WO2021070582A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2021070582A1
WO2021070582A1 PCT/JP2020/034954 JP2020034954W WO2021070582A1 WO 2021070582 A1 WO2021070582 A1 WO 2021070582A1 JP 2020034954 W JP2020034954 W JP 2020034954W WO 2021070582 A1 WO2021070582 A1 WO 2021070582A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
thermoplastic resin
reinforcing element
pneumatic
Prior art date
Application number
PCT/JP2020/034954
Other languages
English (en)
French (fr)
Inventor
寛太 安藤
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to US17/766,321 priority Critical patent/US20230070678A1/en
Priority to CN202080019419.5A priority patent/CN113543986A/zh
Priority to EP20874230.4A priority patent/EP4043239A4/en
Publication of WO2021070582A1 publication Critical patent/WO2021070582A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/007Inflatable pneumatic tyres or inner tubes made from other material than rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/01Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/1821Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers comprising discrete fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C2009/1828Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by special physical properties of the belt ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0033Thickness of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C2011/145Discontinuous fibres

Definitions

  • the present invention relates to a pneumatic tire in which the tread reinforcing element is made of a thermoplastic resin.
  • Patent Document 1 proposes a carcassless tire in which the tire skeleton member is made of a thermoplastic resin.
  • the tire skeleton member includes a pair of bead portions, a pair of side portions extending from the pair of bead portions, and a crown portion connecting the pair of side portions.
  • a tread made of vulcanized rubber is arranged on the crown portion.
  • a cord layer in which a reinforcing cord such as a steel cord is spirally wound is used as a tread reinforcing element.
  • the present invention is based on the fact that the tread reinforcing element is made of a thermoplastic resin and the formation position of the tread reinforcing element is regulated, and the production efficiency is improved while ensuring the stability of the ground contact shape of the tire.
  • the challenge is to provide pneumatic tires that can improve material recyclability.
  • the present invention is a pneumatic tire. Includes tread reinforcements located between the tire tread and the tire tread
  • the tread reinforcing element is made of a thermoplastic resin and is made of a thermoplastic resin. On any reference line across the tread reinforcement element and parallel to the tire equator.
  • the thickness center point of the tread reinforcing element is such that the distance L1 in the tire radial direction from the tire cavity surface is 50 to 95% of the tire radial distance L0 from the tire cavity surface to the tire contact patch. The range.
  • the pneumatic tire according to the present invention includes a toroid-shaped tire skeleton member including a pair of bead portions, a pair of sidewall portions, and an under tread portion connecting the pair of sidewall portions. It is preferable that the inner surface of the under tread portion in the radial direction of the tire forms the inner surface of the tire, and the tread reinforcing element is arranged on the outer surface in the radial direction of the tire.
  • the tire skeleton member is preferably made of the same or a plurality of types of thermoplastic resins.
  • a tread ground contact element forming the tire ground contact surface is provided outside the tread reinforcing element in the tire radial direction, and the tread ground contact element is a tread ground contact element. It is preferably made of vulcanized rubber or thermoplastic resin.
  • the thermoplastic resin forming the tread reinforcing element preferably has a tensile elastic modulus of 1000 MPa or more.
  • the thermoplastic resin forming the tire skeleton member preferably has a tensile elastic modulus of 30 to 200 MPa or less.
  • the tread reinforcing element contains a fibrous filler in the thermoplastic resin.
  • the filler is preferably oriented in the tire circumferential direction.
  • the tread reinforcing element is made of a thermoplastic resin. This eliminates the need for a process of winding the reinforcing cord, and can improve the production efficiency while improving the material recyclability.
  • the distance L1 in the tire radial direction from the tire cavity surface of the thickness center point of the tread reinforcing element is the distance L0 in the tire radial direction from the tire cavity surface to the tire contact patch. It is regulated in the range of 50 to 95%. That is, the tread reinforcing element is arranged near the tire contact patch.
  • the tread reinforcing element is made of thermoplastic resin, the stability of the ground contact shape of the tire can be ensured, and the adverse effect on running performance can be suppressed to a low level.
  • the pneumatic tire 1 of the present embodiment (hereinafter, may be simply referred to as a tire 1) has a tread reinforcing element 4 arranged between a tire cavity surface 1H and a tire contact patch 1S.
  • the tread reinforcing element 4 is made of a thermoplastic resin.
  • the tire 1 of this example includes a tread-shaped tire skeleton member 2 having a tire cavity surface 1H, a tread ground contact element 3 having a tire ground contact surface 1S, and an undertread portion 7 of the tire skeleton member 2. It includes a tread reinforcing element 4 arranged between the tread grounding element 3 and the tread ground element 3.
  • the tire 1 is a tire for a passenger car.
  • the present invention is not limited to this, and can be adopted for tires of various categories such as for motorcycles, light trucks, and heavy-duty trucks.
  • the tire skeleton member 2 includes a pair of bead portions 5, a pair of sidewall portions 6 extending outward from the pair of bead portions 5 in the radial direction of the tire, and an under tread portion 7 connecting the pair of sidewall portions 6.
  • the inner surface of the under tread portion 7 in the radial direction of the tire forms the tire inner space surface 1H.
  • the bead portion 5 is a portion that fits into the rim R when the rim is assembled.
  • the sidewall portion 6 is a portion constituting the side portion of the tire 1, and extends outward in the tire radial direction while being curved in an arc shape that is convex toward the outer side in the tire axial direction.
  • the under tread portion 7 is a portion that supports the tread ground contact element 3, and connects between the outer ends of the sidewall portion 6 in the tire radial direction.
  • the tire skeleton member 2 is made of the same or a plurality of types of thermoplastic resins.
  • the fact that the tire skeleton member 2 is made of the same thermoplastic resin means that the bead portion 5, the sidewall portion 6 and the under tread portion 7 are made of the same thermoplastic resin.
  • being composed of a plurality of types of thermoplastic resins means that, for example, the bead portion 5, the sidewall portion 6, and the under tread portion 7 are composed of different thermoplastic resins.
  • the pair of sidewall portions 6 and the under tread portion 7 are composed of the second thermoplastic resin M2. Further, a case where the pair of bead portions 5 is composed of the third thermoplastic resin M3 is shown.
  • the tire skeleton member 2 includes a first base 8A made of the second thermoplastic resin M2 and a second base 8B made of the third thermoplastic resin M3. Then, the first substrate 8A forms a pair of sidewall portions 6 and an under tread portion 7. Further, the second substrate 8B forms a pair of bead portions 5.
  • the boundary surface K between the first base 8A and the second base 8B is inclined with respect to the tire axial direction line, which is the bonding strength between the first base 8A and the second base 8B. It is preferable to increase the amount of tires.
  • the intersection Po of the outer surface of the tire skeleton member 2 and the boundary surface K is preferably located inside the intersection Pi of the inner surface of the tire skeleton member 2 and the boundary surface K in the tire radial direction. As a result, the exposed area of the outer surface of the second base 8B is reduced, which helps to suppress damage such as cracks due to tire deformation.
  • the height hb of the intersection Po in the tire radial direction from the bead baseline BL is preferably in the range of 1.0 to 3.0 times the rim flange height hf. If it is less than 1.0 times, it becomes difficult to sufficiently improve the steering stability. On the contrary, if it exceeds 3.0 times, the effect of suppressing damage such as cracks is reduced, and the riding comfort performance is disadvantageous.
  • the rim flange height hf is defined as the height of the top of the rim flange Rf in the tire radial direction from the bead baseline BL.
  • an annular bead core 10 is arranged in the second base 8B in order to increase the fitting force with the rim R.
  • a tape bead structure and a single wind structure can be appropriately adopted.
  • the tape bead structure an array of bead wires aligned in parallel with each other is spirally wound from the inside to the outside in the radial direction in a strip shape topped with rubber or a thermoplastic resin, whereby the bead core 10 is formed. ..
  • the single wind structure one bead wire is spirally and continuously wound in multiple rows and multiple stages, whereby the bead core 10 is formed.
  • a steel cord is preferably adopted, but an organic fiber cord can also be adopted.
  • the bead core 10 can also be excluded depending on the tire category and the like.
  • the tread reinforcing element 4 is arranged on the outer surface of the under tread portion 7 in the radial direction of the tire. Further, the tread ground contact element 3 is arranged on the outer side of the tread reinforcing element 4 in the radial direction of the tire.
  • the tread ground contact element 3 is a portion that comes into contact with the road surface, and the outer surface in the radial direction of the tire forms the tire ground contact surface 1S.
  • Tread grooves 9 for enhancing wet performance are formed on the tire contact patch 1S in various patterns.
  • the tread grounding element 3 can be formed from vulcanized rubber or a thermoplastic resin. However, from the viewpoint of improving material recyclability, it is preferable to form the tread grounding element 3 with a thermoplastic resin.
  • the tread ground element 3 When a thermoplastic resin is used for the tread ground element 3, the tread ground element 3 has a tensile elastic modulus E1 smaller than the tensile elastic moduli E2 and E3 of the second and third thermoplastic resins M2 and M3, respectively. It is preferable to use the first thermoplastic resin M1 from the viewpoint of improving the followability to the road surface and improving the grip.
  • the tensile elastic moduli E2 and E3 are preferably in the range of 30 to 200 MPa, and if it is less than 30 MPa, the rigidity of the tire skeleton member 2 itself becomes insufficient, and it becomes difficult to secure steering stability. On the contrary, if it exceeds 200 MPa, the vertical rigidity of the tire becomes excessive and the ride quality deteriorates. It is more preferable that E2 ⁇ E3 from the viewpoint of achieving both steering stability and ride comfort performance.
  • the tensile elastic modulus is a value measured according to the test method described in "Plastic-How to determine tensile properties" of JIS K7161.
  • the tread reinforcing element 4 is made of a thermoplastic resin, and in this example, a resin reinforcing layer made of a fourth thermoplastic resin M4 different from the first to third thermoplastic resins M1 to M3. Formed as 15.
  • the tensile elastic modulus E4 of the fourth thermoplastic resin M4 is larger than the tensile elastic moduli E1 to E3.
  • the tensile elastic modulus E4 of the fourth thermoplastic resin M4 is preferably 1000 MPa or more, more preferably 2000 MPa or more. Further, from the viewpoint of suppressing damage, the tensile strength of the fourth thermoplastic resin M4 is preferably 200 MPa or more.
  • the tread reinforcing element 4 In order to enhance the tagging effect of the tread reinforcing element 4, it is preferable to include a fibrous filler in the fourth thermoplastic resin M4, and it is more preferable to orient the filler in the tire circumferential direction.
  • Suitable fillers include carbon fiber, glass fiber, aramid fiber, cellulose nanofiber (CNF), cellulose nanocrystal (CNC) and the like, which can be used alone or in combination.
  • thermoplastic resin M4 Even when such a fourth thermoplastic resin M4 is used, the stability of the ground contact shape of the tire is reduced as compared with the case where the tread reinforcing element is formed by a reinforcing cord such as a steel cord, which adversely affects the running performance. Invites a tendency to give.
  • the tread reinforcing element 4 is arranged closer to the tire contact patch 1S. Specifically, as shown in FIG. 3, the following requirements are satisfied on an arbitrary reference line X extending across the tread reinforcing element 4 and parallel to the tire equator C.
  • the thickness center point 4P of the tread reinforcing element 4 is such that the distance L1 in the tire radial direction from the tire inner surface 1H is the tire radius from the tire inner surface 1H to the tire contact patch 1S. It is in the range of 50 to 95% of the distance L0 in the direction.
  • the thickness of the under tread portion 7 is increased, and the under tread portion 7 is restrained at a position close to the tire contact patch 1S.
  • the stability of the ground contact shape of the tire can be ensured, and the running performance, particularly the steering stability can be maintained high.
  • the distance L1 is less than 50% of the distance L0, the effect of ensuring the stability of the ground contact shape is not sufficiently exhibited.
  • the lower limit of the distance L1 is preferably 55% or more of the distance L0, and the upper limit is preferably 70% or less.
  • the value of the ratio L1 / L0 gradually increases from the tire equator C to the outside in the tire axial direction.
  • the "thermoplastic resin” includes a thermoplastic elastomer.
  • the “thermoplastic resin” means a polymer compound in which a material softens and flows as the temperature rises and becomes relatively hard and strong when cooled.
  • the “thermoplastic elastomer” is characterized in that the material softens and flows as the temperature rises, becomes relatively hard and strong when cooled, and has rubber-like elasticity.
  • thermoplastic elastomer is preferably used for the tire skeleton member 2 and the tread ground contact element 3, and rubber-like elasticity is applied to the tread reinforcing element 4.
  • a thermoplastic resin that does not exist is preferably used.
  • thermoplastic elastomer examples include polyamide-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, and polyolefin-based thermoplastic elastomers, which are used alone or in combination. sell.
  • the manufacturing method of this example is Step S1 of forming the first tire base 1A in which the under tread portion 7, the tread reinforcing element 4, and the tread ground contact element 3 are integrated, Step S2 for forming a pair of second tire bases 1B in which the sidewall portion 6, the bead portion 5, and the bead core 10 are integrated, A step S3 of joining the first tire base 1A and the second tire base 1B to form the tire 1 is included.
  • step S1 the first tire base 1A is formed by performing composite molding in which the first thermoplastic resin M1, the second thermoplastic resin M2, and the fourth thermoplastic resin M4 are injected into the cavity. Form.
  • step S2 after forming the bead core 10 in advance, composite molding is performed by injecting the second thermoplastic resin M2 and the third thermoplastic resin M3 into the cavity in which the bead core 10 is set.
  • the second tire base 1B is formed.
  • step S3 the first tire base 1A and the second tire base 1B are joined by heat fusion or an adhesive.
  • an adhesive for example, Aron Alpha EXTRA2000 (registered trademark) manufactured by Toa Synthetic Co., Ltd., Loctite 401J (registered trademark) manufactured by Henkel Japan Ltd., and the like can be preferably used.
  • Comparative Example 1 has substantially the same configuration as that of the Example except that the tread reinforcing element is a cord reinforcing layer in which a steel cord is spirally wound.
  • the contour shapes of the tire cross sections are the same as each other before the internal pressure air filling. Further, in the embodiment, a feeler made of glass fiber is blended in the tread reinforcing element.
  • Tire productivity is expressed as an index with Comparative Example 1 as 10. The larger the number, the better the productivity.
  • Table 2 shows the thermoplastic resins used in Table 1.
  • the examples can improve the production efficiency while ensuring the stability of the ground contact shape.
  • the tread reinforcing element By forming the tread reinforcing element with a thermoplastic resin, it can contribute to the improvement of material recyclability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

タイヤの接地形状の安定性を確保しながら、生産効率の向上を図り、かつマテリアルリサイクル性を高めうる空気入りタイヤである。 タイヤ内腔面1Hとタイヤ接地面1Sとの間に、熱可塑性樹脂からなるトレッド補強要素4を具える。タイヤ赤道Cと平行な任意の基準線X上において、トレッド補強要素4の厚さ中心点4Pは、タイヤ内腔面1Hからのタイヤ半径方向の距離L1が、タイヤ内腔面1Hからタイヤ接地面1Sまでのタイヤ半径方向の距離L0の50~95%の範囲である。

Description

空気入りタイヤ
 本発明は、トレッド補強要素を熱可塑性樹脂で構成した空気入りタイヤに関する。
 従来の空気入りタイヤは、加硫ゴム、及び有機繊維やスチール繊維等のコード材料を用いることで、タイヤの基本的な特性が確保されてきた。しかし、加硫ゴムには、マテリアルリサイクルをすることが難しいという問題がある。加えて、コード材料、特にカーカスコードの使用は、製造工程を複雑にし、製造コストを増加させるという問題がある。
 そこで下記の特許文献1には、タイヤ骨格部材を熱可塑性樹脂で形成したカーカスレスのタイヤが提案されている。タイヤ骨格部材は、一対のビード部と、一対のビード部から延びる一対のサイド部と、一対のサイド部を連結するクラウン部とを具える。又クラウン部上には、加硫ゴムからなるトレッドが配される。
特許第6138695号公報
 しかし、上記提案のタイヤでは、トレッド補強要素として、スチールコード等の補強コードを螺旋状に巻回したコード層が使用されている。
 そのため、タイヤを製造する際、タイヤ骨格部材の外周面上で補強コードを巻回する工程が必要となり、生産効率を低下させるという問題がある。また補強コードにスチールコード等が用いられるため、マテリアルリサイクル性を充分に高めることができないという問題がある。
 本発明は、トレッド補強要素を熱可塑性樹脂で構成し、かつトレッド補強要素の形成位置を規制することを基本として、タイヤの接地形状の安定性を確保しながら、生産効率の向上を図り、かつマテリアルリサイクル性を高めうる空気入りタイヤを提供することを課題としている。
 本発明は、空気入りタイヤであって、
 タイヤ内腔面とタイヤ接地面との間に配されるトレッド補強要素を含み、
 前記トレッド補強要素は、熱可塑性樹脂からなり、
 前記トレッド補強要素を横切りかつタイヤ赤道と平行な任意の基準線上において、
 前記トレッド補強要素の厚さ中心点は、前記タイヤ内腔面からのタイヤ半径方向の距離L1が、前記タイヤ内腔面から前記タイヤ接地面までのタイヤ半径方向の距離L0の50~95%の範囲である。
 本発明に係る空気入りタイヤでは、一対のビード部と、一対のサイドウォール部と、前記一対のサイドウォール部をつなぐアンダートレッド部とを含むトロイド状のタイヤ骨格部材を含み、
 前記アンダートレッド部のタイヤ半径方向内面が、前記タイヤ内腔面をなし、タイヤ半径方向外面上に前記トレッド補強要素が配されるのが好ましい。
 本発明に係る空気入りタイヤでは、前記タイヤ骨格部材は、同一又は複数種類の熱可塑性樹脂からなるのが好ましい。
 本発明に係る空気入りタイヤでは、前記トレッド補強要素のタイヤ半径方向外側に、前記タイヤ接地面をなすトレッド接地要素を具え、前記トレッド接地要素は、
加硫ゴム又は熱可塑性樹脂からなるのが好ましい。
 本発明に係る空気入りタイヤでは、前記トレッド補強要素をなす熱可塑性樹脂は、引張弾性率が1000MPa以上であるのが好ましい。
 本発明に係る空気入りタイヤでは、前記タイヤ骨格部材をなす熱可塑性樹脂は、引張弾性率が30~200MPa以下であるのが好ましい。
 本発明に係る空気入りタイヤでは、前記トレッド補強要素は、前記熱可塑性樹脂内に繊維状のフィラーを含むのが好ましい。
 本発明に係る空気入りタイヤでは、前記フィラーは、タイヤ周方向に配向するのが好ましい。
 本発明の空気入りタイヤでは、トレッド補強要素が熱可塑性樹脂からなる。これにより、補強コードを巻回する工程などが不要となり、マテリアルリサイクル性を高めつつ、生産効率の向上を図ることができる。
 また、トレッド補強要素を熱可塑性樹脂で形成する場合、スチールコード等の補強コードを使用する場合に比して拘束力が劣るため、タイヤの接地形状の安定性が減じ、走行性能に悪影響を与える傾向を招く。これに対して、本発明では、トレッド補強要素の厚さ中心点の、タイヤ内腔面からのタイヤ半径方向の距離L1を、タイヤ内腔面からタイヤ接地面までのタイヤ半径方向の距離L0の50~95%の範囲に規制している。即ち、トレッド補強要素を、タイヤ接地面寄りに配置している。
 これにより、トレッド補強要素を熱可塑性樹脂で形成しながらも、タイヤの接地形状の安定性を確保でき、走行性能への悪影響を低く抑えることが可能になる。
本発明の空気入りタイヤの一実施例を示す断面図である。 ビード部を拡大して示す断面図である。 トレッド部をトレッド補強要素とともに拡大して示す断面図である。 (a)~(c)は、空気入りタイヤの製造方法を示す概念図である。
 以下、本発明の実施の形態について、詳細に説明する。
 図1に示すように、本実施形態の空気入りタイヤ1(以下、単にタイヤ1という場合がある。)は、タイヤ内腔面1Hとタイヤ接地面1Sとの間に配されるトレッド補強要素4を含み、このトレッド補強要素4は、熱可塑性樹脂から構成される。
 具体的には、本例のタイヤ1は、タイヤ内腔面1Hを有するトロイド状のタイヤ骨格部材2、タイヤ接地面1Sを有するトレッド接地要素3、及び前記タイヤ骨格部材2のアンダートレッド部7とトレッド接地要素3との間に配されるトレッド補強要素4を含んで構成される。
 本例では、タイヤ1が乗用車用のタイヤである場合が示される。しかし、これに限定されるものではなく、例えば自動二輪車用、ライトトラック用、大型トラック用等など、種々のカテゴリのタイヤに採用することができる。
 タイヤ骨格部材2は、一対のビード部5と、一対のビード部5からタイヤ半径方向外側に延びる一対のサイドウォール部6と、一対のサイドウォール部6をつなぐアンダートレッド部7とを含む。アンダートレッド部7のタイヤ半径方向内面が、前記タイヤ内腔面1Hをなす。
 ビード部5は、リム組み時にリムRに嵌合する部位である。サイドウォール部6は、タイヤ1の側部を構成する部位であり、タイヤ軸方向外側に向かって凸となる円弧状に湾曲しながらタイヤ半径方向外側に延びる。アンダートレッド部7は、トレッド接地要素3を支持する部位であり、前記サイドウォール部6のタイヤ半径方向外端部間を連結する。
 タイヤ骨格部材2は、同一又は複数種類の熱可塑性樹脂からなる。タイヤ骨格部材2が同一の熱可塑性樹脂からなるとは、ビード部5とサイドウォール部6とアンダートレッド部7とが、同一の熱可塑性樹脂から構成されることを意味する。また複数種類の熱可塑性樹脂から構成されるとは、例えば、ビード部5とサイドウォール部6とアンダートレッド部7とが、異なる熱可塑性樹脂から構成されることを意味する。
 本例では、一対のサイドウォール部6とアンダートレッド部7とが、第2の熱可塑性樹脂M2で構成され。また一対のビード部5が、第3の熱可塑性樹脂M3で構成される場合が示される。
 言い換えると、タイヤ骨格部材2は、第2の熱可塑性樹脂M2からなる第1基体8Aと、第3の熱可塑性樹脂M3からなる第2基体8Bとを含む。そして、第1基体8Aが、一対のサイドウォール部6とアンダートレッド部7とを形成する。又第2基体8Bが、一対のビード部5を形成している。
 図2に示すように、第1基体8Aと第2基体8Bとの境界面Kは、タイヤ軸方向線に対して傾斜しているのが、第1基体8Aと第2基体8Bとの結合強度を高める上で好ましい。特には、タイヤ骨格部材2の外面と境界面Kとの交点Poは、タイヤ骨格部材2の内面と境界面Kとの交点Piよりも、タイヤ半径方向の内側に位置するのが好ましい。これにより、第2基体8Bの外面の露出面積が減じるため、タイヤ変形に伴うクラック等の損傷を抑制するのに役立つ。
 交点Poの、ビードベースラインBLからのタイヤ半径方向の高さhbは、リムフランジ高さhfの1.0~3.0倍の範囲であるのが好ましい。1.0倍を下回ると、操縦安定性を充分に高めることが難しくなる。逆に、3.0倍を超えるとクラック等の損傷の抑制効果が減じる他、乗り心地性能に不利を招く。リムフランジ高さhfとは、リムフランジRfの頂部のビードベースラインBLからのタイヤ半径方向の高さとして定義される。
 本例では、前記第2基体8B内には、リムRとの嵌合力を高めるために、円環状のビードコア10が配される。ビードコア10として、テープビード構造及びシングルワインド構造が適宜採用しうる。テープビード構造では、互いに平行に引き揃えたビードワイヤの配列体がゴムや熱可塑性樹脂でトッピングされた帯状体を、半径方向内側から外側に渦巻状に巻回され、これによりビードコア10が形成される。シングルワインド構造では、1本のビードワイヤが、螺旋状かつ多列多段に連続巻きされ、これによりビードコア10が形成される。ビードワイヤとしては、スチールコードが好適に採用されるが、有機繊維コードも採用されうる。なお、タイヤのカテゴリなどに応じて、ビードコア10を排除することもできる。
 図1に示すように、トレッド補強要素4は、アンダートレッド部7のタイヤ半径方向外面上に配される。またトレッド補強要素4のタイヤ半径方向外側にトレッド接地要素3が配される。
 トレッド接地要素3は、路面と接地する部位であり、タイヤ半径方向外面が前記タイヤ接地面1Sをなす。タイヤ接地面1Sには、ウエット性能を高めるためのトレッド溝9が、種々のパターン模様で形成される。
 トレッド接地要素3は、加硫ゴム又は熱可塑性樹脂から形成することができる。しかし、マテリアルリサイクル性を高めるとの観点から、トレッド接地要素3を熱可塑性樹脂で形成するのが好ましい。
 トレッド接地要素3に熱可塑性樹脂を使用する場合、トレッド接地要素3を、第2、第3の熱可塑性樹脂M2、M3のそれぞれの引張弾性率E2、E3よりも小な引張弾性率E1を有する第1の熱可塑性樹脂M1で構成するのが、路面への追従性を高め、グリップを向上させるという観点から好ましい。
 引張弾性率E2、E3は30~200MPaの範囲が好ましく、30MPaを下回るとタイヤ骨格部材2自体の剛性が不充分となり、操縦安定性を確保するのが難しくなる。逆に200MPaを越えると、タイヤの縦剛性が過大となって乗り心地性能の低下を招く。なお操縦安定性と乗り心地性能とを両立させるという観点から、E2<E3であるのがさらに好ましい。引張弾性率は、JIS K7161の「プラスチック-引張特性の求め方」に記載の試験方法に準拠して測定した値である。
 図3に示すように、トレッド補強要素4は、熱可塑性樹脂からなり、本例では、第1ないし第3の熱可塑性樹脂M1~M3とは異なる第4の熱可塑性樹脂M4からなる樹脂補強層15として形成される。
 第4の熱可塑性樹脂M4の引張弾性率E4は、前記引張弾性率E1~E3よりも大である。トレッド補強要素4では、タガ効果によってアンダートレッド部7を拘束し、タイヤの接地形状の安定化を図る。そのために、第4の熱可塑性樹脂M4の引張弾性率E4は、1000MPa以上、さらには2000MPa以上であるのが好ましい。また、損傷抑制の観点から第4の熱可塑性樹脂M4の引張強度は、200MPa以上であるのも好ましい。
 なおトレッド補強要素4によるタガ効果を高めるために、第4の熱可塑性樹脂M4内に繊維状のフィラーを含むことが好ましく、またフィラーを、タイヤ周方向に配向させるのがさらに好ましい。
 好適なフィラーとして、カーボン繊維、ガラス繊維、アラミド繊維、セルロースナノファイバー(CNF)、セルロースナノクリスタル(CNC)等を挙げることができ、これらを単独で、或いは組み合わせて採用しうる。
 このような第4の熱可塑性樹脂M4を用いた場合にも、スチールコード等の補強コードでトレッド補強要素を形成する場合に比して、タイヤの接地形状の安定性が減じ、走行性能に悪影響を与える傾向を招く。
 そのために、トレッド補強要素4を、タイヤ接地面1S寄りに配置している。具体的には、図3に示すように、トレッド補強要素4を横切ってタイヤ赤道Cと平行に延びる任意の基準線X上において、下記の要件を満たす。
 即ち、前記基準線X上において、トレッド補強要素4の厚さ中心点4Pは、タイヤ内腔面1Hからのタイヤ半径方向の距離L1が、タイヤ内腔面1Hからタイヤ接地面1Sまでのタイヤ半径方向の距離L0の50~95%の範囲である。
 このように構成することで、アンダートレッド部7の厚さが高まり、かつこのアンダートレッド部7を、タイヤ接地面1Sに近い位置で拘束する。これにより、タイヤの接地形状の安定性を確保でき、走行性能、特には操縦安定性を高く維持することが可能になる。なお距離L1が距離L0の50%を下回ると、接地形状の安定性の確保の効果が充分発揮されなくなる。逆に95%を越えると、トレッド溝9の形成、及び摩耗寿命の確保が難しくなる。このような観点から、距離L1の下限は、距離L0の55%以上が好ましく、また上限は70%以下が好ましい。
 なお比L1/L0の値は、タイヤ赤道Cからタイヤ軸方向外側に向かって、しだいに増加するのも好ましい。
 本願において、「熱可塑性樹脂」には、熱可塑性エラストマーが含まれる。「熱可塑性樹脂」とは、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になる高分子化合物を意味する。「熱可塑性エラストマー」は、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有するという特徴を有する。
 走行時に必要とされる弾性、製造時の成形性等を考慮すると、タイヤ骨格部材2及びトレッド接地要素3には、熱可塑性エラストマーが好適に使用され、トレッド補強要素4には、ゴム状弾性を有さない熱可塑性樹脂が好適に使用される。
 熱可塑性エラストマーとしては、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマーを挙げることができ、これらを単独で或いは組み合わせて採用しうる。
 次に、実施形態のタイヤ1の製造方法の一例を示す。図4(a)~(c)に概念的に示すように、本例の製造方法は、
 ・アンダートレッド部7とトレッド補強要素4とトレッド接地要素3とを一体化した第1タイヤベース1Aを形成する工程S1と、
 ・サイドウォール部6とビード部5とビードコア10とを一体化した一対の第2タイヤベース1Bを形成する工程S2と、
 ・第1タイヤベース1Aと第2タイヤベース1Bとを接合してタイヤ1を形成する工程S3とを含む。
 工程S1では、キャビティ内に、第1の熱可塑性樹脂M1と、第2の熱可塑性樹脂M2と、第4の熱可塑性樹脂M4とを射出する複合成形を行うことで、第1タイヤベース1Aを形成する。
 工程S2では、予めビードコア10を形成した後、このビードコア10がセットされたキャビティ内に、第2の熱可塑性樹脂M2と、第3の熱可塑性樹脂M3とを射出する複合成形を行うことで、第2タイヤベース1Bを形成する。
 工程S3では、第1タイヤベース1Aと第2タイヤベース1Bとを、熱融着又は接着剤を用いて接合させる。接着剤としては、例えば、東亜合成株式会社製のアロンアルファEXTRA2000(登録商標)やヘンケルジャパン株式会社製のロックタイト401J(登録商標)等が好適に用いうる。
 以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
 本発明の効果を確認するために、図1に示す構造を有する乗用車用のタイヤ(195/65R15)が、表1の仕様に基づいて試作した場合の接地幅、及び生産性の見積もりを行った。
 比較例1は、トレッド補強要素が、スチールコードを螺旋状に巻回したコード補強層である以外は、実施例と実質的に同構成である。比較例及び実施例は、内圧空気充填前において、タイヤ断面の輪郭形状は、互いに同一である。また実施例には、トレッド補強要素内にガラス繊維からなるフィーラが配合されている。
<接地幅>
 有限要素法によるシミュレーションにより、タイヤを正規リム(15×6JJ)、正規内圧(230kPa)、正規荷重(3.43kN)の条件にて、路面に垂直に接地させた時の、接地面のタイヤ軸方向の幅(接地幅)を計算した。結果を、比較例1を10とする指数で表記した。数値が大きいほど、接地形状の安定性に優れている。
<生産性>
 タイヤの生産性が、比較例1を10とする指数で表記された。数値が大きいほど生産性に優れている。
Figure JPOXMLDOC01-appb-T000001
 
 表1に使用された熱可塑性樹脂を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表1に示すように実施例は、接地形状の安定性を確保しながら、生産効率を向上させうることが確認できる。なおトレッド補強要素が熱可塑性樹脂で形成されることにより、マテリアルリサイクル性の向上にも貢献しうる。
1 空気入りタイヤ
1H タイヤ内腔面
1S タイヤ接地面
2 タイヤ骨格部材
3 トレッド接地要素
4 トレッド補強要素
4P 中心点
5 ビード部
6 サイドウォール部
7 アンダートレッド部
C タイヤ赤道
X 基準線
 

Claims (8)

  1.  空気入りタイヤであって、
     タイヤ内腔面とタイヤ接地面との間に配されるトレッド補強要素を含み、
     前記トレッド補強要素は、熱可塑性樹脂からなり、
     前記トレッド補強要素を横切りかつタイヤ赤道と平行な任意の基準線上において、
     前記トレッド補強要素の厚さ中心点は、前記タイヤ内腔面からのタイヤ半径方向の距離L1が、前記タイヤ内腔面から前記タイヤ接地面までのタイヤ半径方向の距離L0の50~95%の範囲である、空気入りタイヤ。
  2.  一対のビード部と、一対のサイドウォール部と、前記一対のサイドウォール部をつなぐアンダートレッド部とを含むトロイド状のタイヤ骨格部材を含み、
     前記アンダートレッド部のタイヤ半径方向内面が、前記タイヤ内腔面をなし、タイヤ半径方向外面上に前記トレッド補強要素が配される、請求項1記載の空気入りタイヤ。
  3.  前記タイヤ骨格部材は、同一又は複数種類の熱可塑性樹脂からなる、請求項1又は2記載の空気入りタイヤ。
  4.  前記トレッド補強要素のタイヤ半径方向外側に、前記タイヤ接地面をなすトレッド接地要素を具え、前記トレッド接地要素は、加硫ゴム又は熱可塑性樹脂からなる、請求項1~3の何れかに記載の空気入りタイヤ。
  5.  前記トレッド補強要素をなす熱可塑性樹脂は、引張弾性率が1000MPa以上である、請求項1~4の何れかに記載の空気入りタイヤ。
  6.  前記タイヤ骨格部材をなす熱可塑性樹脂は、引張弾性率が30~200MPa以下である、請求項3~5の何れかに記載の空気入りタイヤ。
  7.  前記トレッド補強要素は、前記熱可塑性樹脂内に繊維状のフィラーを含む、請求項1~6の何れかに記載の空気入りタイヤ。
  8.  前記フィラーは、タイヤ周方向に配向する、請求項7記載の空気入りタイヤ。
PCT/JP2020/034954 2019-10-08 2020-09-15 空気入りタイヤ WO2021070582A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/766,321 US20230070678A1 (en) 2019-10-08 2020-09-15 Pneumatic tire
CN202080019419.5A CN113543986A (zh) 2019-10-08 2020-09-15 充气轮胎
EP20874230.4A EP4043239A4 (en) 2019-10-08 2020-09-15 PNEUMATIC TIRE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-185319 2019-10-08
JP2019185319A JP6992792B2 (ja) 2019-10-08 2019-10-08 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2021070582A1 true WO2021070582A1 (ja) 2021-04-15

Family

ID=75379459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034954 WO2021070582A1 (ja) 2019-10-08 2020-09-15 空気入りタイヤ

Country Status (5)

Country Link
US (1) US20230070678A1 (ja)
EP (1) EP4043239A4 (ja)
JP (1) JP6992792B2 (ja)
CN (1) CN113543986A (ja)
WO (1) WO2021070582A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138695B2 (ja) 1980-12-26 1986-08-30 Masao Itokawa
JPH06255314A (ja) * 1993-03-08 1994-09-13 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2010047072A (ja) * 2008-08-20 2010-03-04 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012116222A (ja) * 2010-11-29 2012-06-21 Bridgestone Corp タイヤ、タイヤの製造方法、及びタイヤの解体方法
JP2013537149A (ja) * 2010-09-21 2013-09-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン 保護補強材を有するタイヤ
JP2014518911A (ja) * 2011-05-12 2014-08-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 熱可塑性エラストマーを含むアンダーレイヤーを備えたクラウン領域を有するタイヤ
JP2015502290A (ja) * 2011-12-16 2015-01-22 コンパニー ゼネラール デ エタブリッスマン ミシュラン 熱可塑性材料によって被覆されたトレッドパターン要素を含むトレッド
WO2018074284A1 (ja) * 2016-10-18 2018-04-26 株式会社ブリヂストン タイヤ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1159675A (en) * 1965-08-12 1969-07-30 Dunlop Co Ltd Pneumatic Tyres.
US3860052A (en) * 1972-01-11 1975-01-14 Du Pont Cordless vehicle tire
US3888291A (en) * 1973-12-12 1975-06-10 Armstrong Rubber Co Molded or cast tires and methods of manufacture
JPS5387404A (en) * 1977-01-08 1978-08-01 Toyo Tire & Rubber Co Ltd Casting tire
DE2835398C2 (de) * 1978-08-12 1985-05-02 Phoenix Ag, 2100 Hamburg Luftreifen aus gießfähigem zu elastischem Kunststoff aushärtenden Material
JPH0616008A (ja) * 1992-06-30 1994-01-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ及び空気入りタイヤの製造方法
JP5680266B2 (ja) * 2008-05-16 2015-03-04 横浜ゴム株式会社 空気入りタイヤおよび更生タイヤの製造方法
JP6138412B2 (ja) * 2011-10-07 2017-05-31 株式会社ブリヂストン タイヤ
JP5840535B2 (ja) * 2012-03-01 2016-01-06 株式会社ブリヂストン タイヤ
JP2013252746A (ja) * 2012-06-05 2013-12-19 Bridgestone Corp 空気入りタイヤ
CN202986688U (zh) * 2012-10-09 2013-06-12 北京化工大学 一种双刚圈结构航空轮胎
JP6204672B2 (ja) * 2013-03-26 2017-09-27 株式会社ブリヂストン タイヤ
EP2990221B1 (en) * 2013-04-25 2017-04-05 Bridgestone Corporation Tire
JP6204732B2 (ja) * 2013-07-12 2017-09-27 株式会社ブリヂストン タイヤ
FR3022487B1 (fr) * 2014-06-20 2017-02-24 Michelin & Cie Carcasse de pneumatique comportant une couche externe d'elastomere thermoplastique
WO2016017556A1 (ja) * 2014-07-30 2016-02-04 株式会社ブリヂストン タイヤ
JP6028083B2 (ja) * 2015-11-25 2016-11-16 株式会社ブリヂストン タイヤ
FR3068915B1 (fr) * 2017-07-11 2020-07-31 Michelin & Cie Procede de fabrication d'un bandage pneumatique perfectionne
JP2019104418A (ja) * 2017-12-13 2019-06-27 株式会社ブリヂストン タイヤ
JP2020100167A (ja) * 2018-12-19 2020-07-02 株式会社ブリヂストン ランフラットタイヤ
JP7105182B2 (ja) * 2018-12-26 2022-07-22 株式会社ブリヂストン ランフラットタイヤ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138695B2 (ja) 1980-12-26 1986-08-30 Masao Itokawa
JPH06255314A (ja) * 1993-03-08 1994-09-13 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2010047072A (ja) * 2008-08-20 2010-03-04 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2013537149A (ja) * 2010-09-21 2013-09-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン 保護補強材を有するタイヤ
JP2012116222A (ja) * 2010-11-29 2012-06-21 Bridgestone Corp タイヤ、タイヤの製造方法、及びタイヤの解体方法
JP2014518911A (ja) * 2011-05-12 2014-08-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 熱可塑性エラストマーを含むアンダーレイヤーを備えたクラウン領域を有するタイヤ
JP2015502290A (ja) * 2011-12-16 2015-01-22 コンパニー ゼネラール デ エタブリッスマン ミシュラン 熱可塑性材料によって被覆されたトレッドパターン要素を含むトレッド
WO2018074284A1 (ja) * 2016-10-18 2018-04-26 株式会社ブリヂストン タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4043239A4

Also Published As

Publication number Publication date
US20230070678A1 (en) 2023-03-09
EP4043239A4 (en) 2022-12-07
EP4043239A1 (en) 2022-08-17
JP6992792B2 (ja) 2022-01-13
CN113543986A (zh) 2021-10-22
JP2021059258A (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
EP3459763B1 (en) Tire
US20180290494A1 (en) Tire
US20180290493A1 (en) Tire
JP2007516883A (ja) 非対称自立型サイドウォールを備えたタイヤ
EP3459762A1 (en) Tire
WO2021070581A1 (ja) 空気入りタイヤ
JP6623766B2 (ja) 不整地用モータサイクルタイヤの製造方法
WO2021070578A1 (ja) 空気入りタイヤ
WO2021070582A1 (ja) 空気入りタイヤ
US11472230B2 (en) Pneumatic tire
WO2021070580A1 (ja) 空気入りタイヤ
JP6052762B2 (ja) ライトトラック用空気入りタイヤ
JP5297485B2 (ja) 二輪自動車用ラジアルタイヤ
JP2009286177A (ja) ラグ付きタイヤの製造方法、生タイヤ、及びラグ付きタイヤ
JP2019001127A (ja) 空気入りタイヤの製造方法
JP2013075505A (ja) 空気入りタイヤの製造方法、及び空気入りタイヤ
JP2012131184A (ja) 空気入りタイヤ及びその製造方法
JP5084255B2 (ja) 空気入りラジアルタイヤの製造方法
US20210260922A1 (en) Pneumatic tire
US20210260924A1 (en) Tire
WO2019230353A1 (ja) タイヤ
JP6058415B2 (ja) 空気入りタイヤ
JP4813070B2 (ja) 自動二輪車用空気入りタイヤ
JP2014051234A (ja) 空気入りタイヤ
JP2014080161A (ja) 空気入りラジアルタイヤ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020874230

Country of ref document: EP

Effective date: 20220509