an organic pigment from the viewpoints of many color variations, ease of dispersion, safety and the like. Further, the pigment preferably contains at least one selected from chromatic pigments, and more preferably contains chromatic pigments.
  • the pigment may contain at least one selected from phthalocyanine pigments, dioxazine pigments, quinacridone pigments, anthraquinone pigments, perylene pigments, azo pigments, diketopyrrolopyrrole pigments, pyrolopyrrole pigments, isoindolin pigments and quinophthalone pigments. It is more preferable that it contains at least one selected from a phthalocyanine pigment, a diketopyrrolopyrrole pigment and a pyrrolopyrrole pigment, and even more preferably it contains a phthalocyanine pigment or a diketopyrrolopyrrole pigment.
  • the phthalocyanine pigment has a phthalocyanine pigment having no central metal and copper or zinc as the central metal because it is easy to form a film whose spectral characteristics do not easily fluctuate even after heating to a high temperature (for example, 320 ° C. or higher). Phthalocyanine pigments are preferred.
  • the colorant contained in the composition is selected from at least a red pigment, a yellow pigment, and a blue pigment because it is easy to form a film whose spectral characteristics do not easily fluctuate even after being heated to a high temperature (for example, 320 ° C. or higher). It is preferable to contain one kind, it is more preferable to contain at least one kind selected from a red pigment and a blue pigment, and it is further preferable to contain a blue pigment.
  • the colorant contained in the composition preferably contains the pigment A showing the following condition 1.
  • the ratio of the pigment A in the total amount of the pigment contained in the composition is preferably 20 to 100% by mass, more preferably 30 to 100% by mass, and further preferably 40 to 100% by mass.
  • A11 is the maximum value of the absorbance in the wavelength range of 400 to 1,100 nm of the film before the heat treatment.
  • A12 is the absorbance of the film after the heat treatment, which is the absorbance at the wavelength indicating the maximum value of the absorbance of the film before the heat treatment in the wavelength range of 400 to 1,100 nm;
  • Resin B-5 is a resin having the following structure, and the numerical values added to the main chain are molar ratios, the weight average molecular weight is 11,000, and the acid value is 32 mgKOH / g.
  • Pigment A that satisfies the above condition 1 includes C.I. I. Pigment Red 254, C.I. I. Pigment Red 264, Pigment Red 272, Pigment Red 122, Pigment Red 177, C.I. I. Pigment Blue 15: 3, C.I. I. Pigment Blue 15: 4, C.I. I. Pigment Blue 15: 6, C.I. I. Pigment Blue 16 and the like.
  • the average primary particle size of the pigment is preferably 1 to 200 nm.
  • the lower limit is preferably 5 nm or more, more preferably 10 nm or more.
  • the upper limit is preferably 180 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.
  • the primary particle size of the pigment can be determined from a photograph obtained by observing the primary particles of the pigment with a transmission electron microscope. Specifically, the projected area of the primary particles of the pigment is obtained, and the corresponding circle-equivalent diameter is calculated as the primary particle diameter of the pigment.
  • the average primary particle size in the present invention is an arithmetic mean value of the primary particle size for the primary particles of 400 pigments.
  • the primary particles of the pigment refer to independent particles without agglomeration.
  • the chromatic color material examples include a color material having a maximum absorption wavelength in the wavelength range of 400 to 700 nm.
  • a yellow color material, a red color material (including an orange color material, etc.), a green color material, a purple color material, a blue color material, and the like can be mentioned.
  • the chromatic color material is preferably a pigment (chromatic pigment), more preferably a red pigment (including an orange pigment or the like), a yellow pigment, and a blue pigment, and the red pigment and the blue pigment are used. More preferred.
  • Specific examples of the chromatic pigment include those shown below.
  • C.I. I. Pigment Red 254, C.I. I. Pigment Red 264, Pigment Red 272, Pigment Red 122, Pigment Red 177 are preferable.
  • C.I. I. Pigment Blue 15: 3 C.I. I. Pigment Blue 15: 4
  • C.I. I. Pigment Blue 15: 6 C.I. I. Pigment Blue 16 is preferable.
  • the yellow pigment C.I. I. Pigment Yellow 215 and pteridine dyes are preferable.
  • a halogenated zinc phthalocyanine having an average number of halogen atoms in one molecule of 10 to 14, a bromine atom number of 8 to 12, and a chlorine atom number of 2 to 5 on average. Pigments can also be used. Specific examples include the compounds described in WO 2015/118720.
  • a green pigment the compound described in Chinese Patent Application Publication No. 1069009027, the phthalocyanine compound having a phosphate ester described in International Publication No. 2012/10395 as a ligand, and Japanese Patent Application Laid-Open No. 2019-008014.
  • the phthalocyanine compound of the above, the phthalocyanine compound described in JP-A-2018-180023, the compound described in JP-A-2019-038958, and the like can also be used.
  • an aluminum phthalocyanine compound having a phosphorus atom can also be used. Specific examples include the compounds described in paragraphs 0022 to 0030 of JP2012-247591A and paragraph numbers 0047 of JP2011-157478A.
  • the quinophthalone compound described in Japanese Patent Application Laid-Open No. 2019-008014, the compound represented by the following formula (QP1), and the compound represented by the following formula (QP2) can also be used.
  • X 1 to X 16 independently represent a hydrogen atom or a halogen atom, and Z 1 represents an alkylene group having 1 to 3 carbon atoms.
  • Specific examples of the compound represented by the formula (QP1) include the compounds described in paragraph No. 0016 of Japanese Patent No. 6443711.
  • Y 1 ⁇ Y 3 represents a halogen atom independently.
  • n and m represent integers of 0 to 6, and p represents an integer of 0 to 5.
  • N + m is 1 or more.
  • Specific examples of the compound represented by the formula (QP2) include the compounds described in paragraphs 0047 to 0048 of Japanese Patent No. 6432077.
  • a red color material As a red color material, a diketopyrrolopyrrole compound in which at least one bromine atom is substituted in the structure described in JP-A-2017-2013384, and a diketopyrrolopyrrole compound described in paragraphs 0016 to 0022 of Patent No. 6248838. , Diketopyrrolopyrrole compound described in WO2012 / 102399, diketopyrrolopyrrole compound described in WO2012 / 117965, naphtholazo compound described in JP2012-229344, patent No. 6516119.
  • the compound described in No. 6525101, the compound described in Japanese Patent No. 6525101, and the like can also be used.
  • red pigment a compound having a structure in which an aromatic ring group having an oxygen atom, a sulfur atom or a nitrogen atom bonded to the aromatic ring is bonded to a diketopyrrolopyrrole skeleton can also be used.
  • a compound is preferably a compound represented by the formula (DPP1), and more preferably a compound represented by the formula (DPP2).
  • R 11 and R 13 independently represent a substituent
  • R 12 and R 14 independently represent a hydrogen atom, an alkyl group, an aryl group or a heteroaryl group
  • n 11 and n 13 are independent of each other.
  • X 12 and X 14 independently represent an oxygen atom, a sulfur atom or a nitrogen atom
  • m12 represents 1 and X.
  • m12 represents 2 when X 14 is a nitrogen atom.
  • the substituents represented by R 11 and R 13 include an alkyl group, an aryl group, a halogen atom, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heteroaryloxycarbonyl group, an amide group, a cyano group, a nitro group and a trifluoro group.
  • Preferred specific examples include a methyl group, a sulfoxide group, and a sulfo group.
  • the chromatic dyes include pyrazole azo compounds, anilino azo compounds, triarylmethane compounds, anthraquinone compounds, anthrapylidene compounds, benzylidene compounds, oxonor compounds, pyrazorotriazole azo compounds, pyridone azo compounds, cyanine compounds, phenothiazine compounds, and pyropyrazole azomethine compounds. , Xanthene compound, phthalocyanine compound, benzopyran compound, indigo compound, pyromethene compound and the like.
  • Two or more kinds of chromatic color materials may be used in combination. Further, when two or more kinds of chromatic color materials are used in combination, black may be formed by a combination of two or more kinds of chromatic color materials. Examples of such a combination include the following aspects (1) to (8).
  • the composition of the present invention is preferably used as a near-infrared transmission filter. be able to. (1) An embodiment containing a red color material and a blue color material. (2) An embodiment containing a red color material and a green color material. (3) An embodiment containing a red color material, a blue color material, and a yellow color material.
  • An embodiment containing a red color material, a blue color material, a yellow color material, and a purple color material An embodiment containing a red color material, a blue color material, a yellow color material, a purple color material, and a green color material.
  • An embodiment containing a red color material, a blue color material, a yellow color material, and a green color material An embodiment containing a red color material, a blue color material, and a green color material.
  • An embodiment containing a yellow color material and a purple color material An embodiment containing a red color material, a blue color material, and a purple color material.
  • White coloring materials include titanium oxide, strontium titanate, barium titanate, zinc oxide, magnesium oxide, zirconium oxide, aluminum oxide, barium sulfate, silica, talc, mica, aluminum hydroxide, calcium silicate, aluminum silicate, Examples thereof include hollow resin particles and inorganic pigments (white pigments) such as zinc sulfide.
  • the white pigment is preferably particles having a titanium atom, and more preferably titanium oxide.
  • the white pigment is preferably particles having a refractive index of 2.10 or more with respect to light having a wavelength of 589 nm. The above-mentioned refractive index is preferably 2.10 to 3.00, and more preferably 2.50 to 2.75.
  • titanium oxide described in "Titanium Oxide Physical Properties and Applied Technology, by Manabu Kiyono, pp. 13-45, published on June 25, 1991, published by Gihodo Publishing" can also be used.
  • the white pigment is not limited to a single inorganic substance, but particles compounded with other materials may be used. For example, particles having pores or other materials inside, particles in which a large number of inorganic particles are attached to core particles, core particles composed of core particles composed of polymer particles, and shell composite particles composed of a shell layer composed of inorganic nanoparticles are used. Is preferable.
  • the core and shell composite particles composed of the core particles composed of the polymer particles and the shell layer composed of the inorganic nanoparticles for example, the description in paragraphs 0012 to 0042 of JP2015-047520 can be referred to. This content is incorporated herein by reference.
  • Hollow inorganic particles can also be used as the white pigment.
  • Hollow inorganic particles are inorganic particles having a structure having cavities inside, and are inorganic particles having cavities surrounded by an outer shell.
  • Examples of the hollow inorganic particles include the hollow inorganic particles described in JP-A-2011-075786, International Publication No. 2013/061621, JP-A-2015-164881, and the like, and the contents thereof are incorporated in the present specification. Is done.
  • Black color material The black color material is not particularly limited, and known materials can be used.
  • inorganic pigments black pigments
  • carbon black and titanium black being preferable, and titanium black being more preferable.
  • Titanium black is black particles containing a titanium atom, and low-order titanium oxide or titanium oxynitride is preferable.
  • the surface of titanium black can be modified as needed for the purpose of improving dispersibility and suppressing cohesiveness.
  • Titanium black preferably has a small primary particle size and an average primary particle size of each particle. Specifically, the average primary particle size is preferably 10 to 45 nm. Titanium black can also be used as a dispersion. For example, a dispersion containing titanium black particles and silica particles and having a content ratio of Si atoms and Ti atoms in the dispersion adjusted to a range of 0.20 to 0.50 can be mentioned. Regarding the above dispersion, the description in paragraphs 0020 to 0105 of JP2012-169556A can be referred to, and the contents thereof are incorporated in the present specification.
  • titanium black products examples include titanium black 10S, 12S, 13R, 13M, 13M-C, 13RN, 13MT (trade name: manufactured by Mitsubishi Materials Corporation), Tilak D (trade name: manufactured by Mitsubishi Materials Corporation). Product name: Ako Kasei Co., Ltd.) and the like.
  • an organic black color material such as a bisbenzofuranone compound, an azomethin compound, a perylene compound, or an azo compound
  • the bisbenzofuranone compound include the compounds described in JP-A-2010-534726, JP-A-2012-515233, and JP-A-2012-515234.
  • the perylene compound include the compounds described in paragraphs 0016 to 0020 of JP-A-2017-226821, C.I. I. Pigment Black 31, 32 and the like can be mentioned.
  • the azomethine compound include compounds described in JP-A-01-170601 and JP-A-02-0346664, and are available as, for example, "Chromofine Black A1103" manufactured by Dainichiseika.
  • the colorant used in the composition of the present invention may be only the black color material described above, or may further contain a chromatic color material. According to this aspect, it is easy to obtain a composition capable of forming a film having a high light-shielding property in the visible region.
  • chromatic color material 100: 10 to 300, preferably 100: 20 to 200. Is more preferable.
  • the chromatic color material examples include a red color material, a green color material, a blue color material, a yellow color material, a purple color material, and an orange color material.
  • the chromatic color material is preferably a chromatic pigment, and examples of the chromatic pigment include a red pigment (including an orange pigment), a green pigment, a blue pigment, a yellow pigment, and a purple pigment.
  • a material in which an organic chromophore is replaced with an inorganic pigment or an organic-inorganic pigment can also be used. Hue design can be facilitated by replacing inorganic pigments and organic-inorganic pigments with organic chromophores.
  • the pigment A one containing at least one selected from a red pigment, a blue pigment and a yellow pigment is preferably used, and one containing at least one selected from a blue pigment and a yellow pigment is more preferably used. Those containing are more preferably used. According to this aspect, it is easy to form a film having excellent light-shielding property in the visible region. Further, by using a blue pigment, a film having excellent light resistance can be formed. Further, by using the yellow pigment, the visible transmittance of the obtained film can be made uniform.
  • the blue pigment is preferably a phthalocyanine compound because it easily forms a film having excellent light resistance.
  • the blue pigment is Color Index (CI) Pigment Blue 1,2,15,15: 1,15: 2,15: 3,15: 4,15: 6,16,22,29,60, 64, 66, 79, 80, 87 (monoazo type), 88 (methine / polymethine type) are mentioned, and C.I. I. Pigment Blue 15: 3, C.I. I. Pigment Blue 15: 6 and C.I. I. Pigment Blue 16 is preferably at least one selected from C.I. I. Pigment Blue 15: 6 is more preferred.
  • an aluminum phthalocyanine compound having a phosphorus atom can also be used.
  • examples of such a compound include an aluminum phthalocyanine compound in which the ligand is a phosphoric acid ester.
  • Specific examples of the aluminum phthalocyanine compound having a phosphorus atom include the compounds described in paragraphs 0022 to 0030 of JP2012-247591A and paragraphs 0047 of JP2011-157478A.
  • yellow pigment examples include an azo compound, a quinophthalone compound, an isoindoline compound, an isoindoline compound, an anthraquinone compound, and the like, and an isoindoline compound is preferable.
  • the yellow pigment is C.I. I.
  • the pigment described in JP-A-2017-201003 and the pigment described in JP-A-2017-197719 can be used.
  • Azo pigments can also be used.
  • R 1 and R 2 are independently -OH or -NR 5 R 6
  • R 5 to R 7 are respectively.
  • the alkyl group represented by R 5 to R 7 preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, preferably linear or branched, more preferably linear.
  • the alkyl group may have a substituent. As the substituent, a halogen atom, a hydroxy group, an alkoxy group, a cyano group and an amino group are preferable.
  • paragraph numbers 0011 to 0062, 0137 to 0276 of JP-A-2017-171912, paragraph numbers 0010 to 0062, 0138-0295, JP-A-2017-171914 of JP-A-2017-171913, and JP-A-2017-171914 paragraph numbers 0011 to 0062 and 0139 to 0190 of Japanese Patent Application Laid-Open No. 2017-171915 and paragraph numbers 0010 to 0065 and 0142-0222 of Japanese Patent Application Laid-Open No. 2017-171915 can be referred to, and these contents are incorporated in the present specification.
  • red pigment examples include diketopyrrolopyrrole compounds, anthraquinone compounds, azo compounds, quinacridone compounds and the like, and diketopyrrolopyrrole compounds are preferable. Further, as a red pigment, C.I. I.
  • red pigment a diketopyrrolopyrrole pigment in which at least one bromine atom is substituted in the structure described in JP-A-2017-201384, diketopyrrolop described in paragraphs 0016 to 0022 of Japanese Patent No. 6248838. Pyrol pigments and the like can also be used. Further, as the red pigment, a compound having a structure in which an aromatic ring group in which a group in which an oxygen atom, a sulfur atom or a nitrogen atom is bonded to an aromatic ring is bonded to a diketopyrrolopyrrole skeleton can also be used.
  • the purple pigment C.I. I. Pigment Violet 1, 19, 23, 27, 32, 37, 42, 60 (triallyl methane type), 61 (xanthene type) and the like.
  • the green pigment include C.I. I. Pigment Green 7, 10, 36, 37, 58, 59, 62, 63 and the like.
  • a halogenated zinc phthalocyanine pigment having an average of 10 to 14 halogen atoms in one molecule, an average of 8 to 12 bromine atoms, and an average of 2 to 5 chlorine atoms is used. You can also do it. Specific examples include the compounds described in International Publication No. 2015/118720.
  • Preferred combinations of the organic black color material and the chromatic color material include, for example, the following.
  • A-1) An embodiment containing an organic black color material and a blue color material.
  • A-2) An embodiment containing an organic black color material, a blue color material, and a yellow color material.
  • A-3) An embodiment containing an organic black color material, a blue color material, a yellow color material, and a red color material.
  • A-4) An embodiment containing an organic black color material, a blue color material, a yellow color material, and a purple color material.
  • the content of the above-mentioned organic black color material in the colorant is 10% by mass or more, preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more. It is even more preferably 50% by mass or more, and even more preferably 60% by mass or more.
  • the conventional composition tends to cause contamination in the piping tube as the content of the organic black color material increases, but the composition of the present invention has a tendency to increase the content of the organic black color material. Since the inside of the piping tube can be less likely to be contaminated, the effect of the present invention is more remarkable as the content of the organic black color material is larger.
  • the content of the lactam pigment as the organic black color material in the colorant is preferably 10% by mass or more, more preferably 15% by mass or more, and further preferably 20% by mass or more. , 30% by mass or more, further preferably 40% by mass or more, and particularly preferably 50% by mass or more.
  • the content of the above-mentioned organic black color material is preferably 5 to 70% by mass in the total solid content of the composition of the present invention.
  • the lower limit is preferably 10% by mass or more, more preferably 15% by mass or more.
  • the upper limit is preferably 65% by mass or less, and more preferably 60% by mass or less.
  • the content of the colorant in the total solid content of the composition is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more.
  • the upper limit of the content is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the content of the pigment, which is a colorant, in the total solid content of the composition is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more. ..
  • the upper limit of the content is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the content of the dye in the colorant is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. Further, it is also preferable that the composition of the present invention does not substantially contain a dye because it is easy to more effectively suppress the change in film thickness when the obtained film is heated to a high temperature.
  • the content of the dye in the total solid content of the composition of the present invention is preferably 0.1% by mass or less, preferably 0.05% by mass or less. It is more preferable that it is present, and it is particularly preferable that it is not contained.
  • the total content of the colorant and the near-infrared absorber described later is 30% by mass or more, preferably 30 to 90% by mass, and 30 to 80% by mass with respect to the total solid content of the composition. It is more preferably%, and further preferably 30 to 70% by mass. However, in the above aspect, the content of the near-infrared absorber may be 0% by mass.
  • the total content of the pigment as a colorant and the pigment as a near-infrared absorber is preferably 30% by mass or more, more preferably 30 to 90% by mass, based on the total solid content of the composition. It is more preferably 30 to 80% by mass, and particularly preferably 30 to 70% by mass. However, in the above aspect, the content of the pigment which is a near infrared absorber may be 0% by mass.
  • the composition of the present invention preferably further contains a near-infrared absorber in addition to the colorant.
  • the composition of the present invention preferably contains a chromatic color material and a near-infrared ray absorber, more preferably contains two or more kinds of chromatic color materials and a near-infrared ray absorber described later, and is a red color material. , It is more preferable to contain a blue color material and a near-infrared absorber.
  • the colorant also preferably contains a black colorant and a near-infrared absorber, which will be described later.
  • the composition of the present invention can be preferably used as a composition for forming a near-infrared transmission filter.
  • Japanese Patent Application Laid-Open No. 2013-77009, Japanese Patent Application Laid-Open No. 2014-130338, International Publication No. 2015/166779 and the like can be referred to.
  • the near-infrared absorber is preferably a pigment, more preferably an organic pigment. Further, the near-infrared absorber preferably has a maximum absorption wavelength in a range of more than 700 nm and 1,400 nm or less. The maximum absorption wavelength of the near-infrared absorber is preferably 1,200 nm or less, more preferably 1,000 nm or less, and further preferably 950 nm or less. Further, the near-infrared absorber preferably has A 550 / A max, which is the ratio of the absorbance A 550 at a wavelength of 550 nm and the absorbance A max at the maximum absorption wavelength, to be 0.1 or less, and preferably 0.05 or less.
  • the lower limit is not particularly limited, but can be, for example, 0.0001 or more, or 0.0005 or more.
  • the maximum absorption wavelength of the near-infrared absorber and the value of the absorbance at each wavelength are values obtained from the absorption spectrum of the film formed by using the composition containing the near-infrared absorber.
  • a near-infrared absorber having a maximum absorption wavelength in the wavelength range of more than 700 nm and 800 nm or less can also be used.
  • a near-infrared absorber containing a pigment having such spectral characteristics the wavelength of light transmitted through the obtained film can be shifted to a longer wavelength side.
  • the near-infrared absorber is not particularly limited, but is pyrolopyrrole compound, cyanine compound, squarylium compound, phthalocyanine compound, naphthalocyanine compound, quaterylene compound, merocyanine compound, croconium compound, oxonor compound, iminium compound, dithiol compound, triaryl.
  • Examples thereof include methane compounds, pyromethene compounds, azomethine compounds, anthraquinone compounds, dibenzofuranone compounds, and dithiolene metal complexes.
  • Examples of the pyrrolopyrrole compound include the compounds described in paragraphs 0016 to 0058 of JP2009-263614, the compounds described in paragraphs 0037 to 0052 of JP2011-066731, and International Publication No. 2015/166783. Examples thereof include the compounds described in paragraphs 0010 to 0033.
  • Examples of the squarylium compound include the compounds described in paragraphs 0044 to 0049 of JP2011-208101A, the compounds described in paragraphs 0060 to 0061 of Patent No. 6065169, and paragraph numbers 0040 of International Publication No. 2016/181987. , The compound described in JP-A-2015-176046, the compound described in paragraph number 0072 of International Publication No.
  • JP2012-077153 the oxytitanium phthalocyanine described in JP2006-343631, and paragraphs 0013 to 0029 of JP2013-195480.
  • vanadium phthalocyanine compound described in Japanese Patent No. 6081771.
  • examples of the naphthalocyanine compound include the compounds described in paragraph No. 0093 of JP2012-077153.
  • Examples of the dithiolene metal complex include the compounds described in Japanese Patent No. 5733804.
  • Examples of the near-infrared absorber include a squarylium compound described in JP-A-2017-197437, a squarylium compound described in JP-A-2017-025311, a squarylium compound described in International Publication No. 2016/154782, and Patent No. Squalylium compounds described in 5884953, squalylium compounds described in Japanese Patent No. 6036689, squalylium compounds described in Japanese Patent No. 5810604, squalylium compounds described in paragraph numbers 0090 to 0107 of International Publication No.
  • the content of the near-infrared absorber in the total solid content is preferably 0.1 to 70% by mass, and more preferably 1 to 40% by mass.
  • the composition of the present invention can contain a pigment derivative as the above-mentioned colorant or the above-mentioned near-infrared absorber.
  • the pigment derivative include compounds having a structure in which a part of the chromophore is replaced with an acid group, a basic group or a phthalimide methyl group.
  • the chromogens constituting the pigment derivative include quinoline skeleton, benzoimidazolone skeleton, diketopyrrolopyrrole skeleton, azo skeleton, phthalocyanine skeleton, anthracinone skeleton, quinacridone skeleton, dioxazine skeleton, perinone skeleton, perylene skeleton, thioindigo skeleton, and iso.
  • quinoline skeleton include quinoline skeleton, benzoimidazolone skeleton, diketopyrrolopyrrole skeleton, azo skeleton, quinophthalone skeleton, isoindolin skeleton and phthalocyanine skeleton.
  • the azo skeleton and the benzoimidazolone skeleton are more preferable.
  • the acid group contained in the pigment derivative a sulfo group and a carboxy group are preferable, and a sulfo group is more preferable.
  • an amino group is preferable, and a tertiary amino group is more preferable.
  • a pigment derivative having excellent visible light transparency (hereinafter, also referred to as a transparent pigment derivative) can be used.
  • the maximum molar extinction coefficient ( ⁇ max) of the transparent pigment derivative in the wavelength region of 400 to 700 nm is preferably 3,000 L ⁇ mol -1 ⁇ cm -1 or less, and 1,000 L ⁇ mol -1 ⁇ cm -1. It is more preferably 100 L ⁇ mol -1 ⁇ cm -1 or less, and further preferably 100 L ⁇ mol -1 ⁇ cm -1 or less.
  • the lower limit of ⁇ max is, for example, 1 L ⁇ mol -1 ⁇ cm -1 or more, and may be 10 L ⁇ mol -1 ⁇ cm -1 or more.
  • pigment derivative examples include Japanese Patent Application Laid-Open No. 56-118462, Japanese Patent Application Laid-Open No. 63-264674, Japanese Patent Application Laid-Open No. 01-2170777, Japanese Patent Application Laid-Open No. 03-009961, and Japanese Patent Application Laid-Open No. 03-026767.
  • the content of the pigment derivative is preferably 1 to 30 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the pigment. Only one type of pigment derivative may be used, or two or more types may be used in combination.
  • the composition of the present invention is a resin containing at least one repeating unit selected from the group consisting of repeating units represented by any of the formulas (1-1) to (1-5).
  • a resin in which the ratio of the total amount of repeating units represented by any of the formulas (1-1) to (1-5) to the total molar amount of all repeating units contained in the resin is 10 mol% or more.
  • Specified resin is included.
  • the ratio of the total amount of repeating units represented by any of the following formulas (1-1) to (1-5) to the total molar amount of all repeating units contained in the specific resin is measured by the following method.
  • the structure of the decomposed repeating unit is identified by thermally decomposing the specific resin by pyrolysis GC-MS and performing mass spectrometry. From the molar mass of the identified structure, the molar amount of the repeating unit present in the specific resin can be identified.
  • the ratio of the total amount is preferably more than 60 mol%, more preferably 70 mol% or more, and further preferably 80 mol% or more. preferable.
  • the upper limit is not particularly limited, and may be 100 mol% or less.
  • the ratio of the total amount of repeating units represented by the above formula (1-1) to the total molar amount of all repeating units contained in the specific resin is 10 mol%.
  • the above is preferable, 20 mol% or more is more preferable, and 30 mol% or more is further preferable.
  • R 11 , R 12 and R 13 may be independently substituted with a hydrogen atom, a fluorine atom, an alkyl group which may be substituted with a fluorine atom, or a fluorine atom. It represents an aromatic hydrocarbon group, preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group is further preferable.
  • alkyl group refers to an alkyl group or an aliphatic hydrocarbon having a linear, branched or cyclic structure. All of the groups shall be included.
  • aromatic hydrocarbon group an aromatic hydrocarbon ring having 6 to 20 carbon atoms is preferable, and a phenyl group is more preferable.
  • the alkyl group or the aromatic hydrocarbon group may have a substituent as long as the effects of the present invention can be obtained.
  • another aromatic hydrocarbon ring or another aromatic heterocycle may be bonded to the aromatic hydrocarbon group within the range in which the effect of the present invention can be obtained. Examples of the bonding mode include a fused ring, a crosslinked ring, a spiro ring, and the like.
  • Ar represents an aromatic group having 5 to 30 ring members, and an aromatic hydrocarbon group having 6 to 20 carbon atoms or an aromatic heterocyclic group having 5 to 20 ring members is preferable. Aromatic hydrocarbon groups having 6 to 20 carbon atoms are more preferable. As the aromatic hydrocarbon group, a phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable. As the aromatic heterocyclic group, an aromatic heterocyclic group containing a nitrogen atom, a sulfur atom, or an oxygen atom is preferable as the heteroatom. Only one of the above complex atoms may be present in the aromatic heterocyclic group, or two or more of them may be present.
  • the complex atoms may be the same or different.
  • the aromatic heterocyclic group include a thienyl group, a pyridyl group, a 1-imidazolyl group and the like.
  • the aromatic group may have a substituent as long as the effect of the present invention can be obtained.
  • the substituent it is preferable to have a substituent containing a hetero atom.
  • the hetero atom in the substituent containing the hetero atom an oxygen atom, a nitrogen atom, a sulfur atom, or a phosphorus atom is preferable.
  • the above-mentioned substituent containing a heteroatom may contain one of these heteroatoms alone, or may contain two or more of these heteroatoms.
  • the number of heteroatoms in the substituent containing the heteroatoms is not particularly limited, but is preferably 1 to 10, for example.
  • the above R S2 represents a monovalent substituent, and is preferably a hydrocarbon group.
  • the above R S3 Represents a hydrogen atom or a hydrocarbon group, and is preferably a hydrocarbon group.) Examples thereof include an acid group such as an amino group, an alkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group and a halogen atom. Further, these substituents may be bonded to the above aromatic group via a linking group.
  • R N represents a hydrogen atom or a hydrocarbon group, a hydrogen atom, preferably an alkyl group or an aromatic hydrocarbon group, more preferably a hydrogen atom or an alkyl group, a hydrogen atom is particularly preferred.
  • two or more of the above-mentioned substituents may be bonded to the above-mentioned linking group. As a preferred embodiment of the present invention, there is an embodiment in which the substituent is directly bonded to the aromatic group without the intervention of the linking group.
  • Ar may have an acid group such as a hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, an active imide group, or a sulfonamide group.
  • the acid group may form an ester bond with another structure.
  • the other structure include a structure containing an alkyl group (for example, a methyl group, an ethyl group, etc.), a polymer chain, and a group having an ethylenically unsaturated bond.
  • polymer chain examples include molecular chains having a molecular weight of 500 to 10,000 and having no acid group or basic group, which will be described later.
  • amino group may form an amide bond, a urethane bond or a urea bond with another structure.
  • the other structure described above is similar to the other structure described as the object to which the acid group is ester-bonded.
  • the repeating unit represented by the formula (1-1) is a repeating unit represented by the following formula (1-1-1), a repeating unit represented by the following formula (1-1-2), or the following formula (1). It is preferably a repeating unit represented by -1-3). Further, the specific resin preferably contains a repeating unit represented by the formula (1-1-2) as the repeating unit represented by the formula (1-1), and is represented by the formula (1-1-2). It is more preferable to include the repeating unit to be used and the repeating unit represented by the formula (1-1-3).
  • R 11 , R 12 and R 13 are independently composed of hydrogen atom, fluorine atom and fluorine atom, respectively. It represents an alkyl group which may be substituted or an aromatic hydrocarbon group which may be substituted with a fluorine atom, Ar 1 represents an aromatic group having 5 to 30 ring members, and X 11 represents an aromatic group having 1 to 30 carbon atoms. Selected from the group consisting of an alkyl group of 30 and an aromatic hydrocarbon group having 6 to 20 carbon atoms, or a saturated aliphatic hydrocarbon group having 1 to 30 carbon atoms and an aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Ar 2 represents an integer
  • Ar 2 represents an aromatic group having 5 to 30 ring members
  • X 12 independently represents a hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, an active imide group, or a sulfone.
  • R N represents a hydrogen atom or a hydrocarbon group, a hydrogen atom, preferably an alkyl group or an aromatic hydrocarbon group, more preferably a hydrogen atom or an alkyl group, a hydrogen atom is particularly preferred.
  • R E1 to R E3 , R E13 , R E15 , R E17 , and R E19 each independently represent a monovalent substituent
  • R E4 to R E12 , R E14 , R E16 , and R E18 each independently represent a hydrogen atom or a monovalent substituent
  • at least one of R E4 and R E5 is a monovalent substituent
  • R E6 and At least one of RE7 is a monovalent substituent
  • at least one of RE8 and RE9 is a monovalent substituent
  • at least one of RE10 and RE11 is a monovalent substituent.
  • R E12 and R E13 are monovalent substituents, at least one of R E14 and R E15 is a monovalent substituent, and at least one of R E16 and R E17 is monovalent. It is a substituent, and at least one of RE18 and RE19 is a monovalent substituent, and * represents a binding site with Ar 3 in the formula (1-1-3).
  • R 11 , R 12 and R 13 are R 11 in equation (1-1), respectively. It is synonymous with R 12 and R 13 , and the preferred embodiment is also the same.
  • Ar 1 is synonymous with Ar in the formula (1-1), and the preferred embodiment is also the same.
  • X 11 is an alkyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 20 carbon atoms, an alkyl group having 1 to 30 carbon atoms, and 6 carbon atoms.
  • the alkyl group having 1 to 30 carbon atoms an alkyl group having 1 to 20 carbon atoms is more preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, and an alkyl group having 1 to 4 carbon atoms is further preferable.
  • the aromatic hydrocarbon group having 6 to 20 carbon atoms a phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable.
  • saturated aliphatic hydrocarbon group having 1 to 30 carbon atoms a saturated aliphatic hydrocarbon group having 1 to 20 carbon atoms is more preferable, a saturated aliphatic hydrocarbon group having 1 to 10 carbon atoms is more preferable, and a saturated aliphatic hydrocarbon group having 1 to 10 carbon atoms is more preferable.
  • 1 to 4 saturated aliphatic hydrocarbon groups are more preferable.
  • At least one group selected from the group consisting of saturated aliphatic hydrocarbon groups having 1 to 30 carbon atoms and aromatic hydrocarbon groups having 6 to 20 carbon atoms, and -C ( O) O- or-.
  • the bonding site with Ar 1 in the formula (1-1-1) is selected from the viewpoint of heat resistance and affinity with an organic solvent.
  • At least one group selected from the group consisting of a saturated aliphatic hydrocarbon group having 1 to 30 carbon atoms and an aromatic hydrocarbon group having 6 to 20 carbon atoms, and -C ( O) O-.
  • * independently represents the binding site with Ar 1 in the formula (1-1-1), and R D1 represents the substituent D described later.
  • R D2 and R D3 independently represent a hydrogen atom or a substituent D described later.
  • Substituents D in R D1 from the affinity viewpoint of heat resistance and organic solvent an alkyl group having 1 to 30 carbon atoms, or is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, An alkyl group having 1 to 30 carbon atoms is more preferable, an alkyl group having 1 to 10 carbon atoms is further preferable, an alkyl group having 1 to 4 carbon atoms is particularly preferable, and a methyl group is most preferable.
  • Both R D2 and R D3 may be hydrogen atoms, but it is preferable that at least one of them is the above-mentioned substituent D, one is a hydrogen atom, and the other is the above-mentioned substituent D.
  • the substituent D in R D2 and R D3 is preferably an alkyl group having 1 to 30 carbon atoms or an aromatic hydrocarbon group having 6 to 20 carbon atoms, and more preferably an alkyl group having 1 to 30 carbon atoms.
  • Alkyl groups having 1 to 10 carbon atoms are more preferable, and alkyl groups having 1 to 4 carbon atoms are particularly preferable.
  • n1 represents an integer of 0 or more and less than or equal to the maximum number of substitutions of Ar 1, and 0 or 1 is preferable, and 0 is more preferable.
  • the maximum number of substitutions of Ar 1 means the maximum number of substitution groups that an aromatic group having 5 to 30 ring members represented by Ar 1 can have. When Ar 1 has a benzene ring structure, the maximum number of substitutions is It is 5. Hereinafter, the above contents are the same in the description of the maximum number of substitutions.
  • Ar 2 is synonymous with Ar in the formula (1-1), and the preferred embodiment is also the same.
  • X 12 represents a hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, or a phosphonic acid group, and a hydroxy group or a carboxy group is preferable, and a carboxy group is more preferable.
  • n2 represents an integer of 1 or more and less than or equal to the maximum number of substitutions of Ar 2, and 1 or 2 is preferable, and 1 is more preferable.
  • Ar 3 has the same meaning as Ar in the formula (1-1), and the preferred embodiment is also the same.
  • X 13 represents a group represented by any of the formulas (E-1) to (E-11), and the formula (E-1) or the formula (E-2). It is preferably a group represented by, and more preferably a group represented by the formula (E-2).
  • an aliphatic hydrocarbon group having 1 to 20 carbon atoms is preferable, and an aliphatic saturated hydrocarbon group having 1 to 20 carbon atoms is more preferable.
  • the aromatic group is preferably a group similar to Ar in the formula (1-1).
  • Examples of the group having an ethylenically unsaturated bond include an acryloyl group, an acryloyloxy group, an acrylamide group, a vinylphenyl group, an allyl group and the like, and an acryloyloxy group is preferable from the viewpoint of reactivity.
  • the polymer chain includes a repeating unit represented by the formulas (1-1) to (1-5), a repeating unit derived from (meth) acrylic acid, and a repeating unit derived from a (meth) acrylic acid ester compound.
  • a polymer chain containing at least one repeating unit selected from the group consisting of units is preferable, and repeating units represented by the formulas (1-1) to (1-5) and (meth) acrylic acid ester compounds. More preferably, a polymer chain containing at least one repeating unit selected from the group consisting of repeating units derived from.
  • the repeating unit represented by the formulas (1-1) to (1-5) contained in the polymer chain is preferably a repeating unit having no polymer chain, and is preferably represented by the formula (1-1-1).
  • the repeating unit represented by the formula (1-5) is preferable, and the repeating unit represented by the formula (1-1-1) or the repeating unit represented by the formula (1-2-1) described later. More preferably, it is a repeating unit.
  • the repeating unit derived from (meth) acrylic acid in the polymer chain is preferably a repeating unit represented by the formula (1-6) described later, and the repeating unit derived from the (meth) acrylic acid ester compound is the repeating unit (more preferably of the formula (1-7) described later, a repeating unit represented by the formula (1-7), R A2 in the formula (1-7) has the formula (F- 1) is preferably a repeating unit). Further, the repeating unit contained in the polymer chain is included in the total molar amount of all the repeating units contained in the specific resin.
  • R E1 ⁇ R E19 preferably a group represented by any one of the following formulas (F-1) ⁇ formula (F-5).
  • * represents the binding site with other structures independently.
  • R F1 represents an alkyl group which may have a substituent, or an aryl group, an alkyl group, an aromatic hydrocarbon group, an arylalkyl group, or an alkyl group or an aromatic hydrocarbon
  • a group represented by a bond between a hydrogen group and —O— is preferable, an alkyl group, an arylalkyl group, or an alkoxyalkyl group is more preferable, and an alkyl group is further preferable.
  • an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • an aromatic hydrocarbon group is preferable.
  • an aromatic hydrocarbon group having 6 to 30 carbon atoms is preferable, a phenyl group or a naphthyl group is more preferable, and a phenyl group is further preferable.
  • an aromatic hydrocarbon group having 6 to 30 carbon atoms is preferable, a phenyl group or a naphthyl group is more preferable, and a phenyl group is further preferable.
  • alkyl group in the arylalkyl group an alkyl group having 1 to 8 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • alkoxy group in the alkoxyalkyl group an alkoxy group having 1 to 8 carbon atoms is preferable, an alkoxy group having 1 to 4 carbon atoms is more preferable, and a methyl group is further preferable.
  • the total carbon number of the alkoxyalkyl group is preferably 2 to 10, more preferably 2 to 6.
  • n represents an integer of 0 or more, preferably an integer of 0 to 20, more preferably an integer of 0 to 10, and further preferably 0, 1 or 2. It is preferable, and it is particularly preferable that it is 0 or 1.
  • a F1 represents a polymerizable group, and a (meth) acryloxy group, a (meth) acrylamide group, a vinylphenyl ether group, an allyl ether group, a vinylphenyl group, an allyl group, or a vinyl group is used.
  • a (meth) acryloxy group is more preferred from the standpoint of reactivity.
  • RN is as described above.
  • the alkylene group an alkylene group having 2 to 10 carbon atoms is preferable, and an alkylene group having 2 to 4 carbon atoms is more preferable.
  • the divalent aromatic hydrocarbon group a phenylene group is preferable.
  • a F2 represents a polymerizable group, and a (meth) acryloxy group, a (meth) acrylamide group, a vinylphenyl ether group, an allyl ether group, a vinylphenyl group, an allyl group, or a vinyl group is used.
  • a (meth) acryloxy group is more preferred from the standpoint of reactivity.
  • RN is as described above.
  • the alkylene group an alkylene group having 2 to 20 carbon atoms is preferable, and an alkylene group having 2 to 10 carbon atoms is more preferable.
  • Polymer represents a polymer chain in the above description of R E1 ⁇ R E19, preferable embodiments thereof are also the same.
  • RF7 represents a single bond, an alkylene group or a divalent aromatic hydrocarbon group, and a single bond is preferable.
  • the alkylene group an alkylene group having 2 to 20 carbon atoms is preferable, and an alkylene group having 2 to 10 carbon atoms is more preferable.
  • the divalent aromatic hydrocarbon group a phenylene group is preferable.
  • RF8 represents an alkylene group or a divalent aromatic hydrocarbon group, and an alkylene group is preferable.
  • an alkylene group having 2 to 20 carbon atoms is preferable, and an alkylene group having 2 to 10 carbon atoms is more preferable.
  • a phenylene group is preferable.
  • m represents an integer of 1 or more, preferably an integer of 2 to 50, and more preferably an integer of 2 to 30.
  • RF9 represents an alkyl group or a monovalent aromatic hydrocarbon group, and an alkyl group is more preferable.
  • an alkyl group having 1 to 20 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • a phenyl group is preferable.
  • n3 represents an integer of 1 or more and not more than the maximum number of substitutions of Ar 3 , and 1 or 2 is preferable, and 1 is more preferable.
  • the repeating unit represented by the formula (1-1) is a vinyl aromatic hydrocarbon compound which may have a substituent (for example, styrene, vinylnaphthalene, etc.) or a vinyl aromatic which may have a substituent. It is preferably a repeating unit derived from a group compound (for example, vinylthiophene, vinylpyridine, vinylimidazole, etc.).
  • R 21 , R 22 and R 23 are synonymous with R 11 , R 12 and R 13 in formula (1-1), respectively, and the preferred embodiments are also the same.
  • R 24 and R 25 - R 24 and R 25 independently represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and R 24 and R 25 are bonded to form a ring structure. It may be formed. At least one of R 24 and R 25 represents an alkyl group having 1 to 30 carbon atoms or an aromatic hydrocarbon group having 6 to 30 carbon atoms, or R 24 and R 25 are bonded to form a ring structure. It is preferable to form.
  • R 24 and R 25 are each independently preferably an alkyl group having 1 to 30 carbon atoms, and more preferably an alkyl group having 1 to 20 carbon atoms.
  • a phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable.
  • the ring structure formed by combining R 24 and R 25 include an aliphatic heterocyclic structure such as a piperidine ring, a piperazine ring, and a morpholine ring.
  • an alkyl group having 1 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 30 carbon atoms, or ring structure R 24 and R 25 are formed by combining the effects of the present invention May have a substituent as long as Examples of the substituent include an acid group such as a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, an active imide group and a sulfonamide group, an amino group, an alkyl group, an aryl group and a halogen atom.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms in R 24 and R 25 may have a hydroxy group as a substituent.
  • the aromatic hydrocarbon group may have a hydroxy group as an acid group.
  • the acid group may form an ester bond with another structure.
  • Examples of the other structure include a polymer chain and a structure containing a group having an ethylenically unsaturated bond.
  • Examples of the polymer chain include molecular chains having a molecular weight of 500 to 10,000 and having no acid group or basic group, which will be described later.
  • the amino group may form an amide bond, a urethane bond or a urea bond with another structure.
  • the other structure described above is similar to the other structure described as the object to which the acid group is ester-bonded.
  • the repeating unit represented by the formula (1-2) is a repeating unit represented by the following formula (1-2-1), a repeating unit represented by the following formula (1-2-2), or the following formula (1). It is preferably a repeating unit represented by 2-3). Further, the specific resin preferably contains a repeating unit represented by the formula (1-2-2) as the repeating unit represented by the formula (1-2), and is represented by the formula (1-2-2). It is more preferable to include the repeating unit to be used and the repeating unit represented by the formula (1-2-3). In equations (1-2-1), (1-2-2) and (1-2-3), R 21 , R 22 and R 23 are R 11 , R 12 in equation (1-1).
  • R 13 are synonymous with R 26 and R 27 , respectively, independently representing an alkyl group having 1 to 30 carbon atoms, R 28 representing an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and X 21 respectively. Independently, it represents a hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, an active imide group, or a sulfonamide group, n1 is 1 or 2, n2 is 0 or 1, and n1 + n2 is. 2, n3 is an integer of 1 or more, R 29 represents an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and X 22 is independently each of the above formulas (E-1) to (E-). Representing a group represented by any of 11), m1 is 1 or 2, m2 is 0 or 1, m1 + m2 is 2, and m3 is an integer of 1 or more.
  • R 21 , R 22 and R 23 are R 21 in Eqs. (1-2), respectively. It is synonymous with R 22 and R 23 , and the preferred embodiment is also the same.
  • R 26 and R 27 each independently represent an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and an alkyl group having 1 to 4 carbon atoms. Is more preferable.
  • R 28 represents an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and an aliphatic hydrocarbon group is preferable, and an aliphatic saturated hydrocarbon group is more preferable.
  • the aliphatic hydrocarbon group an aliphatic hydrocarbon group having 2 to 30 carbon atoms is preferable, and an aliphatic hydrocarbon group having 2 to 20 carbon atoms is more preferable.
  • the aromatic hydrocarbon group a group obtained by removing 1 + n3 hydrogen atoms from the benzene ring is preferable.
  • X 21 when R 28 is an aliphatic hydrocarbon group, X 21 independently has a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, an active imide group, or a sulfone. An amide group is preferable, and a carboxy group is more preferable.
  • R 28 when R 28 is an aromatic hydrocarbon group, X 21 is preferably a hydroxy group or a carboxy group, and more preferably a carboxy group, respectively.
  • n1 is 1 and n2 is 1.
  • n3 is an integer of 1 or more, preferably 1 to 10, more preferably 1 to 4, further preferably 1 or 2, and 1 It is particularly preferable to have.
  • R 29 represents an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and an aliphatic hydrocarbon group is preferable, and an aliphatic saturated hydrocarbon group is more preferable.
  • an aliphatic hydrocarbon group an aliphatic hydrocarbon group having 2 to 30 carbon atoms is preferable, and an aliphatic hydrocarbon group having 2 to 20 carbon atoms is more preferable.
  • an aromatic hydrocarbon group a group obtained by removing 1 + m3 hydrogen atoms from the benzene ring is preferable.
  • X 22 is independently formula (E-2), formula (E-3), formula (E-4) or The group represented by any of the formula (E-5) is preferable, and the group represented by the formula (E-2) is more preferable.
  • R 29 is an aromatic hydrocarbon group
  • X 22 is a group independently represented by either formula (E-1) or formula (E-2). Is preferable, and the group represented by the formula (E-2) is more preferable.
  • m1 is 1 and m2 is 1.
  • m3 is an integer of 1 or more, preferably 1 to 10, more preferably 1 to 4, further preferably 1 or 2, and 1 It is particularly preferable to have.
  • the repeating unit represented by the formula (1-2) is preferably a repeating unit derived from an acrylamide compound which may have a substituent.
  • R 31 , R 32 and R 33 are synonymous with R 11 , R 12 and R 13 in formula (1-1), respectively, and the preferred embodiments are also the same.
  • R 34 and R 35 each independently represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and have 1 to 1 to 30 carbon atoms. It is preferably 30 alkyl groups.
  • an alkyl group having 1 to 30 carbon atoms an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms a phenyl group or a naphthyl group is preferable, and a phenyl group is more preferable.
  • the alkyl group having 1 to 30 carbon atoms and the aromatic hydrocarbon group having 6 to 30 carbon atoms may have a substituent as long as the effect of the present invention can be obtained.
  • at least one of R 34 and R 35 preferably represents an alkyl group having 1 to 30 carbon atoms or an aromatic hydrocarbon group having 6 to 30 carbon atoms. Further, it is preferable that R 34 and R 35 are combined to form a ring structure.
  • a lactam ring structure having 5 to 20 ring members is preferable, and a lactam ring structure having 5 to 10 ring members is more preferable.
  • the repeating unit represented by the formula (1-3) is an N-vinyl-N-acyl compound (N-vinylacetamide, etc.) or an N-vinyllactam compound (N-vinyl2-pyrrolidone, N-vinyl- ⁇ ).
  • -It is preferably a repeating unit derived from (caprolactam, etc.).
  • R 41 and R 42 are synonymous with R 11 and R 13 in formula (1-1), respectively, and so are preferred embodiments.
  • R 43 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and is an alkyl group having 1 to 30 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
  • An aromatic hydrocarbon group having 6 to 30 carbon atoms is more preferable, and an aromatic hydrocarbon group having 6 to 30 carbon atoms is preferable.
  • the alkyl group having 1 to 30 carbon atoms is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, more preferably a phenyl group or a naphthyl group, and further preferably a phenyl group. ..
  • the alkyl group having 1 to 30 carbon atoms or the aromatic hydrocarbon group having 6 to 30 carbon atoms may have a substituent as long as the effect of the present invention can be obtained.
  • the repeating unit represented by the formula (1-4) is preferably a repeating unit derived from a maleimide compound (maleimide, N-alkylmaleimide, N-phenylmaleimide, etc.).
  • R 51 and R 52 are synonymous with R 11 and R 12 in formula (1-1), respectively, and so are preferred embodiments.
  • R 53 and R 54 each independently represent a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group, preferably a hydrogen atom or an alkyl group, and are hydrogen atoms. Is more preferable.
  • an alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group is further preferable.
  • an aromatic hydrocarbon group an aromatic hydrocarbon ring having 6 to 20 carbon atoms is preferable, and a phenyl group is more preferable.
  • the alkyl group or the aromatic hydrocarbon group may have a substituent as long as the effects of the present invention can be obtained.
  • another aromatic hydrocarbon ring or another aromatic heterocycle may be bonded to the aromatic hydrocarbon group within the range in which the effect of the present invention can be obtained.
  • the bonding mode include a fused ring, a crosslinked ring, a spiro ring, and the like.
  • R 55 represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms, and is an alkyl group having 1 to 30 carbon atoms, or an alkyl group having 1 to 30 carbon atoms.
  • An aromatic hydrocarbon group having 6 to 30 carbon atoms is more preferable, and an aromatic hydrocarbon group having 6 to 30 carbon atoms is preferable.
  • the alkyl group having 1 to 30 carbon atoms is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, more preferably a phenyl group or a naphthyl group, and further preferably a phenyl group. ..
  • the alkyl group having 1 to 30 carbon atoms or the aromatic hydrocarbon group having 6 to 30 carbon atoms may have a substituent as long as the effect of the present invention can be obtained.
  • the repeating unit represented by the formula (1-5) is preferably a repeating unit derived from an itaconic imide compound (itaconimide, N-alkylitaconimide, N-phenylitaconimide, etc.).
  • the content of the repeating unit derived from the (meth) acrylic acid or the (meth) acrylic acid ester compound of the specific resin is 0 with respect to the total molar amount of all the repeating units contained in the specific resin. It is preferably ⁇ 70 mol%.
  • the content is preferably 0 to 40 mol%, more preferably 0 to 20 mol%. Further, in the present invention, an embodiment in which the content is 0 to 1 mol% (preferably 0 to 0.5 mol%, more preferably 0 to 0.1 mol%) is also a preferable embodiment.
  • the repeating unit derived from (meth) acrylic acid that may be contained in the specific resin is preferably a repeating unit represented by the following formula (1-6).
  • the repeating unit derived from the (meth) acrylic acid ester compound that may be contained in the specific resin is preferably a repeating unit represented by the following formula (1-7).
  • RA1 represents a hydrogen atom or a methyl group, and a hydrogen atom is more preferable.
  • R A1 represents a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • RA2 is a group represented by any of the above formulas (F-1) to (F-5), and preferred embodiments of these groups are as described above.
  • the specific resin preferably has at least one group selected from the group consisting of a hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, and an amino group, and more preferably has a hydroxy group or a carboxy group. ..
  • a repeating unit represented by the above formula (1-1-2), a repeating unit represented by the above formula (1-2-2), or the like into a specific resin, these The group is introduced into the specific resin.
  • the specific resin preferably has an acid group.
  • the acid group include a phenolic hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, an active imide group, a sulfonamide group and the like.
  • the acid value of the specific resin is preferably 0 to 500 mgKOH / g from the viewpoint of improving the film-forming property and the alkali developability.
  • the lower limit of the acid value is preferably 20 mgKOH / g or more, more preferably 30 mgKOH / g or more, and further preferably 50 mgKOH / g or more.
  • the upper limit of the acid value is preferably 300 mgKOH / g or less, more preferably 200 mgKOH / g or less, and even more preferably 150 mgKOH / g or less.
  • a particularly preferable embodiment includes an embodiment in which the oxidation of the specific resin is 0 to 150 mgKOH / g.
  • the acid value of the specific resin is calculated by the same method as the measurement method in Examples described later.
  • the specific resin preferably has an ethylenically unsaturated bond. Further, the specific resin preferably contains a group having an ethylenically unsaturated bond. Examples of the group having an ethylenically unsaturated bond include an acryloyl group, an acryloyloxy group, an acrylamide group, a vinylphenyl group, an allyl group and the like, and an acryloyloxy group is preferable from the viewpoint of reactivity.
  • the specific resin has a repeating unit represented by the above formula (1-1-2) or a repeating unit represented by the above formula (1-2-2) and has the above formula (F).
  • the specific resin may be any of a linear polymer, a star polymer, and a graft polymer compound, and has a star type having a specific terminal group described in JP-A-2007-277514 having a plurality of branching points. It may be a polymer, but it is preferably a graft polymer or a star-shaped polymer.
  • the specific resin When the specific resin is a graft polymer, it is preferable that the specific resin has a molecular chain as a graft chain, which has a molecular weight of 500 to 10,000 and does not have an acid group or a basic group.
  • the specific resin is a repeating unit represented by the above formula (1-1-3), and is the above-mentioned formula (F-4) or formula (F-5). ), Or a repeating unit represented by the above formula (1-2-3), represented by the above formula (F-4) or formula (F-5). It is preferable to have a repeating unit having a group to be used in the main chain. In this case, it is preferable that the group represented by the formula (F-4) or the formula (F-5) is the graft chain in the graft polymer.
  • the specific resin is preferably a resin represented by the following formula (S-1).
  • R 1 represents a (m + n1) valent organic linking group
  • R 2 independently represents a single bond or n2 + 1 valent linking group
  • a 1 independently represents a hydroxy group.
  • R 3 independently represents a single bond or an n2 + 1 valent linking group
  • P 1 represents a linking group.
  • the ratio of the total amount of the repeating units represented by any of the formulas (1-1) to (1-5) to the total molar amount of all the repeating units contained in the resin represented by 1) is 10 mol. % Or more.
  • R 1 has 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 to 0. It is preferably a group consisting of 20 sulfur atoms, preferably 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 40 oxygen atoms, 1 to 120 hydrogen atoms, and A group consisting of 0 to 10 sulfur atoms is preferred, with 1 to 50 carbon atoms, 0 to 10 nitrogen atoms, 0 to 30 oxygen atoms, 1 to 100 hydrogen atoms, and Groups consisting of 0 to 7 sulfur atoms are more preferred, 1 to 40 carbon atoms, 0 to 8 nitrogen atoms, 0 to 20 oxygen atoms, 1 to 80 hydrogen atoms, And a group consisting of 0 to 5 sulfur atoms is particularly preferable.
  • R 2 is a single bond, or 1 to 50 carbon atoms, 0 to 8 nitrogen atoms, 0 to 25 oxygen atoms, and 1 to 100 hydrogens.
  • Divalent organic linking groups consisting of atoms and 0 to 10 sulfur atoms are preferred, with single bonds or 1 to 30 carbon atoms, 0 to 6 nitrogen atoms, 0 to 15 atoms.
  • a divalent organic linking group consisting of an oxygen atom, 1 to 50 hydrogen atoms, and 0 to 7 sulfur atoms is more preferable, and a single bond or 1 to 10 carbon atoms, 0 to 0.
  • a divalent organic linking group consisting of 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms, and 0 to 5 sulfur atoms is particularly preferable.
  • R 3 is independently single-bonded, —S— or a group similar to R 2 above, more preferably single bond or —S—, and particularly preferably —S—.
  • P 1 is preferably a polymer chain containing at least one repeating unit selected from the group consisting of repeating units represented by the formulas (1-1) to (1-7).
  • a polymer chain containing at least one repeating unit selected from the group consisting of repeating units represented by the formulas (1-1) to (1-5) and (1-7) is more preferable.
  • P 1 is a repeating unit represented by the formula (1-1-1), a repeating unit represented by the formula (1-2-1), a repeating unit represented by the formula (1-3), and a formula ( It is preferable to include the repeating unit represented by 1-4) or the repeating unit represented by the formula (1-5), and the repeating unit represented by the formula (1-1-1) or the repeating unit represented by the formula (1-1-1). It is more preferable to include the repeating unit represented by 1-2-1).
  • n1, n2- In the formula (S-1), m represents an integer of 1 to 8, preferably 1 to 5, more preferably 1 to 4, and particularly preferably 2 to 4. In the formula (S-1), n1 represents an integer of 2 to 9, preferably 2 to 8, more preferably 2 to 7, and particularly preferably 2 to 6. In the formula (S-1), n2 represents an integer of 1 or more, preferably 1 to 10, more preferably 1 to 4, and even more preferably 1 or 2.
  • the star polymer represented by the formula (S-1) is preferably a star polymer represented by the formula (S-2).
  • R 1 , A 1 , P 1 , n 1 , n 2 , and m in formula (S-1) are R 1 , A 1 , P 1 , n 1 , n 2 , respectively.
  • And m are synonymous with, and the preferred embodiment is also the same.
  • R 4 -S- except containing a sulfur atom at the bonding site and R 1 has the same meaning as R 2 in the formula (S-1), a preferable embodiment thereof is also the same.
  • the specific resin preferably has a molecular weight of 500 to 10,000 and has a molecular chain having no acid group or basic group.
  • the specific resin preferably has the above molecular chain as a branched chain.
  • the molecular chain is preferably a graft chain, and the molecular chain is included in the repeating unit represented by the above formula (1-1-3).
  • the specific resin is a star-shaped polymer, the molecular chain is preferably contained as P 1 in the above formula (S-1).
  • the molecular chain was selected from the group consisting of a repeating unit derived from a (meth) acrylic acid ester compound, a repeating unit derived from a (meth) acrylamide compound, a repeating unit derived from an aromatic vinyl compound, and a polyester structure. It is preferable to contain at least one kind.
  • R A2 has the formula (F-1), the repeating of the formula more preferably repeating units a group represented by (F-2) or formula (F-3), the above equation (1-7) a unit, repeating units R A2 is a group represented by the formula (F-1) is more preferable.
  • the repeating unit derived from the (meth) acrylamide compound the repeating unit represented by the above formula (1-2) is preferable, and the repeating unit represented by the above formula (1-2-1) is more preferable. ..
  • the repeating unit represented by the above formula (1-1) is preferable, and the repeating unit represented by the above formula (1-1-1) is more preferable.
  • a polyester structure represented by the above formula (F-5) is preferable.
  • the polyester structure is a repeating unit represented by the above formula (1-1-3), and is a repeating unit having a group represented by the above formula (F-5), or the above-mentioned formula (1-2). It is preferable that the repeating unit represented by -3) is contained in the specific resin as a repeating unit having a group represented by the formula (F-5).
  • the composition of the present invention preferably contains, as the specific resin, at least one resin selected from the group consisting of the following resin 1 and the following resin 2, and preferably contains the following resin 1 and the following resin 2.
  • the resin 1 A specific resin containing a group having an acid group and an ethylenically unsaturated bond
  • Resin 2 A specific resin consisting of a hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, and an amino group.
  • the molecular chains having a molecular weight of 500 to 10,000 and having no acid group or basic group are as described above.
  • Resin 1 may further have the above molecular chain.
  • the resin 2 may further have a group having the ethylenically unsaturated bond.
  • the weight average molecular weight (Mw) of the specific resin is preferably 5,000 to 100,000, more preferably 10,000 to 50,000.
  • the maximum value of the molar extinction coefficient of the specific resin at a wavelength of 400 to 1,100 nm is preferably 0 to 1,000 l / (mol ⁇ cm), and preferably 0 to 100 l / (mol ⁇ cm). More preferred.
  • the specific resin preferably has a 5% mass reduction temperature of 280 ° C. or higher, more preferably 300 ° C. or higher, and even more preferably 320 ° C. or higher by TG / DTA (thermogravimetric measurement / differential thermal measurement) in a nitrogen atmosphere.
  • the upper limit of the 5% mass reduction temperature is not particularly limited, and may be, for example, 1,000 ° C. or lower.
  • the 5% mass reduction temperature is determined by a known TG / DTA measuring method as a temperature at which the mass reduction rate becomes 5% when the mixture is allowed to stand at a specific temperature for 5 hours in a nitrogen atmosphere.
  • the specific resin preferably has a mass reduction rate of 10% or less, more preferably 5% or less, and 2% or less when left to stand at 320 ° C. for 3 hours in a nitrogen atmosphere. More preferred.
  • the lower limit of the mass reduction rate is not particularly limited, and may be 0% or more.
  • the mass reduction rate is a value calculated as the rate of mass reduction in the specific resin before and after being allowed to stand at 320 ° C. for 3 hours in a nitrogen atmosphere.
  • the method for synthesizing the specific resin is not particularly limited, and it can be synthesized by a known method, and for example, it can be synthesized by the method described in Examples described later.
  • the repeating unit derived from diethylacrylamide and the repeating unit derived from styrene are included in the sulfur atom described in (A-22).
  • the content ratio (molar ratio) of the subscripts in parentheses indicates that the polymer chains that are randomly bonded are bonded.
  • C C value.
  • any two places are shown in the left square brackets, and any four places are shown in the right square brackets. It is shown to combine with the structure shown.
  • the description in square brackets on the right side indicates a polymer chain in which a repeating unit derived from methyl vinylbenzoate and a repeating unit derived from butyl acrylate are randomly bonded.
  • the content of the specific resin in the composition of the present invention is preferably 10 to 95% by mass with respect to the total solid content of the composition.
  • the lower limit is more preferably 20% by mass or more, further preferably 30% by mass or more.
  • the upper limit is more preferably 90% by mass or less, further preferably 85% by mass or less.
  • the composition of the present invention may contain one specific resin alone, or two or more of them may be used in combination. When two or more kinds of specific resins are used in combination, the total amount is preferably within the above range.
  • the content of the resin 1 is preferably 1 to 30% by mass with respect to the total solid content of the composition.
  • the lower limit is more preferably 3% by mass or more, further preferably 5% by mass or more.
  • the upper limit is more preferably 25% by mass or less, further preferably 20% by mass or less.
  • the content of the resin 2 is preferably 10 to 60% by mass with respect to the total solid content of the composition.
  • the lower limit is more preferably 15% by mass or more, further preferably 20% by mass or more.
  • the upper limit is more preferably 55% by mass or less, further preferably 50% by mass or less.
  • the content of the resin 2 is 25 to 25 to the total mass of the pigment contained in the composition. It is preferably 85% by mass.
  • the lower limit is more preferably 28% by mass or more, further preferably 30% by mass or more.
  • the upper limit is more preferably 80% by mass or less, further preferably 50% by mass or less.
  • the specific resin is preferably contained in an amount of 20% by mass or more, more preferably 30% by mass or more, and more preferably 40% by mass or more in the component obtained by removing the colorant from the total solid content of the composition. More preferred.
  • the upper limit can be 100% by mass, 90% by mass or less, or 85% by mass or less.
  • the total content of the colorant and the above-mentioned specific resin in the total solid content of the composition is preferably 25 to 100% by mass.
  • the lower limit is more preferably 30% by mass or more, further preferably 40% by mass or more.
  • the upper limit is more preferably 90% by mass or less, further preferably 80% by mass or less.
  • the composition of the present invention may contain other resins.
  • the compound corresponding to the specific resin shall not correspond to the above other resins.
  • the ratio of the total amount of the repeating units represented by any of) is preferably 10 mol% or more.
  • the ratio of the total amount is preferably 60 mol% or more, more preferably 70 mol% or more, and further preferably 80 mol% or more.
  • the upper limit is not particularly limited, and may be 100 mol% or less.
  • Examples of other resins include resins having alkali developability, resins as dispersants, and the like.
  • the composition of the present invention contains another resin, it is also preferable to use the embodiment shown in (1) below or (2) below, for example.
  • (1) The above-mentioned resin 1 and a resin as a dispersant are included.
  • (2) Includes a resin having alkali developability and the above-mentioned resin 2.
  • the above-mentioned resin 2 may be further contained, and in the above-mentioned aspect (2), the above-mentioned resin 1 may be further contained.
  • the weight average molecular weight (Mw) of the alkali-developable resin is preferably 3,000 to 2,000,000.
  • the upper limit is more preferably 1,000,000 or less, still more preferably 500,000 or less.
  • the lower limit is more preferably 4,000 or more, and even more preferably 5,000 or more.
  • Examples of the resin having alkali developability include (meth) acrylic resin, polyimine resin, polyether resin, polyolefin resin, cyclic olefin resin, polyester resin, styrene resin and the like, and (meth) acrylic resin and polyimine resin are preferable.
  • (Meta) acrylic resin is more preferable.
  • the resin described in JP-A-2017-032685, the resin described in JP-A-2017-075248, and the resin described in JP-A-066240 can also be used.
  • the resin having alkali developability it is preferable to use a resin having an acid group.
  • the developability of the composition can be further improved.
  • the acid group include a phenolic hydroxy group, a carboxy group, a sulfo group, a phosphoric acid group, a phosphonic acid group, an active imide group, a sulfonamide group and the like, and a carboxy group is preferable.
  • the resin having an acid group can be used as, for example, an alkali-soluble resin.
  • the resin having an acid group preferably contains a repeating unit having an acid group in the side chain, and more preferably contains 1 to 70 mol% of the repeating unit having an acid group in the side chain in all the repeating units of the resin.
  • the upper limit of the content of the repeating unit having an acid group in the side chain is preferably 50 mol% or less, more preferably 40 mol% or less.
  • the lower limit of the content of the repeating unit having an acid group in the side chain is preferably 2 mol% or more, and more preferably 5 mol% or more.
  • the acid value of the resin having an acid group is preferably 200 mgKOH / g or less, more preferably 150 mgKOH / g or less, further preferably 120 mgKOH / g or less, and particularly preferably 100 mgKOH / g or less.
  • the acid value of the resin having an acid group is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, and even more preferably 20 mgKOH / g or more.
  • the resin having an acid group further has an ethylenically unsaturated bond-containing group.
  • the ethylenically unsaturated bond-containing group include a vinyl group, an allyl group, a (meth) acryloyl group, and the like, preferably an allyl group and a (meth) acryloyl group, and more preferably a (meth) acryloyl group.
  • the resin having an ethylenically unsaturated bond-containing group preferably contains a repeating unit having an ethylenically unsaturated bond-containing group in the side chain, and the repeating unit having an ethylenically unsaturated bond-containing group in the side chain is the whole resin. More preferably, it contains 5-80 mol% in the repeating unit.
  • the upper limit of the content of the repeating unit having an ethylenically unsaturated bond-containing group in the side chain is preferably 60 mol% or less, more preferably 40 mol% or less.
  • the lower limit of the content of the repeating unit having an ethylenically unsaturated bond-containing group in the side chain is preferably 10 mol% or more, more preferably 15 mol% or more.
  • the alkali-developable resin includes a compound represented by the following formula (ED1) and / or a compound represented by the following formula (ED2) (hereinafter, these compounds may be referred to as "ether dimer”). It is also preferable to include repeating units derived from the monomer component.
  • R 1 and R 2 each independently represent a hydrocarbon group having 1 to 25 carbon atoms which may have a hydrogen atom or a substituent.
  • R represents a hydrogen atom or an organic group having 1 to 30 carbon atoms.
  • paragraph number 0317 of JP2013-209760A can be referred to, and this content is incorporated in the present specification.
  • the alkali-developable resin preferably contains a repeating unit derived from the compound represented by the following formula (X).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkylene group having 2 to 10 carbon atoms
  • R 3 represents a hydrogen atom or a benzene ring having 1 to 20 carbon atoms.
  • n represents an integer from 1 to 15.
  • Examples of the resin having an acid group include a resin having the following structure.
  • Me represents a methyl group.
  • the composition of the present invention may also contain a resin as a dispersant.
  • the dispersant include an acidic dispersant (acidic resin) and a basic dispersant (basic resin).
  • the acidic dispersant (acidic resin) represents a resin in which the amount of acid groups is larger than the amount of basic groups.
  • the acidic dispersant (acidic resin) is preferably a resin in which the amount of acid groups accounts for 70 mol% or more when the total amount of the amount of acid groups and the amount of basic groups is 100 mol%, and is substantially an acid. A resin consisting only of groups is more preferable.
  • the acid group of the acidic dispersant (acidic resin) is preferably a carboxy group.
  • the acid value of the acidic dispersant (acidic resin) is preferably 40 to 105 mgKOH / g, more preferably 50 to 105 mgKOH / g, and even more preferably 60 to 105 mgKOH / g.
  • the basic dispersant (basic resin) represents a resin in which the amount of basic groups is larger than the amount of acid groups.
  • the basic dispersant (basic resin) is preferably a resin in which the amount of basic groups exceeds 50 mol% when the total amount of the amount of acid groups and the amount of basic groups is 100 mol%.
  • the basic group contained in the basic dispersant is preferably an amino group.
  • the resin used as the dispersant preferably contains a repeating unit having an acid group.
  • the resin used as the dispersant is also preferably a graft resin.
  • the graft resin include the resins described in paragraphs 0025 to 0094 of JP2012-255128, the contents of which are incorporated in the present specification.
  • the resin used as the dispersant is a polyimine-based dispersant (polyimine resin) containing a nitrogen atom in at least one of the main chain and the side chain.
  • the polyimine-based dispersant has a main chain having a partial structure having a functional group of pKa14 or less and a side chain having 40 to 10,000 atoms, and basic nitrogen is contained in at least one of the main chain and the side chain.
  • a resin having an atom is preferable.
  • the basic nitrogen atom is not particularly limited as long as it is a nitrogen atom exhibiting basicity.
  • Examples of the polyimine-based dispersant include the resins described in paragraphs 0102 to 0166 of JP2012-255128A, the contents of which are incorporated in the present specification.
  • the resin used as the dispersant is also preferably a resin having a structure in which a plurality of polymer chains are bonded to the core portion.
  • a resin include dendrimers (including star-shaped polymers).
  • specific examples of the dendrimer include polymer compounds C-1 to C-31 described in paragraphs 0196 to 0209 of JP2013-043962.
  • the dispersant is also available as a commercially available product, and specific examples thereof include DISPERBYK series manufactured by BYK Chemie (for example, DISPERBYK-111, 161 etc.) and Solspace series manufactured by Lubrizol (for example, Solspire 36000 etc.). And so on. Further, the pigment dispersants described in paragraphs 0041 to 0130 of JP-A-2014-130338 can also be used, and the contents thereof are incorporated in the present specification. Dispersants include JP-A-2018-150498, JP-A-2017-100116, JP-A-2017-100115, JP-A-2016-108520, JP-A-2016-108519, and JP-A-2015. The compound described in Japanese Patent Application Laid-Open No. 232105 may be used.
  • the resin described as the above-mentioned dispersant can also be used for purposes other than the dispersant.
  • it can also be used as a binder.
  • the content of the total resin component in the total solid content of the composition is preferably 10 to 95% by mass.
  • the lower limit is more preferably 20% by mass or more, further preferably 30% by mass or more.
  • the upper limit is more preferably 90% by mass or less, further preferably 85% by mass or less.
  • the content of the above-mentioned other resin is preferably 230 parts by mass or less, more preferably 200 parts by mass or less, and 150 parts by mass with respect to 100 parts by mass of the above-mentioned specific resin. More preferably, it is less than or equal to a portion.
  • the lower limit may be 0 parts by mass, 5 parts by mass or more, or 10 parts by mass or more. It is also preferable that the composition is substantially free of the other resins described above.
  • the composition is substantially free of other resins, it means that the content of the other resins in the total solid content of the composition is 0.1% by mass or less, and is 0.05% by mass or less. Is preferable, and it is more preferable that it is not contained.
  • the composition of the present invention contains a solvent.
  • the solvent is basically not particularly limited as long as it satisfies the solubility of each component and the coatability of the composition, but an organic solvent is preferable.
  • the organic solvent include ester solvents, ketone solvents, alcohol solvents, amide solvents, ether solvents, hydrocarbon solvents and the like.
  • paragraph No. 0223 of WO 2015/166779 can be referred to, the contents of which are incorporated herein by reference.
  • an ester solvent substituted with a cyclic alkyl group and a ketone solvent substituted with a cyclic alkyl group can also be preferably used.
  • organic solvent examples include polyethylene glycol monomethyl ether, dichloromethane, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2 -Heptanone, cyclohexanone, cyclohexyl acetate, cyclopentanone, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N , N-Dimethylpropanamide, gamma butyrolactone, N-methyl-2-pyrrolidone and the like.
  • aromatic hydrocarbons (benzene, toluene, xylene, ethylbenzene, etc.) as organic solvents may need to be reduced for environmental reasons (for example, 50 mass ppm (parts) with respect to the total amount of organic solvent. Per million) or less, 10 mass ppm or less, or 1 mass ppm or less).
  • an organic solvent having a low metal content it is preferable to use an organic solvent having a low metal content, and the metal content of the organic solvent is preferably, for example, 10 mass ppb (parts per billion) or less. If necessary, an organic solvent at the mass ppt (parts per fraction) level may be used, and such an organic solvent is provided by, for example, Toyo Synthetic Co., Ltd. (The Chemical Daily, November 13, 2015).
  • Examples of the method for removing impurities such as metals from the organic solvent include distillation (molecular distillation, thin film distillation, etc.) and filtration using a filter.
  • the filter pore diameter of the filter used for filtration is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the filter material is preferably polytetrafluoroethylene, polyethylene or nylon.
  • the organic solvent may contain isomers (compounds having the same number of atoms but different structures). Further, only one kind of isomer may be contained, or a plurality of kinds may be contained.
  • the content of peroxide in the organic solvent is preferably 0.8 mmol / L or less, and more preferably substantially free of peroxide.
  • the content of the organic solvent in the composition is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and even more preferably 30 to 90% by mass.
  • the composition of the present invention preferably contains a polymerizable compound.
  • the polymerizable compound is preferably, for example, a compound having an ethylenically unsaturated bond-containing group.
  • Examples of the ethylenically unsaturated bond-containing group include a vinyl group, a (meth) allyl group, and a (meth) acryloyl group.
  • the polymerizable compound used in the present invention is preferably a radically polymerizable compound.
  • the polymerizable compound may be in any chemical form such as a monomer, a prepolymer, or an oligomer, but a monomer is preferable.
  • the molecular weight of the polymerizable compound is preferably 100 to 3,000.
  • the upper limit is more preferably 2,000 or less, and even more preferably 1,500 or less.
  • the lower limit is more preferably 150 or more, and even more preferably 250 or more.
  • the polymerizable compound is preferably a compound containing 3 or more ethylenically unsaturated bond-containing groups, more preferably a compound containing 3 to 15 ethylenically unsaturated bond-containing groups, and an ethylenically unsaturated bond. It is more preferable that the compound contains 3 to 6 containing groups.
  • the polymerizable compound is preferably a (meth) acrylate compound having 3 to 15 functionalities, and more preferably a (meth) acrylate compound having 3 to 6 functionalities.
  • polymerizable compound examples include paragraph numbers 0905 to 0108 of JP2009-288705A, paragraphs 0227 of JP2013-209760A, paragraphs 0254 to 0257 of JP2008-292970, and JP-A.
  • Examples include the compounds described in the publication, the contents of which are incorporated herein.
  • dipentaerythritol triacrylate (commercially available KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (commercially available KAYARAD D-320; Nihon Kayaku Co., Ltd.) ), Dipentaerythritol penta (meth) acrylate (commercially available KAYARAD D-310; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available KAYARAD DPHA; Nippon Kayaku) NK ester A-DPH-12E manufactured by Shin-Nakamura Chemical Industry Co., Ltd., and a structure in which these (meth) acryloyl groups are bonded via ethylene glycol and / or propylene glycol residues.
  • trimethylolpropane tri (meth) acrylate trimethylolpropane propyleneoxy-modified tri (meth) acrylate, trimethylolpropane ethyleneoxy-modified tri (meth) acrylate, and isocyanurate ethyleneoxy-modified tri (meth) acrylate.
  • a trifunctional (meth) acrylate compound such as pentaerythritol trimethylolpropane (meth) acrylate.
  • Commercially available trifunctional (meth) acrylate compounds include Aronix M-309, M-310, M-321, M-350, M-360, M-313, M-315, M-306, and M-305.
  • M-303, M-452, M-450 manufactured by Toa Synthetic Co., Ltd.
  • NK ester A9300, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, TMPT manufactured by Shin Nakamura Chemical Industry Co., Ltd.
  • KAYARAD GPO-303, TMPTA, THE-330, TPA-330, PET-30 (manufactured by Nippon Kayaku Co., Ltd.) And so on.
  • a compound having an acid group can also be used.
  • the polymerizable compound in the unexposed portion can be easily removed during development, and the generation of development residue can be suppressed.
  • the acid group include a carboxy group, a sulfo group, a phosphoric acid group and the like, and a carboxy group is preferable.
  • Examples of commercially available products of the polymerizable compound having an acid group include Aronix M-305, M-510, M-520, and Aronix TO-2349 (manufactured by Toagosei Co., Ltd.).
  • the preferable acid value of the polymerizable compound having an acid group is 0.1 to 40 mgKOH / g, and more preferably 5 to 30 mgKOH / g.
  • the acid value of the polymerizable compound is 0.1 mgKOH / g or more, the solubility in a developing solution is good, and when it is 40 mgKOH / g or less, it is advantageous in production and handling.
  • the polymerizable compound is a compound having a caprolactone structure.
  • Polymerizable compounds having a caprolactone structure are commercially available from Nippon Kayaku Co., Ltd. as the KAYARAD DPCA series, and examples thereof include DPCA-20, DPCA-30, DPCA-60, and DPCA-120.
  • a polymerizable compound having an alkyleneoxy group can also be used.
  • a polymerizable compound having an ethyleneoxy group and / or a propyleneoxy group is preferable, a polymerizable compound having an ethyleneoxy group is more preferable, and 3 to 3 having 4 to 20 ethyleneoxy groups.
  • a hexafunctional (meth) acrylate compound is more preferred.
  • Commercially available products of the polymerizable compound having an alkyleneoxy group include SR-494, which is a tetrafunctional (meth) acrylate having four ethyleneoxy groups manufactured by Sartomer, and a trifunctional (meth) having three isobutyleneoxy groups. Examples thereof include KAYARAD TPA-330, which is an acrylate.
  • a polymerizable compound having a fluorene skeleton can also be used.
  • examples of commercially available products of the polymerizable compound having a fluorene skeleton include Ogsol EA-0200 and EA-0300 (manufactured by Osaka Gas Chemical Co., Ltd., a (meth) acrylate monomer having a fluorene skeleton).
  • the polymerizable compound it is also preferable to use a compound that does not substantially contain an environmentally regulated substance such as toluene.
  • an environmentally regulated substance such as toluene.
  • commercially available products of such compounds include KAYARAD DPHA LT and KAYARAD DPEA-12 LT (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of the polymerizable compound include urethane acrylates as described in JP-A-48-041708, JP-A-51-0371993, JP-A-02-032293, and JP-A-02-016765.
  • Urethane compounds having an ethylene oxide-based skeleton described in Japanese Patent Publication No. 58-049860, Japanese Patent Publication No. 56-017654, Japanese Patent Publication No. 62-039417, and Japanese Patent Publication No. 62-039418 are also suitable.
  • a polymerizable compound having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238.
  • the polymerizable compounds are UA-7200 (manufactured by Shin Nakamura Chemical Industry Co., Ltd.), DPHA-40H (manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, Commercially available products such as T-600, AI-600, and LINK-202UA (manufactured by Kyoeisha Chemical Co., Ltd.) can also be used.
  • the content of the polymerizable compound in the total solid content of the composition is preferably 0.1 to 50% by mass.
  • the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit is more preferably 45% by mass or less, further preferably 40% by mass or less.
  • the polymerizable compound may be used alone or in combination of two or more.
  • the composition of the present invention preferably contains a polymerization initiator.
  • a photopolymerization initiator is preferable.
  • the photopolymerization initiator is not particularly limited and may be appropriately selected from known photopolymerization initiators. For example, a compound having photosensitivity to light rays in the ultraviolet region to the visible region is preferable.
  • the photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the photopolymerization initiator examples include halogenated hydrocarbon derivatives (for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having an imidazole skeleton, etc.), acylphosphine compounds, hexaarylbiimidazole, oxime compounds, and organic compounds.
  • halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having an imidazole skeleton, etc.
  • acylphosphine compounds examples include peroxides, thio compounds, ketone compounds, aromatic onium salts, ⁇ -hydroxyketone compounds, and ⁇ -aminoketone compounds.
  • the photopolymerization initiator is a trihalomethyltriazine compound, a biimidazole compound, a benzyl dimethyl ketal compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, or an oxime compound.
  • Triarylimidazole dimer onium compound, benzothiazole compound, benzophenone compound, acetophenone compound, cyclopentadiene-benzene-iron complex, halomethyloxaziazole compound and 3-aryl substituted coumarin compound, preferably biimidazole compound,
  • a compound selected from an oxime compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, and an acylphosphine compound is more preferable, and an oxime compound is further preferable.
  • the photopolymerization initiator include compounds described in paragraphs 0065 to 0111 of JP-A-2014-130173 and JP-A-6301489, the contents of which are incorporated in the present specification.
  • biimidazole compound examples include 2,2-bis (2-chlorophenyl) -4,4', 5,5'-tetraphenylbiimidazole and 2,2'-bis (o-chlorophenyl) -4,4', 5 , 5-tetrakis (3,4,5-trimethoxyphenyl) -1,2'-biimidazole, 2,2'-bis (2,3-dichlorophenyl) -4,4', 5,5'-tetraphenyl Examples thereof include biimidazole and 2,2'-bis (o-chlorophenyl) -4,4,5,5'-tetraphenyl-1,2'-biimidazole.
  • ⁇ -hydroxyketone compounds include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (all manufactured by IGM Resins BV), Irgacure 184, Irgacure 1173, Irgacare 1173, Irgacure29. (Manufactured by the company) and the like.
  • Commercially available ⁇ -aminoketone compounds include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (above, IGM Resins BV), Irgacare 907, Irgacare 369, Irgacure 369, Irgacure 369, Irgar (Made) and so on.
  • acylphosphine compounds examples include Omnirad 819, Omnirad TPO (above, manufactured by IGM Resins BV), Irgacure 819, and Irgacure TPO (above, manufactured by BASF).
  • Examples of the oxime compound include the compounds described in JP-A-2001-233842, the compounds described in JP-A-2000-080068, and the compounds described in JP-A-2006-342166.
  • oxime compound examples include 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminovtan-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxyiminopentane-3-one, 2-Acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutane-2-one, and 2-ethoxycarbonyloxy Examples thereof include imino-1-phenylpropane-1-one.
  • An oxime compound having a fluorene ring can also be used as the photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorene ring include the compounds described in JP-A-2014-137466.
  • an oxime compound having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring can also be used.
  • Specific examples of such an oxime compound include the compounds described in International Publication No. 2013/083505.
  • An oxime compound having a fluorine atom can also be used as the photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorine atom are described in the compounds described in JP-A-2010-262028, compounds 24, 36-40 described in JP-A-2014-500852, and JP-A-2013-164471. Compound (C-3) and the like.
  • an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton can also be used.
  • Examples of such a photopolymerization initiator include the compounds described in International Publication No. 2019/088055.
  • An oxime compound having a nitro group can be used as the photopolymerization initiator.
  • the oxime compound having a nitro group is also preferably a dimer.
  • Specific examples of the oxime compound having a nitro group include the compounds described in paragraphs 0031 to 0047 of JP2013-114249A and paragraphs 0008-0012 and 0070-0079 of JP2014-137466. Examples thereof include the compound described in paragraphs 0007 to 0025 of Japanese Patent No. 4223071, ADEKA ARKULS NCI-831 (manufactured by ADEKA Corporation).
  • An oxime compound having a benzofuran skeleton can also be used as the photopolymerization initiator.
  • Specific examples include OE-01 to OE-75 described in International Publication No. 2015/036910.
  • the oxime compound is preferably a compound having a maximum absorption wavelength in the wavelength range of 350 to 500 nm, and more preferably a compound having a maximum absorption wavelength in the wavelength range of 360 to 480 nm.
  • the molar extinction coefficient of the oxime compound at a wavelength of 365 nm or a wavelength of 405 nm is preferably high, more preferably 1000 to 300,000, and even more preferably 2000 to 300,000 from the viewpoint of sensitivity. It is particularly preferably 5000 to 200,000.
  • the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using ethyl acetate with a spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • a bifunctional or trifunctional or higher functional photoradical polymerization initiator may be used as the photopolymerization initiator.
  • two or more radicals are generated from one molecule of the photoradical polymerization initiator, so that good sensitivity can be obtained.
  • the crystallinity is lowered, the solubility in a solvent or the like is improved, the precipitation is less likely to occur with time, and the stability of the composition with time can be improved.
  • Specific examples of the bifunctional or trifunctional or higher functional photo-radical polymerization initiators include JP-A-2010-527339, JP-A-2011-524436, International Publication No.
  • the content of the photopolymerization initiator in the total solid content of the composition is preferably 0.1 to 30% by mass.
  • the lower limit is preferably 0.5% by mass or more, and more preferably 1% by mass or more.
  • the upper limit is preferably 20% by mass or less, more preferably 15% by mass or less. Only one type of photopolymerization initiator may be used, or two or more types may be used.
  • the composition of the present invention can contain a compound having a cyclic ether group.
  • the cyclic ether group include an epoxy group and an oxetanyl group.
  • the compound having a cyclic ether group is preferably a compound having an epoxy group.
  • the compound having an epoxy group include a compound having one or more epoxy groups in one molecule, and a compound having two or more epoxy groups is preferable. It is preferable to have 1 to 100 epoxy groups in one molecule.
  • the upper limit of the number of epoxy groups may be, for example, 10 or less, or 5 or less.
  • the lower limit of the number of epoxy groups is preferably two or more.
  • Examples of the compound having a cyclic ether group include paragraph numbers 0034 to 0036 of JP2013-011869A, paragraph numbers 0147 to 0156 of JP2014-043556, and paragraph numbers 0085 to 0092 of JP2014-089408.
  • the compound described in JP-A-2017-179172, and the compound described in JP-A-2019-133502 can also be used. These contents are incorporated in the present specification.
  • the compound having an epoxy group may be a low molecular weight compound (for example, a molecular weight of less than 2000, further, a molecular weight of less than 1,000), or a polymer compound (for example, a molecular weight of 1,000 or more, in the case of a polymer).
  • the weight average molecular weight may be 1,000 or more).
  • the weight average molecular weight of the compound having an epoxy group is preferably 200 to 100,000, more preferably 500 to 50,000.
  • the upper limit of the weight average molecular weight is preferably 10,000 or less, more preferably 5,000 or less, and even more preferably 3,000 or less.
  • an epoxy resin can be preferably used as the compound having an epoxy group.
  • the epoxy resin include an epoxy resin which is a glycidyl etherified product of a phenol compound, an epoxy resin which is a glycidyl etherified product of various novolak resins, an alicyclic epoxy resin, an aliphatic epoxy resin, a heterocyclic epoxy resin, and a glycidyl ester type.
  • the epoxy equivalent of the epoxy resin is preferably 310 to 3,300 g / eq, more preferably 310 to 1,700 g / eq, and even more preferably 310 to 1,000 g / eq.
  • EHPE3150 manufactured by Daicel Co., Ltd.
  • EPICLON N-695 manufactured by DIC Corporation
  • Marproof G-0150M Marproof G-0150M, G-0105SA, G-0130SP, G. -0250SP, G-1005S, G-1005SA, G-1010S, G-2050M, G-01100, G-01758 (all manufactured by Nichiyu Co., Ltd., epoxy group-containing polymer) and the like can be mentioned.
  • the content of the compound having a cyclic ether group in the total solid content of the composition is preferably 0.1 to 20% by mass.
  • the lower limit is, for example, preferably 0.5% by mass or more, and more preferably 1% by mass or more.
  • the upper limit is, for example, preferably 15% by mass or less, and more preferably 10% by mass or less.
  • the compound having a cyclic ether group may be only one kind or two or more kinds. In the case of two or more kinds, it is preferable that the total amount thereof is within the above range.
  • the composition of the present invention can contain a silane coupling agent.
  • the silane coupling agent means a silane compound having a hydrolyzable group and other functional groups.
  • the hydrolyzable group refers to a substituent that is directly linked to a silicon atom and can form a siloxane bond by at least one of a hydrolysis reaction and a condensation reaction.
  • Examples of the hydrolyzable group include a halogen atom, an alkoxy group, an acyloxy group and the like, and an alkoxy group is preferable. That is, the silane coupling agent is preferably a compound having an alkoxysilyl group.
  • Examples of the functional group other than the hydrolyzable group include a vinyl group, a (meth) allyl group, a (meth) acryloyl group, a mercapto group, an epoxy group, an oxetanyl group, an amino group, a ureido group, a sulfide group and an isocyanate group.
  • a phenyl group and the like, and an amino group, a (meth) acryloyl group and an epoxy group are preferable.
  • Specific examples of the silane coupling agent include the compounds described in paragraphs 0018 to 0036 of JP2009-288703A and the compounds described in paragraphs 0056 to 0066 of JP2009-242604A. The contents of are incorporated herein by reference.
  • the content of the silane coupling agent in the total solid content of the composition is preferably 0.1 to 5% by mass.
  • the upper limit is preferably 3% by mass or less, and more preferably 2% by mass or less.
  • the lower limit is preferably 0.5% by mass or more, and more preferably 1% by mass or more.
  • the silane coupling agent may be only one kind or two or more kinds.
  • the composition of the present invention may further contain a curing accelerator for the purpose of accelerating the reaction of the resin or the polymerizable compound and lowering the curing temperature.
  • the curing accelerator is a methylol compound (for example, a compound exemplified as a cross-linking agent in paragraph No. 0246 of JP-A-2015-034963), amines, a phosphonium salt, an amidin salt, and an amide compound (for example, JP-A-2015).
  • cyanate compound for example, Japanese Patent Application Laid-Open No. 2012-150180.
  • alkoxysilane compound for example, alkoxysilane compound having an epoxy group described in JP-A-2011-253504
  • onium salt compound eg, JP-A-2015-034963
  • a compound exemplified as an acid generator in 0216, a compound described in JP-A-2009-180949) and the like can also be used.
  • the content of the curing accelerator is preferably 0.3 to 8.9% by mass, preferably 0.8 to 6.4% by mass, based on the total solid content of the composition. Is more preferable.
  • the composition of the present invention can contain a polymerization inhibitor.
  • the polymerization inhibitor include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4'-thiobis (3-methyl-6-tert-butylphenol), and the like. Examples thereof include 2,2'-methylenebis (4-methyl-6-t-butylphenol) and N-nitrosophenylhydroxyamine salts (ammonium salt, primary cerium salt, etc.). Of these, p-methoxyphenol is preferable.
  • the content of the polymerization inhibitor in the total solid content of the composition is preferably 0.0001 to 5% by mass.
  • the composition of the present invention can contain a surfactant.
  • a surfactant various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicon-based surfactant can be used.
  • the surfactant the surfactant described in paragraph Nos. 0238 to 0245 of International Publication No. 2015/166779 is mentioned, and the content thereof is incorporated in the present specification.
  • the surfactant is preferably a fluorine-based surfactant.
  • a fluorine-based surfactant in the composition, the liquid characteristics (particularly, fluidity) can be further improved, and the liquid saving property can be further improved. It is also possible to form a film having a small thickness unevenness.
  • the fluorine content in the fluorine-based surfactant is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and particularly preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid saving property, and has good solubility in the composition.
  • fluorine-based surfactant examples include the surfactants described in paragraphs 0060 to 0064 of Japanese Patent Application Laid-Open No. 2014-041318 (paragraphs 0060 to 0064 of the corresponding International Publication No. 2014/017669) and the like, JP-A-2011- The surfactants described in paragraphs 0117 to 0132 of JP 132503 are mentioned and their contents are incorporated herein by reference.
  • Commercially available products of fluorine-based surfactants include, for example, Megafuck F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780, EXP, MFS.
  • the fluorine-based surfactant it is also preferable to use a polymer of a fluorine atom-containing vinyl ether compound having a fluorinated alkyl group or a fluorinated alkylene ether group and a hydrophilic vinyl ether compound.
  • a fluorine-based surfactant the description in JP-A-2016-216602 can be referred to, and the content thereof is incorporated in the present specification.
  • a block polymer can also be used as the fluorine-based surfactant.
  • the fluorine-based surfactant has a repeating unit derived from a (meth) acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy groups and propyleneoxy groups) (meth).
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used.
  • the following compounds are also exemplified as the fluorine-based surfactant used in the present invention.
  • the parentheses indicating the repeating unit described in the main chain represent the content ratio (molar ratio) of each repeating unit, and the subscript of the alkyleneoxy group described in the side chain is each alkyleneoxy group. Represents the number of repetitions of.
  • the weight average molecular weight of the above compounds is preferably 3,000 to 50,000, for example 14,000.
  • % indicating the ratio of the repeating unit is mol%.
  • a fluorine-based surfactant a fluorine-containing polymer having an ethylenically unsaturated bond-containing group in the side chain can also be used.
  • the compounds described in paragraphs 0050 to 0090 and paragraph numbers 0289 to 0295 of JP2010-164965 for example, Megafuck RS-101, RS-102, RS-718K manufactured by DIC Corporation. , RS-72-K and the like.
  • the fluorine-based surfactant the compounds described in paragraphs 0015 to 0158 of JP2015-117327A can also be used.
  • the content of the surfactant in the total solid content of the composition is preferably 0.001% by mass to 5.0% by mass, more preferably 0.005 to 3.0% by mass.
  • the surfactant may be only one kind or two or more kinds. In the case of two or more types, the total amount is preferably in the above range.
  • the composition of the present invention can contain an ultraviolet absorber.
  • an ultraviolet absorber a conjugated diene compound, an aminodiene compound, a salicylate compound, a benzophenone compound, a benzotriazole compound, an acrylonitrile compound, a hydroxyphenyltriazine compound, an indole compound, a triazine compound and the like can be used.
  • paragraph numbers 0052 to 0072 of JP2012-208374A paragraph numbers 0317 to 0334 of JP2013-066814, and paragraphs 0061 to 0080 of JP2016-162946.
  • Examples of commercially available ultraviolet absorbers include UV-503 (manufactured by Daito Kagaku Co., Ltd.).
  • Examples of the benzotriazole compound include the MYUA series made by Miyoshi Oil & Fat Co., Ltd. (The Chemical Daily, February 1, 2016).
  • the ultraviolet absorber the compounds described in paragraphs 0049 to 0059 of Japanese Patent No. 6268967 can also be used.
  • the content of the ultraviolet absorber in the total solid content of the composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass. Only one kind of ultraviolet absorber may be used, or two or more kinds may be used. When two or more types are used, the total amount is preferably in the above range.
  • the composition of the present invention can contain an antioxidant.
  • the antioxidant include phenol compounds, phosphite ester compounds, thioether compounds and the like.
  • the phenol compound any phenol compound known as a phenolic antioxidant can be used.
  • Preferred phenolic compounds include hindered phenolic compounds.
  • a compound having a substituent at a site (ortho position) adjacent to the phenolic hydroxy group is preferable.
  • a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable.
  • the antioxidant a compound having a phenol group and a phosphite ester group in the same molecule is also preferable.
  • a phosphorus-based antioxidant can also be preferably used.
  • the content of the antioxidant in the total solid content of the composition is preferably 0.01 to 20% by mass, more preferably 0.3 to 15% by mass. Only one type of antioxidant may be used, or two or more types may be used. When two or more types are used, the total amount is preferably in the above range.
  • compositions of the present invention include sensitizers, fillers, thermal polymerization initiators such as azo compounds and peroxide compounds, thermosetting accelerators, plasticizers and other auxiliaries (eg, for example. It may contain conductive particles, fillers, defoaming agents, flame retardants, leveling agents, peeling accelerators, fragrances, surface tension modifiers, chain transfer agents, etc.). By appropriately containing these components, properties such as film physical characteristics can be adjusted. These components are described in, for example, paragraph No. 0183 and subsequent paragraphs of JP2012-003225A (paragraph number 0237 of the corresponding US Patent Application Publication No. 2013/0034812), paragraphs of JP-A-2008-250074.
  • the composition may contain a latent antioxidant, if necessary.
  • the latent antioxidant is a compound in which the site that functions as an antioxidant is protected by a protecting group, and is heated at 100 to 250 ° C. or at 80 to 200 ° C. in the presence of an acid / base catalyst.
  • a compound in which the protecting group is eliminated and functions as an antioxidant can be mentioned.
  • Examples of the latent antioxidant include compounds described in International Publication No. 2014/021023, International Publication No. 2017/030005, and JP-A-2017-008219.
  • thermosetting agent can be added to increase the degree of curing of the film by post-heating after development.
  • the heat curing agent include azo compounds, thermal polymerization initiators such as peroxides, novolak resins, resole resins, epoxy compounds, styrene compounds and the like.
  • the composition of the present invention may contain a metal oxide in order to adjust the refractive index of the obtained film.
  • the metal oxide include TiO 2 , ZrO 2 , Al 2 O 3 , SiO 2 and the like.
  • the primary particle size of the metal oxide is preferably 1 to 100 nm, more preferably 3 to 70 nm, and even more preferably 5 to 50 nm.
  • the metal oxide may have a core-shell structure. Further, in this case, the core portion may be hollow.
  • the composition of the present invention may contain a light resistance improving agent.
  • the light resistance improving agent include the compounds described in paragraphs 0036 to 0037 of JP-A-2017-198787, the compounds described in paragraphs 0029 to 0034 of JP-A-2017-146350, and JP-A-2017-129774.
  • the composition of the present invention preferably contains a free metal that is not bonded or coordinated with a pigment or the like to be 100 ppm or less, more preferably 50 ppm or less, and further preferably 10 ppm or less. It is particularly preferable that it is substantially not contained.
  • stabilization of pigment dispersibility agglomeration suppression
  • improvement of spectral characteristics due to improvement of dispersibility agglomeration suppression
  • stabilization of curable components suppression of conductivity fluctuation due to elution of metal atoms / metal ions
  • Effects such as improved characteristics can be expected.
  • Examples of the types of free metals include Na, K, Ca, Sc, Ti, Mn, Cu, Zn, Fe, Cr, Co, Mg, Al, Sn, Zr, Ga, Ge, Ag, Au, Pt, and the like. Examples thereof include Cs, Ni, Cd, Pb and Bi.
  • the content of free halogen not bonded or coordinated with a pigment or the like is preferably 100 ppm or less, more preferably 50 ppm or less, and further preferably 10 ppm or less. It is preferable, and it is particularly preferable that it is not substantially contained.
  • Examples of the halogen include F, Cl, Br, I and their anions.
  • Examples of the method for reducing free metals and halogens in the composition include methods such as washing with ion-exchanged water, filtration, ultrafiltration, and purification with an ion-exchange resin.
  • composition of the present invention is substantially free of terephthalic acid ester.
  • substantially free means that the content of the terephthalic acid ester is 1,000 mass ppb or less in the total amount of the composition, and more preferably 100 mass ppb or less. , Zero is particularly preferred.
  • the viscosity (23 ° C.) of the composition of the present invention is preferably 1 to 100 mPa ⁇ s, for example, when a film is formed by coating.
  • the lower limit is more preferably 2 mPa ⁇ s or more, and further preferably 3 mPa ⁇ s or more.
  • the upper limit is more preferably 50 mPa ⁇ s or less, further preferably 30 mPa ⁇ s or less, and particularly preferably 15 mPa ⁇ s or less.
  • the storage container for the composition of the present invention is not particularly limited, and a known storage container can be used.
  • a storage container for the purpose of suppressing impurities from being mixed into raw materials and compositions, a multi-layer bottle in which the inner wall of the container is composed of 6 types and 6 layers of resin and a bottle in which 6 types of resin are composed of 7 layers are used. It is also preferable to use it.
  • Examples of such a container include the container described in Japanese Patent Application Laid-Open No. 2015-123351.
  • the inner wall of the container is preferably made of glass or stainless steel for the purpose of preventing metal elution from the inner wall of the container, improving the storage stability of the composition, and suppressing deterioration of the components.
  • the composition of the present invention can be prepared by mixing the above-mentioned components.
  • all the components may be simultaneously dissolved and / or dispersed in an organic solvent to prepare the composition, or each component may be appropriately prepared as two or more solutions or dispersions, if necessary. Then, these may be mixed at the time of use (at the time of application) to prepare a composition.
  • the mechanical force used for dispersing the pigment includes compression, squeezing, impact, shearing, cavitation and the like.
  • Specific examples of these processes include bead mills, sand mills, roll mills, ball mills, paint shakers, microfluidizers, high speed impellers, sand grinders, flow jet mixers, high pressure wet atomization, ultrasonic dispersion and the like.
  • the process and disperser for dispersing pigments are "Dispersion Technology Taizen, published by Information Organization Co., Ltd., July 15, 2005" and "Dispersion technology and industrial application centered on suspension (solid / liquid dispersion system)". Actually, the process and disperser described in Paragraph No.
  • JP-A-2015-157893 "Comprehensive Data Collection, Published by Management Development Center Publishing Department, October 10, 1978" can be preferably used.
  • the particles may be miniaturized in the salt milling step.
  • the materials, equipment, processing conditions, etc. used in the salt milling step for example, the descriptions of JP-A-2015-194521 and JP-A-2012-046629 can be referred to.
  • any filter that has been conventionally used for filtration or the like can be used without particular limitation.
  • a fluororesin such as polytetrafluoroethylene (PTFE), a polyamide resin such as nylon (for example, nylon-6, nylon-6,6), and a polyolefin resin such as polyethylene and polypropylene (PP) (high density, ultrahigh molecular weight).
  • a filter using a material such as (including a polyolefin resin) can be mentioned.
  • polypropylene (including high-density polypropylene) and nylon are preferable.
  • the pore size of the filter is preferably 0.01 to 7.0 ⁇ m, more preferably 0.01 to 3.0 ⁇ m, and even more preferably 0.05 to 0.5 ⁇ m. If the pore size of the filter is within the above range, fine foreign matter can be removed more reliably.
  • the nominal value of the filter manufacturer can be referred to.
  • various filters provided by Nippon Pole Co., Ltd. (DFA4201NIEY, etc.), Advantech Toyo Co., Ltd., Japan Integris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), KITZ Microfilter Co., Ltd., etc. can be used.
  • fibrous filter medium examples include polypropylene fiber, nylon fiber, glass fiber and the like.
  • examples of commercially available products include SBP type series (SBP008, etc.), TPR type series (TPR002, TPR005, etc.) and SHPX type series (SHPX003, etc.) manufactured by Roki Techno Co., Ltd.
  • filters for example, a first filter and a second filter
  • the filtration with each filter may be performed only once or twice or more.
  • filters having different pore diameters may be combined within the above-mentioned range.
  • the filtration with the first filter may be performed only on the dispersion liquid, and after mixing the other components, the filtration with the second filter may be performed.
  • the film of the present invention is a film obtained from the composition of the present invention.
  • the cured film of the present invention is a cured film obtained by curing the composition of the present invention.
  • the film of the present invention or the cured film of the present invention can be preferably used as a near-infrared ray transmitting filter.
  • the film of the present invention or the cured film of the present invention may have a pattern or may be a film having no pattern (flat film). Further, the film of the present invention or the cured film of the present invention may be used by being laminated on a support, or the film of the present invention or the cured film of the present invention may be peeled off from the support and used.
  • Examples of the support include a semiconductor base material such as a silicon substrate and a transparent base material.
  • a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS), a transparent conductive film, or the like may be formed on the semiconductor base material used as the support. Further, a black matrix that separates each pixel may be formed on the semiconductor base material. Further, if necessary, an undercoat layer may be provided on the semiconductor base material in order to improve the adhesion with the upper layer, prevent the diffusion of substances, or flatten the surface of the substrate.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • a transparent conductive film or the like
  • an undercoat layer may be provided on the semiconductor base material in order to improve the adhesion with the upper layer, prevent the diffusion of substances, or flatten the surface of the substrate.
  • the transparent base material used as the support is not particularly limited as long as it is made of at least a material capable of transmitting visible light.
  • a base material made of a material such as glass or resin can be mentioned.
  • the resin include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polyethylene, polypropylene and ethylene vinyl acetate copolymers, acrylic resins such as norbornene resin, polyacrylate and polymethylmethacrylate, urethane resins and vinyl chloride resins. , Fluorine resin, polycarbonate resin, polyvinyl butyral resin, polyvinyl alcohol resin and the like.
  • Examples of the glass include soda lime glass, borosilicate glass, non-alkali glass, quartz glass, and glass containing copper.
  • Examples of the copper-containing glass include copper-containing phosphate glass and copper-containing fluoride glass.
  • As the glass containing copper a commercially available product can also be used. Examples of commercially available copper-containing glass include NF-50 (manufactured by AGC Techno Glass Co., Ltd.) and the like.
  • the thickness of the film of the present invention or the cured film of the present invention can be appropriately adjusted according to the purpose.
  • the thickness of the film or the cured film is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the lower limit of the thickness of the film or the cured film is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • the film of the present invention or the cured film of the present invention has an Amin / B ratio of 5 or more, which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm to the absorbance of the composition at a wavelength of 1,500 nm. Is preferable.
  • the value of Amin / B is preferably 10 or more, more preferably 15 or more, and further preferably 30 or more.
  • the film of the present invention or the cured film of the present invention satisfies any of the following spectral characteristics (1C) to (4C).
  • a film or a cured film capable of transmitting near infrared rays having a wavelength of more than 670 nm can be obtained by blocking light in the wavelength range of 400 to 640 nm.
  • Amin2 / Bmax2 which is the ratio of the minimum absorbance Amin2 in the wavelength range of 400 to 750 nm and the maximum absorbance Bmax2 in the wavelength range of 900 to 1,500 nm, is 5 or more and 7.5 or more. It is preferably 15 or more, more preferably 30 or more, and even more preferably 30 or more. According to this aspect, for example, a film or a cured film capable of transmitting near infrared rays having a wavelength of more than 850 nm can be obtained by blocking light in the wavelength range of 400 to 750 nm.
  • Amin3 / Bmax3 which is the ratio of the minimum absorbance Amin3 in the wavelength range of 400 to 830 nm and the maximum absorbance Bmax3 in the wavelength range of 1,000 to 1,500 nm, is 5 or more. It is preferably 5 or more, more preferably 15 or more, and even more preferably 30 or more. According to this aspect, for example, a film or a cured film capable of transmitting near infrared rays having a wavelength of more than 940 nm can be obtained by blocking light in the wavelength range of 400 to 830 nm.
  • Amin4 / Bmax4 which is the ratio of the minimum absorbance Amin4 in the wavelength range of 400 to 950 nm and the maximum absorbance Bmax4 in the wavelength range of 1,100 to 1,500 nm, is 5 or more. It is preferably 5 or more, more preferably 15 or more, and even more preferably 30 or more. According to this aspect, for example, a film or a cured film capable of transmitting near infrared rays having a wavelength of more than 1,040 nm can be obtained by blocking light in the wavelength range of 400 to 950 nm.
  • the maximum value of the light transmittance in the film thickness direction in the wavelength range of 400 to 640 nm is 20% or less, and the light transmittance in the film thickness direction. It is preferable that the minimum value in the wavelength range of 1,200 to 1,500 nm is 70% or more. The maximum value in the wavelength range of 400 to 640 nm is more preferably 15% or less, and more preferably 10% or less. The lower limit is not particularly limited and may be 0% or more. The minimum value in the wavelength range of 1,200 to 1,500 nm is more preferably 75% or more, and more preferably 80% or more. The upper limit is not particularly limited and may be 100% or less.
  • the film of the present invention or the cured film of the present invention satisfies any of the following spectral characteristics (1D) to (4D).
  • the maximum value of the light transmittance in the thickness direction of the film or the cured film in the wavelength range of 400 to 640 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the film or
  • An embodiment in which the minimum value of the light transmittance in the thickness direction of the cured film in the wavelength range of 800 to 1,500 nm is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the maximum value of the light transmittance in the thickness direction of the film or the cured film in the wavelength range of 400 to 750 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the film or
  • An embodiment in which the minimum value of the light transmittance in the thickness direction of the cured film in the wavelength range of 900 to 1,500 nm is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the maximum value of the light transmittance in the thickness direction of the film or the cured film in the wavelength range of 400 to 830 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the film or An embodiment in which the minimum value of the light transmittance in the thickness direction of the cured film in the wavelength range of 1,000 to 1,500 nm is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the maximum value of the light transmittance in the thickness direction of the film or the cured film in the wavelength range of 400 to 950 nm is 20% or less (preferably 15% or less, more preferably 10% or less), and the film or An embodiment in which the minimum value of the light transmittance in the thickness direction of the cured film in the wavelength range of 1,100 to 1,500 nm is 70% or more (preferably 75% or more, more preferably 80% or more).
  • the wavelength showing a light transmittance of 50% in the thickness direction of the film or the cured film is preferably 700 to 950 nm, more preferably 700 to 900 nm, and 700. It is more preferably to 850 nm, and particularly preferably 700 to 800 nm.
  • the minimum value of the light transmittance in the wavelength range of 950 to 1,300 nm in the thickness direction of the film or the cured film is preferably 90% or more, and the wavelength is 900 to 900 to.
  • the minimum value of the light transmittance in the range of 1,300 nm is more preferably 90% or more, and the minimum value of the light transmittance in the wavelength range of 850 to 1,300 nm is more preferably 90% or more. It is particularly preferable that the minimum value of the light transmittance in the range of 800 to 1,300 nm is 90% or more.
  • the embodiment described in the following (S1) is preferable, and the embodiment described in the following (S2) is more preferable.
  • S1 The wavelength indicating the light transmittance of 50% in the thickness direction of the film or the cured film is 700 to 950 nm, and the minimum value of the light transmittance in the wavelength range of 950 to 1,300 nm is 90% or more (S1).
  • S2) The wavelength indicating the light transmittance of 50% in the thickness direction of the film or the cured film is 700 to 800 nm, and the minimum value of the light transmittance in the wavelength range of 800 to 1,300 nm is 90% or more.
  • the film of the present invention or the cured film of the present invention can be used for solid-state imaging devices such as CCD (charge-coupled device) and CMOS (complementary metal oxide semiconductor), and various devices such as infrared sensors.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the method for producing a film of the present invention preferably includes a step (impartment step) of applying the composition of the present invention onto a support to obtain a film formed from the composition.
  • the applying step is a step of applying the composition of the present invention onto a support to obtain a film formed from the composition.
  • the support include those described above.
  • the method for applying the composition include coating.
  • a coating method a known method can be used. For example, a dropping method (drop casting); a slit coating method; a spray method; a roll coating method; a rotary coating method (spin coating); a casting coating method; a slit and spin method; a pre-wet method (for example, JP-A-2009-145395).
  • Inkjet for example, on-demand method, piezo method, thermal method
  • ejection system printing such as nozzle jet, flexographic printing, screen printing, gravure printing, reverse offset printing, metal mask printing, etc.
  • Various printing methods; transfer method using a mold or the like; nano-imprint method and the like can be mentioned.
  • the method of application to inkjet is not particularly limited, and is, for example, the method shown in "Expandable and usable inkjet-infinite possibilities seen in patents-, published in February 2005, Sumi Betechno Research" (especially from page 115).
  • the film formed by applying the composition may be dried (prebaked).
  • the prebaking temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 110 ° C. or lower.
  • the lower limit can be, for example, 50 ° C. or higher, or 80 ° C. or higher.
  • the prebaking time is preferably 10 seconds to 3,000 seconds, more preferably 40 to 2,500 seconds, and even more preferably 80 to 220 seconds. Drying can be performed on a hot plate, an oven, or the like.
  • the production method according to the first aspect of the method for producing a cured film of the present invention includes a step (curing step) of curing a film formed from the composition of the present invention by at least one of exposure and heating. Further, in the production method according to the first aspect of the method for producing a cured film of the present invention, a step of applying the composition of the present invention on a support to obtain a film formed from the composition (impartment step) is performed. It is preferably included before the curing step. When the method for producing a cured film of the present invention includes a applying step, the film formed from the composition obtained by the applying step is cured by the curing step to obtain a cured film.
  • the first aspect of the method for producing a cured film of the present invention is preferably a method for producing a cured film (flat film) having no pattern.
  • the curing step is a step of curing the film formed from the composition of the present invention by at least one of exposure and heating, and is a step of curing the film formed from the composition of the present invention by exposure. preferable. Further, the curing step is preferably a step of curing the entire film formed from the composition of the present invention.
  • the exposure is performed on the entire surface of the film formed from the composition of the present invention.
  • radiation light
  • examples of radiation (light) that can be used for exposure in the curing step include g-line and i-line.
  • light having a wavelength of 300 nm or less preferably light having a wavelength of 180 to 300 nm
  • examples of the light having a wavelength of 300 nm or less include KrF line (wavelength 248 nm) and ArF line (wavelength 193 nm), and KrF line (wavelength 248 nm) is preferable.
  • the pulse exposure is an exposure method of a method of repeatedly irradiating and pausing light in a cycle of a short time (for example, a millisecond level or less).
  • the pulse width is preferably 100 nanoseconds (ns) or less, more preferably 50 nanoseconds or less, and even more preferably 30 nanoseconds or less.
  • the lower limit of the pulse width is not particularly limited, but may be 1 femtosecond (fs) or more, and may be 10 femtoseconds or more.
  • the frequency is preferably 1 kHz or higher, more preferably 2 kHz or higher, and even more preferably 4 kHz or higher.
  • the upper limit of the frequency is preferably 50 kHz or less, more preferably 20 kHz or less, and further preferably 10 kHz or less.
  • Maximum instantaneous intensity is preferably at 50,000,000W / m 2 or more, more preferably 100,000,000W / m 2 or more, still be at 200,000,000W / m 2 or more preferable.
  • the maximum limit of the instantaneous intensity is preferably at 1,000,000,000W / m 2 or less, more preferably 800,000,000W / m 2 or less, 500,000,000W / m 2 The following is more preferable.
  • the pulse width is the time during which light is irradiated in the pulse period.
  • the frequency is the number of pulse cycles per second.
  • the maximum instantaneous illuminance is the average illuminance within the time during which the light is irradiated in the pulse period.
  • the pulse cycle is a cycle in which light irradiation and pause in pulse exposure are one cycle.
  • Irradiation dose for example, preferably 0.03 ⁇ 2.5J / cm 2, more preferably 0.05 ⁇ 1.0J / cm 2.
  • the oxygen concentration at the time of exposure can be appropriately selected, and in addition to the operation in the atmosphere, for example, in a low oxygen atmosphere having an oxygen concentration of 19% by volume or less (for example, 15% by volume, 5% by volume, or substantially). It may be exposed in an oxygen-free environment), or may be exposed in a high oxygen atmosphere (for example, 22% by volume, 30% by volume, or 50% by volume) in which the oxygen concentration exceeds 21% by volume.
  • the exposure intensity is can be set appropriately, usually 1,000W / m 2 ⁇ 100,000W / m 2 ( e.g., 5,000W / m 2, 15,000W / m 2, or, 35,000W It can be selected from the range of / m 2).
  • Oxygen concentration and exposure illuminance may appropriately combined conditions, for example, illuminance 10,000 W / m 2 at an oxygen concentration of 10 vol%, oxygen concentration of 35 vol% can be such illuminance 20,000W / m 2.
  • the film formed from the composition of the present invention may be heated without being exposed, or may be heated during exposure. It may be carried out, heating may be carried out before exposure, or heating may be carried out after exposure, but it is preferable to carry out heating without exposure or heating after exposure, and curing is carried out. From the viewpoint of further progress, it is more preferable to perform heating after exposure.
  • the heating means is not particularly limited, and known heating means such as a hot plate, a convection oven (hot air circulation type dryer), and a high frequency heater can be used.
  • As the heating temperature for example, 100 to 240 ° C. is preferable, and 200 to 240 ° C. is more preferable.
  • the heating time is preferably, for example, 3 minutes to 180 minutes, more preferably 5 minutes to 120 minutes.
  • the applying step according to the first aspect of the method for producing a cured film of the present invention is synonymous with the applying step in the above-mentioned method for producing a film of the present invention, and the preferred embodiment is also the same.
  • the production method according to the second aspect of the method for producing a cured film of the present invention includes an exposure step of exposing a part of the film formed from the composition and a developing step of developing the film after the exposure.
  • the production method according to the second aspect of the method for producing a cured film of the present invention is preferably a method for producing a cured film having a pattern.
  • Such a patterning method including an exposure step and a developing step is also referred to as a photolithography method.
  • the exposure step and the developing step in the second aspect of the method for producing a cured film of the present invention can be carried out according to a known photolithography method.
  • One aspect of the photolithography method will be described below.
  • Exposure process In the exposure step, a part of the film formed from the composition is exposed.
  • the method of exposing a part of the film include a method of using a stepper exposure machine, a scanner exposure machine, or the like to expose through a mask having a predetermined mask pattern. The exposed portion can be cured by the above exposure.
  • the exposure conditions such as radiation (light), irradiation amount (exposure amount), and oxygen concentration that can be used for exposure are the same as those exposure conditions according to the first aspect of the method for producing a cured film of the present invention described above. Yes, and the preferred embodiment is the same. Further, the exposure in the exposure step may be the pulse exposure described above.
  • the unexposed portion of the film formed from the exposed composition is developed and removed to form a pattern (pixel).
  • the unexposed portion of the film formed from the composition can be developed and removed using a developing solution.
  • the film formed from the composition of the unexposed portion in the exposure step is eluted in the developing solution, and the exposed portion remains.
  • the temperature of the developing solution is preferably, for example, 20 to 30 ° C.
  • the development time is preferably 20 to 180 seconds. Further, in order to improve the residue removability, the steps of shaking off the developing solution every 60 seconds and further supplying a new developing solution may be repeated several times.
  • Examples of the developing solution include organic solvents and alkaline developing solutions, and alkaline developing solutions are preferably used.
  • the alkaline developer an alkaline aqueous solution (alkaline developer) obtained by diluting an alkaline agent with pure water is preferable.
  • the alkaline agent include ammonia, ethylamine, diethylamine, dimethylethanolamine, diglycolamine, diethanolamine, hydroxyamine, ethylenediamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide.
  • Ethyltrimethylammonium hydroxide Ethyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide, dimethylbis (2-hydroxyethyl) ammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene and other organic substances.
  • alkaline compounds examples include alkaline compounds and inorganic alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, sodium silicate and sodium metasilicate.
  • the alkaline agent a compound having a large molecular weight is preferable in terms of environment and safety.
  • the concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.001 to 10% by mass, more preferably 0.01 to 1% by mass.
  • the developer may further contain a surfactant.
  • the surfactant include the above-mentioned surfactants, and nonionic surfactants are preferable.
  • the developer may be once produced as a concentrated solution and diluted to a concentration required for use from the viewpoint of convenience of transfer and storage.
  • the dilution ratio is not particularly limited, but can be set in the range of, for example, 1.5 to 100 times. It is also preferable to wash (rinse) with pure water after development.
  • the rinsing is performed by supplying the rinsing liquid to the developed composition layer while rotating the support on which the developed composition layer is formed. It is also preferable to move the nozzle for discharging the rinse liquid from the central portion of the support to the peripheral edge of the support. At this time, when moving the nozzle from the central portion of the support to the peripheral portion, the nozzle may be moved while gradually reducing the moving speed. By rinsing in this way, in-plane variation of rinsing can be suppressed. Further, the same effect can be obtained by gradually reducing the rotation speed of the support while moving the nozzle from the central portion to the peripheral portion of the support.
  • a step of applying the composition of the present invention on a support to obtain a film formed from the composition is an exposure step. It is preferable to include it before.
  • the film formed from the composition obtained by the applying step is exposed by the exposure step and developed by the developing step to obtain a cured film.
  • the production method according to the second aspect of the method for producing a cured film of the present invention includes an additional exposure treatment or a heat treatment (post-baking) after the development step and the drying.
  • Additional exposure treatment and post-baking are post-development curing treatments to complete the curing.
  • the heating temperature in the post-bake is, for example, preferably 100 to 240 ° C, more preferably 200 to 240 ° C.
  • Post-baking can be performed on the developed film in a continuous or batch manner using a heating means such as a hot plate, a convection oven (hot air circulation dryer), or a high-frequency heater so as to meet the above conditions. ..
  • the additional exposure process is performed, the light used for the exposure is preferably light having a wavelength of 400 nm or less. Further, the additional exposure process may be performed by the method described in Korean Patent Publication No. 10-2017-0122130.
  • the production method according to the third aspect of the method for producing a cured film of the present invention is a step of curing a film formed from the composition of the present invention by at least one of exposure and heating to obtain a cured product layer (curing step). ), A step of forming a photoresist layer on the cured product layer (resist layer forming step), a step of forming a resist pattern from the photoresist layer (resist pattern forming step), and using the resist pattern as a mask. It is preferable to include a step of dry etching the cured product layer with an etching gas (dry etching step).
  • the production method according to the third aspect of the method for producing a cured film of the present invention is preferably a method for producing a cured film having a pattern.
  • the curing step in the production method according to the third aspect of the method for producing a cured film of the present invention can be carried out by the same method as the curing step in the first aspect described above, and the preferred embodiment is also the same.
  • the description of paragraphs 0010 to 0067 of JP2013-064993A can be referred to, and the contents thereof are incorporated in the present specification.
  • a step of applying the composition of the present invention on a support to obtain a film formed from the composition is performed.
  • the giving step can be carried out by the same method as the giving step in the first aspect described above, and the preferred embodiment is also the same.
  • the film formed from the composition obtained by the applying step is cured by the curing step, and is patterned by the dry etching step through the photoresist layer forming step and the resist pattern forming step. A cured film is obtained.
  • the near-infrared transmission filter of the present invention includes the above-mentioned film of the present invention or the cured film of the present invention.
  • the cured film of the present invention may contain one layer or two or more layers. When two or more layers of the cured film of the present invention are contained, they may be adjacent to each other or may contain another layer in between.
  • the near-infrared transmission filter of the present invention can also be used in combination with a color filter containing a chromatic colorant.
  • the color filter can be produced by using a coloring composition containing a chromatic colorant. Examples of the chromatic colorant include the chromatic colorant described in the composition of the present invention.
  • the coloring composition can further contain a resin, a polymerizable compound, a photopolymerization initiator, a surfactant, a solvent, a polymerization inhibitor, an ultraviolet absorber and the like.
  • a resin a polymerizable compound
  • a photopolymerization initiator a surfactant
  • a solvent a solvent
  • a polymerization inhibitor an ultraviolet absorber and the like.
  • the near-infrared transmission filter of the present invention has pixels of the film of the present invention or the cured film of the present invention and pixels selected from red, green, blue, magenta, yellow, cyan, black and colorless. It is an aspect.
  • the solid-state image sensor of the present invention has the above-mentioned film of the present invention or the cured film of the present invention.
  • the cured film of the present invention may contain one layer or two or more layers. When two or more layers of the cured film of the present invention are contained, they may be adjacent to each other or may contain another layer in between.
  • the configuration of the solid-state image sensor of the present invention is not particularly limited as long as it includes the film of the present invention or the cured film of the present invention and functions as a solid-state image sensor, and examples thereof include the following configurations. ..
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the device has a device protective film, and the film of the present invention or the cured film of the present invention is formed on the device protective film.
  • a configuration having a condensing means for example, a microlens or the like; the same applies hereinafter
  • the film or the cured film of the present invention may have a condensing means.
  • the color filter may have a structure in which a film forming each pixel is embedded in a space partitioned by a partition wall, for example, in a grid pattern.
  • the partition wall preferably has a lower refractive index than each pixel. Examples of an imaging apparatus having such a structure are described in JP2012-227478A, Japanese Patent Application Laid-Open No.
  • the image pickup device provided with the solid-state image pickup device of the present invention can be used not only for digital cameras and electronic devices having an image pickup function (mobile phones and the like), but also for in-vehicle cameras and surveillance cameras.
  • the solid-state image sensor incorporating the film of the present invention or the cured film of the present invention has another color filter, a near-infrared cut filter, a near-infrared transmitting filter, and an organic photoelectric conversion. A film or the like may be further incorporated.
  • the infrared sensor of the present invention includes the above-mentioned film of the present invention or the cured film of the present invention.
  • the cured film of the present invention may contain one layer or two or more layers. When two or more layers of the cured film of the present invention are contained, they may be adjacent to each other or may contain another layer in between.
  • the configuration of the infrared sensor is not particularly limited as long as it functions as an infrared sensor.
  • an embodiment of the infrared sensor of the present invention will be described with reference to the drawings.
  • reference numeral 110 is a solid-state image sensor.
  • a near-infrared cut filter 111 and a near-infrared transmissive filter 114 are arranged on the image pickup region of the solid-state image sensor 110.
  • a color filter 112 is arranged on the near-infrared cut filter 111.
  • a microlens 115 is arranged on the incident light h ⁇ side of the color filter 112 and the near infrared transmission filter 114.
  • a flattening layer 116 is formed so as to cover the microlens 115.
  • the spectral characteristics of the near-infrared cut filter 111 are selected according to the emission wavelength of the infrared light emitting diode (infrared LED) used.
  • the color filter 112 is a color filter on which pixels that transmit and absorb light of a specific wavelength in the visible region are formed, and is not particularly limited, and a conventionally known color filter for pixel formation can be used. For example, a color filter in which red (R), green (G), and blue (B) pixels are formed is used.
  • R red
  • G green
  • B blue
  • the near-infrared ray transmitting filter 114 the film of the present invention, the cured film of the present invention, or the near-infrared ray transmitting filter of the present invention can be used.
  • the characteristics of the near-infrared transmission filter 114 are selected according to the emission wavelength of the infrared LED used. For example, when the emission wavelength of the infrared LED is 850 nm, the near-infrared transmissive filter 114 preferably has a maximum value of the light transmittance in the film thickness direction in the wavelength range of 400 to 640 nm of 20% or less. It is more preferably 15% or less, and even more preferably 10% or less. It is preferable that the transmittance satisfies the above conditions in the entire range of the wavelength range of 400 to 640 nm.
  • the near-infrared transmittance filter 114 preferably has a minimum value of the light transmittance in the film thickness direction in the wavelength range of 800 nm or more (preferably 800 to 1,500 nm) of 70% or more, preferably 75% or more. Is more preferable, and 80% or more is further preferable.
  • the above-mentioned transmittance preferably satisfies the above condition in a part of the wavelength range of 800 nm or more, and preferably satisfies the above-mentioned condition at a wavelength corresponding to the emission wavelength of the infrared LED.
  • the film thickness of the near-infrared transmissive filter 114 is preferably 100 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 5 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the lower limit is preferably 0.1 ⁇ m.
  • the film thickness is in the above range, the film can be a film satisfying the above-mentioned spectral characteristics.
  • the method for measuring the spectral characteristics, film thickness, etc. of the near-infrared transmission filter 114 is shown below.
  • the film thickness was measured by using a stylus type surface shape measuring device (DEKTAK150 manufactured by ULVAC) on the dried substrate having the film.
  • the spectral characteristics of the film are values obtained by measuring the transmittance in the wavelength range of 300 to 1,500 nm using an ultraviolet-visible near-infrared spectrophotometer (U-4100 manufactured by Hitachi High-Technologies Corporation).
  • the near-infrared transmittance filter 114 has a maximum value of the light transmittance in the film thickness direction in the wavelength range of 450 to 640 nm of 20% or less.
  • the transmittance of light having a wavelength of 835 nm in the thickness direction of the film is 20% or less, and the minimum value of the transmittance of light in the thickness direction of the film in the wavelength range of 1,000 to 1,300 nm is 70% or more. Is preferable.
  • a near-infrared cut filter (another near-infrared cut filter) different from the near-infrared cut filter 111 may be further arranged on the flattening layer 116.
  • Other near-infrared cut filters include those having a copper-containing layer and / or a dielectric multilayer film. These details include those mentioned above. Further, as another near-infrared cut filter, a dual bandpass filter may be used.
  • the acid value of the sample represents the mass of potassium hydroxide required to neutralize the acidic component per 1 g of solid content.
  • the acid value was calculated by the following formula with the inflection point of the titration pH curve as the titration end point.
  • A 56.11 x Vs x 0.5 x f / w
  • Vs Amount of 0.1 mol / L sodium hydroxide aqueous solution required for titration (mL)
  • f Titer of 0.1 mol / L sodium hydroxide aqueous solution
  • the low molecular weight component (a) of the ethylenically unsaturated bond site (for example, acrylic acid if the resin has an acrylic acid group) is extracted from the resin by alkaline treatment, and the content thereof is measured by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • the C C value was calculated from the following formula based on the measured value. Specifically, 0.1 g of the resin was dissolved in a mixed solution of tetrahydrofuran / methanol (50 mL / 15 mL), 10 mL of a 4 mol / L sodium hydroxide aqueous solution was added, and the mixture was reacted at 40 ° C. for 2 hours.
  • C C value calculation formula]
  • the other specific resins used in this example or comparative example were synthesized by the same method as in A-20 above, except that the type and amount of the monomer used were appropriately changed.
  • the details of x, y, z, and w, which are the content ratios (molar ratios) of each repeating unit in the specific resins A-1 to A-48 used in this example or comparative example, are as shown in the table below. Further, in A-22, A-25, and A-26, n: m was set to 50:50 (molar ratio), and in A-45, n: m was set to 10: 4 (molar ratio).
  • the unit of numerical values shown in the above table is parts by mass.
  • the details of the raw materials shown by abbreviations are as follows.
  • PR264 C.I. I. Pigment Red 264 (red pigment, diketopyrrolopyrrole pigment)
  • PR254 C.I. I. Pigment Red 254 (red pigment, diketopyrrolopyrrole pigment)
  • PR179 C.I. I. Pigment Red 179 PB15: 6: C.I. I. Pigment Blue 15: 6 (blue pigment, phthalocyanine pigment)
  • PB16 C.I. I.
  • Pigment Blue 16 blue pigment, phthalocyanine pigment
  • PG7 C.I. I. Pigment Green 7
  • PG36 C.I. I. Pigment Green 36
  • PY138 C.I. I. Pigment Yellow 138
  • PY215 C.I. I. Pigment Yellow 215
  • PV23 C.I. I. Pigment Violet 23
  • IR dye A compound having the following structure (near infrared absorber, in the structural formula, Me represents a methyl group and Ph represents a phenyl group).
  • Irgaphor Bk Irgaphor Black S 0100 CF (manufactured by BASF, a compound having the following structure, a lactam pigment)
  • PBk32 C.I. I. Pigment Black 32 (compound with the following structure, perylene pigment)
  • Derivative 1 Colorant, compound with the following structure
  • Derivative 2 Colorant, compound with the following structure
  • Derivative 3 Near-infrared absorber, compound with the
  • CA-4 Resin having the following structure ((meth) acrylic resin, main chain The numerical value added to is the molar ratio of each repeating unit, and the numerical value added to the polyester unit in the side chain is the number of repetitions of each unit.
  • CA-4 is the formulas (1-1) to (1-5).
  • CA-5 Resin having the following structure ((meth) acrylic resin, the numerical value added to the main chain is the molar ratio of each repeating unit, and the numerical value added to the polyester unit in the side chain is the number of repetitions of each unit.
  • CA-5 is a resin that does not contain any of the repeating units represented by any of the formulas (1-1) to (1-5).
  • the description in the “minimum T% (%)” column represents the minimum value of the light transmittance in the wavelength range of 950 to 1,300 nm.
  • the description in the column of "Amin / B” indicates the value of Amin / B, which is the ratio of the minimum absorbance Amin in the wavelength range of 400 to 640 nm of the composition to the absorbance B in the wavelength range of 1,500 nm of the composition. Represent.
  • ⁇ dye ⁇ SQ, PPB, cyanine A compound having the following structure.
  • CA-1 Resin represented by the following formula. The numerical value added to the main chain is the molar ratio of each repeating unit. Further, CA-1 is a resin that does not contain a repeating unit represented by any of the above formulas (1-1) to (1-5).
  • CA-2 Resin represented by the following formula. The numerical value added to the main chain is the molar ratio of each repeating unit. Further, CA-2 is a resin that does not contain a repeating unit represented by any of the above formulas (1-1) to (1-5).
  • CA-3 Resin represented by the following formula. In the following formula, the numerical value added to the main chain is the molar ratio. Further, in CA-3, the ratio of the total amount of repeating units represented by any of the above formulas (1-1) to (1-5) to the total molar amount of all repeating units contained in the resin is It is a resin that is 5 mol%.
  • D-1 KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd., a mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate)
  • D-2 NK ester A-DPH-12E (manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
  • D-3 Aronix M-510 (manufactured by Toagosei Co., Ltd., carboxy group-containing polybasic acid-modified acrylic oligomer)
  • E-1 Omnirad 379EG (Aminoacetophenone-based photoradical initiator (manufactured by IGM Resins))
  • E-2 IRGACURE OXE01 (Oxime ester-based photoradical initiator (manufactured by BASF))
  • E-3 IRGACURE OXE03 (Oxime ester-based photoradical initiator (manufactured by BASF))
  • ⁇ Silane coupling agent ⁇ F-1 Compound represented by the following formula (F-1), in formula (F-1), Me represents a methyl group
  • F-2 Compound represented by the following formula (F-2), formula ( In F-2), Me represents a methyl group and Et represents an ethyl group.
  • G-1 EPICLON N-695 (manufactured by DIC Corporation)
  • G-2 EHPE3150 (manufactured by Daicel)
  • [Surfactant] H-1 A compound represented by the following structure. In addition,% which shows the ratio of a constituent unit is a molar ratio.
  • the silicon wafer on which the composition layer after exposure is formed is placed on a horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemitronics Co., Ltd.), and a developing solution (CD-) is placed. 2000, using Fujifilm Electronics Materials Co., Ltd., paddle-developed at 23 ° C. for 60 seconds.
  • a rotation speed of 50 rpm pure water was supplied from above the center of rotation in the form of a shower from the ejection nozzle to perform rinsing treatment, and then spray-dried to form a pattern (pixel).
  • the obtained pattern was observed while changing the specific exposure amount, and the minimum exposure amount for resolving a square pattern having a side of 1.0 ⁇ m was determined and evaluated according to the following evaluation criteria.
  • the evaluation results are shown in Table 20. It can be said that the smaller the minimum exposure amount, the better the exposure sensitivity of the composition. Further, in the example described as "not evaluated” in the "exposure sensitivity" column of Table 20, the exposure sensitivity was not evaluated.
  • ⁇ Vis was 0.5 mPa ⁇ s or less.
  • B ⁇ Vis exceeded 0.5 mPa ⁇ s and was 1.0 mPa ⁇ s or less.
  • C ⁇ Vis exceeded 1.0 mPa ⁇ s and was 2.0 mPa ⁇ s or less.
  • D ⁇ Vis exceeded 2.0 mPa ⁇ s and was 2.5 mPa ⁇ s or less.
  • the composition or the comparative composition was applied on a glass substrate by spin coating, dried (prebaked) at 100 ° C. for 120 seconds using a hot plate, and then 200 using an oven. A film having a thickness of 0.60 ⁇ m was produced by heating (post-baking) at ° C. for 30 minutes. Using a Cary 5000 UV-Vis-NIR spectrophotometer (manufactured by Agilent Technologies), the transmittance Tr1 of the obtained film at a wavelength of 450 nm was measured. Next, the obtained membrane was heat-treated at 320 ° C. for 3 hours under a nitrogen atmosphere.
  • Tr2 of the film after the heat treatment at a wavelength of 450 nm was measured.
  • the absolute value ⁇ T of the difference between Tr1 and Tr2 was calculated, and the spectral change was evaluated according to the following evaluation criteria.
  • the evaluation results are shown in the "Spectroscopic change" column of Table 20. It can be said that the smaller ⁇ T is, the less the spectral change is likely to occur, which is preferable.
  • Both Tr1 and Tr2 were measured in a laboratory where the temperature and humidity were controlled to 22 ⁇ 5 ° C. and 60 ⁇ 20%, with the substrate temperature adjusted to 25 ° C.
  • ⁇ T was 0.1% or less.
  • B ⁇ T was more than 0.1% and 0.5% or less.
  • C ⁇ T was more than 0.5% and 1% or less.
  • D ⁇ T was more than 1% and 5% or less.
  • E ⁇ T exceeded 5%.
  • the composition or the comparative composition was applied on a glass substrate by spin coating, dried (prebaked) at 100 ° C. for 120 seconds using a hot plate, and then 200 using an oven.
  • a film having a thickness of 0.60 ⁇ m was produced by heating (post-baking) at ° C. for 30 minutes. The film thickness is measured by scraping a part of the film to expose the surface of the glass substrate and measuring the step between the glass substrate surface and the coating film (the film thickness of the coating film) using a stylus type profilometer (DectakXT, manufactured by BRUKER). did.
  • the obtained membrane was heat-treated at 320 ° C. for 3 hours under a nitrogen atmosphere.
  • the film shrinkage rate was obtained from the following formula, and the film shrinkage rate was evaluated according to the following evaluation criteria.
  • the evaluation results are shown in the column of "Membrane shrinkage rate" in Table 20. Both T0 and T1 below were measured in a laboratory where the temperature and humidity were controlled to 22 ⁇ 5 ° C. and 60 ⁇ 20%, with the substrate temperature adjusted to 25 ° C. It can be said that the smaller the film shrinkage rate, the more the film shrinkage is suppressed, and the heat resistance of the obtained film is excellent.
  • Membrane shrinkage rate (%) (1- (T1 / T0)) x 100
  • T1 Film thickness after heat treatment at 320 ° C for 3 hours in a nitrogen atmosphere-evaluation criteria-
  • D The membrane contraction rate was more than 10% and 30% or less.
  • E The membrane contraction rate exceeded 30%.
  • the composition or the comparative composition was applied on a glass substrate by spin coating, dried (prebaked) at 100 ° C. for 120 seconds using a hot plate, and then 200 using an oven. A film having a thickness of 0.60 ⁇ m was produced by heating (post-baking) at ° C. for 30 minutes. Next, SiO 2 was laminated at 200 nm on the surface of the obtained film by a sputtering method to form an inorganic film. The film on which the inorganic film was formed was heat-treated at 320 ° C. for 3 hours in a nitrogen atmosphere.
  • the surface of the inorganic film after the heat treatment was observed with an optical microscope, the number of cracks per 1 cm 2 was counted, and the presence or absence of cracks was evaluated according to the following evaluation criteria.
  • the evaluation results are shown in the "crack" column of Table 20.
  • D The number of cracks per 1 cm 2 was 51 to 100.
  • E The number of cracks per 1 cm 2 was 101 or more.
  • Example 1 the same evaluation as in Example 1 was obtained as a result of the same evaluation without adding a surfactant at the time of preparing the composition. As a result of the same evaluation in Example 1 without adding a polymerization inhibitor at the time of preparing the composition, the same result as in Example 1 was obtained.
  • Example 2 the same result can be obtained when the cured film of the composition of Example 2 is laminated on the cured film of the composition of Example 1 and evaluated in the same manner. Further, even if a near-infrared cut filter using the pigment dispersion liquid I1 is laminated on the cured film of the composition of Example 1, the heat resistance is excellent as in Example 1.
  • Example 100 Pattern formation by photolithography method
  • the composition of Example 13 was applied on a silicon wafer by spin coating, dried (prebaked) at 100 ° C. for 120 seconds using a hot plate, and then heated (post-baked) at 200 ° C. for 30 minutes using an oven.
  • a composition layer having a thickness of 0.60 ⁇ m was formed.
  • an i-line stepper exposure apparatus FPA-3000i5 + (Canon Co., Ltd.) is provided via a mask pattern in which square non-masked portions having a side of 1.1 ⁇ m are arranged in a region of 4 mm ⁇ 3 mm.
  • the silicon wafer on which the composition layer after exposure is formed is placed on a horizontal rotary table of a spin shower developing machine (DW-30 type, manufactured by Chemitronics Co., Ltd.), and a developing solution (CD-) is placed. 2000, using Fujifilm Electronics Materials Co., Ltd., paddle-developed at 23 ° C. for 60 seconds.
  • pure water was supplied from above the center of rotation in the form of a shower from the ejection nozzle to perform rinsing treatment, and then spray-dried to form a pattern (pixel).
  • the produced patterned silicon wafer was divided into two, and one was heat-treated at 320 ° C. for 3 hours in a nitrogen atmosphere (hereinafter, one is a substrate before 320 ° C. heat treatment and the other is a substrate after 320 ° C. heat treatment).
  • one is a substrate before 320 ° C. heat treatment and the other is a substrate after 320 ° C. heat treatment.
  • SEM scanning electron microscope
  • 110 Solid-state image sensor
  • 111 Near-infrared cut filter
  • 112 Color filter
  • 114 Near-infrared transmission filter
  • 115 Microlens
  • 116 Flattening layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

着色剤、樹脂及び溶剤を含む組成物であって、上記樹脂が特定の繰返し単位を10モル%以上含み、上記着色剤の含有量が組成物の全固形分に対して30質量%以上であり、上記組成物の波長400~640nmの範囲における吸光度の最小値Aminと、上記組成物の波長1,500nmにおける吸光度Bとの比であるAmin/Bが5以上である組成物、上記組成物から得られる膜、上記組成物を硬化してなる硬化膜及びその製造方法、上記膜又は上記硬化膜を含む近赤外線透過フィルタ、上記膜又は上記硬化膜を含む固体撮像素子並びに上記膜又は上記硬化膜を含む赤外線センサ。

Description

組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ
 本発明は、組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサに関する。
 近年、デジタルカメラ、カメラ付き携帯電話等の普及から、電荷結合素子(CCD)イメージセンサなどの固体撮像素子の需要が大きく伸びている。固体撮像素子には、カラーフィルタなどの顔料を含む膜が用いられている。カラーフィルタなどの顔料を含む膜は、着色剤と樹脂と溶剤とを含む組成物などを用いて製造されている。
 例えば、特許文献1には、特定の構成単位を有するアルカリ可溶性樹脂であって、それぞれの構成単位を特定の含有量で含むことを特徴とするアルカリ可溶性樹脂、上記樹脂を含むカラーフィルター用感光性樹脂組成物等が記載されている。
 特許文献2には、アクリルアミドのα-置換体、アクリルアミドのN-モノ置換体、アクリルアミドのN,N-ジ置換体及びメタクリルアミドのN-モノ置換体からなるアクリルアミド系モノマーのグループの中から選ばれた少なくとも1種のモノマーを用いた重合体を有する水溶性樹脂と、水溶性アジド化合物を有する架橋剤と、着色剤とを含むことを特徴とする水溶性着色感光性樹脂組成物が記載されている。
特開2019-031627号公報 特開平7-311461号公報
 固体撮像素子の製造プロセスにおいて、近年では、着色剤と樹脂と溶剤とを含む組成物を用いてカラーフィルタなどの膜を形成したのち、高温(例えば320℃以上)の加熱処理を要する工程に供することも検討されている。そのため、得られる膜の耐熱性に優れた組成物の提供が望まれている。
 よって、本発明は、耐熱性に優れた膜が得られる新規な組成物、上記組成物から得られる膜、上記組成物を硬化してなる硬化膜及びその製造方法、上記膜又は上記硬化膜を含む近赤外線透過フィルタ、上記膜又は上記硬化膜を含む固体撮像素子、並びに、上記膜又は上記硬化膜を含む赤外線センサを提供することを目的とする。
 本発明の代表的な実施態様の例を以下に示す。
<1>
着色剤、樹脂、及び、溶剤を含む組成物であって、
上記樹脂が、下記式(1-1)~下記式(1-5)のいずれかで表される繰返し単位よりなる群から選ばれた少なくとも1種の繰返し単位を含み、
 上記樹脂に含まれる全ての繰返し単位の総モル量に対する、下記式(1-1)~下記式(1-5)のいずれかで表される繰返し単位の合計量の割合が10モル%以上であり、
 上記着色剤、及び、近赤外線吸収剤の合計含有量が、組成物の全固形分に対して30質量%以上であり、
 上記組成物の波長400~640nmの範囲における吸光度の最小値Aminと、上記組成物の波長1,500nmにおける吸光度Bとの比であるAmin/Bが5以上である
 組成物。
Figure JPOXMLDOC01-appb-C000002
 式(1-1)中、R11、R12及びR13はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、Arは環員数5~30の芳香族基を表す;
 式(1-2)中、R21、R22及びR23はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R24及びR25はそれぞれ独立に、水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、R24及びR25は結合して環構造を形成してもよい;
 式(1-3)中、R31、R32及びR33はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R34及びR35はそれぞれ独立に、水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、R34及びR35は結合して環構造を形成してもよい;
 式(1-4)中、R41及びR42はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R43は水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し;
 式(1-5)中、R51~R54はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R55は水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表す。
<2> 上記樹脂に含まれる全ての繰返し単位の総モル量に対する、上記式(1-1)で表される繰返し単位の合計量の割合が10モル%以上である、<1>に記載の組成物。
<3> 上記樹脂に含まれる全ての繰返し単位の総モル量に対する、上記式(1-1)~上記式(1-5)のいずれかで表される繰返し単位の合計量の割合が60モル%を超える、<1>に記載の組成物。
<4> 上記式(1-1)中、Arが置換基としてヘテロ原子を含む置換基を有する、<1>~<3>のいずれか1つに記載の組成物。
<5> 上記組成物から形成された、膜厚1μmの膜における膜の厚み方向の光透過率50%を示す波長が、700~950nmであり、かつ、上記膜の波長950~1,300nmの範囲における光透過率の最小値が90%以上である、<1>~<4>のいずれか1つに記載の組成物。
<6> 上記組成物から形成された、膜厚1μmの膜における膜の厚み方向の光透過率50%を示す波長が、700~800nmであり、かつ、上記膜の波長800~1,300nmの範囲における光透過率の最小値が90%以上である、<1>~<5>のいずれか1つに記載の組成物。
<7> 上記着色剤が有機顔料である、<1>~<6>のいずれか1つに記載の組成物。
<8> 近赤外線吸収剤を含む、<1>~<7>のいずれか1つに記載の組成物。
<9> 上記着色剤が、黒色色材を含む、<1>~<8>のいずれか1つに記載の組成物。
<10> 上記着色剤が、赤色色材、緑色色材、青色色材、黄色色材及び紫色色材よりなる群から選ばれた少なくとも1種の色材を含む、<1>~<9>のいずれか1つに記載の組成物。
<11> 上記樹脂が、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、及び、アミノ基よりなる群から選ばれた少なくとも1種の基を有する、<1>~<10>のいずれか1つに記載の組成物。
<12> 上記樹脂の酸価が0~150mgKOH/gである、<1>~<11>のいずれか1つに記載の組成物。
<13> 上記樹脂がエチレン性不飽和結合を有する、<1>~<12>のいずれか1つに記載の組成物。
<14> 上記樹脂として、下記樹脂1及び下記樹脂2を含む、<1>~<13>のいずれか1つに記載の組成物;
 樹脂1:上記樹脂であって、酸基及びエチレン性不飽和結合を有する基を含む樹脂;
 樹脂2:上記樹脂であって、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、及び、アミノ基よりなる群から選ばれた少なくとも1種の基、及び、分子量が500~10,000であり、かつ、酸基及び塩基性基を有しない分子鎖を有する樹脂。
<15> 重合性化合物を更に含む、<1>~<14>のいずれか1つに記載の組成物。
<16> 重合開始剤を更に含む、<1>~<15>のいずれか1つに記載の組成物。
<17> 上記重合開始剤が光重合開始剤である、<16>に記載の組成物。
<18> フォトリソグラフィ法でのパターン形成用である、<1>~<17>のいずれか1つに記載の組成物。
<19> 固体撮像素子用である、<1>~<18>のいずれか1つに記載の組成物。
<20> <1>~<19>のいずれか1つに記載の組成物から得られる膜。
<21> <1>~<19>のいずれか1つに記載の組成物を硬化してなる硬化膜。
<22> <20>に記載の膜、又は、<21>に記載の硬化膜を含む近赤外線透過フィルタ。
<23> <20>に記載の膜、又は、<21>に記載の硬化膜を含む固体撮像素子。
<24> <20>に記載の膜、又は、<21>に記載の硬化膜を含む赤外線センサ。
<25> <1>~<19>のいずれか1つに記載の組成物から形成された膜を、露光及び加熱の少なくとも一方により硬化する工程を含む、硬化膜の製造方法。
<26> <1>~<19>のいずれか1つに記載の組成物から形成された膜を、露光により硬化する工程を含む、<24>に記載の硬化膜の製造方法。
<27> <1>~<19>のいずれか1つに記載の組成物から形成された膜の一部を露光する露光工程と、
 上記露光後の膜を現像する現像工程とを含む
 硬化膜の製造方法。
 本発明によれば、耐熱性に優れた膜が得られる新規な組成物、上記組成物から得られる膜、上記組成物を硬化してなる硬化膜及びその製造方法、上記膜又は上記硬化膜を含む近赤外線透過フィルタ、上記膜又は上記硬化膜を含む固体撮像素子、並びに、上記膜又は上記硬化膜を含む赤外線センサが提供される。
赤外線センサの一実施形態を示す概略図である。
 以下、本発明の主要な実施形態について説明する。しかしながら、本発明は、明示した実施形態に限られるものではない。
 本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も露光に含める。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線又は放射線が挙げられる。
 本明細書において、(メタ)アリル基は、アリル及びメタリルの双方、又は、いずれかを表し、「(メタ)アクリレート」は、アクリレート及びメタクリレートの双方、又は、いずれかを表し、「(メタ)アクリル」は、アクリル及びメタクリルの双方、又は、いずれかを表し、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの双方、又は、いずれかを表す。
 本明細書において、重量平均分子量及び数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)法により測定したポリスチレン換算値である。
 本明細書において、近赤外線とは、波長700~2,500nmの光をいう。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。
 本明細書において「工程」との語は独立した工程だけを指すのではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
(組成物)
 本発明の組成物は、着色剤、樹脂、及び、溶剤を含む組成物であって、上記樹脂が、下記式(1-1)~下記式(1-5)のいずれかで表される繰返し単位よりなる群から選ばれた少なくとも1種の繰返し単位を含み、上記樹脂に含まれる全ての繰返し単位の総モル量に対する、下記式(1-1)~下記式(1-5)のいずれかで表される繰返し単位の合計量の割合が10モル%以上であり、上記着色剤、及び、近赤外線吸収剤の合計の含有量が、組成物の全固形分に対して30質量%以上であり、上記組成物の波長400~640nmの範囲における吸光度の最小値Aminと、上記組成物の波長1,500nmにおける吸光度Bとの比であるAmin/Bが5以上である。
Figure JPOXMLDOC01-appb-C000003
 式(1-1)中、R11、R12及びR13はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、Arは環員数5~30の芳香族基を表す;
 式(1-2)中、R21、R22及びR23はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R24及びR25はそれぞれ独立に、水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、R24及びR25は結合して環構造を形成してもよい;
 式(1-3)中、R31、R32及びR33はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R34及びR35はそれぞれ独立に、水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、R34及びR35は結合して環構造を形成してもよい;
 式(1-4)中、R41及びR42はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R43は水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し;
 式(1-5)中、R51~R54はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R55は水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表す。
 本発明の組成物は、着色剤及び必要に応じて近赤外線吸収剤を含有し、樹脂、及び、有機溶剤を更に含有する。具体的には、組成物が含有する着色剤、及び、必要に応じて含有してもよい近赤外線吸収剤の合計含有量が、組成物の全固形分に対して30質量%以上である。
 本発明者らは、鋭意検討した結果、このような着色剤、並びに、樹脂及び溶剤を含み、上記着色剤及び必要に応じて含有してもよい近赤外線吸収剤の含有量が組成物の全固形分に対して30質量%以上である組成物において、樹脂として、従来から使用されているアクリル樹脂等を用いると、例えば、高温(例えば320℃以上)の加熱処理を要する工程に供された場合に得られる膜の膜収縮率が高くなるなど、膜の耐熱性に更なる改善の余地があることを見出した。
 本発明者らは、上記膜収縮は、高温によりアクリル樹脂が分解することによって発生するものであると推測した。
 そこで本発明者らは、鋭意検討した結果、樹脂として上記式(1-1)~式(1-5)のいずれかで表される繰返し単位の合計量の割合が10モル%以上である樹脂(以下、「特定樹脂」ともいう。)を用いることにより、耐熱性に優れた膜が得られることを見出した。
 上記効果が得られるメカニズムは定かではないが、上記特定樹脂を含む組成物により得られる膜は、高温の加熱処理を要する工程においても上記特定樹脂の分解が抑制されると考えられる。そのため、本発明の組成物により形成される膜は加熱による収縮が抑制され、耐熱性に優れると考えられる。
 また、本発明の組成物は、波長400~640nmの範囲における吸光度の最小値Aminと、上記組成物の波長1,500nmにおける吸光度Bとの比であるAmin/Bが5以上である。このような態様とすることにより、可視光を遮蔽し、かつ、赤外光を透過する膜を形成することが可能となる。
 ここで、本発明者らは、組成物をこのような可視光を遮蔽する設計とした場合、パターン形成時の露光における紫外光の透過が妨げられる場合があり、露光感度に更なる向上の余地があることを見出した。
 そこで本発明者らは、鋭意検討した結果、従来のアクリル樹脂に含まれる構造と比較して、極性の高い構造である式(1-1)~式(1-5)のいずれかで表される繰返し単位を有する特定樹脂を用いることにより、露光感度も向上しやすいことを見出した。これは、例えば、上記特定樹脂を用いることにより、極性の低い構造である特定樹脂又は重合性化合物における重合性基が組成物中で近接する可能性が高くなり、露光時における上記重合性基の架橋が進行しやすくなるためであると推測される。
 上述の特許文献1~2のいずれにおいても、特定樹脂を含み、かつ、上述のAmin/Bが5以上である組成物を用いることについては検討されていない。
 以下、本発明の組成物の詳細について説明する。
<Amin/B>
 本発明の組成物は、波長400~640nmの範囲における吸光度の最小値Aminと、上記組成物の波長1,500nmにおける吸光度Bとの比であるAmin/Bが5以上である。
 本発明の組成物は、近赤外線を透過することから、近赤外線透過性組成物ともいえる。
 上記Amin/Bの値は、10以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。
 本発明の組成物において、上記Amin/Bの値は、例えば、着色剤の種類及び着色剤の含有量を調整することにより設計される。
 本発明において、ある波長λにおける吸光度Aλは、以下の式(1)により定義される。
Aλ=-log(Tλ/100)   ・・・(1)
Aλは、波長λにおける吸光度であり、Tλは、波長λにおける透過率(%)である。
 本発明において、吸光度の値は、組成物の状態で測定した値であってもよく、組成物を用いて製膜した膜での値であってもよい。膜の状態で吸光度を測定する場合は、ガラス基板上にスピンコート等の方法により、乾燥後の膜の厚さが所定の厚さとなるように組成物を塗布し、ホットプレートを用いて100℃、120秒間乾燥して調製した膜を用いて測定することが好ましい。膜の厚さは、膜を有する基板について、触針式表面形状測定器(ULVAC社製 DEKTAK150)を用いて測定することができる。
 また、吸光度は、従来公知の分光光度計を用いて測定できる。吸光度の測定条件は特に限定はないが、波長400~640nmの範囲における吸光度の最小値Aminが、0.1~3.0になるように調整した条件で、波長1,500nmの範囲における吸光度Bを測定することが好ましい。このような条件で吸光度を測定することで、測定誤差をより小さくできる。波長400~640nmの範囲における吸光度の最小値Aminが、0.1~3.0になるように調整する方法としては、特に限定はない。例えば、組成物の状態で吸光度を測定する場合は、試料セルの光路長を調整する方法が挙げられる。また、膜の状態で吸光度を測定する場合は、膜厚を調整する方法などが挙げられる。
 本発明の組成物により形成される膜の分光特性、膜厚等の測定方法の具体例を以下に示す。
 本発明の組成物を、ガラス基板上にスピンコート等の方法により、乾燥後の膜の厚さが所定の厚さとなるように塗布し、ホットプレートを用いて100℃、120秒間乾燥する。膜の厚さは、膜を有する乾燥後の基板を、触針式表面形状測定器(ULVAC社製 DEKTAK150)を用いて測定する。この膜を有する乾燥後の基板を、紫外可視近赤外分光光度計(日立ハイテクノロジーズ社製 U-4100)を用いて、波長300~1,500nmの範囲において透過率を測定する。
 本発明の組成物は、以下の(1A)~(4A)のいずれかの分光特性を満たしていることがより好ましい。
 (1A):波長400~640nmの範囲における吸光度の最小値Amin1と、波長800~1,500nmの範囲における吸光度の最大値Bmax1との比であるAmin1/Bmax1が5以上であり、10以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、例えば、波長400~640nmの範囲の光を遮光して、波長670nmを超える近赤外線を透過可能な膜を形成することができる。
 (2A):波長400~750nmの範囲における吸光度の最小値Amin2と、波長900~1,500nmの範囲における吸光度の最大値Bmax2との比であるAmin2/Bmax2が5以上であり、10以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、例えば、波長400~750nmの範囲の光を遮光して、波長850nmを超える近赤外線を透過可能な膜を形成することができる。
 (3A):波長400~830nmの範囲における吸光度の最小値Amin3と、波長1,000~1,500nmの範囲における吸光度の最大値Bmax3との比であるAmin3/Bmax3が5以上であり、10以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、例えば、波長400~830nmの範囲の光を遮光して、波長940nmを超える近赤外線を透過可能な膜を形成することができる。
 (4A):波長400~950nmの範囲における吸光度の最小値Amin4と、波長1,100~1,500nmの範囲における吸光度の最大値Bmax4との比であるAmin4/Bmax4が5以上であり、10以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、例えば、波長400~950nmの範囲の光を遮光して、波長1,040nmを超える近赤外線を透過可能な膜を形成することができる。
 また、本発明の組成物は、乾燥後の膜厚が1μmの膜を製膜した際に、膜の厚み方向における光の透過率の、波長400~640nmの範囲における最大値が20%以下であり、膜の厚み方向における光の透過率の、波長1,500nmにおける値が70%以上である分光特性を満たしていることが好ましい。波長400~640nmの範囲における最大値は、15%以下がより好ましく、10%以下がより好ましい。下限は特に限定されず、0%以上であればよい。波長1,500nmにおける値は、75%以上がより好ましく、80%以上がより好ましい。上限は特に限定されず、100%以下であればよい。
 また、本発明の組成物は、以下の(1B)~(4B)のいずれかの分光特性を満たしていることがより好ましい。
 (1B):乾燥後の膜厚が1μm、2μm、3μm、4μm又は5μmの膜を製膜した際に、膜の厚み方向における光の透過率の、波長400~640nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、膜の厚み方向における光の透過率の、波長800~1,500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である態様。
 (2B):乾燥後の膜厚が1μm、2μm、3μm、4μm又は5μmの膜を製膜した際に、膜の厚み方向における光の透過率の、波長400~750nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、膜の厚み方向における光の透過率の、波長900~1,500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である態様。
 (3B):乾燥後の膜厚が1μm、2μm、3μm、4μm又は5μmの膜を製膜した際に、膜の厚み方向における光の透過率の、波長400~830nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、膜の厚み方向における光の透過率の、波長1,000~1,500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である態様。
 (4B):乾燥後の膜厚が1μm、2μm、3μm、4μm又は5μmの膜を製膜した際に、膜の厚み方向における光の透過率の、波長400~950nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、膜の厚み方向における光の透過率の、波長1,100~1,500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である態様。
<加熱による膜厚>
 本発明の組成物を用いて、200℃で30分間加熱して厚さ0.60μmの膜を形成した際に、上記膜を窒素雰囲気下にて320℃で3時間加熱処理した後の膜の厚さは、加熱処理前の膜の厚さの70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
 また、上記膜を窒素雰囲気下にて350℃で5時間加熱処理した後の膜の厚さは、加熱処理前の膜の厚さの70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
 また、上記膜を窒素雰囲気下にて400℃で5時間加熱処理した後の膜の厚さは、加熱処理前の膜の厚さの70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
 上記物性は、用いる特定樹脂、又は、その他の樹脂の種類や含有量を調整する等の方法により達成することができる。
<加熱による分光変化>
 また、本発明の組成物を用いて、200℃で30分間加熱して厚さ0.60μmの膜を形成した際に、上記膜を窒素雰囲気下にて320℃で3時間加熱処理したときに、加熱処理後の膜の下記式(1)で表される吸光度の変化率ΔAは、50%以下であることが好ましく、45%以下であることがより好ましく、40%以下であることが更に好ましく、35%以下であることが特に好ましい。
 式(1):ΔA(%)=|100-(A2/A1)×100|
 ΔAは、加熱処理後の膜の吸光度の変化率であり、
 A1は、加熱処理前の膜の波長400~1,500nmの範囲における吸光度の最大値であり、
 A2は、加熱処理後の膜の吸光度であって、加熱処理前の膜の波長400~1,500nmの範囲における吸光度の最大値を示す波長での吸光度である。
 上記物性は、用いる特定樹脂、又は、その他の樹脂の種類や含有量を調整する等の方法により達成することができる。
 また、本発明の組成物を用い、200℃で30分加熱して厚さ0.60μmの膜を形成した際に、上記膜の波長400~1,500nmの範囲における吸光度の最大値を示す波長λ1と、上記膜を窒素雰囲気下にて、320℃で3時間熱処理した後の膜の吸光度の最大値を示す波長λ2との差の絶対値は、50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましい。
 上記物性は、用いる特定樹脂、又は、その他の樹脂の種類や含有量を調整する等の方法により達成することができる。
 また、本発明の組成物を用い、200℃で30分加熱して厚さ0.60μmの膜を形成した際に、上記膜を窒素雰囲気下にて320℃で3時間加熱処理したとき、加熱処理後の膜の波長400~1,500nmの範囲における吸光度の変化率ΔAλの最大値が30%以下であることが好ましく、27%以下であることがより好ましく、25%以下であることが更に好ましい。なお、吸光度の変化率ΔAλは、下記式(2)から算出される値である。
 ΔAλ=|100-(A2λ/A1λ)×100|   ・・・(2)
 ΔAλは、加熱処理後の膜の波長λにおける吸光度の変化率であり、
 A1λは、加熱処理前の膜の波長λにおける吸光度であり、
 A2λは、加熱処理後の膜の波長λにおける吸光度である。
 上記物性は、用いる特定樹脂、又は、その他の樹脂の種類や含有量を調整する等の方法により達成することができる。
 また、本発明の組成物を用い、200℃で30分加熱して厚さ0.60μmの膜を形成した際に、上記膜を窒素雰囲気下にて320℃で3時間加熱処理したとき、加熱処理後の膜の波長1,500nmにおける吸光度Bの変化率ΔBの最大値が30%以下であることが好ましく、27%以下であることがより好ましく、25%以下であることが更に好ましい。なお、吸光度の変化率ΔBは、下記式(3)から算出される値である。
 ΔB=|100-(B2/B1)×100|   ・・・(2)
 ΔBは、加熱処理後の膜の波長1,500nmにおける吸光度の変化率であり、
 B1は、加熱処理前の膜の波長1,500nmにおける吸光度であり、
 B2は、加熱処理後の膜の波長1,500nmにおける吸光度である。
 上記物性は、用いる特定樹脂、又は、その他の樹脂の種類や含有量を調整する等の方法により達成することができる。
 本発明の組成物から形成された、膜厚1μmの膜における膜の厚み方向の光透過率50%を示す波長が、700~950nmであることが好ましく、700~900nmであることがより好ましく、700~850nmであることが更に好ましく、700~800nmであることが特に好ましい。
 また、本発明の組成物から形成された、膜厚1μmの膜における膜の厚み方向の波長950~1,300nmの範囲における光透過率の最小値が90%以上であることが好ましく、波長900~1,300nmの範囲における光透過率の最小値が90%以上であることがより好ましく、波長850~1,300nmの範囲における光透過率の最小値が90%以上であることが更に好ましく、波長800~1,300nmの範囲における光透過率の最小値が90%以上であることが特に好ましい。
 これらの中でも、下記(T1)に記載された態様が好ましく、下記(T2)に記載された態様がより好ましい。
(T1)本発明の組成物から形成された、膜厚1μmの膜における膜の厚み方向の光透過率50%を示す波長が、700~950nmであり、かつ、上記膜の波長950~1,300nmの範囲における光透過率の最小値が90%以上である
(T2)本発明の組成物から形成された、膜厚1μmの膜における膜の厚み方向の光透過率50%を示す波長が、700~800nmであり、かつ、上記膜の波長800~1,300nmの範囲における光透過率の最小値が90%以上である
 本発明の組成物から形成された、膜厚1μmの膜は、例えば、組成物をガラス基板に塗布し100℃で120秒加熱することにより形成することができる。
<用途>
 本発明の組成物は、近赤外線透過フィルタ用の組成物として好ましく用いることができる。具体的には、近赤外線透過フィルタの画素形成用の組成物として好ましく用いることができる。
 また、本発明の組成物は、固体撮像素子用であることが好ましい。例えば、固体撮像素子に用いられる近赤外線透過フィルタの画素形成用の組成物として好ましく用いることができる。
 また、本発明の組成物は、フォトリソグラフィ法でのパターン形成用の組成物であることも好ましい。この態様によれば、微細なサイズの画素を容易に形成することができる。このため、固体撮像素子に用いられるカラーフィルタの画素形成用の組成物として特に好ましく用いることができる。例えば、重合性基を有する成分(例えば、重合性基を有する樹脂や重合性化合物)と、光重合開始剤とを含有する組成物は、フォトリソグラフィ法でのパターン形成用の組成物として好ましく用いることができる。フォトリソグラフィ法でのパターン形成用の組成物は、更にアルカリ可溶性樹脂(例えば、後述する樹脂1、又は、後述するアルカリ現像性を有する樹脂)を含むことも好ましい。
 以下、本発明の組成物に用いられる各成分について説明する。
<着色剤>
 本発明の組成物は、着色剤を含有する。着色剤としては白色色材、黒色色材、有彩色色材が挙げられる。なお、本発明において、白色色材は純白色のみならず、白に近い明るい灰色(例えば灰白色、薄灰色など)の色材を含む。
 また、色材は、有彩色色材、及び、黒色色材よりなる群から選ばれる少なくとも1種の色材を含むことが好ましく、有彩色色材を含むことがより好ましく、赤色色材、緑色色材、青色色材、黄色色材及び紫色色材よりなる群から選ばれた少なくとも1種の色材を含むことが更に好ましい。
 また、着色剤は、黒色色材を含むことも好ましい。
 着色剤としては染料及び顔料が挙げられ、耐熱性の観点からは顔料であることが好ましい。また、顔料は、無機顔料、有機顔料のいずれでもよいが、カラーバリエーションの多さ、分散の容易性、安全性等の観点から有機顔料であることが好ましい。また、顔料は、有彩色顔料から選ばれる少なくとも1種を含むことが好ましく、有彩色顔料を含むことがより好ましい。
 また、顔料は、フタロシアニン顔料、ジオキサジン顔料、キナクリドン顔料、アントラキノン顔料、ペリレン顔料、アゾ顔料、ジケトピロロピロール顔料、ピロロピロール顔料、イソインドリン顔料及びキノフタロン顔料から選ばれる少なくとも1種を含むものであることが好ましく、フタロシアニン顔料、ジケトピロロピロール顔料及びピロロピロール顔料から選ばれる少なくとも1種を含むものであることがより好ましく、フタロシアニン顔料又はジケトピロロピロール顔料を含むものであることが更に好ましい。また、高温(例えば320℃以上)に加熱した後も分光特性が変動しにくい膜を形成しやすいという理由からフタロシアニン顔料は、中心金属を持たないフタロシアニン顔料や、中心金属として、銅又は亜鉛を有するフタロシアニン顔料が好ましい。
 また、組成物に含まれる着色剤は、高温(例えば320℃以上)に加熱した後も分光特性が変動しにくい膜を形成しやすいという理由から赤色顔料、黄色顔料、及び青色顔料から選ばれる少なくとも1種を含むことが好ましく、赤色顔料及び青色顔料から選ばれる少なくとも1種を含むことがより好ましく、青色顔料を含むことが更に好ましい。
 組成物に含まれる着色剤は、以下に示す条件1を示す顔料Aを含むことが好ましい。このような特性を有する着色剤を用いることで、高温(例えば320℃以上)に加熱した後も分光特性が変動しにくい膜を形成することができる。組成物に含まれる顔料全量中における顔料Aの割合は、20~100質量%であることが好ましく、30~100質量%であることがより好ましく、40~100質量%であることが更に好ましい。
 条件1)
 顔料Aを6質量%と、樹脂B-5を10質量%と、プロピレングリコールモノメチルエーテルアセテートを84質量%含む組成物を用いて、200℃で30分加熱して厚さ0.60μmの膜を形成した際に、上記膜を窒素雰囲気下にて320℃で3時間加熱処理したとき、加熱処理後の膜の下記式(10)で表される吸光度の変化率ΔA10が50%以下である;
ΔA10=|100-(A12/A11)×100|   ・・・(10)
 ΔA10は、加熱処理後の膜の吸光度の変化率であり、
 A11は、加熱処理前の膜の波長400~1,100nmの範囲における吸光度の最大値であり、
 A12は、加熱処理後の膜の吸光度であって、加熱処理前の膜の波長400~1,100nmの範囲における吸光度の最大値を示す波長での吸光度である;
 樹脂B-5は、下記構造の樹脂であって、主鎖に付記した数値はモル比であり、重量平均分子量は11,000であり、酸価は32mgKOH/gである。
Figure JPOXMLDOC01-appb-C000004
 上記の条件1を満たす顔料Aとしては、C.I.Pigment Red 254、C.I.Pigment Red 264、Pigment Red 272、Pigment Red 122、Pigment Red 177、C.I.Pigment Blue 15:3、C.I.Pigment Blue 15:4、C.I.Pigment Blue 15:6、C.I.Pigment Blue 16などが挙げられる。
 顔料の平均一次粒子径は、1~200nmが好ましい。下限は5nm以上が好ましく、10nm以上がより好ましい。上限は、180nm以下が好ましく、150nm以下がより好ましく、100nm以下が更に好ましい。顔料の平均一次粒子径が上記範囲であれば、組成物中における顔料の分散安定性が良好である。なお、本発明において、顔料の一次粒子径は、顔料の一次粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。具体的には、顔料の一次粒子の投影面積を求め、それに対応する円相当径を顔料の一次粒子径として算出する。また、本発明における平均一次粒子径は、400個の顔料の一次粒子についての一次粒子径の算術平均値とする。また、顔料の一次粒子とは、凝集のない独立した粒子をいう。
〔有彩色色材〕
 有彩色色材としては、波長400~700nmの範囲に極大吸収波長を有する色材が挙げられる。例えば、黄色色材、赤色色材(オレンジ色色材等を含む)、緑色色材、紫色色材、青色色材などが挙げられる。耐熱性の観点から有彩色色材は、顔料(有彩色顔料)であることが好ましく、赤色顔料(オレンジ色顔料等を含む)、黄色顔料、及び青色顔料がより好ましく、赤色顔料及び青色顔料が更に好ましい。有彩色顔料の具体例としては、例えば、以下に示すものが挙げられる。
 カラーインデックス(C.I.)Pigment Yellow 1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214,215,228,231,232(メチン系),233(キノリン系),234(アミノケトン系),235(アミノケトン系),236(アミノケトン系)等(以上、黄色顔料)、
 C.I.Pigment Orange 2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等(以上、オレンジ色顔料)、
 C.I.Pigment Red 1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279,294(キサンテン系、Organo Ultramarine、Bluish Red),295(モノアゾ系),296(ジアゾ系)、297(アミノケトン系)等(以上、赤色顔料)、
 C.I.Pigment Green 7,10,36,37,58,59,62,63,64(フタロシアニン系),65(フタロシアニン系),66(フタロシアニン系)等等(以上、緑色顔料)、
 C.I.Pigment Violet 1,19,23,27,32,37,42,60(トリアリールメタン系),61(キサンテン系)等(以上、紫色顔料)、
 C.I.Pigment Blue 1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,29,60,64,66,79,80,87(モノアゾ系),88(メチン系)等(以上、青色顔料)。
 これらの有彩色顔料のうち、高温(例えば320℃以上)に加熱した後も分光特性が変動しにくい膜を形成しやすいという理由から赤色顔料としては、C.I.Pigment Red 254、C.I.Pigment Red 264、Pigment Red 272、Pigment Red 122、Pigment Red 177が好ましい。また、青色顔料としては、C.I.Pigment Blue 15:3、C.I.Pigment Blue 15:4、C.I.Pigment Blue 15:6、C.I.Pigment Blue 16が好ましい。また、黄色顔料としては、C.I.Pigment Yellow 215、プテリジン色素が好ましい。
 また、緑色色材として、1分子中のハロゲン原子数が平均10~14個であり、臭素原子数が平均8~12個であり、塩素原子数が平均2~5個であるハロゲン化亜鉛フタロシアニン顔料を用いることもできる。具体例としては、国際公開第2015/118720号に記載の化合物が挙げられる。また、緑色顔料として中国特許出願公開第106909027号明細書に記載の化合物、国際公開第2012/102395号に記載のリン酸エステルを配位子として有するフタロシアニン化合物、特開2019-008014号公報に記載のフタロシアニン化合物及び特開2018-180023号公報に記載のフタロシアニン化合物、特開2019-038958号公報に記載の化合物などを用いることもできる。
 また、青色色材として、リン原子を有するアルミニウムフタロシアニン化合物を用いることもできる。具体例としては、特開2012-247591号公報の段落番号0022~0030、特開2011-157478号公報の段落番号0047に記載の化合物が挙げられる。
 また、黄色色材として、特開2017-201003号公報に記載の化合物、特開2017-197719号公報に記載の化合物、特開2017-171912号公報の段落番号0011~0062、0137~0276に記載の化合物、特開2017-171913号公報の段落番号0010~0062、0138~0295に記載の化合物、特開2017-171914号公報の段落番号0011~0062、0139~0190に記載の化合物、特開2017-171915号公報の段落番号0010~0065、0142~0222に記載の化合物、特開2013-054339号公報の段落番号0011~0034に記載のキノフタロン化合物、特開2014-026228号公報の段落番号0013~0058に記載のキノフタロン化合物、特開2018-062644号公報に記載のイソインドリン化合物、特開2018-203798号公報に記載のキノフタロン化合物、特開2018-062578号公報に記載のキノフタロン化合物、特許第6432077号公報に記載のキノフタロン化合物、特許第6432076号公報に記載のキノフタロン化合物、特開2018-155881号公報に記載のキノフタロン化合物、特開2018-111757号公報に記載のキノフタロン化合物、特開2018-040835号公報に記載のキノフタロン化合物、特開2017-197640号公報に記載のキノフタロン化合物、特開2016-145282号公報に記載のキノフタロン化合物、特開2014-085565号公報に記載のキノフタロン化合物、特開2014-021139号公報に記載のキノフタロン化合物、特開2013-209614号公報に記載のキノフタロン化合物、特開2013-209435号公報に記載のキノフタロン化合物、特開2013-181015号公報に記載のキノフタロン化合物、特開2013-061622号公報に記載のキノフタロン化合物、特開2013-054339号公報に記載のキノフタロン化合物、特開2013-032486号公報に記載のキノフタロン化合物、特開2012-226110号公報に記載のキノフタロン化合物、特開2008-074987号公報に記載のキノフタロン化合物、特開2008-081565号公報に記載のキノフタロン化合物、特開2008-074986号公報に記載のキノフタロン化合物、特開2008-074985号公報に記載のキノフタロン化合物、特開2008-050420号公報に記載のキノフタロン化合物、特開2008-031281号公報に記載のキノフタロン化合物、特公昭48-032765号公報に記載のキノフタロン化合物、特開2019-008014号公報に記載のキノフタロン化合物、下記式(QP1)で表される化合物、下記式(QP2)で表される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000005
 式(QP1)中、X~X16は各々独立に水素原子又はハロゲン原子を表し、Zは炭素数1~3のアルキレン基を表す。式(QP1)で表される化合物の具体例としては、特許第6443711号公報の段落番号0016に記載されている化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式(QP2)中、Y~Yは、それぞれ独立にハロゲン原子を示す。n、mは0~6の整数、pは0~5の整数を表す。(n+m)は1以上である。式(QP2)で表される化合物の具体例としては、特許6432077号公報の段落番号0047~0048に記載されている化合物が挙げられる。
 赤色色材として、特開2017-201384号公報に記載の構造中に少なくとも1つ臭素原子が置換したジケトピロロピロール化合物、特許第6248838号の段落番号0016~0022に記載のジケトピロロピロール化合物、国際公開第2012/102399号に記載のジケトピロロピロール化合物、国際公開第2012/117965号に記載のジケトピロロピロール化合物、特開2012-229344号公報に記載のナフトールアゾ化合物、特許第6516119号に記載の化合物、特許第6525101号に記載の化合物などを用いることもできる。また、赤色顔料として、芳香族環に対して、酸素原子、硫黄原子又は窒素原子が結合した基が導入された芳香族環基がジケトピロロピロール骨格に結合した構造を有する化合物を用いることもできる。このような化合物としては、式(DPP1)で表される化合物であることが好ましく、式(DPP2)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式中、R11及びR13はそれぞれ独立して置換基を表し、R12及びR14はそれぞれ独立して水素原子、アルキル基、アリール基又はヘテロアリール基を表し、n11及びn13はそれぞれ独立して0~4の整数を表し、X12及びX14はそれぞれ独立して酸素原子、硫黄原子又は窒素原子を表し、X12が酸素原子又は硫黄原子の場合は、m12は1を表し、X12が窒素原子の場合は、m12は2を表し、X14が酸素原子又は硫黄原子の場合は、m14は1を表し、X14が窒素原子の場合は、m14は2を表す。R11及びR13が表す置換基としては、アルキル基、アリール基、ハロゲン原子、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基、アミド基、シアノ基、ニトロ基、トリフルオロメチル基、スルホキシド基、スルホ基などが好ましい具体例として挙げられる。
 有彩色染料としては、ピラゾールアゾ化合物、アニリノアゾ化合物、トリアリールメタン化合物、アントラキノン化合物、アントラピリドン化合物、ベンジリデン化合物、オキソノール化合物、ピラゾロトリアゾールアゾ化合物、ピリドンアゾ化合物、シアニン化合物、フェノチアジン化合物、ピロロピラゾールアゾメチン化合物、キサンテン化合物、フタロシアニン化合物、ベンゾピラン化合物、インジゴ化合物、ピロメテン化合物が挙げられる。
 有彩色色材は、2種以上組み合わせて用いてもよい。また、有彩色色材は、2種以上組み合わせて用いる場合、2種以上の有彩色色材の組み合わせで黒色を形成していてもよい。そのような組み合わせとしては、例えば以下の(1)~(8)の態様が挙げられる。組成物中に有彩色色材を2種以上含み、かつ、2種以上の有彩色色材の組み合わせで黒色を呈している場合においては、本発明の組成物は、近赤外線透過フィルタとして好ましく用いることができる。
(1)赤色色材と青色色材とを含有する態様。
(2)赤色色材と緑色色材とを含有する態様。
(3)赤色色材と青色色材と黄色色材とを含有する態様。
(4)赤色色材と青色色材と黄色色材と紫色色材とを含有する態様。
(5)赤色色材と青色色材と黄色色材と紫色色材と緑色色材とを含有する態様。
(6)赤色色材と青色色材と黄色色材と緑色色材とを含有する態様。
(7)赤色色材と青色色材と緑色色材とを含有する態様。
(8)黄色色材と紫色色材とを含有する態様。
〔白色色材〕
 白色色材としては、酸化チタン、チタン酸ストロンチウム、チタン酸バリウム、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、酸化アルミニウム、硫酸バリウム、シリカ、タルク、マイカ、水酸化アルミニウム、ケイ酸カルシウム、ケイ酸アルミニウム、中空樹脂粒子、硫化亜鉛などの無機顔料(白色顔料)が挙げられる。白色顔料は、チタン原子を有する粒子が好ましく、酸化チタンがより好ましい。また、白色顔料は、波長589nmの光に対する屈折率が2.10以上の粒子であることが好ましい。前述の屈折率は、2.10~3.00であることが好ましく、2.50~2.75であることがより好ましい。
 また、白色顔料は「酸化チタン 物性と応用技術 清野学著 13~45ページ 1991年6月25日発行、技報堂出版発行」に記載の酸化チタンを用いることもできる。
 白色顔料は、単一の無機物からなるものだけでなく、他の素材と複合させた粒子を用いてもよい。例えば、内部に空孔や他の素材を有する粒子、コア粒子に無機粒子を多数付着させた粒子、ポリマー粒子からなるコア粒子と無機ナノ微粒子からなるシェル層とからなるコア及びシェル複合粒子を用いることが好ましい。上記ポリマー粒子からなるコア粒子と無機ナノ微粒子からなるシェル層とからなるコア及びシェル複合粒子としては、例えば、特開2015-047520号公報の段落番号0012~0042の記載を参酌することができ、この内容は本明細書に組み込まれる。
 白色顔料は、中空無機粒子を用いることもできる。中空無機粒子とは、内部に空洞を有する構造の無機粒子であり、外殻に包囲された空洞を有する無機粒子のことを言う。中空無機粒子としては、特開2011-075786号公報、国際公開第2013/061621号、特開2015-164881号公報などに記載された中空無機粒子が挙げられ、これらの内容は本明細書に組み込まれる。
〔黒色色材〕
 黒色色材としては特に限定されず、公知のものを用いることができる。例えば、カーボンブラック、チタンブラック、グラファイト等の無機顔料(黒色顔料)が挙げられ、カーボンブラック、チタンブラックが好ましく、チタンブラックがより好ましい。チタンブラックとは、チタン原子を含有する黒色粒子であり、低次酸化チタンや酸窒化チタンが好ましい。チタンブラックは、分散性向上、凝集性抑制などの目的で必要に応じ、表面を修飾することが可能である。例えば、酸化珪素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化マグネシウム、又は、酸化ジルコニウムでチタンブラックの表面を被覆することが可能である。また、特開2007-302836号公報に表されるような撥水性物質での処理も可能である。黒色顔料として、カラーインデックス(C.I.)Pigment Black 1,7等が挙げられる。チタンブラックは、個々の粒子の一次粒子径及び平均一次粒子径のいずれもが小さいことが好ましい。具体的には、平均一次粒子径が10~45nmであることが好ましい。チタンブラックは、分散物として用いることもできる。例えば、チタンブラック粒子とシリカ粒子とを含み、分散物中のSi原子とTi原子との含有比が0.20~0.50の範囲に調整した分散物などが挙げられる。上記分散物については、特開2012-169556号公報の段落0020~0105の記載を参酌でき、この内容は本明細書に組み込まれる。チタンブラックの市販品の例としては、チタンブラック10S、12S、13R、13M、13M-C、13R-N、13M-T(商品名:三菱マテリアル(株)製)、ティラック(Tilack)D(商品名:赤穂化成(株)製)などが挙げられる。
 また、黒色色材として、ビスベンゾフラノン化合物、アゾメチン化合物、ペリレン化合物、アゾ化合物などの有機黒色色材を用いることもできる。ビスベンゾフラノン化合物としては、特表2010-534726号公報、特表2012-515233号公報、特表2012-515234号公報などに記載の化合物が挙げられ、例えば、BASF社製の「Irgaphor Black」として入手可能である。ペリレン化合物としては、特開2017-226821号公報の段落番号0016~0020に記載の化合物、C.I.Pigment Black 31、32などが挙げられる。アゾメチン化合物としては、特開平01-170601号公報、特開平02-034664号公報などに記載の化合物が挙げられ、例えば、大日精化社製の「クロモファインブラックA1103」として入手できる。
 本発明の組成物に用いられる着色剤は、上述した黒色色材のみであってもよく、有彩色色材を更に含むものであってもよい。この態様によれば、可視領域の遮光性の高い膜を形成できる組成物が得られやすい。着色剤として黒色色材と有彩色色材とを併用する場合、両者の質量比は、黒色色材:有彩色色材=100:10~300であることが好ましく、100:20~200であることがより好ましい。また、上記黒色色材としては黒色顔料を用いることが好ましく、上記有彩色色材としては有彩色顔料を用いることが好ましい。
 有彩色色材としては、赤色色材、緑色色材、青色色材、黄色色材、紫色色材及びオレンジ色色材が挙げられる。
 有彩色色材としては、有彩色顔料が好ましく、有彩色顔料としては、赤色顔料(オレンジ色顔料を含む)、緑色顔料、青色顔料、黄色顔料、及び、紫色顔料が挙げられる。
 また、有彩色顔料としては、無機顔料又は有機-無機顔料に、有機発色団を置換した材料を用いることもできる。無機顔料や有機-無機顔料を有機発色団で置換することで、色相設計をしやすくできる。顔料Aには、赤色顔料、青色顔料及び黄色顔料から選ばれる少なくとも1種を含むものが好ましく用いられ、青色顔料及び黄色顔料から選ばれる少なくとも1種を含むものがより好ましく用いられ、青色顔料を含むものが更に好ましく用いられる。この態様によれば、可視領域の遮光性に優れた膜を形成しやすい。また、青色顔料を用いることで、耐光性に優れた膜を形成できる。また、黄色顔料を用いることで、得られる膜の可視透過率の均一化を図ることができる。
 青色顔料は、耐光性に優れた膜を形成しやすいという理由からフタロシアニン化合物であることが好ましい。また、青色顔料は、カラーインデックス(C.I.)ピグメントブルー1,2,15,15:1,15:2,15:3,15:4,15:6,16,22,29,60,64,66,79,80,87(モノアゾ系),88(メチン/ポリメチン系)が挙げられ、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:6及びC.I.ピグメントブルー16から選ばれる少なくとも1種であることが好ましく、C.I.ピグメントブルー15:6であることがより好ましい。
 また、青色顔料として、リン原子を有するアルミニウムフタロシアニン化合物を用いることもできる。このような化合物としては、配位子がリン酸エステルであるアルミニウムフタロシアニン化合物などが挙げられる。リン原子を有するアルミニウムフタロシアニン化合物の具体例としては、特開2012-247591号公報の段落0022~0030、特開2011-157478号公報の段落0047に記載の化合物が挙げられる。
 黄色顔料としては、アゾ化合物、キノフタロン化合物、イソインドリノン化合物、イソインドリン化合物、アントラキノン化合物等が挙げられ、イソインドリン化合物であることが好ましい。また、黄色顔料は、C.I.ピグメントイエロー1,2,3,4,5,6,10,11,12,13,14,15,16,17,18,20,24,31,32,34,35,35:1,36,36:1,37,37:1,40,42,43,53,55,60,61,62,63,65,73,74,77,81,83,86,93,94,95,97,98,100,101,104,106,108,109,110,113,114,115,116,117,118,119,120,123,125,126,127,128,129,137,138,139,147,148,150,151,152,153,154,155,156,161,162,164,166,167,168,169,170,171,172,173,174,175,176,177,179,180,181,182,185,187,188,193,194,199,213,214,231,232(メチン/ポリメチン系)等が挙げられる。
 また、黄色顔料として、特開2017-201003号公報に記載されている顔料、特開2017-197719号公報に記載されている顔料を用いることができる。また、黄色顔料として、下記式(I)で表されるアゾ化合物及びその互変異性構造のアゾ化合物から選ばれる少なくとも1種のアニオンと、2種以上の金属イオンと、メラミン化合物とを含む金属アゾ顔料を用いることもできる。
Figure JPOXMLDOC01-appb-C000008
 式中、R及びRはそれぞれ独立して、-OH又は-NRであり、R及びRはそれぞれ独立して、=O又は=NRであり、R~Rはそれぞれ独立して、水素原子又はアルキル基である。R~Rが表すアルキル基の炭素数は1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。アルキル基は、直鎖、分岐及び環状のいずれであってもよく、直鎖又は分岐が好ましく、直鎖がより好ましい。アルキル基は置換基を有していてもよい。置換基は、ハロゲン原子、ヒドロキシ基、アルコキシ基、シアノ基及びアミノ基が好ましい。
 上記の金属アゾ顔料については、特開2017-171912号公報の段落番号0011~0062、0137~0276、特開2017-171913号公報の段落番号0010~0062、0138~0295、特開2017-171914号公報の段落番号0011~0062、0139~0190、特開2017-171915号公報の段落番号0010~0065、0142~0222の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 赤色顔料としては、ジケトピロロピロール化合物、アントラキノン化合物、アゾ化合物、キナクリドン化合物などが挙げられ、ジケトピロロピロール化合物が好ましい。また、赤色顔料としては、C.I.ピグメントレッド1,2,3,4,5,6,7,9,10,14,17,22,23,31,38,41,48:1,48:2,48:3,48:4,49,49:1,49:2,52:1,52:2,53:1,57:1,60:1,63:1,66,67,81:1,81:2,81:3,83,88,90,105,112,119,122,123,144,146,149,150,155,166,168,169,170,171,172,175,176,177,178,179,184,185,187,188,190,200,202,206,207,208,209,210,216,220,224,226,242,246,254,255,264,270,272,279,294(キサンテン系、Organo Ultramarine、Bluish Red)等が挙げられる。
 また、赤色顔料として、特開2017-201384号公報に記載の構造中に少なくとも1つ臭素原子が置換したジケトピロロピロール系顔料、特許第6248838号の段落番号0016~0022に記載のジケトピロロピロール系顔料などを用いることもできる。また、赤色顔料として、芳香族環に酸素原子、硫黄原子又は窒素原子が結合した基が導入された芳香族環基がジケトピロロピロール骨格に結合した構造を有する化合物を用いることもできる。
 オレンジ色顔料としては、C.I.ピグメントオレンジ2,5,13,16,17:1,31,34,36,38,43,46,48,49,51,52,55,59,60,61,62,64,71,73等が挙げられる。紫色顔料としては、C.I.ピグメントバイオレット1,19,23,27,32,37,42,60(トリアリルメタン系),61(キサンテン系)等が挙げられる。緑色顔料としては、C.I.ピグメントグリーン7,10,36,37,58,59,62,63等が挙げられる。また、緑色顔料として、1分子中のハロゲン原子数が平均10~14個であり、臭素原子が平均8~12個であり、塩素原子が平均2~5個であるハロゲン化亜鉛フタロシアニン顔料を用いることもできる。具体例としては、国際公開第2015/118720号公報に記載の化合物が挙げられる。
 有機黒色色材と有彩色色材の好ましい組み合わせとしては、例えば以下が挙げられる。
 (A-1)有機黒色色材と青色色材とを含有する態様。
 (A-2)有機黒色色材と青色色材と黄色色材とを含有する態様。
 (A-3)有機黒色色材と青色色材と黄色色材と赤色色材とを含有する態様。
 (A-4)有機黒色色材と青色色材と黄色色材と紫色色材とを含有する態様。
 上記(A-1)の態様において、有機黒色色材と青色色材との質量比は、有機黒色色材:青色色材=100:1~70であることが好ましく、100:5~60であることがより好ましく、100:10~50であることが更に好ましい。
 上記(A-2)の態様において、有機黒色色材と青色色材と黄色色材の質量比は、有機黒色色材:青色色材:黄色色材=100:10~90:10~90であることが好ましく、100:15~85:15~80であることがより好ましく、100:20~80:20~70であることが更に好ましい。
 上記(A-3)の態様において、有機黒色色材と青色色材と黄色色材と赤色色材との質量比は、有機黒色色材:青色色材:黄色色材:赤色色材=100:20~150:1~60:10~100であることが好ましく、100:30~130:5~50:20~90であることがより好ましく、100:40~120:10~40:30~80であることが更に好ましい。
 上記(A-4)の態様において、有機黒色色材と青色色材と黄色色材と紫色色材との質量比は、有機黒色色材:青色色材:黄色色材:紫色色材=100:20~150:1~60:10~100であることが好ましく、100:30~130:5~50:20~90であることがより好ましく、100:40~120:10~40:30~80であることが更に好ましい。
 また、着色剤中における上述した有機黒色色材の含有量は10質量%以上であり、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、50質量%以上であることがより一層好ましく、60質量%以上であることが更に一層好ましい。従来の組成物は、有機黒色色材の含有量が多くなるに伴い配管チューブ内の汚染が生じやすい傾向にあったが、本発明の組成物は、有機黒色色材の含有量を高めても配管チューブ内の汚染を生じにくくできるので、有機黒色色材の含有量が多いほど本発明の効果が顕著に奏される。
 また、着色剤中における有機黒色色材としてのラクタム系顔料の含有量は10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、30質量%以上であることがより一層好ましく、40質量%以上であることが更に一層好ましく、50質量%以上であることが特に好ましい。
 また、上述した有機黒色色材の含有量は、本発明の組成物の全固形分中5~70質量%であることが好ましい。下限は、10質量%以上が好ましく、15質量%以上がより好ましい。上限は65質量%以下であることが好ましく、60質量%以下であることがより好ましい。
 組成物の全固形分中における着色剤の含有量は20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。また、上記含有量の上限は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。
 また、組成物の全固形分中における着色剤である顔料の含有量は20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましい。また、上記含有量の上限は、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。
 また、着色剤中における染料の含有量は50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
 また、本発明の組成物は、得られる膜を高温に加熱した際の膜厚変化をより効果的に抑制しやすいという理由から染料を実質的に含有しないことも好ましい。本発明の組成物が染料を実質的に含まない場合、本発明の組成物の全固形分中における染料の含有量が0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましく、含有しないことが特に好ましい。
 また、着色剤、及び、後述する近赤外線吸収剤の合計含有量は、組成物の全固形分に対して30質量%以上であり、30~90質量%であることが好ましく、30~80質量%であることがより好ましく、30~70質量%であることが更に好ましい。ただし、上記態様において、近赤外線吸収剤の含有量は0質量%であってもよい。
 着色剤である顔料、及び、近赤外線吸収剤である顔料の合計含有量は、組成物の全固形分に対して30質量%以上であることが好ましく、30~90質量%であることがより好ましく、30~80質量%であることが更に好ましく、30~70質量%であることが特に好ましい。ただし、上記態様において、近赤外線吸収剤である顔料の含有量は0質量%であってもよい。
<近赤外線吸収剤>
 また、本発明の組成物は、着色剤に加え、近赤外線吸収剤を更に含むことが好ましい。
 また、本発明の組成物は、有彩色色材及び近赤外線吸収剤を含むことが好ましく、2種以上の有彩色色材と後述する近赤外線吸収剤とを含むことがより好ましく、赤色色材、青色色材及び近赤外線吸収剤を含むことが更に好ましい。
 また、着色剤は、黒色色材と後述する近赤外線吸収剤とを含むことも好ましい。
 これらの態様によれば、本発明の組成物を、近赤外線透過フィルタ形成用の組成物として好ましく用いることができる。
 これらの着色剤の組み合わせについては、特開2013-77009号公報、特開2014-130338号公報、国際公開第2015/166779号等を参照できる。
 近赤外線吸収剤は、顔料であることが好ましく、有機顔料であることがより好ましい。また、近赤外線吸収剤は、波長700nmを超え1,400nm以下の範囲に極大吸収波長を有することが好ましい。また、近赤外線吸収剤の極大吸収波長は、1,200nm以下であることが好ましく、1,000nm以下であることがより好ましく、950nm以下であることが更に好ましい。また、近赤外線吸収剤は、波長550nmにおける吸光度A550と極大吸収波長における吸光度Amaxとの比であるA550/Amaxが0.1以下であることが好ましく、0.05以下であることがより好ましく、0.03以下であることが更に好ましく、0.02以下であることが特に好ましい。下限は、特に限定はないが、例えば、0.0001以上とすることができ、0.0005以上とすることもできる。上述の吸光度の比が上記範囲であれば、可視光透明性及び近赤外線遮蔽性に優れた近赤外線吸収剤とすることができる。なお、本発明において、近赤外線吸収剤の極大吸収波長及び各波長における吸光度の値は、近赤外線吸収剤を含む組成物を用いて形成した膜の吸収スペクトルから求めた値である。
 近赤外線吸収剤として、波長700nmを超え800nm以下の範囲に極大吸収波長を有する近赤外線吸収剤を用いることもできる。近赤外線吸収剤としてこのような分光特性を有する顔料を含むものを用いることで、得られる膜について透過させる光の波長をより長波長側にシフトさせることができる。波長700nmを超え800nm以下の範囲に極大吸収波長を有する近赤外線吸収剤は、波長500nmにおける吸光度Aと極大吸収波長における吸光度Aとの比率A/Aが、0.08以下であるものが好ましく、0.04以下であるものがより好ましい。
 近赤外線吸収剤としては、特に限定はないが、ピロロピロール化合物、シアニン化合物、スクアリリウム化合物、フタロシアニン化合物、ナフタロシアニン化合物、クアテリレン化合物、メロシアニン化合物、クロコニウム化合物、オキソノール化合物、イミニウム化合物、ジチオール化合物、トリアリールメタン化合物、ピロメテン化合物、アゾメチン化合物、アントラキノン化合物、ジベンゾフラノン化合物、ジチオレン金属錯体等が挙げられる。ピロロピロール化合物としては、特開2009-263614号公報の段落番号0016~0058に記載の化合物、特開2011-068731号公報の段落番号0037~0052に記載の化合物、国際公開第2015/166873号の段落番号0010~0033に記載の化合物などが挙げられる。スクアリリウム化合物としては、特開2011-208101号公報の段落番号0044~0049に記載の化合物、特許第6065169号公報の段落番号0060~0061に記載の化合物、国際公開第2016/181987号の段落番号0040に記載の化合物、特開2015-176046号公報に記載の化合物、国際公開第2016/190162号の段落番号0072に記載の化合物、特開2016-074649号公報の段落番号0196~0228に記載の化合物、特開2017-067963号公報の段落番号0124に記載の化合物、国際公開第2017/135359号に記載の化合物、特開2017-114956号公報に記載の化合物、特許6197940号公報に記載の化合物、国際公開第2016/120166号に記載の化合物などが挙げられる。シアニン化合物としては、特開2009-108267号公報の段落番号0044~0045に記載の化合物、特開2002-194040号公報の段落番号0026~0030に記載の化合物、特開2015-172004号公報に記載の化合物、特開2015-172102号公報に記載の化合物、特開2008-088426号公報に記載の化合物、国際公開第2016/190162号の段落番号0090に記載の化合物、特開2017-031394号公報に記載の化合物などが挙げられる。クロコニウム化合物としては、特開2017-082029号公報に記載の化合物が挙げられる。イミニウム化合物としては、例えば、特表2008-528706号公報に記載の化合物、特開2012-012399号公報に記載の化合物、特開2007-092060号公報に記載の化合物、国際公開第2018/043564号の段落番号0048~0063に記載の化合物が挙げられる。フタロシアニン化合物としては、特開2012-077153号公報の段落番号0093に記載の化合物、特開2006-343631号公報に記載のオキシチタニウムフタロシアニン、特開2013-195480号公報の段落番号0013~0029に記載の化合物、特許第6081771号公報に記載のバナジウムフタロシアニン化合物が挙げられる。ナフタロシアニン化合物としては、特開2012-077153号公報の段落番号0093に記載の化合物が挙げられる。ジチオレン金属錯体としては、特許第5733804号公報に記載の化合物が挙げられる。
 近赤外線吸収剤としては、また、特開2017-197437号公報に記載のスクアリリウム化合物、特開2017-025311号公報に記載のスクアリリウム化合物、国際公開第2016/154782号に記載のスクアリリウム化合物、特許第5884953号公報に記載のスクアリリウム化合物、特許第6036689号公報に記載のスクアリリウム化合物、特許第5810604号公報に記載のスクアリリウム化合物、国際公開第2017/213047号の段落番号0090~0107に記載のスクアリリウム化合物、特開2018-054760号公報の段落番号0019~0075に記載のピロール環含有化合物、特開2018-040955号公報の段落番号0078~0082に記載のピロール環含有化合物、特開2018-002773号公報の段落番号0043~0069に記載のピロール環含有化合物、特開2018-041047号公報の段落番号0024~0086に記載のアミドα位に芳香環を有するスクアリリウム化合物、特開2017-179131号公報に記載のアミド連結型スクアリリウム化合物、特開2017-141215号公報に記載のピロールビス型スクアリリウム骨格又はクロコニウム骨格を有する化合物、特開2017-082029号公報に記載されたジヒドロカルバゾールビス型のスクアリリウム化合物、特開2017-068120号公報の段落番号0027~0114に記載の非対称型の化合物、特開2017-067963号公報に記載されたピロール環含有化合物(カルバゾール型)、特許第6251530号公報に記載されたフタロシアニン化合物、特開2013-77009号公報、特開2014-130338号公報、国際公開第2015/166779号に記載の色材、又は、これらの文献に記載の色材の組み合わせなどを用いることもできる。
 組成物が近赤外線吸収剤を含む場合、近赤外線吸収剤の全固形分中における含有量は0.1~70質量%であることが好ましく、1~40質量%であることがより好ましい。
<顔料誘導体>
 本発明の組成物は上述の着色剤又は上述の近赤外線吸収剤として、顔料誘導体を含有することができる。顔料誘導体としては、発色団の一部分を、酸基、塩基性基又はフタルイミドメチル基で置換した構造を有する化合物が挙げられる。顔料誘導体を構成する発色団としては、キノリン骨格、ベンゾイミダゾロン骨格、ジケトピロロピロール骨格、アゾ骨格、フタロシアニン骨格、アンスラキノン骨格、キナクリドン骨格、ジオキサジン骨格、ペリノン骨格、ペリレン骨格、チオインジゴ骨格、イソインドリン骨格、イソインドリノン骨格、キノフタロン骨格、スレン骨格、金属錯体系骨格等が挙げられ、キノリン骨格、ベンゾイミダゾロン骨格、ジケトピロロピロール骨格、アゾ骨格、キノフタロン骨格、イソインドリン骨格及びフタロシアニン骨格が好ましく、アゾ骨格及びベンゾイミダゾロン骨格がより好ましい。顔料誘導体が有する酸基としては、スルホ基、カルボキシ基が好ましく、スルホ基がより好ましい。顔料誘導体が有する塩基性基としては、アミノ基が好ましく、三級アミノ基がより好ましい。
 顔料誘導体としては、可視光透明性に優れた顔料誘導体(以下、透明顔料誘導体ともいう)を用いることもできる。透明顔料誘導体の400~700nmの波長領域におけるモル吸光係数の最大値(εmax)は3,000L・mol-1・cm-1以下であることが好ましく、1,000L・mol-1・cm-1以下であることがより好ましく、100L・mol-1・cm-1以下であることがさらに好ましい。εmaxの下限は、例えば1L・mol-1・cm-1以上であり、10L・mol-1・cm-1以上でもよい。
 顔料誘導体の具体例としては、特開昭56-118462号公報、特開昭63-264674号公報、特開平01-217077号公報、特開平03-009961号公報、特開平03-026767号公報、特開平03-153780号公報、特開平03-045662号公報、特開平04-285669号公報、特開平06-145546号公報、特開平06-212088号公報、特開平06-240158号公報、特開平10-030063号公報、特開平10-195326号公報、国際公開第2011/024896号の段落番号0086~0098、国際公開第2012/102399号の段落番号0063~0094、国際公開第2017/038252号の段落番号0082、特開2015-151530号公報の段落番号0171、特開2011-252065号公報の段落番号0162~0183、特開2003-081972号公報、特許第5299151号公報、特開2015-172732号公報、特開2014-199308号公報、特開2014-085562号公報、特開2014-035351号公報、特開2008-081565号公報、特開2019-109512号公報、特開2019-133154号公報に記載の化合物が挙げられる。
 顔料誘導体の含有量は、顔料100質量部に対して1~30質量部が好ましく、3~20質量部が更に好ましい。顔料誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
<特定樹脂>
 本発明の組成物は、式(1-1)~式(1-5)のいずれかで表される繰返し単位よりなる群から選ばれた少なくとも1種の繰返し単位を含む樹脂であって、上記樹脂に含まれる全ての繰返し単位の総モル量に対する、式(1-1)~式(1-5)のいずれかで表される繰返し単位の合計量の割合が10モル%以上である樹脂(特定樹脂)を含む。
 特定樹脂に含まれる全ての繰返し単位の総モル量に対する、式(1-1)~下記式(1-5)のいずれかで表される繰返し単位の合計量の割合は、下記方法により測定される。
 熱分解GC-MSにより、特定樹脂を熱分解し、質量分析を行うことにより、分解された繰返し単位の構造を同定する。同定した構造のモル質量から、特定樹脂における繰返し単位の存在モル量を同定することができる。
 得られる膜の耐熱性及び露光感度の観点からは、上記合計量の割合は、60モル%を超えることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。上限は特に限定されず、100モル%以下であればよい。
 また、得られる膜の耐熱性の観点からは、特定樹脂に含まれる全ての繰返し単位の総モル量に対する、上記式(1-1)で表される繰返し単位の合計量の割合が10モル%以上であることが好ましく、20モル%以上であることがより好ましく、30モル%以上であることが更に好ましい。
〔式(1-1)〕
-R11、R12及びR13
 式(1-1)中、R11、R12及びR13はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、水素原子又はアルキル基であることが好ましく、水素原子であることがより好ましい。
 上記アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、メチル基が更に好ましい。
 本明細書において、特段の記載がない限り、「アルキル基」又は「脂肪族炭化水素基」の記載には、直鎖状、分岐鎖状、又は、環状構造を有するアルキル基又は脂肪族炭化水素基の全てが含まれるものとする。
 上記芳香族炭化水素基としては、炭素数6~20の芳香族炭化水素環が好ましく、フェニル基がより好ましい。
 上記アルキル基、又は、上記芳香族炭化水素基は、本発明の効果が得られる範囲内において、置換基を有していてもよい。
 また、上記芳香族炭化水素基には、本発明の効果が得られる範囲内において、別の芳香族炭化水素環又は別の芳香族複素環が結合していてもよい。上記結合の態様としては、縮合環、架橋環、スピロ環等が挙げられる。
-Ar-
 式(1-1)中、Arは環員数5~30の芳香族基を表し、炭素数6~20の芳香族炭化水素基、又は、環員数5~20の芳香族複素環基が好ましく、炭素数6~20の芳香族炭化水素基がより好ましい。
 上記芳香族炭化水素基としては、フェニル基、又は、ナフチル基が好ましく、フェニル基がより好ましい。
 上記芳香族複素環基としては、複素原子として窒素原子、硫黄原子、又は、酸素原子を含む芳香族複素環基が好ましい。上記複素原子は芳香族複素環基に1つのみ存在してもよいし、2以上存在してもよい。芳香族複素環基に複素原子が2以上存在する場合、上記複素原子は、同一であっても異なっていてもよい。上記芳香族複素環基としては、チエニル基、ピリジル基、1-イミダゾリル基等が挙げられる。
 上記芳香族基は、本発明の効果が得られる範囲内において、置換基を有していてもよい。置換基としては、ヘテロ原子を含む置換基を有することが好ましい。上記ヘテロ原子を含む置換基におけるヘテロ原子としては、酸素原子、窒素原子、硫黄原子、又は、リン原子が好ましい。上記ヘテロ原子を含む置換基は、これらのヘテロ原子を1種単独で含んでもよいし、2種以上を含んでもよい。また、上記ヘテロ原子を含む置換基におけるヘテロ原子の数は、特に限定されないが、例えば1~10であることが好ましい。
 上記ヘテロ原子を含む置換基としては、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基(置換スルホンアミド基、-S(=O)NHC(=O)R、-S(=O)NHS(=O)R、-C(=O)NHS(=O)R、Rは置換基を有していてもよい炭化水素基)、又は、スルホンアミド基(-S(=O)NRS1 、又はRS2-S(=O)-NRS3-、RS1は水素原子又は置換基を有していてもよい炭化水素基を表し、RS1の少なくとも一方が水素原子であることが好ましく、RS1の両方が水素原子であることがより好ましい。上記RS2は1価の置換基を表し、炭化水素基であることが好ましい。上記RS3は水素原子又は炭化水素基を表し、炭化水素基であることが好ましい。)等の酸基、アミノ基、アルキル基、芳香族炭化水素基、芳香族複素環基、ハロゲン原子等が挙げられる。
 また、これらの置換基は、連結基を介して上記芳香族基に結合していてもよい。連結基としては、脂肪族炭化水素基、芳香族炭化水素基、-O-、-C(=O)-、-S-、-S(=O)-、-NR-、又は、これらを2以上結合した基等が挙げられる。Rは水素原子又は炭化水素基を表し、水素原子、アルキル基又は芳香族炭化水素基が好ましく、水素原子又はアルキル基がより好ましく、水素原子が特に好ましい。また、上記連結基に対し、上記置換基が2以上結合してもよい。
 本発明の好ましい一態様としては、上記置換基が、上記連結基を介さず上記芳香族基に直接結合する態様が挙げられる。
 組成物にアルカリ現像性を付与する観点からは、Arが上記ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基、又は、スルホンアミド基等の酸基を有することが好ましい。
 また、上記酸基は、他の構造とエステル結合を形成してもよい。上記他の構造としては、アルキル基(例えばメチル基、エチル基など)、ポリマー鎖、エチレン性不飽和結合を有する基を含む構造等が挙げられる。上記ポリマー鎖としては、後述する分子量が500~10,000であり、かつ、酸基及び塩基性基を有しない分子鎖等が挙げられる。
 また、上記アミノ基は、他の構造とアミド結合、ウレタン結合又はウレア結合を形成してもよい。上記他の構造は、酸基がエステル結合する対象として説明した他の構造と同様である。
〔式(1-1-1)、式(1-1-2)、式(1-1-3)〕
 式(1-1)で表される繰返し単位は、下記式(1-1-1)で表される繰返し単位、下記式(1-1-2)で表される繰返し単位又は下記式(1-1-3)で表される繰返し単位であることが好ましい。
 また、特定樹脂は、式(1-1)で表される繰返し単位として、式(1-1-2)で表される繰返し単位を含むことが好ましく、式(1-1-2)で表される繰返し単位及び式(1-1-3)で表される繰返し単位を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(1-1-1)、式(1-1-2)及び式(1-1-3)中、R11、R12及びR13はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、Arは環員数5~30の芳香族基を表し、X11は炭素数1~30のアルキル基、炭素数6~20の芳香族炭化水素基、又は、炭素数1~30の飽和脂肪族炭化水素基、及び、炭素数6~20の芳香族炭化水素基よりなる群から選ばれた少なくとも1種の基と、-C(=O)O-若しくは-C(=O)NR-との組み合わせにより表される基を表し、n1は0以上Arの最大置換数以下の整数を表し、Arは環員数5~30の芳香族基を表し、X12はそれぞれ独立に、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基、又は、スルホンアミド基を表し、n2は1以上Arの最大置換数以下の整数を表し、Arは環員数5~30の芳香族基を表し、X13はそれぞれ独立に、下記式(E-1)~式(E-11)のいずれかで表される基を表し、n3は1以上Arの最大置換数以下の整数を表す。Rは水素原子又は炭化水素基を表し、水素原子、アルキル基又は芳香族炭化水素基が好ましく、水素原子又はアルキル基がより好ましく、水素原子が特に好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(E-1)~式(E-11)中、RE1~RE3、RE13、RE15、RE17、及び、RE19はそれぞれ独立に、1価の置換基を表し、RE4~RE12、RE14、RE16、及び、RE18はそれぞれ独立に、水素原子又は1価の置換基を表し、RE4及びRE5のうち少なくとも一方は1価の置換基であり、RE6及びRE7のうち少なくとも一方は1価の置換基であり、RE8及びRE9のうち少なくとも一方は1価の置換基であり、RE10及びRE11のうち少なくとも一方は1価の置換基であり、RE12及びRE13のうち少なくとも一方は1価の置換基であり、RE14及びRE15のうち少なくとも一方は1価の置換基であり、RE16及びRE17のうち少なくとも一方は1価の置換基であり、RE18及びRE19のうち少なくとも一方は1価の置換基であり、*は式(1-1-3)中のArとの結合部位を表す。
-R11、R12及びR13
 式(1-1-1)、式(1-1-2)及び式(1-1-3)中、R11、R12及びR13はそれぞれ、式(1-1)中のR11、R12及びR13と同義であり、好ましい態様も同様である。
-Ar
 式(1-1-1)中、Arは式(1-1)におけるArと同義であり、好ましい態様も同様である。
-X11
 式(1-1-1)中、X11は炭素数1~30のアルキル基若しくは炭素数6~20の芳香族炭化水素基、又は、炭素数1~30のアルキル基、及び、炭素数6~20の芳香族炭化水素基よりなる群から選ばれた少なくとも1種の基と、-C(=O)O-若しくは-C(=O)NR-との組み合わせにより表される基を表し、耐熱性及び有機溶剤との親和性の観点からは、炭素数1~30の飽和脂肪族炭化水素基、及び、炭素数6~20の芳香族炭化水素基よりなる群から選ばれた少なくとも1種の基と、-C(=O)O-又は-C(=O)NR-との組み合わせにより表される基が好ましい。
 上記炭素数1~30のアルキル基としては、炭素数1~20のアルキル基がより好ましく、炭素数1~10のアルキル基がより好ましく、炭素数1~4のアルキル基が更に好ましい。
 上記炭素数6~20の芳香族炭化水素基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 上記炭素数1~30の飽和脂肪族炭化水素基としては、炭素数1~20の飽和脂肪族炭化水素基がより好ましく、炭素数1~10の飽和脂肪族炭化水素基がより好ましく、炭素数1~4の飽和脂肪族炭化水素基が更に好ましい。
 炭素数1~30の飽和脂肪族炭化水素基、及び、炭素数6~20の芳香族炭化水素基よりなる群から選ばれた少なくとも1種の基と、-C(=O)O-又は-C(=O)NR-との組み合わせにより表される基としては、耐熱性及び有機溶剤との親和性の観点からは、式(1-1-1)におけるArとの結合部位が、*-C(=O)O-又は*-C(=O)NR-である基が好ましい。上記*はArとの結合部位を表す。
 また、炭素数1~30の飽和脂肪族炭化水素基、及び、炭素数6~20の芳香族炭化水素基よりなる群から選ばれた少なくとも1種の基と、-C(=O)O-若しくは-C(=O)NR-との組み合わせにより表される基としては、下記式(D-1)又は下記式(D-2)で表される基が好ましく、下記式(Dー1)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(D-1)又は式(D-2)中、*はそれぞれ独立に、式(1-1-1)中のArとの結合部位を表し、RD1は後述する置換基Dを表し、RD2及びRD3はそれぞれ独立に、水素原子、又は、後述する置換基Dを表す。
 置換基Dは、炭素数1~30のアルキル基、炭素数6~20の芳香族炭化水素基、又は、炭素数1~30の脂肪族飽和炭化水素基、及び、炭素数6~20の芳香族炭化水素基よりなる群から選ばれた少なくとも1種の基と、-C(=O)O-若しくは-C(=O)NR-との組み合わせにより表される基である。
 置換基Dにおける炭素数1~30のアルキル基、炭素数6~20の芳香族炭化水素基、又は、炭素数1~30の脂肪族飽和炭化水素基の好ましい態様は、上述のX11におけるこれらの基の好ましい態様と同様である。
 RD1における置換基Dは、耐熱性及び有機溶剤との親和性の観点からは、炭素数1~30のアルキル基、又は、炭素数6~20の芳香族炭化水素基であることが好ましく、炭素数1~30のアルキル基がより好ましく、炭素数1~10のアルキル基が更に好ましく、炭素数1~4のアルキル基が特に好ましく、メチル基が最も好ましい。
 RD2及びRD3は、共に水素原子であってもよいが、少なくとも一方が上述の置換基Dであることが好ましく、一方が水素原子、他方が上述の置換基Dであることがより好ましい。
 RD2及びRD3における置換基Dは、炭素数1~30のアルキル基、又は、炭素数6~20の芳香族炭化水素基であることが好ましく、炭素数1~30のアルキル基がより好ましく、炭素数1~10のアルキル基が更に好ましく、炭素数1~4のアルキル基が特に好ましい。
-n1-
 式(1-1-1)中、n1は0以上Arの最大置換数以下の整数を表し、0又は1が好ましく、0がより好ましい。
 Arの最大置換数とは、Arで表される環員数5~30の芳香族基が有することのできる最大の置換基数をいい、Arがベンゼン環構造である場合、最大置換数は5である。以下、上記内容は最大置換数の記載において同様である。
-Ar
 式(1-1-2)中、Arは式(1-1)におけるArと同義であり、好ましい態様も同様である。
-X12
 式(1-1-2)中、X12はヒドロキシ基、カルボキシ基、スルホ基、リン酸基、又は、ホスホン酸基を表し、ヒドロキシ基又はカルボキシ基が好ましく、カルボキシ基がより好ましい。
-n2-
 式(1-1-2)中、n2は1以上Arの最大置換数以下の整数を表し、1又は2が好ましく、1がより好ましい。
-Ar
 式(1-1-3)中、Arは式(1-1)におけるArと同義であり、好ましい態様も同様である。
-X13
 式(1-1-3)中、X13は式(E-1)~式(E-11)のいずれかで表される基を表し、式(E-1)又は式(E-2)で表される基であることが好ましく、式(E-2)で表される基であることがより好ましい。
 式(E-1)~式(E-11)中、RE1~RE19はそれぞれ独立に、脂肪族炭化水素基、芳香族基、又は、脂肪族炭化水素基、芳香族基、-O-、-C(=O)-、-S-、-S(=O)-、-C(=O)O-、-C(=O)NR-、-OC(=O)NR-、-NRC(=O)NR-、-CHCH(OH)CH-、エチレン性不飽和結合を有する基、及び、ポリマー鎖よりなる群から選ばれた少なくとも2つの結合により表される基であることが好ましい。
 上記脂肪族炭化水素基としては、炭素数1~20の脂肪族炭化水素基が好ましく、炭素数1~20の脂肪族飽和炭化水素基がより好ましい。
 上記芳香族基としては、式(1-1)中のArと同様の基であることが好ましい。
 上記エチレン性不飽和結合を有する基としては、アクリロイル基、アクリロイルオキシ基、アクリルアミド基、ビニルフェニル基、アリル基等が挙げられ、反応性の観点からはアクリロイルオキシ基が好ましい。
 上記ポリマー鎖としては、式(1-1)~式(1-5)で表される繰返し単位、(メタ)アクリル酸に由来する繰返し単位、及び、(メタ)アクリル酸エステル化合物に由来する繰返し単位よりなる群から選ばれた少なくとも1種の繰返し単位を含むポリマー鎖が好ましく、式(1-1)~式(1-5)で表される繰返し単位、及び、(メタ)アクリル酸エステル化合物に由来する繰返し単位よりなる群から選ばれた少なくとも1種の繰返し単位を含むポリマー鎖がより好ましい。
 上記ポリマー鎖に含まれる式(1-1)~式(1-5)で表される繰返し単位は、上記ポリマー鎖を有しない繰返し単位であることが好ましく、式(1-1-1)で表される繰返し単位、後述する式(1-2-1)で表される繰返し単位、式(1-3)で表される繰返し単位、式(1-4)で表される繰返し単位、又は、式(1-5)で表される繰返し単位であることが好ましく、式(1-1-1)で表される繰返し単位、又は、後述する式(1-2-1)で表される繰返し単位であることがより好ましい。
 上記ポリマー鎖における(メタ)アクリル酸に由来する繰返し単位は、後述する式(1-6)で表される繰返し単位であることが好ましく、(メタ)アクリル酸エステル化合物に由来する繰返し単位は、後述する式(1-7)で表される繰返し単位(より好ましくは、式(1-7)で表される繰返し単位であって、式(1-7)中のRA2が式(F-1)である繰返し単位)であることが好ましい。
 また、上記ポリマー鎖に含まれる繰返し単位は、特定樹脂に含まれる全ての繰返し単位の総モル量に含まれる。
 これらの中でも、RE1~RE19としては、下記式(F-1)~式(F-5)のいずれかで表される基が好ましい。下記式中、*はそれぞれ独立に、他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000012
 式(F-1)中、RF1は置換基を有してもよいアルキル基、又は、アリール基を表し、アルキル基、芳香族炭化水素基、アリールアルキル基、又は、アルキル基若しくは芳香族炭化水素基と、-O-との結合により表される基が好ましく、アルキル基、アリールアルキル基、又はアルコキシアルキル基がより好ましく、アルキル基が更に好ましい。
 上記アルキル基としては、炭素数1~8のアルキル基が好ましく、1~4のアルキル基がより好ましい。
 上記アリール基としては、芳香族炭化水素基が好ましい。
 上記芳香族炭化水素基としては、炭素数6~30の芳香族炭化水素基が好ましく、フェニル基又はナフチル基がより好ましく、フェニル基が更に好ましい。
 上記アリールアルキル基におけるアリール基としては、炭素数6~30の芳香族炭化水素基が好ましく、フェニル基又はナフチル基がより好ましく、フェニル基が更に好ましい。
 上記アリールアルキル基におけるアルキル基としては、炭素数1~8のアルキル基が好ましく、1~4のアルキル基がより好ましい。
 上記アルコキシアルキル基におけるアルコキシ基としては、炭素数1~8のアルコキシ基が好ましく、炭素数1~4のアルコキシ基がより好ましく、メチル基が更に好ましい。
 また、上記アルコキシアルキル基の総炭素数は、2~10が好ましく、2~6がより好ましい。
 式(F-2)中、RF2はそれぞれ独立に、アルキレン基、2価の芳香族炭化水素基、-C(=O)NR-、-OC(=O)NR-、-NRC(=O)NR-、又はこれらを2以上結合した基を表し、アルキレン基が好ましい。Rは上述の通りである。
 本明細書において、単に-C(=O)NR-、-OC(=O)NR-、-NRC(=O)NR-と記載した場合、構造中におけるこれらの結合の向きは特に限定されないものとする。
 上記アルキレン基としては、炭素数2~10のアルキレン基が好ましく、炭素数2~4のアルキレン基がより好ましく、エチレン基又はプロピレン基がより好ましい。
 上記2価の芳香族炭化水素基としては、フェニレン基が好ましい。
 式(F-2)中、nは0以上の整数を表し、0~20の整数であることが好ましく、0~10の整数であることがより好ましく、0、1又は2であることが更に好ましく、0又は1であることが特に好ましい。
 式(F-2)中、AF1は重合性基を表し、(メタ)アクリロキシ基、(メタ)アクリルアミド基、ビニルフェニルエーテル基、アリルエーテル基、ビニルフェニル基、アリル基、又は、ビニル基が好ましく、反応性の観点からは(メタ)アクリロキシ基がより好ましい。
 式(F-3)中、RF4はアルキレン基、2価の芳香族炭化水素基、-C(=O)NR-、-OC(=O)NR-、-NRC(=O)NR-、又はこれらを2以上結合した基を表し、アルキレン基が好ましい。Rは上述の通りである。
 上記アルキレン基としては、炭素数2~10のアルキレン基が好ましく、炭素数2~4のアルキレン基がより好ましい。
 上記2価の芳香族炭化水素基としては、フェニレン基が好ましい。
 式(F-3)中、AF2は重合性基を表し、(メタ)アクリロキシ基、(メタ)アクリルアミド基、ビニルフェニルエーテル基、アリルエーテル基、ビニルフェニル基、アリル基、又は、ビニル基が好ましく、反応性の観点からは(メタ)アクリロキシ基がより好ましい。
 また、式(F-3)中、RF4はアルキレン基、2価の芳香族炭化水素基、-C(=O)NR-、-OC(=O)NR-、-NRC(=O)NR-、若しくは、これらを2以上結合した基を表し、かつ、AF2が(メタ)アクリロキシ基である態様、又は、RF4がメチレン基であり、かつ、AF2がビニル基である態様も好ましい。
 式(F-4)中、RF6はアルキレン基、アリーレン基、-C(=O)NR-、-OC(=O)NR-、-NRC(=O)NR-、又はこれらを2以上結合した基を表し、アルキレン基、又は、2以上のアルキレン基が-OC(=O)NR-により結合された基が好ましい。Rは上述の通りである。
 上記アルキレン基としては、炭素数2~20のアルキレン基が好ましく、炭素数2~10のアルキレン基がより好ましい。
 式(F-4)中、Polymerは上述のRE1~RE19の説明におけるポリマー鎖を表し、好ましい態様も同様である。
 式(F-5)中、RF7は単結合、アルキレン基又は2価の芳香族炭化水素基を表し、単結合が好ましい。
 上記アルキレン基としては、炭素数2~20のアルキレン基が好ましく、炭素数2~10のアルキレン基がより好ましい
 上記2価の芳香族炭化水素基としては、フェニレン基が好ましい。
 式(F-5)中、RF8はアルキレン基、又は2価の芳香族炭化水素基を表し、アルキレン基が好ましい。
 上記アルキレン基としては、炭素数2~20のアルキレン基が好ましく、炭素数2~10のアルキレン基がより好ましい
 上記2価の芳香族炭化水素基としては、フェニレン基が好ましい。
 式(F-5)中、mは1以上の整数を表し、2~50の整数であることが好ましく、2~30の整数であることがより好ましい。
 式(F-5)中、RF9はアルキル基又は1価の芳香族炭化水素基を表し、アルキル基がより好ましい。
 上記アルキル基としては、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。
 上記1価の芳香族炭化水素基としては、フェニル基が好ましい。
-n3-
 式(1-1-3)中、n3は1以上Arの最大置換数以下の整数を表し、1又は2が好ましく、1がより好ましい。
 式(1-1)で表される繰返し単位は、置換基を有してもよいビニル芳香族炭化水素化合物(例えば、スチレン、ビニルナフタレン等)、又は、置換基を有してもよいビニル芳香族化合物(例えば、ビニルチオフェン、ビニルピリジン、ビニルイミダゾール等)に由来する繰返し単位であることが好ましい。
〔式(1-2)で表される繰返し単位〕
-R21、R22及びR23
 式(1-2)中、R21、R22及びR23はそれぞれ、式(1-1)中のR11、R12及びR13と同義であり、好ましい態様も同様である。
-R24及びR25
 R24及びR25はそれぞれ独立に、水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、R24及びR25は結合して環構造を形成してもよい。
 R24及びR25のうち、少なくとも一方が、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表すか、R24及びR25が結合して環構造を形成することが好ましい。
 R24及びR25は、それぞれ独立に、炭素数1~30のアルキル基であることが好ましく、炭素数1~20のアルキル基であることがより好ましい。
 R24及びR25における炭素数6~30の芳香族炭化水素基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 R24及びR25が結合して形成する環構造としては、ピペリジン環、ピペラジン環、モルホリン環等の脂肪族複素環構造が挙げられる。
 R24及びR25における、炭素数1~30のアルキル基、炭素数6~30の芳香族炭化水素基、又は、R24及びR25が結合して形成される環構造は、本発明の効果が得られる範囲内において、置換基を有していてもよい。置換基としては、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基、スルホンアミド基等の酸基、アミノ基、アルキル基、アリール基、ハロゲン原子等が挙げられる。また、R24及びR25における、炭素数6~30の芳香族炭化水素基は、置換基としてヒドロキシ基を有していてもよい。
 組成物にアルカリ現像性を付与する観点からは、炭素数1~30のアルキル基、炭素数6~30の芳香族炭化水素基、又は、R24及びR25が結合して形成される環構造が上記カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基、スルホンアミド基等の酸基を有することが好ましい。また、R24及びR25の少なくとも一方が、炭素数6~30の芳香族炭化水素基である場合、上記芳香族炭化水素基は、酸基としてヒドロキシ基を有していてもよい。
 また、上記酸基は、他の構造とエステル結合を形成してもよい。上記他の構造としては、ポリマー鎖、エチレン性不飽和結合を有する基を含む構造等が挙げられる。上記ポリマー鎖としては、後述する分子量が500~10,000であり、かつ、酸基及び塩基性基を有しない分子鎖等が挙げられる。
 また、上記アミノ基は、他の構造とアミド結合、ウレタン結合又はウレア結合を形成してもよい。上記他の構造は、酸基がエステル結合する対象として説明した他の構造と同様である。
〔式(1-2-1)、式(1-2-2)、式(1-2-3)〕
 式(1-2)で表される繰返し単位は、下記式(1-2-1)で表される繰返し単位、下記式(1-2-2)で表される繰返し単位又は下記式(1-2-3)で表される繰返し単位であることが好ましい。
 また、特定樹脂は、式(1-2)で表される繰返し単位として、式(1-2-2)で表される繰返し単位を含むことが好ましく、式(1-2-2)で表される繰返し単位及び式(1-2-3)で表される繰返し単位を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(1-2-1)、式(1-2-2)及び式(1-2-3)中、R21、R22及びR23は式(1-1)中のR11、R12及びR13と同義であり、R26及びR27はそれぞれ独立に、炭素数1~30のアルキル基を表し、R28は脂肪族炭化水素基又は芳香族炭化水素基を表し、X21はそれぞれ独立に、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基、又は、スルホンアミド基を表し、n1は1又は2であり、n2は0又は1であり、n1+n2は2であり、n3は1以上の整数であり、R29は脂肪族炭化水素基又は芳香族炭化水素基を表し、X22はそれぞれ独立に、上述の式(E-1)~式(E-11)のいずれかで表される基を表し、m1は1又は2であり、m2は0又は1であり、m1+m2は2であり、m3は1以上の整数である。
 式(1-2-1)、式(1-2-2)及び式(1-2-3)中、R21、R22及びR23はそれぞれ、式(1-2)中のR21、R22及びR23と同義であり、好ましい態様も同様である。
-R26及びR27
 式(1-2-1)中、R26及びR27はそれぞれ独立に、炭素数1~30のアルキル基を表し、炭素数1~10のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。
-R28
 式(1-2-2)中、R28は脂肪族炭化水素基又は芳香族炭化水素基を表し脂肪族炭化水素基が好ましく、脂肪族飽和炭化水素基がより好ましい。
 上記脂肪族炭化水素基としては、炭素数2~30の脂肪族炭化水素基が好ましく、炭素数2~20の脂肪族炭化水素基がより好ましい。
 上記芳香族炭化水素基としては、ベンゼン環から1+n3個の水素原子を除いた基が好ましい。
-X21
 式(1-2-2)中、R28が脂肪族炭化水素基である場合、X21はそれぞれ独立に、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基、又は、スルホンアミド基が好ましく、カルボキシ基がより好ましい。
 式(1-2-2)中、R28が芳香族炭化水素基である場合、X21はそれぞれ独立に、ヒドロキシ基、又は、カルボキシ基が好ましく、カルボキシ基がより好ましい。
-n1、n2、n3-
 式(1-2-2)中、n1は1であり、かつ、n2は1であることが好ましい。
 式(1-2-2)中、n3は1以上の整数であり、1~10であることが好ましく、1~4であることがより好ましく、1又は2であることが更に好ましく、1であることが特に好ましい。
-R29
 式(1-2-3)中、R29は脂肪族炭化水素基又は芳香族炭化水素基を表し脂肪族炭化水素基が好ましく、脂肪族飽和炭化水素基がより好ましい。
 上記脂肪族炭化水素基としては、炭素数2~30の脂肪族炭化水素基が好ましく、炭素数2~20の脂肪族炭化水素基がより好ましい。
 上記芳香族炭化水素基としては、ベンゼン環から1+m3個の水素原子を除いた基が好ましい。
-X22
 式(1-2-3)中、R29が脂肪族炭化水素基である場合、X22はそれぞれ独立に、式(E-2)、式(E-3)、式(E-4)又は式(E-5)のいずれかで表される基が好ましく、式(E-2)で表される基がより好ましい。
 式(1-2-3)中、R29が芳香族炭化水素基である場合、X22はそれぞれ独立に、式(E-1)又は式(E-2)のいずれかで表される基が好ましく、式(E-2)で表される基がより好ましい。
-m1、m2、m3-
 式(1-2-3)中、m1は1であり、かつ、m2は1であることが好ましい。
 式(1-2-3)中、m3は1以上の整数であり、1~10であることが好ましく、1~4であることがより好ましく、1又は2であることが更に好ましく、1であることが特に好ましい。
 式(1-2)で表される繰返し単位は、置換基を有してもよいアクリルアミド化合物に由来する繰返し単位であることが好ましい。
〔式(1-3)で表される繰返し単位〕
-R31、R32及びR33
 式(1-3)中、R31、R32及びR33はそれぞれ、式(1-1)中のR11、R12及びR13と同義であり、好ましい態様も同様である。
-R34及びR35
 式(1-3)中、R34及びR35はそれぞれ独立に、水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、炭素数1~30のアルキル基であることが好ましい。
 上記炭素数1~30のアルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。
 上記炭素数6~30の芳香族炭化水素基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 上記炭素数1~30のアルキル基、及び、炭素数6~30の芳香族炭化水素基は、本発明の効果が得られる範囲内において、置換基を有していてもよい。
 式(1-3)中、R34及びR35の少なくとも一方が、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表すことが好ましい。
 また、R34及びR35は結合して環構造を形成することが好ましい。形成される環構造としては、環員数5~20のラクタム環構造等が好ましく、環員数5~10のラクタム環構造がより好ましい。
 式(1-3)で表される繰返し単位は、N-ビニル-N-アシル化合物(N-ビニルアセトアミド等)、又は、N-ビニルラクタム化合物(N-ビニル2-ピロリドン、N-ビニル-ε-カプロラクタム等)に由来する繰返し単位であることが好ましい。
〔式(1-4)で表される繰返し単位〕
-R41及びR42
 式(1-4)中、R41及びR42はそれぞれ、式(1-1)中のR11及びR13と同義であり、好ましい態様も同様である。
-R43
 式(1-4)中、R43は水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基がより好ましく、炭素数6~30の芳香族炭化水素基が好ましい。
 上記炭素数1~30のアルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~10のアルキル基であることがより好ましい。
 上記炭素数6~30の芳香族炭化水素基は、炭素数6~20の芳香族炭化水素基であることが好ましく、フェニル基又はナフチル基であることがより好ましく、フェニル基であること更に好ましい。
 上記炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基は、本発明の効果が得られる範囲内において、置換基を有していてもよい。
 式(1-4)で表される繰返し単位は、マレイミド化合物(マレイミド、N-アルキルマレイミド、N-フェニルマレイミド等)に由来する繰返し単位であることが好ましい。
〔式(1-5)で表される繰返し単位〕
-R51及びR52
 式(1-5)中、R51及びR52はそれぞれ、式(1-1)中のR11及びR12と同義であり、好ましい態様も同様である。
-R53及びR54
 式(1-5)中、R53びR54はそれぞれ独立に、水素原子、アルキル基、又は、芳香族炭化水素基を表し、水素原子又はアルキル基であることが好ましく、水素原子であることがより好ましい。
 上記アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましく、メチル基が更に好ましい。
 上記芳香族炭化水素基としては、炭素数6~20の芳香族炭化水素環が好ましく、フェニル基がより好ましい。
 上記アルキル基、又は、上記芳香族炭化水素基は、本発明の効果が得られる範囲内において、置換基を有していてもよい。
 また、上記芳香族炭化水素基には、本発明の効果が得られる範囲内において、別の芳香族炭化水素環又は別の芳香族複素環が結合していてもよい。上記結合の態様としては、縮合環、架橋環、スピロ環等が挙げられる。
-R55
 式(1-5)中、R55は水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基がより好ましく、炭素数6~30の芳香族炭化水素基が好ましい。
 上記炭素数1~30のアルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~10のアルキル基であることがより好ましい。
 上記炭素数6~30の芳香族炭化水素基は、炭素数6~20の芳香族炭化水素基であることが好ましく、フェニル基又はナフチル基であることがより好ましく、フェニル基であること更に好ましい。
 上記炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基は、本発明の効果が得られる範囲内において、置換基を有していてもよい。
 式(1-5)で表される繰返し単位は、イタコンイミド化合物(イタコンイミド、N-アルキルイタコンイミド、N-フェニルイタコンイミド等)に由来する繰返し単位であることが好ましい。
 耐熱性の観点からは、特定樹脂は、(メタ)アクリル酸又は(メタ)アクリル酸エステル化合物由来の繰返し単位の含有量が、特定樹脂に含まれる全ての繰返し単位の総モル量に対して0~70モル%であることが好ましい。
 上記含有量は、0~40モル%であることが好ましく、0~20モル%であることがより好ましい。
 また、本発明において、上記含有量が、0~1モル%(好ましくは0~0.5モル%、より好ましくは0~0.1モル%)である態様も好ましい態様である。
 特定樹脂に含まれてもよい(メタ)アクリル酸由来の繰り返し単位は、下記式(1-6)で表される繰返し単位であることが好ましい。
 また、特定樹脂に含まれてもよい(メタ)アクリル酸エステル化合物由来の繰返し単位は、下記式(1-7)で表される繰返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(1-6)中、RA1は水素原子又はメチル基を表し、水素原子がより好ましい。
 式(1-7)中、RA1は水素原子又はメチル基を表し、水素原子がより好ましい。
 式(1-7)中、RA2は上述の式(F-1)~式(F-5)のいずれかで表される基であり、これらの基の好ましい態様は上述の通りである。
〔特定の置換基〕
 特定樹脂は、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、及び、アミノ基よりなる群から選ばれた少なくとも1種の基を有することが好ましく、ヒドロキシ基又はカルボキシ基を有することがより好ましい。
 例えば、特定樹脂に、上述の式(1-1-2)で表される繰返し単位、又は、上述の式(1-2-2)で表される繰返し単位等を導入することにより、これらの基が特定樹脂に導入される。
〔酸基〕
 アルカリ現像性を向上する観点からは、特定樹脂は、酸基を有することが好ましい。酸基としては、フェノール性ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、活性イミド基、又は、スルホンアミド基等が挙げられる。
 特定樹脂における酸価は、製膜性及びアルカリ現像性の向上の観点からは、0~500mgKOH/gであることが好ましい。
 上記酸価の下限は、20mgKOH/g以上であることが好ましく、30mgKOH/g以上であることがより好ましく、50mgKOH/g以上であることが更に好ましい。
 上記酸価の上限は、300mgKOH/g以下であることが好ましく、200mgKOH/g以下であることがより好ましく、150mgKOH/g以下であることが更に好ましい。
 特に好ましい態様として、特定樹脂の酸化が0~150mgKOH/gである態様が挙げられる。
 特定樹脂の酸価は、後述する実施例における測定方法と同様の方法により算出される。
〔エチレン性不飽和結合〕
 特定樹脂は、エチレン性不飽和結合を有することが好ましい。
 また特定樹脂は、エチレン性不飽和結合を有する基を含むことが好ましい。
 エチレン性不飽和結合を有する基としては、アクリロイル基、アクリロイルオキシ基、アクリルアミド基、ビニルフェニル基、アリル基等が挙げられ、反応性の観点からはアクリロイルオキシ基が好ましい。
 例えば、特定樹脂に、上述の式(1-1-2)で表される繰返し単位、又は、上述の式(1-2-2)で表される繰返し単位であって、上述の式(F-2)又は式(F-3)で表される基を有する繰返し単位等を導入することにより、エチレン性不飽和結合を有する基が特定樹脂に導入される。
 特定樹脂のC=C価は、保存安定性及び硬化性の観点からは、0~5mmol/gであることが好ましい。
 上記C=C価の下限は、0.01mmol/g以上であることが好ましく、0.03mmol/g以上であることがより好ましく、0.05mmol/g以上であることが更に好ましく、0.1mmol/g以上であることが特に好ましい。
 上記C=C価の上限は、3mmol/g以下であることが好ましく、2mmol/g以下であることがより好ましく、1.5mmol/g以下であることが更に好ましく、1mmol/g以下であることが特に好ましい。
 本発明において、特定樹脂のC=C価とは、1gの特定樹脂に含まれるエチレン性不飽和結合の数をいい、後述の実施例における方法により測定される値である。
〔グラフト高分子、星型高分子〕
 特定樹脂は、線状高分子、星型高分子、グラフト高分子化合物のいずれであってもよいし、分岐点を複数有する特開2007-277514号公報等に記載の特定末端基を有する星型高分子であってもよいが、グラフト高分子、又は、星型高分子であることが好ましい。
-グラフト高分子-
 特定樹脂がグラフト高分子である場合、特定樹脂は、グラフト鎖として、後述の分子量が500~10,000であり、かつ、酸基及び塩基性基を有しない分子鎖を有することが好ましい。
 また、特定樹脂がグラフト高分子である場合、特定樹脂は、上述の式(1-1-3)で表される繰返し単位であって、上述の式(F-4)又は式(F-5)で表される基を有する繰返し単位、又は、上述の式(1-2-3)で表される繰返し単位であって、上述の式(F-4)又は式(F-5)で表される基を有する繰返し単位を主鎖に有することが好ましい。この場合、式(F-4)又は式(F-5)で表される基がグラフト高分子におけるグラフト鎖となることが好ましい。
-星型高分子-
 特定樹脂が星型高分子である場合、特定樹脂は、下記式(S-1)で表される樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(S-1)中、Rは(m+n1)価の有機連結基を表し、Rはそれぞれ独立に、単結合又はn2+1価の連結基を表し、Aはそれぞれ独立に、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、及び、アミノ基よりなる群から選ばれた少なくとも1種の基を表し、Rはそれぞれ独立に、単結合又はn2+1価の連結基を表し、Pはそれぞれ独立に、ポリマー鎖を表し、mは1~8の整数を表し、n1は2~9の整数を表し、m+n1は3~10であり、n2は1以上の整数であり、式(S-1)で表される樹脂に含まれる全ての繰返し単位の総モル量に対する、式(1-1)~式(1-5)のいずれかで表される繰返し単位の合計量の割合が10モル%以上である。
-R
 式(S-1)中、Rは1~100個の炭素原子、0個~10個の窒素原子、0個~50個の酸素原子、1個~200個の水素原子、及び0個~20個の硫黄原子から成り立つ基であることが好ましく、1~60個の炭素原子、0個~10個の窒素原子、0個~40個の酸素原子、1個~120個の水素原子、及び0個~10個の硫黄原子から成り立つ基が好ましく、1~50個の炭素原子、0個~10個の窒素原子、0個~30個の酸素原子、1個~100個の水素原子、及び0個~7個の硫黄原子から成り立つ基がより好ましく、1~40個の炭素原子、0個~8個の窒素原子、0個~20個の酸素原子、1個~80個の水素原子、及び0個~5個の硫黄原子から成り立つ基が特に好ましい。
-R
 式(S-1)中、Rは、単結合、又は、1~50個の炭素原子、0個~8個の窒素原子、0個~25個の酸素原子、1個~100個の水素原子、及び0個~10個の硫黄原子から成り立つ2価の有機連結基が好ましく、単結合、あるいは、1~30個の炭素原子、0個~6個の窒素原子、0個~15個の酸素原子、1個~50個の水素原子、及び、0個~7個の硫黄原子から成り立つ2価の有機連結基がより好ましく、単結合、又は、1~10個の炭素原子、0個~5個の窒素原子、0個~10個の酸素原子、1個~30個の水素原子、及び0個~5個の硫黄原子から成り立つ2価の有機連結基が特に好ましい。
-R
 式(S-1)中、Rはそれぞれ独立に、単結合、-S-又は上記Rと同様の基が好ましく、単結合又は-S-がより好ましく、-S-が特に好ましい。
-P
 式(S-1)中、Pは式(1-1)~式(1-7)で表される繰返し単位よりなる群から選ばれた少なくとも1種の繰返し単位を含むポリマー鎖が好ましく、式(1-1)~式(1-5)及び式(1-7)で表される繰返し単位よりなる群から選ばれた少なくとも1種の繰返し単位を含むポリマー鎖がより好ましい。
 また、Pは式(1-1-1)で表される繰返し単位、式(1-2-1)で表される繰返し単位、式(1-3)で表される繰返し単位、式(1-4)で表される繰返し単位、又は、式(1-5)で表される繰返し単位を含むことが好ましく、式(1-1-1)で表される繰返し単位、又は、式(1-2-1)で表される繰返し単位を含むことがより好ましい。
-m、n1、n2-
 式(S-1)中、mは1~8の整数を表し、1~5が好ましく、1~4がより好ましく、2~4が特に好ましい。
 式(S-1)中、n1は2~9の整数を表し、2~8が好ましく、2~7がより好ましく、2~6が特に好ましい。
 式(S-1)中、n2は1以上の整数を表し、1~10であることが好ましく、1~4であることがより好ましく、1又は2であることが更に好ましい。
-式(S-2)-
 式(S-1)で表される星型高分子は、式(S-2)で表される星型高分子であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(S-2)中、R、A、P、n、n、及びmはそれぞれ、式(S-1)中のR、A、P、n、n、及びmと同義であり、好ましい態様も同様である。
 式(S-2)中、R-S-は、Rとの結合部位に硫黄原子を含む以外は式(S-1)中のRと同義であり、好ましい態様も同様である。
〔分子鎖〕
 特定樹脂は、分子量が500~10,000であり、かつ、酸基及び塩基性基を有しない分子鎖を有することが好ましい。
 特定樹脂は、上記分子鎖を分岐鎖として有することが好ましい。
 特定樹脂がグラフト高分子である場合、上記分子鎖はグラフト鎖であることが好ましく、上記分子鎖は、上述の式(1-1-3)で表される繰返し単位に含まれる、上述の式(F-4)又は式(F-5)で表される基、又は、上述の式(1-2-3)で表される繰返し単位に含まれる、上述の式(F-4)又は式(F-5)で表される基として含まれることがより好ましい。
 特定樹脂が星型高分子である場合、上記分子鎖は、上述の式(S-1)におけるPとして含まれることが好ましい。
 上記分子鎖は、(メタ)アクリル酸エステル化合物に由来する繰返し単位、(メタ)アクリルアミド化合物に由来する繰返し単位、芳香族ビニル化合物に由来する繰り返し単位、及び、ポリエステル構造よりなる群から選ばれた少なくとも1種を含むことが好ましい。
 上記(メタ)アクリル酸エステル化合物に由来する繰返し単位としては、上述の式(1-7)で表される繰返し単位が好ましく、上述の式(1-7)で表される繰返し単位であって、RA2が式(F-1)、式(F-2)又は式(F-3)で表される基である繰返し単位がより好ましく、上述の式(1-7)で表される繰返し単位であって、RA2が式(F-1)で表される基である繰返し単位が更に好ましい。
 上記(メタ)アクリルアミド化合物に由来する繰返し単位としては、上述の式(1-2)で表される繰返し単位が好ましく、上述の式(1-2-1)で表される繰返し単位がより好ましい。
 上記芳香族ビニル化合物に由来する繰り返し単位としては、上述の式(1-1)で表される繰返し単位が好ましく、上述の式(1-1-1)で表される繰返し単位がより好ましい。
 上記ポリエステル構造としては、上述の式(F-5)で表されるポリエステル構造が好ましい。上記ポリエステル構造は、上述の式(1-1-3)で表される繰返し単位であって、式(F-5)で表される基を有する繰返し単位、又は、上述の式(1-2-3)で表される繰返し単位であって、式(F-5)で表される基を有する繰返し単位として特定樹脂に含まれることが好ましい。
 本発明の組成物は、特定樹脂として、下記樹脂1及び下記樹脂2よりなる群から選ばれた少なくとも1種の樹脂を含むことが好ましく、下記樹脂1及び下記樹脂2を含むことが好ましい。
 樹脂1を含むことにより、組成物の現像性が向上する。
 樹脂2を含むことにより、組成物の保存安定性が向上する。
 樹脂1:特定樹脂であって、酸基及びエチレン性不飽和結合を有する基を含む樹脂
 樹脂2:特定樹脂であって、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、及び、アミノ基よりなる群から選ばれた少なくとも1種の基、及び、分子量が500~10,000であり、かつ、酸基及び塩基性基を有しない分子鎖を有する樹脂
 上記樹脂1及び上記樹脂2における、酸基、エチレン性不飽和結合を有する基、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、及び、アミノ基よりなる群から選ばれた少なくとも1種の基、及び、分子量が500~10,000であり、かつ、酸基及び塩基性基を有しない分子鎖については上述の通りである。
 樹脂1は上記分子鎖を更に有してもよい。
 また、樹脂2は上記エチレン性不飽和結合を有する基を更に有してもよい。
〔分子量〕
 特定樹脂の重量平均分子量(Mw)は、5,000~100,000であることが好ましく、10,000~50,000であることがより好ましい。
〔モル吸光係数〕
 特定樹脂の波長400~1,100nmにおけるモル吸光係数の最大値は、0~1,000 l/(mol・cm)であることが好ましく、0~100 l/(mol・cm)であることがより好ましい。
〔耐熱性〕
 特定樹脂は、窒素雰囲気下でのTG/DTA(熱質量測定/示差熱測定)による5%質量減少温度が280℃以上が好ましく、300℃以上が好ましく、320℃以上がさらに好ましい。上記5%質量減少温度の上限は、特に限定されず、例えば1,000℃以下であればよい。上記5%質量減少温度は、窒素雰囲気化で特定の温度で5時間静置した時の質量減少率が5%となる温度として、公知のTG/DTA測定方法により求められる。
 また、特定樹脂は、窒素雰囲気下で320℃、3時間静置したときの質量減少率が10%以内であることが好ましく、5%以下であることがより好ましく、2%以下であることがさらに好ましい。上記質量減少率の下限は特に限定されず、0%以上であればよい。
 上記質量減少率は、窒素雰囲気下で320℃、3時間静置する前後の特定樹脂における質量の減少の割合として算出される値である。
〔合成方法〕
 特定樹脂の合成方法は、特に限定されず、公知の方法により合成され、例えば、後述する実施例に記載の方法により合成することが可能である。
〔具体例〕
 以下に特定樹脂の具体例を示すが、本発明はこれに限定されるものではない。
 下記表中、「項目1」の欄には、特定樹脂に含まれる全ての繰返し単位の総モル量に対する、上記式(1-1)~上記式(1-5)のいずれかで表される繰返し単位の合計量の割合(モル%)を、「項目2」の欄には、(メタ)アクリル酸又は(メタ)アクリル酸エステル化合物由来の繰返し単位の含有量(モル%)を、「酸価」の欄には、特定樹脂の酸価(mgKOH/g)を、「C=C価」の欄には、特定樹脂のC=C価(mmol/g)をそれぞれ記載した。
 下記化学式中、x、y、z、wは各繰返し単位の含有比率(モル%)を表し、項目1、項目2、酸価、C=C価を満たす範囲内において適宜設定することができる。
 また、下記化学式中、例えば(A-22)における「polymer」の記載は、(A-22)中に記載の硫黄原子にジエチルアクリルアミドに由来する繰返し単位、及び、スチレンに由来する繰返し単位が、括弧の添え字の含有比(モル比)でランダムに結合したポリマー鎖が結合していることを示している。上記モル比は、項目1、項目2、酸価、C=C価を満たす範囲内において適宜設定することができる。
 また、例えば、(A-34)において、R中の6つの*のうち、いずれかの2か所が左側の角括弧で示された構造と、いずれかの4か所が右側の角括弧で示された構造と結合することを示している。また、右側の角括弧内の記載は、ビニル安息香酸メチルに由来する繰返し単位と、ブチルアクリレートに由来する繰返し単位とが、ランダムに結合したポリマー鎖を示している。 
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
〔含有量〕
 本発明の組成物における特定樹脂の含有量は、組成物の全固形分に対し、10~95質量%であることが好ましい。下限は、20質量%以上がより好ましく、30質量%以上がさらに好ましい。上限は、90質量%以下がより好ましく、85質量%以下が更に好ましい。
 本発明の組成物は特定樹脂を1種単独で含有してもよいし、2種以上を併用してもよい。特定樹脂を2種以上併用する場合、合計量が上記範囲内となることが好ましい。
 また、本発明の組成物が特定樹脂として上述の樹脂1を含有する場合、樹脂1の含有量は、組成物の全固形分に対し、1~30質量%であることが好ましい。下限は、3質量%以上がより好ましく、5質量%以上がさらに好ましい。上限は、25質量%以下がより好ましく、20質量%以下が更に好ましい。
 また、本発明の組成物が特定樹脂として上述の樹脂2を含有する場合、樹脂2の含有量は、組成物の全固形分に対し、10~60質量%であることが好ましい。下限は、15質量%以上がより好ましく、20質量%以上がさらに好ましい。上限は、55質量%以下がより好ましく、50質量%以下が更に好ましい。
 また、本発明の組成物が特定樹脂として上述の樹脂2を含有し、かつ、着色剤として顔料を含む場合、樹脂2の含有量は、組成物に含まれる顔料の全質量に対し、25~85質量%であることが好ましい。下限は、28質量%以上がより好ましく、30質量%以上がさらに好ましい。上限は、80質量%以下がより好ましく、50質量%以下が更に好ましい。
 また、本発明において、組成物の全固形分から着色剤を除いた成分中に、特定樹脂を20質量%以上含むことが好ましく、30質量%以上含むことがより好ましく、40質量%以上含むことが更に好ましい。上限は、100質量%とすることもでき、90質量%以下とすることもでき、85質量%以下とすることもできる。特定樹脂の含有量が上記範囲であれば、耐熱性に優れた膜を形成しやすく、加熱後の膜収縮などをより抑制しやすい。更には、本発明の組成物を用いて得られる膜の表面に無機膜などを形成した際において、この積層体が高温に晒されても、無機膜にクラックなどが生じることも抑制することもできる。
 また、組成物の全固形分中における着色剤と上述した特定樹脂の合計の含有量は、25~100質量%が好ましい。下限は、30質量%以上がより好ましく、40質量%以上がさらに好ましい。上限は、90質量%以下がより好ましく、80質量%以下がさらに好ましい。
<他の樹脂>
 本発明の組成物は、他の樹脂を含んでもよい。
 特定樹脂に該当する化合物は、上記他の樹脂には該当しないものとする。
 本発明の組成物が他の樹脂を含む場合、本発明の組成物に含まれる全ての樹脂成分に含まれる全ての繰返し単位の総モル量に対する、式(1-1)~式(1-5)のいずれかで表される繰返し単位の合計量の割合が10モル%以上であることが好ましい。上記合計量の割合は、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。上限は特に限定されず、100モル%以下であればよい。
 他の樹脂としては、例えば、アルカリ現像性を有する樹脂、又は、分散剤としての樹脂等が挙げられる。
 ここで、本発明の組成物が他の樹脂を含む場合、例えば下記(1)又は下記(2)に示した態様とすることも好ましい。
(1)上述の樹脂1、及び、分散剤としての樹脂を含む。
(2)アルカリ現像性を有する樹脂、及び、上述の樹脂2を含む。
 また、上記(1)における態様において、上述の樹脂2を更に含んでもよいし、上記(2)における態様において、上述の樹脂1を更に含んでもよい。
〔アルカリ現像性を有する樹脂〕
 アルカリ現像性を有する樹脂の重量平均分子量(Mw)は、3,000~2,000,000が好ましい。上限は、1,000,000以下がより好ましく、500,000以下がさらに好ましい。下限は、4,000以上がより好ましく、5,000以上がさらに好ましい。
 アルカリ現像性を有する樹脂としては、(メタ)アクリル樹脂、ポリイミン樹脂、ポリエーテル樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、ポリエステル樹脂、スチレン樹脂などが挙げられ、(メタ)アクリル樹脂及びポリイミン樹脂が好ましく、(メタ)アクリル樹脂がより好ましい。また、他の樹脂として、特開2017-206689号公報の段落番号0041~0060に記載の樹脂、特開2018-010856号公報の段落番号0022~0071に記載の樹脂、特開2017-057265号公報に記載の樹脂、特開2017-032685号公報に記載の樹脂、特開2017-075248号公報に記載の樹脂、特開2017-066240号公報に記載の樹脂を用いることもできる。
 また、アルカリ現像性を有する樹脂としては、酸基を有する樹脂を用いることが好ましい。この態様によれば、組成物の現像性をより向上させることができる。酸基としては、フェノール性ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、ホスホン酸基、活性イミド基、スルホンアミド基などが挙げられ、カルボキシ基が好ましい。酸基を有する樹脂は、例えば、アルカリ可溶性樹脂として用いることができる。
 酸基を有する樹脂は、側鎖に酸基を有する繰り返し単位を含むことが好ましく、側鎖に酸基を有する繰り返し単位を樹脂の全繰り返し単位中1~70モル%含むことがより好ましい。側鎖に酸基を有する繰り返し単位の含有量の上限は、50モル%以下であることが好ましく、40モル%以下であることがより好ましい。側鎖に酸基を有する繰り返し単位の含有量の下限は、2モル%以上であることが好ましく、5モル%以上であることがより好ましい。
 酸基を有する樹脂の酸価は、200mgKOH/g以下が好ましく、150mgKOH/g以下がより好ましく、120mgKOH/g以下が更に好ましく、100mgKOH/g以下が特に好ましい。また、酸基を有する樹脂の酸価は、5mgKOH/g以上が好ましく、10mgKOH/g以上がより好ましく、20mgKOH/g以上が更に好ましい。
 酸基を有する樹脂は、更にエチレン性不飽和結合含有基を有することも好ましい。エチレン性不飽和結合含有基としては、ビニル基、アリル基、(メタ)アクリロイル基などが挙げられ、アリル基及び(メタ)アクリロイル基が好ましく、(メタ)アクリロイル基がより好ましい。
 エチレン性不飽和結合含有基を有する樹脂は、側鎖にエチレン性不飽和結合含有基を有する繰り返し単位を含むことが好ましく、側鎖にエチレン性不飽和結合含有基を有する繰り返し単位を樹脂の全繰り返し単位中5~80モル%含むことがより好ましい。側鎖にエチレン性不飽和結合含有基を有する繰り返し単位の含有量の上限は、60モル%以下であることが好ましく、40モル%以下であることがより好ましい。側鎖にエチレン性不飽和結合含有基を有する繰り返し単位の含有量の下限は、10モル%以上であることが好ましく、15モル%以上であることがより好ましい。
 アルカリ現像性を有する樹脂は、下記式(ED1)で示される化合物及び/又は下記式(ED2)で表される化合物(以下、これらの化合物を「エーテルダイマー」と称することもある。)を含むモノマー成分に由来する繰り返し単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000030
 式(ED1)中、R及びRは、それぞれ独立して、水素原子又は置換基を有していてもよい炭素数1~25の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000031
 式(ED2)中、Rは、水素原子又は炭素数1~30の有機基を表す。式(ED2)の詳細については、特開2010-168539号公報の記載を参酌でき、この内容は本明細書に組み込まれる。
 エーテルダイマーの具体例としては、例えば、特開2013-029760号公報の段落番号0317を参酌することができ、この内容は本明細書に組み込まれる。
 アルカリ現像性を有する樹脂は、下記式(X)で示される化合物に由来する繰り返し単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000032
 式(X)中、Rは、水素原子又はメチル基を表し、Rは炭素数2~10のアルキレン基を表し、Rは、水素原子又はベンゼン環を含んでもよい炭素数1~20のアルキル基を表す。nは1~15の整数を表す。
 酸基を有する樹脂としては、例えば下記構造の樹脂などが挙げられる。以下の構造式中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000033
〔分散剤〕
 本発明の組成物は、分散剤としての樹脂を含むこともできる。分散剤は、酸性分散剤(酸性樹脂)、塩基性分散剤(塩基性樹脂)が挙げられる。ここで、酸性分散剤(酸性樹脂)とは、酸基の量が塩基性基の量よりも多い樹脂を表す。酸性分散剤(酸性樹脂)は、酸基の量と塩基性基の量の合計量を100モル%としたときに、酸基の量が70モル%以上を占める樹脂が好ましく、実質的に酸基のみからなる樹脂がより好ましい。酸性分散剤(酸性樹脂)が有する酸基は、カルボキシ基が好ましい。酸性分散剤(酸性樹脂)の酸価は、40~105mgKOH/gが好ましく、50~105mgKOH/gがより好ましく、60~105mgKOH/gがさらに好ましい。また、塩基性分散剤(塩基性樹脂)とは、塩基性基の量が酸基の量よりも多い樹脂を表す。塩基性分散剤(塩基性樹脂)は、酸基の量と塩基性基の量の合計量を100モル%としたときに、塩基性基の量が50モル%を超える樹脂が好ましい。塩基性分散剤が有する塩基性基は、アミノ基であることが好ましい。
 分散剤として用いる樹脂は、酸基を有する繰り返し単位を含むことが好ましい。
 分散剤として用いる樹脂は、グラフト樹脂であることも好ましい。グラフト樹脂としては、特開2012-255128号公報の段落番号0025~0094に記載された樹脂が挙げられ、この内容は本明細書に組み込まれる。
 分散剤として用いる樹脂は、主鎖及び側鎖の少なくとも一方に窒素原子を含むポリイミン系分散剤(ポリイミン樹脂)であることも好ましい。ポリイミン系分散剤としては、pKa14以下の官能基を有する部分構造を有する主鎖と、原子数40~10,000の側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。塩基性窒素原子とは、塩基性を呈する窒素原子であれば特に制限はない。ポリイミン系分散剤としては、特開2012-255128号公報の段落番号0102~0166に記載された樹脂が挙げられ、この内容は本明細書に組み込まれる。
 分散剤として用いる樹脂は、コア部に複数個のポリマー鎖が結合した構造の樹脂であることも好ましい。このような樹脂としては、例えばデンドリマー(星型ポリマーを含む)が挙げられる。また、デンドリマーの具体例としては、特開2013-043962号公報の段落番号0196~0209に記載された高分子化合物C-1~C-31などが挙げられる。
 分散剤は、市販品としても入手可能であり、そのような具体例としては、BYKChemie社製のDISPERBYKシリーズ(例えば、DISPERBYK-111、161など)、Lubrizol製のSolsperseシリーズ(例えば、Solsperse 36000など)などが挙げられる。また、特開2014-130338号公報の段落番号0041~0130に記載された顔料分散剤を用いることもでき、この内容は本明細書に組み込まれる。また、分散剤は、特開2018-150498号公報、特開2017-100116号公報、特開2017-100115号公報、特開2016-108520号公報、特開2016-108519号公報、特開2015-232105号公報に記載の化合物を用いてもよい。
 なお、上記分散剤として説明した樹脂は、分散剤以外の用途で使用することもできる。例えば、バインダーとして用いることもできる。
 組成物の全固形分中における全樹脂成分の含有量は、10~95質量%が好ましい。下限は、20質量%以上がより好ましく、30質量%以上がさらに好ましい。上限は、90質量%以下がより好ましく、85質量%以下がさらに好ましい。
 また、組成物において、上述した他の樹脂の含有量は、上述した特定樹脂の100質量部に対して230質量部以下であることが好ましく、200質量部以下であることがより好ましく、150質量部以下であることが更に好ましい。下限は0質量部であってもよく、5質量部以上とすることもでき、10質量部以上とすることもできる。また、組成物は上述した他の樹脂を実質的に含まないことも好ましい。この態様によれば、より耐熱性に優れた膜を形成しやすい。他の樹脂を実質的に含まない場合とは、組成物の全固形分中における他の樹脂の含有量が0.1質量%以下であることを意味し、0.05質量%以下であることが好ましく、含有しないことがより好ましい。
<溶剤>
 本発明の組成物は、溶剤を含有する。溶剤としては、各成分の溶解性や組成物の塗布性を満足すれば基本的には特に制限はないが、有機溶剤が好ましい。有機溶剤としては、エステル系溶剤、ケトン系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、炭化水素系溶剤などが挙げられる。これらの詳細については、国際公開第2015/166779号の段落番号0223を参酌でき、この内容は本明細書に組み込まれる。また、環状アルキル基が置換したエステル系溶剤、環状アルキル基が置換したケトン系溶剤を好ましく用いることもできる。有機溶剤の具体例としては、ポリエチレングリコールモノメチルエーテル、ジクロロメタン、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、酢酸シクロヘキシル、シクロペンタノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、ガンマブチロラクトン、N-メチル-2-ピロリドンなどが挙げられる。ただし有機溶剤としての芳香族炭化水素類(ベンゼン、トルエン、キシレン、エチルベンゼン等)は、環境面等の理由により低減したほうがよい場合がある(例えば、有機溶剤全量に対して、50質量ppm(parts per million)以下とすることもでき、10質量ppm以下とすることもでき、1質量ppm以下とすることもできる)。
 本発明においては、金属含有量の少ない有機溶剤を用いることが好ましく、有機溶剤の金属含有量は、例えば10質量ppb(parts per billion)以下であることが好ましい。必要に応じて質量ppt(parts per trillion)レベルの有機溶剤を用いてもよく、そのような有機溶剤は例えば東洋合成社が提供している(化学工業日報、2015年11月13日)。有機溶剤から金属等の不純物を除去する方法としては、例えば、蒸留(分子蒸留や薄膜蒸留等)やフィルタを用いたろ過を挙げることができる。ろ過に用いるフィルタのフィルタ孔径としては、10μm以下が好ましく、5μm以下がより好ましく、3μm以下が更に好ましい。フィルタの材質は、ポリテトラフロロエチレン、ポリエチレン又はナイロンが好ましい。
 有機溶剤は、異性体(原子数が同じであるが構造が異なる化合物)が含まれていてもよい。また、異性体は、1種のみが含まれていてもよいし、複数種含まれていてもよい。
 有機溶剤中の過酸化物の含有率が0.8mmol/L以下であることが好ましく、過酸化物を実質的に含まないことがより好ましい。
 組成物中における有機溶剤の含有量は、10~95質量%であることが好ましく、20~90質量%であることがより好ましく、30~90質量%であることが更に好ましい。
<重合性化合物>
 本発明の組成物は、重合性化合物を含有することが好ましい。重合性化合物は、例えば、エチレン性不飽和結合含有基を有する化合物であることが好ましい。エチレン性不飽和結合含有基としては、ビニル基、(メタ)アリル基、(メタ)アクリロイル基などが挙げられる。本発明で用いられる重合性化合物は、ラジカル重合性化合物であることが好ましい。
 重合性化合物としては、モノマー、プレポリマー、オリゴマーなどの化学的形態のいずれであってもよいが、モノマーが好ましい。重合性化合物の分子量は、100~3,000が好ましい。上限は、2,000以下がより好ましく、1,500以下が更に好ましい。下限は、150以上がより好ましく、250以上が更に好ましい。
 重合性化合物は、エチレン性不飽和結合含有基を3個以上含む化合物であることが好ましく、エチレン性不飽和結合含有基を3~15個含む化合物であることがより好ましく、エチレン性不飽和結合含有基を3~6個含む化合物であることが更に好ましい。また、重合性化合物は、3~15官能の(メタ)アクリレート化合物であることが好ましく、3~6官能の(メタ)アクリレート化合物であることがより好ましい。重合性化合物の具体例としては、特開2009-288705号公報の段落番号0095~0108、特開2013-029760号公報の段落0227、特開2008-292970号公報の段落番号0254~0257、特開2013-253224号公報の段落番号0034~0038、特開2012-208494号公報の段落番号0477、特開2017-048367号公報、特許第6057891号公報、特許第6031807号公報、特開2017-194662号公報に記載されている化合物が挙げられ、これらの内容は本明細書に組み込まれる。
 重合性化合物としては、ジペンタエリスリトールトリアクリレート(市販品としてはKAYARAD D-330;日本化薬(株)製)、ジペンタエリスリトールテトラアクリレート(市販品としてはKAYARAD D-320;日本化薬(株)製)、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としてはKAYARAD D-310;日本化薬(株)製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としてはKAYARAD DPHA;日本化薬(株)製、NKエステルA-DPH-12E;新中村化学工業(株)製)、及びこれらの(メタ)アクリロイル基がエチレングリコール及び/又はプロピレングリコール残基を介して結合している構造の化合物(例えば、サートマー社から市販されている、SR454、SR499)が好ましい。また、重合性化合物としては、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としてはM-460;東亞合成製)、ペンタエリスリトールテトラアクリレート(新中村化学工業(株)製、NKエステルA-TMMT)、1,6-ヘキサンジオールジアクリレート(日本化薬(株)製、KAYARAD HDDA)、RP-1040(日本化薬(株)製)、アロニックスTO-2349(東亞合成(株)製)、NKオリゴUA-7200(新中村化学工業(株)製)、8UH-1006、8UH-1012(大成ファインケミカル(株)製)、ライトアクリレートPOB-A0(共栄社化学(株)製)などを用いることもできる。
 また、重合性化合物として、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキシ変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキシ変性トリ(メタ)アクリレート、イソシアヌル酸エチレンオキシ変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどの3官能の(メタ)アクリレート化合物を用いることも好ましい。3官能の(メタ)アクリレート化合物の市販品としては、アロニックスM-309、M-310、M-321、M-350、M-360、M-313、M-315、M-306、M-305、M-303、M-452、M-450(東亞合成(株)製)、NKエステル A9300、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、TMPT(新中村化学工業(株)製)、KAYARAD GPO-303、TMPTA、THE-330、TPA-330、PET-30(日本化薬(株)製)などが挙げられる。
 重合性化合物は、酸基を有する化合物を用いることもできる。酸基を有する重合性化合物を用いることで、現像時に未露光部の重合性化合物が除去されやすく、現像残渣の発生を抑制できる。酸基としては、カルボキシ基、スルホ基、リン酸基等が挙げられ、カルボキシ基が好ましい。酸基を有する重合性化合物の市販品としては、アロニックスM-305、M-510、M-520、アロニックスTO-2349(東亞合成(株)製)等が挙げられる。酸基を有する重合性化合物の好ましい酸価としては、0.1~40mgKOH/gであり、より好ましくは5~30mgKOH/gである。重合性化合物の酸価が0.1mgKOH/g以上であれば、現像液に対する溶解性が良好であり、40mgKOH/g以下であれば、製造や取扱い上、有利である。
 重合性化合物は、カプロラクトン構造を有する化合物であることも好ましい態様である。カプロラクトン構造を有する重合性化合物は、例えば、日本化薬(株)からKAYARAD DPCAシリーズとして市販されており、DPCA-20、DPCA-30、DPCA-60、DPCA-120等が挙げられる。
 重合性化合物は、アルキレンオキシ基を有する重合性化合物を用いることもできる。アルキレンオキシ基を有する重合性化合物は、エチレンオキシ基及び/又はプロピレンオキシ基を有する重合性化合物が好ましく、エチレンオキシ基を有する重合性化合物がより好ましく、エチレンオキシ基を4~20個有する3~6官能(メタ)アクリレート化合物がさらに好ましい。アルキレンオキシ基を有する重合性化合物の市販品としては、例えばサートマー社製のエチレンオキシ基を4個有する4官能(メタ)アクリレートであるSR-494、イソブチレンオキシ基を3個有する3官能(メタ)アクリレートであるKAYARAD TPA-330などが挙げられる。
 重合性化合物は、フルオレン骨格を有する重合性化合物を用いることもできる。フルオレン骨格を有する重合性化合物の市販品としては、オグソールEA-0200、EA-0300(大阪ガスケミカル(株)製、フルオレン骨格を有する(メタ)アクリレートモノマー)などが挙げられる。
 重合性化合物としては、トルエンなどの環境規制物質を実質的に含まない化合物を用いることも好ましい。このような化合物の市販品としては、KAYARAD DPHA LT、KAYARAD DPEA-12 LT(日本化薬(株)製)などが挙げられる。
 重合性化合物としては、特公昭48-041708号公報、特開昭51-037193号公報、特公平02-032293号公報、特公平02-016765号公報に記載されているようなウレタンアクリレート類や、特公昭58-049860号公報、特公昭56-017654号公報、特公昭62-039417号公報、特公昭62-039418号公報に記載されたエチレンオキサイド系骨格を有するウレタン化合物も好適である。また、特開昭63-277653号公報、特開昭63-260909号公報、特開平01-105238号公報に記載された分子内にアミノ構造やスルフィド構造を有する重合性化合物を用いることも好ましい。また、重合性化合物は、UA-7200(新中村化学工業(株)製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600、LINC-202UA(共栄社化学(株)製)などの市販品を用いることもできる。
 重合性化合物を含有する場合、組成物の全固形分中における重合性化合物の含有量は0.1~50質量%であることが好ましい。下限は、0.5質量%以上がより好ましく、1質量%以上が更に好ましい。上限は、45質量%以下がより好ましく、40質量%以下が更に好ましい。重合性化合物は、1種単独であってもよいし、2種以上を併用してもよい。
<重合開始剤>
 本発明の組成物は重合開始剤を含むことが好ましい。重合開始剤としては、光重合開始剤が好ましい。光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する化合物が好ましい。光重合開始剤は光ラジカル重合開始剤であることが好ましい。
 光重合開始剤としては、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、イミダゾール骨格を有する化合物など)、アシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、α-ヒドロキシケトン化合物、α-アミノケトン化合物などが挙げられる。光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ビイミダゾール化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン-ベンゼン-鉄錯体、ハロメチルオキサジアゾール化合物及び3-アリール置換クマリン化合物であることが好ましく、ビイミダゾール化合物、オキシム化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、及び、アシルホスフィン化合物から選ばれる化合物であることがより好ましく、オキシム化合物であることが更に好ましい。光重合開始剤としては、特開2014-130173号公報の段落0065~0111、特許第6301489号公報に記載された化合物が挙げられ、この内容は本明細書に組み込まれる。
 ビイミダゾール化合物としては、2,2-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-クロロフェニル)-4,4’,5,5-テトラキス(3,4,5-トリメトキシフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,3-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、及び2,2’-ビス(o-クロロフェニル)-4,4,5,5’-テトラフェニル-1,2’-ビイミダゾールなどが挙げられる。α-ヒドロキシケトン化合物の市販品としては、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127(以上、IGM Resins B.V.社製)、Irgacure 184、Irgacure 1173、Irgacure 2959、Irgacure 127(以上、BASF社製)などが挙げられる。α-アミノケトン化合物の市販品としては、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(以上、IGM Resins B.V.社製)、Irgacure 907、Irgacure 369、Irgacure 369E、Irgacure 379EG(以上、BASF社製)などが挙げられる。アシルホスフィン化合物の市販品としては、Omnirad 819、Omnirad TPO(以上、IGM Resins B.V.社製)、Irgacure 819、Irgacure TPO(以上、BASF社製)などが挙げられる。
 オキシム化合物としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、J.C.S.Perkin II(1979年、pp.1653-1660)に記載の化合物、J.C.S.Perkin II(1979年、pp.156-162)に記載の化合物、Journal of Photopolymer Science and Technology(1995年、pp.202-232)に記載の化合物、特開2000-066385号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特表2004-534797号公報に記載の化合物、特開2006-342166号公報に記載の化合物、特開2017-019766号公報に記載の化合物、特許第6065596号公報に記載の化合物、国際公開第2015/152153号に記載の化合物、国際公開第2017/051680号に記載の化合物、特開2017-198865号公報に記載の化合物、国際公開第2017/164127号の段落番号0025~0038に記載の化合物、国際公開第2013/167515号に記載の化合物などが挙げられる。オキシム化合物の具体例としては、3-ベンゾイルオキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイルオキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。市販品としては、Irgacure OXE01、Irgacure OXE02、Irgacure OXE03、Irgacure OXE04(以上、BASF社製)、TR-PBG-304(常州強力電子新材料有限公司製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光重合開始剤2)が挙げられる。また、オキシム化合物としては、着色性が無い化合物や、透明性が高く変色し難い化合物を用いることも好ましい。市販品としては、アデカアークルズNCI-730、NCI-831、NCI-930(以上、(株)ADEKA製)などが挙げられる。
 光重合開始剤として、フルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014-137466号公報に記載の化合物が挙げられる。
 また、光重合開始剤として、カルバゾール環の少なくとも1つのベンゼン環がナフタレン環となった骨格を有するオキシム化合物を用いることもできる。そのようなオキシム化合物の具体例としては、国際公開第2013/083505号に記載の化合物が挙げられる。
 光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報に記載の化合物、特表2014-500852号公報に記載の化合物24、36~40、特開2013-164471号公報に記載の化合物(C-3)などが挙げられる。
 光重合開始剤として、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物を用いることもできる。このような光重合開始剤としては国際公開第2019/088055号に記載された化合物などが挙げられる。
 光重合開始剤として、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013-114249号公報の段落番号0031~0047、特開2014-137466号公報の段落番号0008~0012、0070~0079に記載されている化合物、特許4223071号公報の段落番号0007~0025に記載されている化合物、アデカアークルズNCI-831((株)ADEKA製)が挙げられる。
 光重合開始剤として、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開第2015/036910号に記載されるOE-01~OE-75が挙げられる。
 オキシム化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 オキシム化合物は、波長350~500nmの範囲に極大吸収波長を有する化合物が好ましく、波長360~480nmの範囲に極大吸収波長を有する化合物がより好ましい。また、オキシム化合物の波長365nm又は波長405nmにおけるモル吸光係数は、感度の観点から、高いことが好ましく、1000~300,000であることがより好ましく、2000~300,000であることが更に好ましく、5000~200,000であることが特に好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチルを用い、0.01g/Lの濃度で測定することが好ましい。
 光重合開始剤としては、2官能あるいは3官能以上の光ラジカル重合開始剤を用いてもよい。そのような光ラジカル重合開始剤を用いることにより、光ラジカル重合開始剤の1分子から2つ以上のラジカルが発生するため、良好な感度が得られる。また、非対称構造の化合物を用いた場合においては、結晶性が低下して溶剤などへの溶解性が向上して、経時で析出しにくくなり、組成物の経時安定性を向上させることができる。2官能あるいは3官能以上の光ラジカル重合開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開第2015/004565号、特表2016-532675号公報の段落番号0407~0412、国際公開第2017/033680号の段落番号0039~0055に記載されているオキシム化合物の2量体、特表2013-522445号公報に記載されている化合物(E)及び化合物(G)、国際公開第2016/034963号に記載されているCmpd1~7、特表2017-523465号公報の段落番号0007に記載されているオキシムエステル類光開始剤、特開2017-167399号公報の段落番号0020~0033に記載されている光開始剤、特開2017-151342号公報の段落番号0017~0026に記載されている光重合開始剤(A)、特許第6469669号に記載されているオキシム化合物などが挙げられる。
 光重合開始剤を含有する場合、組成物の全固形分中における光重合開始剤の含有量は0.1~30質量%が好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。上限は、20質量%以下が好ましく、15質量%以下がより好ましい。光重合開始剤は1種のみを用いてもよく、2種以上を用いてもよい。
<環状エーテル基を有する化合物>
 本発明の組成物は、環状エーテル基を有する化合物を含有することができる。環状エーテル基としては、エポキシ基、オキセタニル基などが挙げられる。環状エーテル基を有する化合物は、エポキシ基を有する化合物であることが好ましい。エポキシ基を有する化合物としては、1分子内にエポキシ基を1つ以上有する化合物が挙げられ、エポキシ基を2つ以上有する化合物が好ましい。エポキシ基は、1分子内に1~100個有することが好ましい。エポキシ基の数の上限は、例えば、10個以下とすることもでき、5個以下とすることもできる。エポキシ基の数の下限は、2個以上が好ましい。環状エーテル基を有する化合物としては、特開2013-011869号公報の段落番号0034~0036、特開2014-043556号公報の段落番号0147~0156、特開2014-089408号公報の段落番号0085~0092に記載された化合物、特開2017-179172号公報に記載された化合物、特開2019-133052号公報に記載された化合物を用いることもできる。これらの内容は、本明細書に組み込まれる。
 エポキシ基を有する化合物は、低分子化合物(例えば、分子量2000未満、さらには、分子量1,000未満)でもよいし、高分子化合物(macromolecule)(例えば、分子量1,000以上、ポリマーの場合は、重量平均分子量が1,000以上)のいずれでもよい。エポキシ基を有する化合物の重量平均分子量は、200~100,000が好ましく、500~50,000がより好ましい。重量平均分子量の上限は、10,000以下が好ましく、5,000以下がより好ましく、3,000以下が更に好ましい。
 エポキシ基を有する化合物としては、エポキシ樹脂を好ましく用いることができる。エポキシ樹脂としては、例えばフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられる。エポキシ樹脂のエポキシ当量は、310~3,300g/eqであることが好ましく、310~1,700g/eqであることがより好ましく、310~1,000g/eqであることが更に好ましい。
 環状エーテル基を有する化合物の市販品としては、例えば、EHPE3150((株)ダイセル製)、EPICLON N-695(DIC(株)製)、マープルーフG-0150M、G-0105SA、G-0130SP、G-0250SP、G-1005S、G-1005SA、G-1010S、G-2050M、G-01100、G-01758(以上、日油(株)製、エポキシ基含有ポリマー)等が挙げられる。
 本発明の組成物が環状エーテル基を有する化合物を含有する場合、組成物の全固形分中における環状エーテル基を有する化合物の含有量は、0.1~20質量%が好ましい。下限は、例えば0.5質量%以上が好ましく、1質量%以上がより好ましい。上限は、例えば、15質量%以下が好ましく、10質量%以下が更に好ましい。環状エーテル基を有する化合物は1種のみでもよく、2種以上でもよい。2種以上の場合は、それらの合計量が上記範囲となることが好ましい。
<シランカップリング剤>
 本発明の組成物は、シランカップリング剤を含有することができる。本発明において、シランカップリング剤は、加水分解性基とそれ以外の官能基とを有するシラン化合物を意味する。また、加水分解性基とは、ケイ素原子に直結し、加水分解反応及び縮合反応の少なくともいずれかによってシロキサン結合を生じ得る置換基をいう。加水分解性基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基などが挙げられ、アルコキシ基が好ましい。すなわち、シランカップリング剤は、アルコキシシリル基を有する化合物が好ましい。また、加水分解性基以外の官能基としては、例えば、ビニル基、(メタ)アリル基、(メタ)アクリロイル基、メルカプト基、エポキシ基、オキセタニル基、アミノ基、ウレイド基、スルフィド基、イソシアネート基、フェニル基などが挙げられ、アミノ基、(メタ)アクリロイル基及びエポキシ基が好ましい。シランカップリング剤の具体例としては、特開2009-288703号公報の段落番号0018~0036に記載の化合物、特開2009-242604号公報の段落番号0056~0066に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。
 組成物の全固形分中におけるシランカップリング剤の含有量は、0.1~5質量%が好ましい。上限は、3質量%以下が好ましく、2質量%以下がより好ましい。下限は、0.5質量%以上が好ましく、1質量%以上がより好ましい。シランカップリング剤は、1種のみでもよく、2種以上でもよい。
<硬化促進剤>
 本発明の組成物は、樹脂や重合性化合物の反応を促進させたり、硬化温度を下げる目的で、硬化促進剤をさらに含有することができる。硬化促進剤は、メチロール系化合物(例えば特開2015-034963号公報の段落番号0246において、架橋剤として例示されている化合物)、アミン類、ホスホニウム塩、アミジン塩、アミド化合物(以上、例えば特開2013-041165号公報の段落番号0186に記載の硬化剤)、塩基発生剤(例えば、特開2014-055114号公報に記載のイオン性化合物)、シアネート化合物(例えば、特開2012-150180号公報の段落番号0071に記載の化合物)、アルコキシシラン化合物(例えば、特開2011-253054号公報に記載のエポキシ基を有するアルコキシシラン化合物)、オニウム塩化合物(例えば、特開2015-034963号公報の段落番号0216に酸発生剤として例示されている化合物、特開2009-180949号公報に記載の化合物)などを用いることもできる。
 本発明の組成物が硬化促進剤を含有する場合、硬化促進剤の含有量は、組成物の全固形分中0.3~8.9質量%が好ましく、0.8~6.4質量%がより好ましい。
<重合禁止剤>
 本発明の組成物は、重合禁止剤を含有することができる。重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン塩(アンモニウム塩、第一セリウム塩等)が挙げられる。中でも、p-メトキシフェノールが好ましい。組成物の全固形分中における重合禁止剤の含有量は、0.0001~5質量%が好ましい。
<界面活性剤>
 本発明の組成物は、界面活性剤を含有することができる。界面活性剤としては、フッ素系界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、アニオン性界面活性剤、シリコン系界面活性剤などの各種界面活性剤を使用することができる。界面活性剤については、国際公開第2015/166779号の段落番号0238~0245に記載された界面活性剤が挙げられ、この内容は本明細書に組み込まれる。
 界面活性剤はフッ素系界面活性剤であることが好ましい。組成物にフッ素系界面活性剤を含有させることで液特性(特に、流動性)がより向上し、省液性をより改善することができる。また、厚みムラの小さい膜を形成することもできる。
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、組成物中における溶解性も良好である。
 フッ素系界面活性剤としては、特開2014-041318号公報の段落番号0060~0064(対応する国際公開第2014/017669号の段落番号0060~0064)等に記載の界面活性剤、特開2011-132503号公報の段落番号0117~0132に記載の界面活性剤が挙げられ、これらの内容は本明細書に組み込まれる。フッ素系界面活性剤の市販品としては、例えば、メガファックF171、F172、F173、F176、F177、F141、F142、F143、F144、R30、F437、F475、F479、F482、F554、F780、EXP、MFS-330(以上、DIC(株)製)、フロラードFC430、FC431、FC171(以上、住友スリーエム(株)製)、サーフロンS-382、SC-101、SC-103、SC-104、SC-105、SC-1068、SC-381、SC-383、S-393、KH-40(以上、AGC(株)製)、PolyFox PF636、PF656、PF6320、PF6520、PF7002(以上、OMNOVA社製)等が挙げられる。
 また、フッ素系界面活性剤は、フッ素化アルキル基又はフッ素化アルキレンエーテル基を有するフッ素原子含有ビニルエーテル化合物と、親水性のビニルエーテル化合物との重合体を用いることも好ましい。このようなフッ素系界面活性剤は、特開2016-216602号公報の記載を参酌でき、この内容は本明細書に組み込まれる。
 フッ素系界面活性剤は、ブロックポリマーを用いることもできる。例えば特開2011-089090号公報に記載された化合物が挙げられる。フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができる。下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000036
 上記構造式中、主鎖に記載された繰返し単位を示す括弧の添え字は各繰返し単位の含有比(モル比)を表し、側鎖に記載されたアルキレンオキシ基の添え字は各アルキレンオキシ基の繰り返し数を表す。
 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、例えば、14,000である。上記の化合物中、繰り返し単位の割合を示す%はモル%である。
 また、フッ素系界面活性剤は、エチレン性不飽和結合含有基を側鎖に有する含フッ素重合体を用いることもできる。具体例としては、特開2010-164965号公報の段落番号0050~0090及び段落番号0289~0295に記載された化合物、例えばDIC(株)製のメガファックRS-101、RS-102、RS-718K、RS-72-K等が挙げられる。フッ素系界面活性剤は、特開2015-117327号公報の段落番号0015~0158に記載の化合物を用いることもできる。
 組成物の全固形分中における界面活性剤の含有量は、0.001質量%~5.0質量%が好ましく、0.005~3.0質量%がより好ましい。界面活性剤は、1種のみでもよく、2種以上でもよい。2種以上の場合は、合計量が上記範囲となることが好ましい。
<紫外線吸収剤>
 本発明の組成物は、紫外線吸収剤を含有することができる。紫外線吸収剤は、共役ジエン化合物、アミノジエン化合物、サリシレート化合物、ベンゾフェノン化合物、ベンゾトリアゾール化合物、アクリロニトリル化合物、ヒドロキシフェニルトリアジン化合物、インドール化合物、トリアジン化合物などを用いることができる。これらの詳細については、特開2012-208374号公報の段落番号0052~0072、特開2013-068814号公報の段落番号0317~0334、特開2016-162946号公報の段落番号0061~0080の記載を参酌でき、これらの内容は本明細書に組み込まれる。紫外線吸収剤の市販品としては、例えば、UV-503(大東化学(株)製)などが挙げられる。また、ベンゾトリアゾール化合物としては、ミヨシ油脂製のMYUAシリーズ(化学工業日報、2016年2月1日)が挙げられる。また、紫外線吸収剤は、特許第6268967号公報の段落番号0049~0059に記載された化合物を用いることもできる。組成物の全固形分中における紫外線吸収剤の含有量は、0.01~10質量%が好ましく、0.01~5質量%がより好ましい。紫外線吸収剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<酸化防止剤>
 本発明の組成物は、酸化防止剤を含有することができる。酸化防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられる。フェノール化合物としては、フェノール系酸化防止剤として知られる任意のフェノール化合物を使用することができる。好ましいフェノール化合物としては、ヒンダードフェノール化合物が挙げられる。フェノール性ヒドロキシ基に隣接する部位(オルト位)に置換基を有する化合物が好ましい。前述の置換基としては炭素数1~22の置換又は無置換のアルキル基が好ましい。また、酸化防止剤は、同一分子内にフェノール基と亜リン酸エステル基を有する化合物も好ましい。また、酸化防止剤は、リン系酸化防止剤も好適に使用することができる。組成物の全固形分中における酸化防止剤の含有量は、0.01~20質量%であることが好ましく、0.3~15質量%であることがより好ましい。酸化防止剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、合計量が上記範囲となることが好ましい。
<その他成分>
 本発明の組成物は、必要に応じて、増感剤、フィラー、アゾ系化合物や過酸化物系化合物などの熱重合開始剤、熱硬化促進剤、可塑剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、香料、表面張力調整剤、連鎖移動剤など)を含有してもよい。これらの成分を適宜含有させることにより、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の段落番号0237)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。また、組成物は、必要に応じて、潜在酸化防止剤を含有してもよい。潜在酸化防止剤としては、酸化防止剤として機能する部位が保護基で保護された化合物であって、100~250℃で加熱するか、又は酸/塩基触媒存在下で80~200℃で加熱することにより保護基が脱離して酸化防止剤として機能する化合物が挙げられる。潜在酸化防止剤としては、国際公開第2014/021023号、国際公開第2017/030005号、特開2017-008219号公報に記載された化合物が挙げられる。市販品としては、アデカアークルズGPA-5001((株)ADEKA製)等が挙げられる。また、特開2018-155881号公報に記載されているように、C.I.ピグメントイエロー129を耐候性改良の目的で添加しても良い。
 また、現像後に後加熱で膜の硬化度を上げるために熱硬化剤を添加することができる。熱硬化剤としては、アゾ化合物、過酸化物等の熱重合開始剤、ノボラック樹脂、レゾール樹脂、エポキシ化合物、スチレン化合物等があげられる。
 本発明の組成物は、得られる膜の屈折率を調整するために金属酸化物を含有させてもよい。金属酸化物としては、TiO、ZrO、Al、SiO等が挙げられる。金属酸化物の一次粒子径は1~100nmが好ましく、3~70nmがより好ましく、5~50nmが更に好ましい。金属酸化物はコア-シェル構造を有していてもよい。また、この場合、コア部は中空状であってもよい。
 本発明の組成物は、耐光性改良剤を含んでもよい。耐光性改良剤としては、特開2017-198787号公報の段落番号0036~0037に記載の化合物、特開2017-146350号公報の段落番号0029~0034に記載の化合物、特開2017-129774号公報の段落番号0036~0037、0049~0052に記載の化合物、特開2017-129674号公報の段落番号0031~0034、0058~0059に記載の化合物、特開2017-122803号公報の段落番号0036~0037、0051~0054に記載の化合物、国際公開第2017/164127号の段落番号0025~0039に記載の化合物、特開2017-186546号公報の段落番号0034~0047に記載の化合物、特開2015-025116号公報の段落番号0019~0041に記載の化合物、特開2012-145604号公報の段落番号0101~0125に記載の化合物、特開2012-103475号公報の段落番号0018~0021に記載の化合物、特開2011-257591号公報の段落番号0015~0018に記載の化合物、特開2011-191483号公報の段落番号0017~0021に記載の化合物、特開2011-145668号公報の段落番号0108~0116に記載の化合物、特開2011-253174号公報の段落番号0103~0153に記載の化合物などが挙げられる。
 本発明の組成物は、顔料などと結合又は配位していない遊離の金属の含有量が100ppm以下であることが好ましく、50ppm以下であることがより好ましく、10ppm以下であることが更に好ましく、実質的に含有しないことが特に好ましい。この態様によれば、顔料分散性の安定化(凝集抑止)、分散性向上に伴う分光特性の向上、硬化性成分の安定化、金属原子・金属イオンの溶出に伴う導電性変動の抑止、表示特性の向上などの効果が期待できる。また、特開2012-153796号公報、特開2000-345085号公報、特開2005-200560号公報、特開平08-043620号公報、特開2004-145078号公報、特開2014-119487号公報、特開2010-083997号公報、特開2017-090930号公報、特開2018-025612号公報、特開2018-025797号公報、特開2017-155228号公報、特開2018-036521号公報などに記載された効果も得られる。上記の遊離の金属の種類としては、Na、K、Ca、Sc、Ti、Mn、Cu、Zn、Fe、Cr、Co、Mg、Al、Sn、Zr、Ga、Ge、Ag、Au、Pt、Cs、Ni、Cd、Pb、Bi等が挙げられる。また、本発明の組成物は、顔料などと結合又は配位していない遊離のハロゲンの含有量が100ppm以下であることが好ましく、50ppm以下であることがより好ましく、10ppm以下であることが更に好ましく、実質的に含有しないことが特に好ましい。ハロゲンとしては、F、Cl、Br、I及びそれらの陰イオンが挙げられる。組成物中の遊離の金属やハロゲンの低減方法としては、イオン交換水による洗浄、ろ過、限外ろ過、イオン交換樹脂による精製等の方法が挙げられる。
 本発明の組成物は、テレフタル酸エステルを実質的に含まないことも好ましい。ここで、「実質的に含まない」とは、テレフタル酸エステルの含有量が、組成物の全量中、1,000質量ppb以下であることを意味し、100質量ppb以下であることがより好ましく、ゼロであることが特に好ましい。
<粘度>
 本発明の組成物の粘度(23℃)は、例えば、塗布により膜を形成する場合、1~100mPa・sであることが好ましい。下限は、2mPa・s以上がより好ましく、3mPa・s以上が更に好ましい。上限は、50mPa・s以下がより好ましく、30mPa・s以下が更に好ましく、15mPa・s以下が特に好ましい。
<収容容器>
 本発明の組成物の収容容器としては、特に限定はなく、公知の収容容器を用いることができる。また、収容容器として、原材料や組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成する多層ボトルや6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。また、容器内壁は、容器内壁からの金属溶出を防ぎ、組成物の保存安定性を高めたり、成分変質を抑制するなど目的で、ガラス製やステンレス製などにすることも好ましい。
<組成物の調製方法>
 本発明の組成物は、前述の成分を混合して調製できる。組成物の調製に際しては、全成分を同時に有機溶剤に溶解及び/又は分散して組成物を調製してもよいし、必要に応じて、各成分を適宜2つ以上の溶液又は分散液としておいて、使用時(塗布時)にこれらを混合して組成物を調製してもよい。
 また、組成物の調製に際して、顔料を分散させるプロセスを含むことが好ましい。顔料を分散させるプロセスにおいて、顔料の分散に用いる機械力としては、圧縮、圧搾、衝撃、剪断、キャビテーションなどが挙げられる。これらプロセスの具体例としては、ビーズミル、サンドミル、ロールミル、ボールミル、ペイントシェーカー、マイクロフルイダイザー、高速インペラー、サンドグラインダー、フロージェットミキサー、高圧湿式微粒化、超音波分散などが挙げられる。またサンドミル(ビーズミル)における顔料の粉砕においては、径の小さいビーズを使用する、ビーズの充填率を大きくする事等により粉砕効率を高めた条件で処理することが好ましい。また、粉砕処理後にろ過、遠心分離などで粗粒子を除去することが好ましい。また、顔料を分散させるプロセス及び分散機は、「分散技術大全、株式会社情報機構発行、2005年7月15日」や「サスペンション(固/液分散系)を中心とした分散技術と工業的応用の実際 総合資料集、経営開発センター出版部発行、1978年10月10日」、特開2015-157893号公報の段落番号0022に記載のプロセス及び分散機を好適に使用出来る。また顔料を分散させるプロセスにおいては、ソルトミリング工程にて粒子の微細化処理を行ってもよい。ソルトミリング工程に用いられる素材、機器、処理条件等は、例えば特開2015-194521号公報、特開2012-046629号公報の記載を参酌できる。
 組成物の調製にあたり、異物の除去や欠陥の低減などの目的で、組成物をフィルタでろ過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているフィルタであれば特に限定されることなく用いることができる。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、ナイロン(例えばナイロン-6、ナイロン-6,6)等のポリアミド樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量のポリオレフィン樹脂を含む)等の素材を用いたフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)及びナイロンが好ましい。
 フィルタの孔径は、0.01~7.0μmが好ましく、0.01~3.0μmがより好ましく、0.05~0.5μmが更に好ましい。フィルタの孔径が上記範囲であれば、微細な異物をより確実に除去できる。フィルタの孔径値については、フィルタメーカーの公称値を参照することができる。フィルタは、日本ポール株式会社(DFA4201NIEYなど)、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)及び株式会社キッツマイクロフィルタ等が提供する各種フィルタを用いることができる。
 また、フィルタとしてファイバ状のろ材を用いることも好ましい。ファイバ状のろ材としては、例えばポリプロピレンファイバ、ナイロンファイバ、グラスファイバ等が挙げられる。市販品としては、ロキテクノ社製のSBPタイプシリーズ(SBP008など)、TPRタイプシリーズ(TPR002、TPR005など)、SHPXタイプシリーズ(SHPX003など)が挙げられる。
 フィルタを使用する際、異なるフィルタ(例えば、第1のフィルタと第2のフィルタなど)を組み合わせてもよい。その際、各フィルタでのろ過は、1回のみでもよいし、2回以上行ってもよい。また、上述した範囲内で異なる孔径のフィルタを組み合わせてもよい。また、第1のフィルタでのろ過は、分散液のみに対して行い、他の成分を混合した後で、第2のフィルタでろ過を行ってもよい。
(膜、硬化膜)
 本発明の膜は、本発明の組成物から得られる膜である。
 本発明の硬化膜は、本発明の組成物を硬化してなる硬化膜である。
 本発明の膜又は本発明の硬化膜は、近赤外線透過フィルタとして好ましく用いることができる。本発明の膜又は本発明の硬化膜は、パターンを有していてもよく、パターンを有さない膜(平坦膜)であってもよい。また、本発明の膜又は本発明の硬化膜は、支持体上に積層して用いてもよく、本発明の膜又は本発明の硬化膜を支持体から剥離して用いてもよい。支持体としては、シリコン基板などの半導体基材や、透明基材が挙げられる。
 支持体として用いられる半導体基材上には、電荷結合素子(CCD)、相補型金属酸化膜半導体(CMOS)、透明導電膜などが形成されていてもよい。また、半導体基材上には、各画素を隔離するブラックマトリクスが形成されていてもよい。また、半導体基材上には、必要により、上部の層との密着性改良、物質の拡散防止或いは基板表面の平坦化のために下塗り層を設けてもよい。
 支持体として用いられる透明基材は、少なくとも可視光を透過できる材料で構成されたものであれば特に限定されない。例えば、ガラス、樹脂などの材質で構成された基材が挙げられる。樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂等が挙げられる。ガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス、銅を含有するガラスなどが挙げられる。銅を含有するガラスとしては、銅を含有する燐酸塩ガラス、銅を含有する弗燐酸塩ガラスなどが挙げられる。銅を含有するガラスは、市販品を用いることもできる。銅を含有するガラスの市販品としては、NF-50(AGCテクノグラス(株)製)等が挙げられる。
 本発明の膜又は本発明の硬化膜の厚さは、目的に応じて適宜調整できる。膜又は硬化膜の厚さは20μm以下が好ましく、10μm以下がより好ましく、5μm以下が更に好ましい。膜又は硬化膜の厚さの下限は0.1μm以上が好ましく、0.2μm以上がより好ましい。
 本発明の膜又は本発明の硬化膜は、波長400~640nmの範囲における吸光度の最小値Aminと、上記組成物の波長1,500nmにおける吸光度との比であるAmin/Bが5以上であることが好ましい。上記Amin/Bの値は、10以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。
 本発明の膜又は本発明の硬化膜は、以下の(1C)~(4C)のいずれかの分光特性を満たしていることがより好ましい。
 (1C):波長400~640nmの範囲における吸光度の最小値Amin1と、波長800~1,500nmの範囲における吸光度の最大値Bmax1との比であるAmin1/Bmax1が5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、例えば、波長400~640nmの範囲の光を遮光して、波長670nmを超える近赤外線を透過可能な膜又は硬化膜とすることができる。
 (2C):波長400~750nmの範囲における吸光度の最小値Amin2と、波長900~1,500nmの範囲における吸光度の最大値Bmax2との比であるAmin2/Bmax2が5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、例えば、波長400~750nmの範囲の光を遮光して、波長850nmを超える近赤外線を透過可能な膜又は硬化膜とすることができる。
 (3C):波長400~830nmの範囲における吸光度の最小値Amin3と、波長1,000~1,500nmの範囲における吸光度の最大値Bmax3との比であるAmin3/Bmax3が5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、例えば、波長400~830nmの範囲の光を遮光して、波長940nmを超える近赤外線を透過可能な膜又は硬化膜とすることができる。
 (4C):波長400~950nmの範囲における吸光度の最小値Amin4と、波長1,100~1,500nmの範囲における吸光度の最大値Bmax4との比であるAmin4/Bmax4が5以上であり、7.5以上であることが好ましく、15以上であることがより好ましく、30以上であることが更に好ましい。この態様によれば、例えば、波長400~950nmの範囲の光を遮光して、波長1,040nmを超える近赤外線を透過可能な膜又は硬化膜とすることができる。
 また、本発明の膜又は本発明の硬化膜は、膜の厚み方向における光の透過率の、波長400~640nmの範囲における最大値が20%以下であり、膜の厚み方向における光の透過率の、波長1,200~1,500nmの範囲における最小値が70%以上である分光特性を満たしていることが好ましい。波長400~640nmの範囲における最大値は、15%以下がより好ましく、10%以下がより好ましい。下限は特に限定されず、0%以上であればよい。波長1,200~1,500nmの範囲における最小値は、75%以上がより好ましく、80%以上がより好ましい。上限は特に限定されず、100%以下であればよい。
 また、本発明の膜又は本発明の硬化膜は、以下の(1D)~(4D)のいずれかの分光特性を満たしていることがより好ましい。
 (1D):膜又は硬化膜の厚み方向における光の透過率の、波長400~640nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、膜又は硬化膜の厚み方向における光の透過率の、波長800~1,500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である態様。
 (2D):膜又は硬化膜の厚み方向における光の透過率の、波長400~750nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、膜又は硬化膜の厚み方向における光の透過率の、波長900~1,500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である態様。
 (3D):膜又は硬化膜の厚み方向における光の透過率の、波長400~830nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、膜又は硬化膜の厚み方向における光の透過率の、波長1,000~1,500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である態様。
 (4D):膜又は硬化膜の厚み方向における光の透過率の、波長400~950nmの範囲における最大値が20%以下(好ましくは15%以下、より好ましくは10%以下)であり、膜又は硬化膜の厚み方向における光の透過率の、波長1,100~1,500nmの範囲における最小値が70%以上(好ましくは75%以上、より好ましくは80%以上)である態様。
 本発明の膜又は本発明の硬化膜は、膜又は硬化膜の厚み方向の光透過率50%を示す波長が、700~950nmであることが好ましく、700~900nmであることがより好ましく、700~850nmであることが更に好ましく、700~800nmであることが特に好ましい。
 また、本発明の膜又は本発明の硬化膜は、膜又は硬化膜の厚み方向の波長950~1,300nmの範囲における光透過率の最小値が90%以上であることが好ましく、波長900~1,300nmの範囲における光透過率の最小値が90%以上であることがより好ましく、波長850~1,300nmの範囲における光透過率の最小値が90%以上であることが更に好ましく、波長800~1,300nmの範囲における光透過率の最小値が90%以上であることが特に好ましい。
 これらの中でも、下記(S1)に記載された態様が好ましく、下記(S2)に記載された態様がより好ましい。
(S1)膜又は硬化膜の厚み方向の光透過率50%を示す波長が700~950nmであり、かつ、波長950~1,300nmの範囲における光透過率の最小値が90%以上である
(S2)膜又は硬化膜の厚み方向の光透過率50%を示す波長が700~800nmであり、かつ、波長800~1,300nmの範囲における光透過率の最小値が90%以上である
 本発明の膜又は本発明の硬化膜は、CCD(電荷結合素子)やCMOS(相補型金属酸化膜半導体)などの固体撮像素子や、赤外線センサなどの各種装置に用いることができる。
(膜の製造方法)
 本発明の膜の製造方法は、本発明の組成物を支持体上に付与し、組成物から形成された膜を得る工程(付与工程)を含むことが好ましい。
<付与工程>
 付与工程は、本発明の組成物を支持体上に付与し、組成物から形成された膜を得る工程である。
 支持体としては、上述したものが挙げられる。
 組成物の付与方法としては、塗布が挙げられる。塗布方法としては、公知の方法を用いることができる。例えば、滴下法(ドロップキャスト);スリットコート法;スプレー法;ロールコート法;回転塗布法(スピンコーティング);流延塗布法;スリットアンドスピン法;プリウェット法(たとえば、特開2009-145395号公報に記載されている方法);インクジェット(例えばオンデマンド方式、ピエゾ方式、サーマル方式)、ノズルジェット等の吐出系印刷、フレキソ印刷、スクリーン印刷、グラビア印刷、反転オフセット印刷、メタルマスク印刷法などの各種印刷法;金型等を用いた転写法;ナノインプリント法などが挙げられる。インクジェットでの適用方法としては、特に限定されず、例えば「広がる・使えるインクジェット-特許に見る無限の可能性-、2005年2月発行、住ベテクノリサーチ」に示された方法(特に115ページ~133ページ)や、特開2003-262716号公報、特開2003-185831号公報、特開2003-261827号公報、特開2012-126830号公報、特開2006-169325号公報などに記載の方法が挙げられる。
 また、あらかじめ仮支持体上に上記付与方法によって本発明の組成物を付与して形成した塗膜を、支持体上に転写する方法を適用することもできる。
 例えば、特開2006-023696号公報の段落0036~0051、又は、特開2006-047592号公報の段落0096~0108に記載の作製方法等を本発明においても好適に用いることができる。
 組成物を付与して形成した膜は、乾燥(プリベーク)してもよい。プリベークを行う場合、プリベーク温度は、150℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。下限は、例えば、50℃以上とすることができ、80℃以上とすることもできる。プリベーク時間は、10秒~3,000秒が好ましく、40~2,500秒がより好ましく、80~220秒が更に好ましい。乾燥は、ホットプレート、オーブン等で行うことができる。
(硬化膜の製造方法)
<第一の態様>
 本発明の硬化膜の製造方法の第一の態様に係る製造方法は、本発明の組成物から形成された膜を、露光及び加熱の少なくとも一方により硬化する工程(硬化工程)を含む。
 また、本発明の硬化膜の製造方法の第一の態様に係る製造方法は、本発明の組成物を支持体上に付与し、組成物から形成された膜を得る工程(付与工程)を、硬化工程の前に含むことが好ましい。
 本発明の硬化膜の製造方法が付与工程を含む場合、付与工程により得られた組成物から形成された膜が、硬化工程により硬化され、硬化膜が得られる。
 本発明の硬化膜の製造方法の第一の態様は、パターンを有さない硬化膜(平坦膜)の製造方法であることが好ましい。
〔硬化工程〕
 硬化工程は、本発明の組成物から形成された膜を、露光及び加熱の少なくとも一方により硬化する工程であり、本発明の組成物から形成された膜を、露光により硬化する工程であることが好ましい。
 また、硬化工程は、本発明の組成物から形成された膜の全体を硬化する工程であることが好ましい。
-露光-
 本発明の硬化膜の製造方法の第一の態様において露光を行う場合、露光は本発明の組成物から形成された膜の全面に対して行われることが好ましい。
 硬化工程における露光に際して用いることができる放射線(光)としては、g線、i線等が挙げられる。また、波長300nm以下の光(好ましくは波長180~300nmの光)を用いることもできる。波長300nm以下の光としては、KrF線(波長248nm)、ArF線(波長193nm)などが挙げられ、KrF線(波長248nm)が好ましい。
 また、露光に際して、光を連続的に照射して露光してもよく、パルス的に照射して露光(パルス露光)してもよい。なお、パルス露光とは、短時間(例えば、ミリ秒レベル以下)のサイクルで光の照射と休止を繰り返して露光する方式の露光方法のことである。パルス露光の場合、パルス幅は、100ナノ秒(ns)以下であることが好ましく、50ナノ秒以下であることがより好ましく、30ナノ秒以下であることが更に好ましい。パルス幅の下限は、特に限定はないが、1フェムト秒(fs)以上とすることができ、10フェムト秒以上とすることもできる。周波数は、1kHz以上であることが好ましく、2kHz以上であることがより好ましく、4kHz以上であることが更に好ましい。周波数の上限は50kHz以下であることが好ましく、20kHz以下であることがより好ましく、10kHz以下であることが更に好ましい。最大瞬間照度は、50,000,000W/m以上であることが好ましく、100,000,000W/m以上であることがより好ましく、200,000,000W/m以上であることが更に好ましい。また、最大瞬間照度の上限は、1,000,000,000W/m以下であることが好ましく、800,000,000W/m以下であることがより好ましく、500,000,000W/m以下であることが更に好ましい。なお、パルス幅とは、パルス周期における光が照射されている時間のことである。また、周波数とは、1秒あたりのパルス周期の回数のことである。また、最大瞬間照度とは、パルス周期における光が照射されている時間内での平均照度のことである。また、パルス周期とは、パルス露光における光の照射と休止を1サイクルとする周期のことである。
 照射量(露光量)は、例えば、0.03~2.5J/cmが好ましく、0.05~1.0J/cmがより好ましい。
 露光時における酸素濃度については適宜選択することができ、大気下で行う他に、例えば酸素濃度が19体積%以下の低酸素雰囲気下(例えば、15体積%、5体積%、又は、実質的に無酸素)で露光してもよく、酸素濃度が21体積%を超える高酸素雰囲気下(例えば、22体積%、30体積%、又は、50体積%)で露光してもよい。
 また、露光照度は適宜設定することが可能であり、通常1,000W/m~100,000W/m(例えば、5,000W/m、15,000W/m、又は、35,000W/m)の範囲から選択することができる。酸素濃度と露光照度は適宜条件を組み合わせてよく、例えば、酸素濃度10体積%で照度10,000W/m、酸素濃度35体積%で照度20,000W/mなどとすることができる。
-加熱-
 本発明の硬化膜の製造方法の第一の態様において加熱を行う場合、本発明の組成物から形成された膜に対し、露光を行わずに加熱を行ってもよいし、露光中に加熱を行ってもよいし、露光前に加熱を行ってもよいし、露光後に加熱を行ってもよいが、露光を行わずに加熱を行うか、又は、露光後に加熱を行うことが好ましく、硬化を更に進行する観点からは、露光後に加熱を行うことがより好ましい。
 加熱手段としては、特に限定されず、ホットプレートやコンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の公知の加熱手段を用いることができる。
 加熱温度としては、例えば100~240℃が好ましく、200~240℃がより好ましい。
 加熱時間としては、例えば、3分間~180分間が好ましく、5分間~120分間がより好ましい。
〔付与工程〕
 本発明の硬化膜の製造方法の第一の態様に係る付与工程は、上述の本発明の膜の製造方法における付与工程と同義であり、好ましい態様も同様である。
<第二の態様>
 本発明の硬化膜の製造方法の第二の態様に係る製造方法は、組成物から形成された膜の一部を露光する露光工程と、上記露光後の膜を現像する現像工程とを含む。
 本発明の硬化膜の製造方法の第二の態様に係る製造方法は、パターンを有する硬化膜の製造方法であることが好ましい。
 このような、露光工程及び現像工程を含むパターニング方法を、フォトリソグラフィ法ともいう。
 本発明の硬化膜の製造方法の第二の態様における露光工程及び現像工程は、公知のフォトリソグラフィ法に従い行うことが可能である。フォトリソグラフィ法の一態様を以下に説明する。
〔露光工程〕
 露光工程においては、組成物から形成された膜の一部が露光される。
 上記膜の一部を露光する方法としては、ステッパー露光機やスキャナ露光機などを用いて、所定のマスクパターンを有するマスクを介して露光する方法が挙げられる。
 上記露光により、露光部を硬化することができる。
 露光に際して用いることができる放射線(光)、照射量(露光量)、酸素濃度等の露光条件は、上述の本発明の硬化膜の製造方法の第一の態様に係るこれらの露光条件と同様であり、好ましい態様も同様である。
 また、露光工程における露光は、上述のパルス露光とすることもできる。
〔現像工程〕
 現像工程においては、露光後の組成物から形成された膜の未露光部が現像除去され、パターン(画素)が形成される。
 組成物から形成された膜の未露光部の現像除去は、現像液を用いて行うことができる。これにより、露光工程における未露光部の組成物から形成された膜が現像液に溶出し、露光された部分が残る。現像液の温度は、例えば、20~30℃が好ましい。現像時間は、20~180秒が好ましい。また、残渣除去性を向上するため、現像液を60秒ごとに振り切り、さらに新たに現像液を供給する工程を数回繰り返してもよい。
 現像液は、有機溶剤、アルカリ現像液などが挙げられ、アルカリ現像液が好ましく用いられる。アルカリ現像液としては、アルカリ剤を純水で希釈したアルカリ性水溶液(アルカリ現像液)が好ましい。アルカリ剤としては、例えば、アンモニア、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、ジグリコールアミン、ジエタノールアミン、ヒドロキシアミン、エチレンジアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ジメチルビス(2-ヒドロキシエチル)アンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの有機アルカリ性化合物や、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウムなどの無機アルカリ性化合物が挙げられる。アルカリ剤は、分子量が大きい化合物の方が環境面及び安全面で好ましい。アルカリ性水溶液のアルカリ剤の濃度は、0.001~10質量%が好ましく、0.01~1質量%がより好ましい。また、現像液は、さらに界面活性剤を含有していてもよい。界面活性剤としては、上述した界面活性剤が挙げられ、ノニオン性界面活性剤が好ましい。現像液は、移送や保管の便宜などの観点より、一旦濃縮液として製造し、使用時に必要な濃度に希釈してもよい。希釈倍率は特に限定されないが、例えば1.5~100倍の範囲に設定することができる。また、現像後純水で洗浄(リンス)することも好ましい。また、リンスは、現像後の組成物層が形成された支持体を回転させつつ、現像後の組成物層へリンス液を供給して行うことが好ましい。また、リンス液を吐出させるノズルを支持体の中心部から支持体の周縁部に移動させて行うことも好ましい。この際、ノズルの支持体中心部から周縁部へ移動させるにあたり、ノズルの移動速度を徐々に低下させながら移動させてもよい。このようにしてリンスを行うことで、リンスの面内ばらつきを抑制できる。また、ノズルを支持体中心部から周縁部へ移動させつつ、支持体の回転速度を徐々に低下させても同様の効果が得られる。
〔他の工程〕
 本発明の硬化膜の製造方法の第二の態様に係る製造方法は、本発明の組成物を支持体上に付与し、組成物から形成された膜を得る工程(付与工程)を、露光工程の前に含むことが好ましい。
 上記付与工程を含む場合、付与工程により得られた組成物から形成された膜が、露光工程により露光され、現像工程により現像されて、硬化膜が得られる。
 また、本発明の硬化膜の製造方法の第二の態様に係る製造方法は、現像工程の後、乾燥を施した後に追加露光処理や加熱処理(ポストベーク)を含むことも好ましい。追加露光処理やポストベークは、硬化を完全なものとするための現像後の硬化処理である。ポストベークにおける加熱温度は、例えば100~240℃が好ましく、200~240℃がより好ましい。ポストベークは、現像後の膜を、上記条件になるようにホットプレートやコンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の加熱手段を用いて、連続式あるいはバッチ式で行うことができる。追加露光処理を行う場合、露光に用いられる光は、波長400nm以下の光であることが好ましい。また、追加露光処理は、韓国公開特許第10-2017-0122130号公報に記載された方法で行ってもよい。
<第三の態様>
 本発明の硬化膜の製造方法の第三の態様に係る製造方法は、本発明の組成物から形成された膜を、露光及び加熱の少なくとも一方により硬化して硬化物層を得る工程(硬化工程)と、上記硬化物層上にフォトレジスト層を形成する工程(フォトレジスト層形成工程)と、上記フォトレジスト層からレジストパターンを形成する工程(レジストパターン形成工程)と、上記レジストパターンをマスクとして上記硬化物層に対してエッチングガスを用いてドライエッチングする工程(ドライエッチング工程)と、を含むことが好ましい。
 本発明の硬化膜の製造方法の第三の態様に係る製造方法は、パターンを有する硬化膜の製造方法であることが好ましい。
 本発明の硬化膜の製造方法の第三の態様に係る製造方法における硬化工程は、上述の第一の態様における硬化工程と同様の方法により行うことができ、好ましい態様も同様である。
 フォトレジスト層形成工程及びレジストパターン形成工程、及び、ドライエッチング工程の詳細については、特開2013-064993号公報の段落番号0010~0067の記載を参酌でき、この内容は本明細書に組み込まれる。
 また、本発明の硬化膜の製造方法の第三の態様に係る製造方法は、本発明の組成物を支持体上に付与し、組成物から形成された膜を得る工程(付与工程)を、硬化工程の前に含むことが好ましい。付与工程は、上述の第一の態様における付与工程と同様の方法により行うことができ、好ましい態様も同様である。
 上記付与工程を含む場合、付与工程により得られた組成物から形成された膜が、硬化工程により硬化され、フォトレジスト層形成工程及びレジストパターン形成工程を経て、ドライエッチング工程によりパターン化されて、硬化膜が得られる。
 フォトレジスト層の形成においては、更にプリベーク処理を施すことが好ましい。特に、フォトレジスト層の形成プロセスとしては、露光後の加熱処理、現像後の加熱処理(ポストベーク処理)を実施する形態が望ましい。
(近赤外線透過フィルタ)
 本発明の近赤外線透過フィルタは、上述した本発明の膜又は本発明の硬化膜を含む。本発明の硬化膜は1層含んでいてもよく、2層以上含んでいてもよい。本発明の硬化膜を2層以上含む場合は、それらが隣接していても、間に他の層を含んでいてもよい。
 本発明の近赤外線透過フィルタは、有彩色着色剤を含むカラーフィルタと組み合わせて用いることもできる。カラーフィルタは、有彩色着色剤を含む着色組成物を用いて製造できる。有彩色着色剤としては、本発明の組成物で説明した有彩色着色剤が挙げられる。着色組成物は、樹脂、重合性化合物、光重合開始剤、界面活性剤、溶剤、重合禁止剤、紫外線吸収剤などを更に含有することができる。これらの詳細については、本発明の組成物で説明した材料が挙げられ、それらを用いることができる。
 また、本発明の近赤外線透過フィルタは、本発明の膜又は本発明の硬化膜の画素と、赤、緑、青、マゼンタ、黄、シアン、黒及び無色から選ばれる画素とを有する態様も好ましい態様である。
(固体撮像素子)
 本発明の固体撮像素子は、上述した本発明の膜又は本発明の硬化膜を有する。本発明の硬化膜は1層含んでいてもよく、2層以上含んでいてもよい。本発明の硬化膜を2層以上含む場合は、それらが隣接していても、間に他の層を含んでいてもよい。本発明の固体撮像素子の構成としては、本発明の膜又は本発明の硬化膜を備え、固体撮像素子として機能する構成であれば特に限定はないが、例えば、以下のような構成が挙げられる。
 基板等の支持体上に、固体撮像素子(CCD(電荷結合素子)イメージセンサ、CMOS(相補型金属酸化膜半導体)イメージセンサ等)の受光エリアを構成する複数のフォトダイオード及びポリシリコン等からなる転送電極を有し、フォトダイオード及び転送電極上にフォトダイオードの受光部のみ開口した遮光膜を有し、遮光膜上に遮光膜全面及びフォトダイオード受光部を覆うように形成された窒化シリコン等からなるデバイス保護膜を有し、デバイス保護膜上に、本発明の膜又は本発明の硬化膜を有する構成である。更に、デバイス保護膜上であって本発明の膜又は本発明の硬化膜の下(支持体に近い側)に集光手段(例えば、マイクロレンズ等。以下同じ)を有する構成や、本発明の膜又は本発明の硬化膜に集光手段を有する構成等であってもよい。また、カラーフィルタは、隔壁により例えば格子状に仕切られた空間に、各画素を形成する膜が埋め込まれた構造を有していてもよい。この場合の隔壁は各画素よりも低屈折率であることが好ましい。このような構造を有する撮像装置の例としては、特開2012-227478号公報、特開2014-179577号公報、国際公開第2018/043654号、米国特許出願公開第2018/0040656号明細書に記載の装置が挙げられる。本発明の固体撮像素子を備えた撮像装置は、デジタルカメラや、撮像機能を有する電子機器(携帯電話等)の他、車載カメラや監視カメラ用としても用いることができる。
 本発明の膜又は本発明の硬化膜を組み込んだ固体撮像素子は、本発明の膜又は本発明の硬化膜に加え、更に別のカラーフィルタ、近赤外線カットフィルタ、近赤外線透過フィルタ、有機光電変換膜などを更に組み込んでもよい。
(赤外線センサ)
 本発明の赤外線センサは、上述した本発明の膜又は本発明の硬化膜を含む。本発明の硬化膜は1層含んでいてもよく、2層以上含んでいてもよい。本発明の硬化膜を2層以上含む場合は、それらが隣接していても、間に他の層を含んでいてもよい。赤外線センサの構成としては、赤外線センサとして機能する構成であれば特に限定はない。以下、本発明の赤外線センサの一実施形態について、図面を用いて説明する。
 図1において、符号110は、固体撮像素子である。固体撮像素子110の撮像領域上には、近赤外線カットフィルタ111と、近赤外線透過フィルタ114とが配置されている。また、近赤外線カットフィルタ111上には、カラーフィルタ112が配置されている。カラーフィルタ112及び近赤外線透過フィルタ114の入射光hν側には、マイクロレンズ115が配置されている。マイクロレンズ115を覆うように平坦化層116が形成されている。
 近赤外線カットフィルタ111の分光特性は、使用する赤外発光ダイオード(赤外LED)の発光波長に応じて選択される。
 カラーフィルタ112は、可視領域における特定波長の光を透過及び吸収する画素が形成されたカラーフィルタであって、特に限定はなく、従来公知の画素形成用のカラーフィルタを用いることができる。例えば、赤色(R)、緑色(G)、青色(B)の画素が形成されたカラーフィルタなどが用いられる。例えば、特開2014-043556号公報の段落番号0214~0263の記載を参酌することができ、この内容は本明細書に組み込まれる。
 近赤外線透過フィルタ114としては、本発明の膜若しくは本発明の硬化膜、又は、本発明の近赤外線透過フィルタを使用することができる。
 近赤外線透過フィルタ114は、使用する赤外LEDの発光波長に応じてその特性が選択される。例えば、赤外LEDの発光波長が850nmである場合、近赤外線透過フィルタ114は、膜の厚み方向における光透過率の、波長400~640nmの範囲における最大値が20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。この透過率は、波長400~640nmの範囲の全域で上記の条件を満たすことが好ましい。
 近赤外線透過フィルタ114は、膜の厚み方向における光透過率の、波長800nm以上(好ましくは800~1,500nm)の範囲における最小値が70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることがさらに好ましい。上記の透過率は、波長800nm以上の範囲の一部で上記の条件を満たすことが好ましく、赤外LEDの発光波長に対応する波長で上記の条件を満たすことが好ましい。
 近赤外線透過フィルタ114の膜厚は、100μm以下が好ましく、15μm以下がより好ましく、5μm以下がさらに好ましく、1μm以下が特に好ましい。下限値は、0.1μmが好ましい。膜厚が上記範囲であれば、上述した分光特性を満たす膜とすることができる。
 近赤外線透過フィルタ114の分光特性、膜厚等の測定方法を以下に示す。
 膜厚は、膜を有する乾燥後の基板を、触針式表面形状測定器(ULVAC社製 DEKTAK150)を用いて測定した。
 膜の分光特性は、紫外可視近赤外分光光度計(日立ハイテクノロジーズ社製 U-4100)を用いて、波長300~1,500nmの範囲において透過率を測定した値である。
 また、例えば、赤外LEDの発光波長が940nmである場合、近赤外線透過フィルタ114は、膜の厚み方向における光の透過率の、波長450~640nmの範囲における最大値が20%以下であり、膜の厚み方向における、波長835nmの光の透過率が20%以下であり、膜の厚み方向における光の透過率の、波長1,000~1,300nmの範囲における最小値が70%以上であることが好ましい。
 図1に示す赤外線センサにおいて、平坦化層116上には、近赤外線カットフィルタ111とは別の近赤外線カットフィルタ(他の近赤外線カットフィルタ)がさらに配置されていてもよい。他の近赤外線カットフィルタとしては、銅を含有する層及び/又は誘電体多層膜を有するものなどが挙げられる。これらの詳細については、上述したものが挙げられる。また、他の近赤外線カットフィルタとしては、デュアルバンドパスフィルタを用いてもよい。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。「部」、「%」は特に述べない限り、質量基準である。
<試料の重量平均分子量(Mw)の測定>
 試料の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、以下の条件で測定した。
カラムの種類:TOSOH TSKgel Super HZM-Hと、TOSOH TSKgel Super HZ4000と、TOSOH TSKgel Super HZ2000とを連結したカラム
展開溶媒:テトラヒドロフラン
カラム温度:40℃
流量(サンプル注入量):1.0μL(サンプル濃度:0.1質量%)
装置名:東ソー製 HLC-8220GPC
検出器:RI(屈折率)検出器
検量線ベース樹脂:ポリスチレン樹脂
<試料の酸価の測定>
 試料の酸価は、固形分1gあたりの酸性成分を中和するのに要する水酸化カリウムの質量を表したものである。試料の酸価は次のようにして測定した。すなわち、測定試料をテトラヒドロフラン/水=9/1(質量比)混合溶媒に溶解し、得られた溶液を、電位差滴定装置(商品名:AT-510、京都電子工業製)を用いて、25℃にて、0.1mol/L水酸化ナトリウム水溶液で中和滴定した。滴定pH曲線の変曲点を滴定終点として、次式により酸価を算出した。
 A=56.11×Vs×0.5×f/w
 A:酸価(mgKOH/g)
 Vs:滴定に要した0.1mol/L水酸化ナトリウム水溶液の使用量(mL)
 f:0.1mol/L水酸化ナトリウム水溶液の力価
 w:試料の質量(g)(固形分換算)
<試料のC=C価の測定>
 アルカリ処理により樹脂からエチレン性不飽和結合部位(例えば、樹脂がアクリロキシ基を有する場合は、アクリル酸)の低分子成分(a)を取り出し、その含有量を高速液体クロマトグラフィー(HPLC)により測定し、その測定値に基づいて下記式からC=C価を算出した。
 具体的には、樹脂0.1gをテトラヒドロフラン/メタノール混合液(50mL/15mL)に溶解させ、4mol/L水酸化ナトリウム水溶液10mLを加え、40℃で2時間反応させた。反応液を4mol/Lメタンスルホン酸水溶液10.2mLで中和し、その後、イオン交換水5mLとメタノール2mLを加えた混合液を100mLメスフラスコに移液し、メタノールでメスアップすることでHPLC測定サンプルを調製し、以下の条件で測定した。なお、低分子成分(a)の含有量は別途作成した低分子成分(a)の検量線から算出し、エチレン性不飽和結合価は下記式より算出した。
〔C=C価算出式〕
 C=C価(mmol/g)=(低分子成分(a)含有量(ppm)/低分子成分(a)の分子量(g/mol))/(ポリマー液の秤量値(g)×(ポリマー液の固形分濃度(%)/100)×10)
-HPLC測定条件-
 測定機器: Agilent-1200(アジレント・テクノロジー(株)製)
 カラム: Phenomenex社製 Synergi 4u Polar-RP 80A,250mm×4.60mm(内径)+ガードカラム
 カラム温度:40℃
 分析時間:15分
 流速:1.0mL/min(最大送液圧力:182bar(18.2MPa))
 注入量:5μl
 検出波長:210nm
 溶離液:テトラヒドロフラン(安定剤不含HPLC用)/バッファー溶液(リン酸0.2体積%及びトリエチルアミン0.2体積%を含有するイオン交換水溶液)=55/45(体積%)
 なお、本明細書において、体積%は25℃における値である。
<合成例1:特定樹脂A-20の合成>
 ビニル安息香酸 13.5gとN,N-ジエチルアクリルアミド 13.5gと、特開2011-89108号公報の段落0180~段落0181に記載のマクロモノマーM1 127gをプロピレングリコールモノメチルエーテルアセテート320gに溶解させた。窒素気流下でこれにV-601 2.3gを加えて75℃で8時間加熱撹拌した。得られたポリマー溶液をヘキサンで晶析させて得られた沈殿物を乾燥させてポリマー(A-20)を得た。得られたポリマーのMwは20,000、酸価は46mgKOH/gであった。
 本実施例又は比較例で用いた他の特定樹脂については、モノマーの種類及び使用量を適宜変更した以外は、上記A-20と同様の方法により合成した。
 本実施例又は比較例で使用した特定樹脂A-1~A-48における、各繰返し単位の含有比(モル比)であるx、y、z、wの詳細は下記表の通りである。
 また、A-22、A-25、及びA-26において、n:mは50:50(モル比)とし、A-45において、n:mは10:4(モル比)とした。
Figure JPOXMLDOC01-appb-T000037
<分散液R1~R9、B1~B6、G1~G5、Y1~Y3、I1~I6、Bk1~Bk8の製造>
 下記表に記載の原料を混合した混合液をビーズミル(ジルコニアビーズ0.3mm径)を用いて3時間混合及び分散した後さらに減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製)を用いて、2,000MPaの圧力下で流量500g/minとして分散処理を行った。この分散処理を10回繰り返して各分散液を得た。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 上記表に記載の数値の単位は質量部である。上記表に示した原料のうち、略語で示した原料の詳細は以下の通りである。
〔着色剤又は近赤外線吸収剤〕
 PR264 : C.I.Pigment Red 264(赤色顔料、ジケトピロロピロール顔料)
 PR254 : C.I.Pigment Red 254(赤色顔料、ジケトピロロピロール顔料)
 PR179 : C.I.Pigment Red 179
 PB15:6 : C.I.Pigment Blue 15:6(青色顔料、フタロシアニン顔料)
 PB16 : C.I.Pigment Blue 16(青色顔料、フタロシアニン顔料)
 PG7 : C.I.Pigment Green 7
 PG36 : C.I.Pigment Green 36
 PY138 : C.I.Pigment Yellow 138
 PY215 : C.I.Pigment Yellow 215
 PV23 : C.I.Pigment Violet 23
 IR色素:下記構造の化合物(近赤外線吸収剤、構造式中、Meはメチル基を表し、Phはフェニル基を表す)
Figure JPOXMLDOC01-appb-C000040
 Irgaphor Bk: Irgaphor Black S 0100 CF(BASF社製、下記構造の化合物、ラクタム系顔料)
Figure JPOXMLDOC01-appb-C000041
 PBk32: C.I.Pigment Black 32(下記構造の化合物、ペリレン系顔料)
Figure JPOXMLDOC01-appb-C000042
 誘導体1:着色剤、下記構造の化合物
Figure JPOXMLDOC01-appb-C000043
 誘導体2:着色剤、下記構造の化合物
Figure JPOXMLDOC01-appb-C000044
 誘導体3:近赤外線吸収剤、下記構造の化合物
Figure JPOXMLDOC01-appb-C000045
〔樹脂〕
 A-20、A-22、A-26、A-29、A-40及びA-48:上述の合成例にて合成した樹脂
 CA-4:下記構造の樹脂((メタ)アクリル樹脂、主鎖に付記した数値は各繰返し単位のモル比であり、側鎖におけるポリエステル単位に付記した数値は各単位の繰返し数である。また、CA-4は式(1-1)~式(1-5)のいずれかで表される繰返し単位をいずれも含有しない樹脂である。)
Figure JPOXMLDOC01-appb-C000046
 CA-5:下記構造の樹脂((メタ)アクリル樹脂、主鎖に付記した数値は各繰返し単位のモル比であり、側鎖におけるポリエステル単位に付記した数値は各単位の繰返し数である。また、CA-5は式(1-1)~式(1-5)のいずれかで表される繰返し単位をいずれも含有しない樹脂である。)
Figure JPOXMLDOC01-appb-C000047
〔溶剤(有機溶剤)〕
 S-1:プロピレングリコールモノメチルエーテルアセテート
 S-2:プロピレングリコールモノメチルエーテル
 S-3:シクロヘキサノン
 S-4:シクロペンタノン
<組成物の製造>
 各実施例及び比較例において、それぞれ、下記表に記載の原料を混合して組成物又は比較用組成物を調製した。下記表に記載の添加量の欄の数値の単位は質量部である。
 「合計含有量(%)」の欄の記載は、組成物の全固形分に対する着色剤及び近赤外線吸収剤の合計含有量(質量%)を表す。
 「特定繰返し単位の合計量の割合(モル%)」の欄の記載は、組成物に含まれる全ての樹脂成分に含まれる全ての繰返し単位の総モル量に対する、式(1-1)~式(1-5)のいずれかで表される繰返し単位の合計量の割合(モル%)を表す。
 「波長T%=50%(nm)」の欄の記載は、各組成物から形成された、膜厚1μmの膜における膜の厚み方向の光透過率50%を示す波長を表す。
 「最小T%(%)」の欄の記載は、波長950~1,300nmの範囲における光透過率の最小値を表す。
 「Amin/B」の欄の記載は、組成物の波長400~640nmの範囲における吸光度の最小値Aminと、上記組成物の波長1,500nmにおける吸光度Bとの比であるAmin/Bの値を表す。
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
 上記表に記載の原料のうち、略語で示した原料の詳細は以下の通りである。
〔顔料分散液〕
 R1~R9、B1~B6、G1~G5、Y1~Y3、I1~I6、Bk1~Bk8:上述した顔料分散液
〔染料〕
 SQ、PPB、cyanine:下記構造の化合物。
Figure JPOXMLDOC01-appb-C000051
〔樹脂〕
 A-1~A-48:上述の合成例にて合成した樹脂
 CA-1:下記式で表される樹脂。主鎖に付記した数値は各繰返し単位のモル比である。また、CA-1は、上記式(1-1)~式(1-5)のいずれかで表される繰返し単位を含有しない樹脂である。
Figure JPOXMLDOC01-appb-C000052
 CA-2:下記式で表される樹脂。主鎖に付記した数値は各繰返し単位のモル比である。また、CA-2は、上記式(1-1)~式(1-5)のいずれかで表される繰返し単位を含有しない樹脂である。
Figure JPOXMLDOC01-appb-C000053
 CA-3:下記式で表される樹脂。下記式中、主鎖に付記した数値はモル比である。また、CA-3は、樹脂に含まれる全ての繰返し単位の総モル量に対する、上記式(1-1)~式(1-5)のいずれかで表される繰返し単位の合計量の割合が5モル%である樹脂である。
Figure JPOXMLDOC01-appb-C000054
〔重合性化合物〕
 D-1:KAYARAD DPHA(日本化薬(株)製、ジペンタエリスリトールヘキサアクリレートおよびジペンタエリスリトールペンタアクリレートの混合物)
 D-2:NKエステル A-DPH-12E(新中村化学工業(株)製)
 D-3:アロニックスM-510(東亞合成(株)製、カルボキシ基含有多塩基酸変性アクリルオリゴマー)
〔光重合開始剤〕
 E-1:Omnirad 379EG(アミノアセトフェノン系光ラジカル開始剤(IGM Resins社製))
 E-2:IRGACURE OXE01(オキシムエステル系光ラジカル開始剤(BASF社製))
 E-3:IRGACURE OXE03(オキシムエステル系光ラジカル開始剤(BASF社製))
〔シランカップリング剤〕
 F-1:下記式(F-1)で表される化合物、式(F-1)中、Meはメチル基を表す
 F-2:下記式(F-2)で表される化合物、式(F-2)中、Meはメチル基を、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000055
〔硬化剤(環状エーテル基を有する化合物)〕
 G-1:EPICLON N-695(DIC社製)
 G-2:EHPE3150(ダイセル社製)
〔界面活性剤〕
 H-1:下記構造で表される化合物。尚、構成単位の割合を示す%はモル比である。
Figure JPOXMLDOC01-appb-C000056
〔重合禁止剤〕
 I-1:p-メトキシフェノール
〔溶剤(有機溶剤)〕
 S-1:プロピレングリコールモノメチルエーテルアセテート
 S-3:シクロヘキサノン
<評価>
〔露光感度の評価〕
 各実施例及び比較例において、それぞれ、組成物又は比較用組成物をシリコンウエハ上にスピンコートで塗布し、ホットプレートを用いて100℃で120秒乾燥(プリベーク)して厚さ0.70μmの組成物層を形成した。
 次いで、この組成物層に対して、一辺1.0μmの正方形状の非マスク部が4mm×3mmの領域に配列されたマスクパターンを介して、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して波長365nmの光を特定の露光量で照射して露光した。
 次いで、露光後の組成物層が形成されているシリコンウエハを、スピン・シャワー現像機(DW-30型、(株)ケミトロニクス製)の水平回転テーブル上に載置し、現像液(CD-2000、富士フイルムエレクトロニクスマテリアルズ(株)製)を用い、23℃で60秒間パドル現像した。次いで、シリコンウエハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行ない、その後スプレー乾燥してパターン(画素)を形成した。
 上記特定の露光量を変化させながら、得られたパターンを観察し、一辺が1.0μmの正方形状のパターンを解像する最小の露光量を決定し、下記評価基準に従い評価した。評価結果は表20に記載した。上記最小の露光量が小さいほど、組成物は露光感度に優れるといえる。また、表20の「露光感度」の欄に「評価せず」と記載した例においては、露光感度についての評価を行わなかった。
-評価基準-
A:上記最小の露光量が100mJ/cm未満であった。
B:上記最小の露光量が100以上200mJ/cm未満であった。
C:上記最小の露光量が200以上500mJ/cm未満であった。
D:上記最小の露光量が500以上1,000mJ/cm未満であった。
E:上記最小の露光量が1,000mJ/cm以上であった。
〔分散保存安定性の評価〕
 各実施例及び比較例において、それぞれ、組成物又は比較用組成物の粘度(mPa・s)を、東機産業(株)製「RE-85L」にて測定した。上記測定後、組成物を45℃、遮光、3日間の条件にて静置し、再度粘度(mPa・s)を測定した。上記静置前後での粘度差(ΔVis)から下記評価基準に従って保存安定性を評価した。評価結果は表20の「分散保存安定性」の欄に記載した。粘度差(ΔVis)の数値が小さいほど、組成物の保存安定性が良好であるといえる。上記粘度測定は、いずれも、温湿度を22±5℃、60±20%に管理した実験室で、組成物の温度を25℃に調整した状態で測定した。
-評価基準-
 A:ΔVisが0.5mPa・s以下であった。
 B:ΔVisが0.5mPa・sを超え、1.0mPa・s以下であった。
 C:ΔVisが1.0mPa・sを超え、2.0mPa・s以下であった。
 D:ΔVisが2.0mPa・sを超え、2.5mPa・s以下であった。
 E:ΔVisが2.5mPa・sを超えた。
〔分光変化の評価〕
 各実施例及び比較例において、それぞれ、組成物又は比較用組成物をガラス基板上にスピンコートで塗布し、ホットプレートを用いて100℃で120秒乾燥(プリベーク)した後に、オーブンを用いて200℃で30分加熱(ポストベーク)して厚さ0.60μmの膜を製造した。Cary 5000 UV-Vis-NIR 分光光度計(アジレントテクノロジー(株)製)を用いて、得られた膜の波長450nmの透過率Tr1を測定した。次いで、得られた膜を窒素雰囲気下にて320℃で3時間加熱処理した。加熱処理後の膜の波長450nmの透過率Tr2を測定した。
 Tr1とTr2の差の絶対値ΔTを算出し、下記評価基準に従って分光変化を評価した。評価結果は、表20の「分光変化」の欄に記載した。ΔTが小さいほど、分光変化が起こりにくく好ましいといえる。上記Tr1及びTr2は、いずれも、温湿度を22±5℃、60±20%に管理した実験室で、基板温度を25℃に温度調整を施した状態で測定した。
-評価基準-
 A:ΔTが0.1%以下であった。
 B:ΔTが0.1%を超え0.5%以下であった。
 C:ΔTが0.5%を超え1%以下であった。
 D:ΔTが1%を超え5%以下であった。
 E:ΔTが5%を超えた。
〔膜収縮率の評価〕
 各実施例及び比較例において、それぞれ、組成物又は比較用組成物をガラス基板上にスピンコートで塗布し、ホットプレートを用いて100℃で120秒乾燥(プリベーク)した後に、オーブンを用いて200℃で30分加熱(ポストベーク)して厚さ0.60μmの膜を製造した。膜厚は、膜の一部を削ってガラス基板表面を露出し、ガラス基板表面と塗布膜の段差(塗布膜の膜厚)を触針式段差計(DektakXT、BRUKER社製)を用いて測定した。次いで、得られた膜を窒素雰囲気下にて320℃で3時間加熱処理した。加熱処理後の膜の膜厚を同様にして測定し、下記式より膜収縮率を求め、下記評価基準に従って膜収縮率を評価した。評価結果は、表20の「膜収縮率」の欄に記載した。下記T0及びT1は、いずれも、温湿度を22±5℃、60±20%に管理した実験室で、基板温度を25℃に温度調整を施した状態で測定した。膜収縮率が小さいほど、膜収縮が抑制されており、得られる膜の耐熱性に優れるといえる。
 膜収縮率(%)=(1-(T1/T0))×100
 T0:製造直後の膜の膜厚(=0.60μm)
 T1:窒素雰囲気下にて320℃で3時間加熱処理した後の膜厚
-評価基準-
 A:膜収縮率が1%以下であった。
 B:膜収縮率が1%を超え5%以下であった。
 C:膜収縮率が5%を超え10%以下であった。
 D:膜収縮率が10%を超え30%以下であった。
 E:膜収縮率が30%を超えた。
〔クラックの評価〕
 各実施例及び比較例において、それぞれ、組成物又は比較用組成物をガラス基板上にスピンコートで塗布し、ホットプレートを用いて100℃で120秒乾燥(プリベーク)した後に、オーブンを用いて200℃で30分加熱(ポストベーク)して厚さ0.60μmの膜を製造した。
 次いで、得られた膜の表面に、スパッタ法によりSiOを200nm積層して無機膜を形成した。この無機膜が表面に形成された膜を、窒素雰囲気下にて320℃で3時間加熱処理した。加熱処理後の無機膜の表面を光学顕微鏡で観察し、クラックの1cm当たりの個数をカウントして、下記評価基準に従ってクラックの有無を評価した。評価結果は表20の「クラック」の欄に記載した。
-評価基準-
 A:クラックの1cm当たりの個数が0個であった。
 B:クラックの1cm当たりの個数が1~10個であった。
 C:クラックの1cm当たりの個数が11~50個であった。
 D:クラックの1cm当たりの個数が51個~100個であった。
 E:クラックの1cm当たりの個数が101個以上であった。
Figure JPOXMLDOC01-appb-T000057
 以上のように、実施例の組成物を用いた場合、比較例1~比較例3の比較用組成物を用いた場合と比較して、いずれも膜収縮率に優れていた。このため、比較例1~比較例3の比較用組成物と比較して、実施例に記載の組成物は、得られる膜の耐熱性に優れるといえる。実施例1において、組成物の調製時に界面活性剤を添加せずに同様に評価した結果、実施例1と同様の結果が得られた。実施例1において、組成物の調製時に重合禁止剤を添加せずに同様に評価した結果、実施例1と同様の結果が得られた。また、実施例1の組成物の硬化膜に実施例2の組成物の硬化膜を積層して同様に評価した場合も、同様の結果が得られる。また、実施例1の組成物の硬化膜に、顔料分散液I1を用いた近赤外線カットフィルタを積層させても、実施例1と同様に耐熱性に優れる。
(実施例100:フォトリソグラフィ法でのパターン形成)
 シリコンウエハ上に、実施例13の組成物をスピンコートで塗布し、ホットプレートを用いて100℃で120秒乾燥(プリベーク)した後に、オーブンを用いて200℃で30分加熱(ポストベーク)して厚さ0.60μmの組成物層を形成した。
 次いで、この組成物層に対して、一辺1.1μmの正方形状の非マスク部が4mm×3mmの領域に配列されたマスクパターンを介して、i線ステッパー露光装置FPA-3000i5+(Canon(株)製)を使用して波長365nmの光を500mJ/cmの露光量で照射して露光した。
 次いで、露光後の組成物層が形成されているシリコンウエハを、スピン・シャワー現像機(DW-30型、(株)ケミトロニクス製)の水平回転テーブル上に載置し、現像液(CD-2000、富士フイルムエレクトロニクスマテリアルズ(株)製)を用い、23℃で60秒間パドル現像した。次いで、シリコンウエハを回転数50rpmで回転させつつ、その回転中心の上方より純水を噴出ノズルからシャワー状に供給してリンス処理を行ない、その後スプレー乾燥してパターン(画素)を形成した。
 作製したパターン付きシリコンウエハを2分割し、一方を窒素雰囲気下にて320℃で3時間加熱処理した(以下、一方を320℃加熱処理前基板、他方を320℃加熱処理後基板とする)。320℃加熱処理前基板、及び、320℃加熱処理後基板に形成されているレジストパターンの断面を走査型電子顕微鏡(SEM)で評価したところ、320℃加熱処理後基板に形成されているレジストパターンの高さは、320℃加熱処理前基板に形成されているレジストパターンの高さの79%であった。
110:固体撮像素子、111:近赤外線カットフィルタ、112:カラーフィルタ、114:近赤外線透過フィルタ、115:マイクロレンズ、116:平坦化層

Claims (27)

  1. 着色剤、樹脂、及び、溶剤を含む組成物であって、
    前記樹脂が、下記式(1-1)~下記式(1-5)のいずれかで表される繰返し単位よりなる群から選ばれた少なくとも1種の繰返し単位を含み、
     前記樹脂に含まれる全ての繰返し単位の総モル量に対する、下記式(1-1)~下記式(1-5)のいずれかで表される繰返し単位の合計量の割合が10モル%以上であり、
     前記着色剤、及び、近赤外線吸収剤の合計含有量が、組成物の全固形分に対して30質量%以上であり、
     前記組成物の波長400~640nmの範囲における吸光度の最小値Aminと、前記組成物の波長1,500nmにおける吸光度Bとの比であるAmin/Bが5以上である
     組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(1-1)中、R11、R12及びR13はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、Arは環員数5~30の芳香族基を表す;
     式(1-2)中、R21、R22及びR23はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R24及びR25はそれぞれ独立に、水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、R24及びR25は結合して環構造を形成してもよい;
     式(1-3)中、R31、R32及びR33はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R34及びR35はそれぞれ独立に、水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し、R34及びR35は結合して環構造を形成してもよい;
     式(1-4)中、R41及びR42はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R43は水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表し;
     式(1-5)中、R51~R54はそれぞれ独立に、水素原子、フッ素原子、フッ素原子で置換されていてもよいアルキル基、又は、フッ素原子で置換されていてもよい芳香族炭化水素基を表し、R55は水素原子、炭素数1~30のアルキル基、又は、炭素数6~30の芳香族炭化水素基を表す。
  2.  前記樹脂に含まれる全ての繰返し単位の総モル量に対する、前記式(1-1)で表される繰返し単位の合計量の割合が10モル%以上である、請求項1に記載の組成物。
  3.  前記樹脂に含まれる全ての繰返し単位の総モル量に対する、前記式(1-1)~前記式(1-5)のいずれかで表される繰返し単位の合計量の割合が60モル%を超える、請求項1に記載の組成物。
  4.  前記式(1-1)中、Arが置換基としてヘテロ原子を含む置換基を有する、請求項1~3のいずれか1項に記載の組成物。
  5.  前記組成物から形成された、膜厚1μmの膜における膜の厚み方向の光透過率50%を示す波長が、700~950nmであり、かつ、前記膜の波長950~1,300nmの範囲における光透過率の最小値が90%以上である、請求項1~4のいずれか1項に記載の組成物。
  6.  前記組成物から形成された、膜厚1μmの膜における膜の厚み方向の光透過率50%を示す波長が、700~800nmであり、かつ、前記膜の波長800~1,300nmの範囲における光透過率の最小値が90%以上である、請求項1~5のいずれか1項に記載の組成物。
  7.  前記着色剤が有機顔料である、請求項1~6のいずれか1項に記載の組成物。
  8.  近赤外線吸収剤を含む、請求項1~7のいずれか1項に記載の組成物。
  9.  前記着色剤が、黒色色材を含む、請求項1~8のいずれか1項に記載の組成物。
  10.  前記着色剤が、赤色色材、緑色色材、青色色材、黄色色材及び紫色色材よりなる群から選ばれた少なくとも1種の色材を含む、請求項1~9のいずれか1項に記載の組成物。
  11.  前記樹脂が、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、及び、アミノ基よりなる群から選ばれた少なくとも1種の基を有する、請求項1~10のいずれか1項に記載の組成物。
  12.  前記樹脂の酸価が0~150mgKOH/gである、請求項1~11のいずれか1項に記載の組成物。
  13.  前記樹脂がエチレン性不飽和結合を有する、請求項1~12のいずれか1項に記載の組成物。
  14.  前記樹脂として、下記樹脂1及び下記樹脂2を含む、請求項1~13のいずれか1項に記載の組成物;
     樹脂1:前記樹脂であって、酸基及びエチレン性不飽和結合を有する基を含む樹脂;
     樹脂2:前記樹脂であって、ヒドロキシ基、カルボキシ基、スルホ基、リン酸基、及び、アミノ基よりなる群から選ばれた少なくとも1種の基、及び、分子量が500~10,000であり、かつ、酸基及び塩基性基を有しない分子鎖を有する樹脂。
  15.  重合性化合物を更に含む、請求項1~14のいずれか1項に記載の組成物。
  16.  重合開始剤を更に含む、請求項1~15のいずれか1項に記載の組成物。
  17.  前記重合開始剤が光重合開始剤である、請求項16に記載の組成物。
  18.  フォトリソグラフィ法でのパターン形成用である、請求項1~17のいずれか1項に記載の組成物。
  19.  固体撮像素子用である、請求項1~18のいずれか1項に記載の組成物。
  20.  請求項1~19のいずれか1項に記載の組成物から得られる膜。
  21.  請求項1~19のいずれか1項に記載の組成物を硬化してなる硬化膜。
  22.  請求項20に記載の膜、又は、請求項21に記載の硬化膜を含む近赤外線透過フィルタ。
  23.  請求項20に記載の膜、又は、請求項21に記載の硬化膜を含む固体撮像素子。
  24.  請求項20に記載の膜、又は、請求項21に記載の硬化膜を含む赤外線センサ。
  25.  請求項1~19のいずれか1項に記載の組成物から形成された膜を、露光及び加熱の少なくとも一方により硬化する工程を含む、硬化膜の製造方法。
  26.  請求項1~19のいずれか1項に記載の組成物から形成された膜を、露光により硬化する工程を含む、請求項24に記載の硬化膜の製造方法。
  27.  請求項1~19のいずれか1項に記載の組成物から形成された膜の一部を露光する露光工程と、
     前記露光後の膜を現像する現像工程とを含む
     硬化膜の製造方法。
PCT/JP2020/038426 2019-10-17 2020-10-12 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ WO2021075393A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021552374A JPWO2021075393A1 (ja) 2019-10-17 2020-10-12
KR1020227012463A KR20220063238A (ko) 2019-10-17 2020-10-12 조성물, 막, 경화막 및 그 제조 방법, 근적외선 투과 필터, 고체 촬상 소자, 및, 적외선 센서
CN202080072694.3A CN114556215A (zh) 2019-10-17 2020-10-12 组合物、膜、固化膜及其制造方法、近红外线透射滤波器、固体摄像元件以及红外线传感器
US17/720,543 US20220244637A1 (en) 2019-10-17 2022-04-14 Composition, film, cured film and method for manufacturing the same, near-infrared transmitting filter, solid-state imaging element, and infrared sensor
JP2023091766A JP7451807B2 (ja) 2019-10-17 2023-06-02 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-189941 2019-10-17
JP2019189941 2019-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/720,543 Continuation US20220244637A1 (en) 2019-10-17 2022-04-14 Composition, film, cured film and method for manufacturing the same, near-infrared transmitting filter, solid-state imaging element, and infrared sensor

Publications (1)

Publication Number Publication Date
WO2021075393A1 true WO2021075393A1 (ja) 2021-04-22

Family

ID=75538494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038426 WO2021075393A1 (ja) 2019-10-17 2020-10-12 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ

Country Status (6)

Country Link
US (1) US20220244637A1 (ja)
JP (2) JPWO2021075393A1 (ja)
KR (1) KR20220063238A (ja)
CN (1) CN114556215A (ja)
TW (1) TW202124469A (ja)
WO (1) WO2021075393A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7451807B2 (ja) 2019-10-17 2024-03-18 富士フイルム株式会社 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311461A (ja) * 1994-05-17 1995-11-28 Dainippon Printing Co Ltd 水溶性着色感光性樹脂組成物
WO2018030247A1 (ja) * 2016-08-10 2018-02-15 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JP2019031627A (ja) * 2017-08-09 2019-02-28 昭和電工株式会社 アルカリ可溶性樹脂、それを含むカラーフィルター用感光性樹脂組成物及びカラーフィルター
WO2019130807A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 組成物、膜、カラーフィルタ、固体撮像素子、画像表示装置および化合物の製造方法
WO2019176975A1 (ja) * 2018-03-16 2019-09-19 富士フイルム株式会社 構造体、近赤外線カットフィルタ用組成物、ドライフィルム、構造体の製造方法、光センサおよび画像表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276215B2 (ja) * 1993-07-30 2002-04-22 日本写真印刷株式会社 前面パネルと前面パネル用転写材
US6717415B2 (en) * 2002-02-05 2004-04-06 Logicvision, Inc. Circuit and method for determining the location of defect in a circuit
US20100167204A1 (en) * 2006-08-31 2010-07-01 Jsr Corporation Radiation-sensitive insulation resin composition, cured article, and electronic device
JP2013205654A (ja) * 2012-03-28 2013-10-07 Fujifilm Corp 着色感光性組成物、カラーフィルタ、カラーフィルタの製造方法、及び表示装置
TW201423272A (zh) * 2012-11-27 2014-06-16 Jsr Corp 感光性組成物、著色劑分散液、濾光片及光感應器
JP6464850B2 (ja) * 2015-03-19 2019-02-06 Jsr株式会社 硬化性組成物、硬化膜、赤外光透過フィルタ及び固体撮像装置
WO2021075393A1 (ja) 2019-10-17 2021-04-22 富士フイルム株式会社 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311461A (ja) * 1994-05-17 1995-11-28 Dainippon Printing Co Ltd 水溶性着色感光性樹脂組成物
WO2018030247A1 (ja) * 2016-08-10 2018-02-15 富士フイルム株式会社 近赤外線カットフィルタ、固体撮像素子、カメラモジュールおよび画像表示装置
JP2019031627A (ja) * 2017-08-09 2019-02-28 昭和電工株式会社 アルカリ可溶性樹脂、それを含むカラーフィルター用感光性樹脂組成物及びカラーフィルター
WO2019130807A1 (ja) * 2017-12-27 2019-07-04 富士フイルム株式会社 組成物、膜、カラーフィルタ、固体撮像素子、画像表示装置および化合物の製造方法
WO2019176975A1 (ja) * 2018-03-16 2019-09-19 富士フイルム株式会社 構造体、近赤外線カットフィルタ用組成物、ドライフィルム、構造体の製造方法、光センサおよび画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7451807B2 (ja) 2019-10-17 2024-03-18 富士フイルム株式会社 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ

Also Published As

Publication number Publication date
CN114556215A (zh) 2022-05-27
JP7451807B2 (ja) 2024-03-18
KR20220063238A (ko) 2022-05-17
JP2023123480A (ja) 2023-09-05
US20220244637A1 (en) 2022-08-04
TW202124469A (zh) 2021-07-01
JPWO2021075393A1 (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
JP7425093B2 (ja) 着色樹脂組成物、膜、カラーフィルタ、固体撮像素子、及び、画像表示装置
JP2023159106A (ja) 着色樹脂組成物、膜、カラーフィルタ、固体撮像素子、及び、画像表示装置
JP2024009929A (ja) 着色感光性組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置
JP7451807B2 (ja) 組成物、膜、硬化膜及びその製造方法、近赤外線透過フィルタ、固体撮像素子、並びに、赤外線センサ
JP7498837B2 (ja) 着色樹脂組成物、膜、カラーフィルタ、固体撮像素子、及び、画像表示装置
JP2024040152A (ja) 着色組成物、膜、カラーフィルタおよび固体撮像素子
JP2024012409A (ja) 着色感光性組成物、硬化物、カラーフィルタ、固体撮像素子、画像表示装置、及び、非対称ジケトピロロピロール化合物
JP7080325B2 (ja) 硬化性組成物、膜、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子および画像表示装置
TWI806971B (zh) 感光性組成物
WO2020241536A1 (ja) 樹脂組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置
JPWO2020022247A1 (ja) 硬化性組成物、硬化性組成物の製造方法、膜、カラーフィルタ、カラーフィルタの製造方法、固体撮像素子および画像表示装置
JPWO2020004114A1 (ja) 感光性組成物、膜、カラーフィルタ、固体撮像素子及び画像表示装置
JP7271662B2 (ja) 樹脂組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置
JP7344370B2 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、及び、画像表示装置
JP7385739B2 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、及び、画像表示装置
JP7437422B2 (ja) 着色組成物、膜、光学フィルタ、固体撮像素子および画像表示装置
JP7302014B2 (ja) 着色組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置
JP7397201B2 (ja) 樹脂組成物、膜、光学フィルタ、固体撮像素子、画像表示装置及び樹脂
WO2023182017A1 (ja) 着色組成物、膜、カラーフィルタ、固体撮像素子および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552374

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227012463

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876447

Country of ref document: EP

Kind code of ref document: A1